JP4258357B2 - Engine exhaust gas recirculation system - Google Patents

Engine exhaust gas recirculation system Download PDF

Info

Publication number
JP4258357B2
JP4258357B2 JP2003389515A JP2003389515A JP4258357B2 JP 4258357 B2 JP4258357 B2 JP 4258357B2 JP 2003389515 A JP2003389515 A JP 2003389515A JP 2003389515 A JP2003389515 A JP 2003389515A JP 4258357 B2 JP4258357 B2 JP 4258357B2
Authority
JP
Japan
Prior art keywords
path
thermostat
passage
engine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003389515A
Other languages
Japanese (ja)
Other versions
JP2005147091A (en
Inventor
昭 吉原
明仁 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003389515A priority Critical patent/JP4258357B2/en
Publication of JP2005147091A publication Critical patent/JP2005147091A/en
Application granted granted Critical
Publication of JP4258357B2 publication Critical patent/JP4258357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、エンジンから排出される排気ガスの一部を吸気路側へ還流させるエンジンの排気ガス再循環装置に関し、特に、吸気路と排気路とがエンジン本体の左右側壁側に対向配備された水冷式のエンジンの排気ガス再循環装置に関するものである。   The present invention relates to an exhaust gas recirculation device for an engine that recirculates a part of exhaust gas discharged from an engine to an intake passage side. The present invention relates to an exhaust gas recirculation device for an engine.

車両用のエンジンには、排気ガスの一部を吸気路側へ還流させることで燃焼温度を下げ、吸気負荷を低減させて排気ガス中のNOX低減や燃費低減をはかる排気ガス再循環装置を装着するものがある。この排気ガス再循環装置(EGR装置)は、排気ガスの一部をEGRガスとして吸気路へ還流させるべく、エンジン本体の排気路側の排気マニホールドの一部と吸気路側の吸気マニホールドの分岐部近傍位置との間を排気ガス導入路で連結する。ここで排気ガス導入路にはEGRバルブが配備され、EGRバルブはEGRガスをエンジン運転域に応じた流量だけ吸気側へ流動させるようにコントローラで開閉制御される。   The vehicle engine is equipped with an exhaust gas recirculation device that lowers the combustion temperature by recirculating a part of the exhaust gas to the intake passage side and reduces the intake load to reduce NOX in the exhaust gas and reduce fuel consumption. There is something. In this exhaust gas recirculation device (EGR device), a part of the exhaust manifold on the exhaust path side of the engine body and a position near the branch portion of the intake manifold on the intake path side in order to recirculate a part of the exhaust gas as EGR gas to the intake path. And an exhaust gas introduction path. Here, an EGR valve is provided in the exhaust gas introduction path, and the EGR valve is controlled to be opened and closed by a controller so that the EGR gas flows to the intake side by a flow rate corresponding to the engine operating region.

このような排気ガス再循環装置をエンジン本体に装着するとすると、エンジン本体の長手方向に沿って形成される一側壁の排気路側より他側壁の吸気路側に排気ガス導入路を介してEGRガスを流動させることとなる。この場合、排気ガス導入路はエンジン本体の長手方向の端部近傍をエンジン本体の幅方向に横断するように配備されることとなり、その装着スペースをエンジン本体の前方、上方、エンジン本体の内部等に確保する必要がある。   When such an exhaust gas recirculation device is attached to the engine body, the EGR gas flows from the exhaust path side of one side wall formed along the longitudinal direction of the engine body to the intake path side of the other side wall through the exhaust gas introduction path. Will be allowed to. In this case, the exhaust gas introduction path is arranged so as to traverse the vicinity of the longitudinal end of the engine body in the width direction of the engine body. It is necessary to secure it.

例えば、図13に示すエンジンの排気ガス再循環装置では、エンジン本体100の長手方向Xの一方端側に位置する端部気筒110の排気路120より排気ガスをEGRガスとして取出し、これをシリンダヘッド130の下壁140に形成されるシリンダヘッド内ガス路150及びEGRバルブ160を備えたEGRパイプ170を介して吸気路190側に導入している。ここで、シリンダヘッド内ガス路150は排気ポート180より分岐して延出し、屈曲してからエンジン本体100の幅方向Yに延出してシリンダヘッドの外部側のEGRパイプ160に連通しており、この幅方向延出部150aは端部気筒110用に設けられたヘッドボルト200より先端側のシリンダヘッドの先端部分130aに形成される。   For example, in the engine exhaust gas recirculation device shown in FIG. 13, the exhaust gas is taken out as EGR gas from the exhaust passage 120 of the end cylinder 110 located on one end side in the longitudinal direction X of the engine body 100, and this is taken as the cylinder head. 130 is introduced to the intake passage 190 side through an EGR pipe 170 provided with a gas passage 150 in the cylinder head and an EGR valve 160 formed in the lower wall 140. Here, the cylinder head gas passage 150 is branched and extended from the exhaust port 180, is bent and then extends in the width direction Y of the engine body 100 and communicates with the EGR pipe 160 on the outside of the cylinder head. The width direction extending portion 150a is formed at the tip portion 130a of the cylinder head on the tip side of the head bolt 200 provided for the end cylinder 110.

なお、このシリンダヘッド先端部分130aの端部外壁230には流出開口220が形成され、これがシリンダヘッド内のウォータージャケット210と端部外壁230に固着された冷却水流路切換え用のサーモスタット240とを連通している。この場合、エンジン本体130外側の排気ガス再循環装置用の流路部材が低減し部品数低減を図れる
特開2001−200762号公報(特許文献1)には、ディーゼルエンジン冷却水循環路に配備され冷却水の流動方向を切換えるサーモスタットが箱形状のケースに収容されてエンジン本体の長手方向の一方端部に固着される構成と、このケースの下部に排気ガス再循環装置の排気ガス導入路の一部を成すガス路(パイプ)を一体的に形成した構成とが開示されている。ここでガス路はエンジン本体の前部をエンジン本体の幅方向に直状に延びるパイプ状部分と吸気路側で上向きに湾曲する部分とを有し、その一端がフランジを介して排気路側のEGRパイプに結合され、その他端がフランジを介して吸気路側のEGRパイプに結合される。ここでは直状に延びるパイプ状部分でEGRガスをケース11内の冷却水で冷却し、吸気温の上昇を抑えて吸気効率を高めることができるようにしている。
In addition, an outflow opening 220 is formed in the end outer wall 230 of the cylinder head tip portion 130a, and this communicates with the water jacket 210 in the cylinder head and the thermostat 240 for switching the cooling water flow path fixed to the end outer wall 230. is doing. In this case, the flow path member for the exhaust gas recirculation device outside the engine main body 130 can be reduced and the number of parts can be reduced. Japanese Patent Laid-Open No. 2001-200762 (Patent Document 1) is provided with a diesel engine cooling water circulation path for cooling. A thermostat for switching the flow direction of water is housed in a box-shaped case and fixed to one end in the longitudinal direction of the engine body, and a part of the exhaust gas recirculation passage of the exhaust gas recirculation device is provided at the bottom of the case The structure which formed integrally the gas path (pipe) which comprises this is disclosed. Here, the gas passage has a pipe-like portion that extends straight in the width direction of the engine body at the front portion of the engine body and a portion that curves upward on the intake passage side, one end of which is an EGR pipe on the exhaust passage side through a flange. The other end is connected to the EGR pipe on the intake passage side through a flange. Here, the EGR gas is cooled by the cooling water in the case 11 at a pipe-like portion extending straight, so that the intake efficiency can be increased by suppressing the rise in the intake air temperature.

特開2001−200762号公報Japanese Patent Laid-Open No. 2001-200762

ところで、図13に開示する排気ガス再循環装置では幅方向延出部150aがシリンダヘッド先端部分130aに形成されることで、シリンダヘッド130、即ち、エンジン本体100の長手方向Xの長さが大きくなるという問題がある。一方、特許文献1の排気ガス再循環装置を用いた場合、エンジン本体の長手方向の長さに問題はないが、排気ガス導入路が排気マニホールド側から吸気マニホールド側に延出形成されることより、全排気ガス導入路がエンジン本体の外側部分に配備される。   By the way, in the exhaust gas recirculation device disclosed in FIG. 13, the length in the longitudinal direction X of the cylinder head 130, that is, the engine main body 100 is increased by forming the width direction extending portion 150a in the cylinder head front end portion 130a. There is a problem of becoming. On the other hand, when the exhaust gas recirculation device of Patent Document 1 is used, there is no problem in the length of the engine body in the longitudinal direction, but the exhaust gas introduction path extends from the exhaust manifold side to the intake manifold side. The entire exhaust gas introduction path is provided in the outer portion of the engine body.

このため、特に、エンジン本体の幅方向外側部分に排気路及び吸気路側の各EGRパイプを配設することとなり、エンジン全体としての取付けスペースが比較的大きくなり、取付けスペース確保に問題を生じやすい。しかも、パイプ状のガス路はケースの下部に上壁部分が一体形成されるのみで、この上壁以外の部分は突出して形成される。この点で取付けスペースが大きくなってしまうし、冷却水によるEGRガスの冷却作用が十分に得られず、冷却効率の低いものとなっている。更に、ここでのパイプ状のガス路は十分な冷却作用が得られないことより、EGRガスのガス温度が十分に下がらず、吸気効率が低下しやすく、この低下を抑えるためにはガス温度を下げる必要が生じる。特に、樹脂マニホールドを採用している場合にはEGRガス用のクーラーの必要性が特に高まり、この点でも取付けスペースが大きくなってしまうという問題が生じる。   For this reason, in particular, the EGR pipes on the exhaust path and the intake path side are disposed on the outer side in the width direction of the engine body, and the installation space for the engine as a whole becomes relatively large, and there is a problem in securing the installation space. In addition, the pipe-like gas path is formed only by integrally forming the upper wall portion at the lower portion of the case, and the portions other than the upper wall are formed to protrude. In this respect, the installation space becomes large, and the cooling action of the EGR gas by the cooling water cannot be sufficiently obtained, and the cooling efficiency is low. Furthermore, since the pipe-like gas passage here does not provide a sufficient cooling action, the gas temperature of the EGR gas is not sufficiently lowered, and the intake efficiency is liable to be lowered. Need to lower. In particular, when a resin manifold is employed, the necessity of a cooler for EGR gas is particularly increased, and this also causes a problem that the installation space is increased.

本発明は以上のような課題に基づきなされたもので、目的とするところは、取付けスペースを抑制でき、エンジン本体のコンパクト化を図れ、副次的には、冷却水によるEGRガスの冷却作用が十分に得られる、エンジンの排気ガス再循環装置を提供することにある。   The present invention has been made on the basis of the above-described problems, and the object is to reduce the installation space, to make the engine body compact, and, secondarily, the cooling action of the EGR gas by the cooling water. It is an object of the present invention to provide an exhaust gas recirculation device for an engine that can be obtained sufficiently.

この発明の請求項1に係るエンジンの排気ガス再循環装置は、エンジン本体の長手方向に沿って形成される一側壁側に排気路が他側壁側に吸気路が形成された水冷式のエンジンに装着され、上記排気路の排気ガスの一部をEGRガスとして排気ガス導入路を通して吸気路へ導入させるエンジンの排気ガス再循環装置において、上記エンジン本体の長手方向の端部側壁に一体的に取り付けられる基部を有すると共に上記端部側壁側の流出口を通してエンジン本体からの冷却水を流入させる流入室が上記基部に形成されたサーモスタットを備え、上記排気ガス導入路は、上記排気路より分岐して延出し上記エンジン本体の長手方向の端部側壁に形成された端部開口に達するエンジン本体内ガス路と、上記端部開口に連通し上記サーモスタットの基部の上記端部側壁への取付け面に形成されたサーモスタット側開口を有するサーモスタット内ガス路と、同サーモスタット内ガス路からのEGRガスを吸気路に導入する吸気路側流路部材とを備え、上記サーモスタット内ガス路は、上記端部開口に連通するサーモスタット側開口よりエンジン本体長手方向に延出形成されると共に流路断面の要部がパイプ状壁部を成して上記流入室に膨出するよう形成される延長路と、EGRガスをエンジン本体の長手方向から幅方向に向け流動偏向させる湾曲路と、同湾曲路を上記吸気路に延びる上記吸気路側流路部材に接続する端部流出開口とを有する、ことを特徴とする。 An exhaust gas recirculation device for an engine according to claim 1 of the present invention is a water-cooled engine in which an exhaust passage is formed on one side wall formed along the longitudinal direction of the engine body and an intake passage is formed on the other side wall. In an exhaust gas recirculation device for an engine that is mounted and introduces a part of the exhaust gas in the exhaust passage as EGR gas to the intake passage through the exhaust gas introduction passage, it is integrally attached to the side wall at the end of the engine body in the longitudinal direction. comprising a thermostat inlet chamber for flowing cooling water from the engine body through the outlet port of said end side wall is formed on said base and having a base portion that is, the exhaust gas introduction passage is branched from the exhaust passage and the engine body gas path reaching the longitudinal ends end opening formed in the sidewall of the extending out the engine body, groups of the thermostat communicating with the end opening Comprising a thermostat in the gas path having a thermostat-side opening formed in the mounting surface to the end side wall, an intake path side flow path member for introducing the EGR gas from the thermostat within the gas passage to the intake passage, the thermostat The inner gas passage is formed so as to extend in the longitudinal direction of the engine body from the thermostat side opening communicating with the end opening, and a main portion of the cross section of the flow path forms a pipe-like wall portion and swells into the inflow chamber. An extension path formed, a curved path for deflecting the flow of EGR gas from the longitudinal direction of the engine body in the width direction, an end outflow opening connecting the curved path to the intake path side flow path member extending to the intake path, It is characterized by having.

この発明の請求項1によれば、エンジン本体に排気路より分岐して延出しエンジン本体の長手方向の端部側壁に形成された端部開口に達するエンジン本体内ガス路を設け、サーモスタットのケーシング内にサーモスタット内ガス路を形成し、同サーモスタット内ガス路からのEGRガスを吸気路に導入する吸気路側流路部材を備え、サーモスタット内ガス路はエンジン本体内ガス路からのEGRガスをエンジン本体の長手方向から幅方向に向け流動偏向させる湾曲路を有するので、排気ガス導入路の内、排気路側より吸気路側に排気ガスを流動させる流路部分をエンジン本体長手方向の端部に形成することなく、サーモスタットのケーシング内のサーモスタット内ガス路に代えることができる。特に、サーモスタットの基部の延長路を通過する時には冷却水流動路である流入室に沿って突出し形成されているので、流入室の冷却水で延長路の流路壁を介しEGRガスが冷却水によって効率よく冷却される。更に、湾曲路や幅方向延出路の通過時にもサーモスタット内の排出室や戻り室の冷却水で効率良く冷却され、EGRガスの冷却効率がより高まる。このため、エンジン本体の長手方向の長さを短縮できる。しかも、EGRガスの冷却効率が高まることより、排気ガス導入路を比較的短くでき、この点でもエンジンのコンパクト化を図れ、更に、EGRガスが冷却水に冷却されるのでEGRガスの吸気系への吸入量が比較的増加し、リーンバーン運転域での燃費が改善される。 According to the first aspect of the present invention, a gas passage in the engine body is provided which extends from the exhaust passage and extends to the engine body so as to reach an end opening formed in an end wall in the longitudinal direction of the engine body. A gas passage in the thermostat is formed in the inside, and an intake passage side flow passage member for introducing EGR gas from the gas passage in the thermostat into the intake passage is provided. The gas passage in the thermostat uses the EGR gas from the gas passage in the engine body to the engine body. In the exhaust gas introduction path, a flow path portion for flowing the exhaust gas from the exhaust path side to the intake path side is formed at the end in the longitudinal direction of the engine body. Instead, it can be replaced with a gas path in the thermostat in the casing of the thermostat. In particular, when it passes through the extension path of the base of the thermostat, it is formed so as to protrude along the inflow chamber that is the cooling water flow path, so that the EGR gas is cooled by the cooling water through the flow path wall of the extension path with the cooling water of the inflow chamber. It is cooled efficiently. Further, even when passing through the curved path or the width direction extending path, the cooling is efficiently performed by the cooling water in the discharge chamber and the return chamber in the thermostat, and the cooling efficiency of the EGR gas is further increased. For this reason, the length of the engine body in the longitudinal direction can be shortened. In addition, since the EGR gas cooling efficiency is increased, the exhaust gas introduction path can be made relatively short. In this respect as well, the engine can be made compact. Further, since the EGR gas is cooled by the cooling water, the EGR gas intake system can be reduced. The amount of inhalation of fuel increases relatively, and the fuel efficiency in the lean burn operation area is improved.

図1、2にはこの発明の実施の形態としてのエンジンの排気ガス再循環装置を示した。
このエンジンの排気ガス再循環装置1は図示しない自動車に搭載された水冷式のエンジン2に設けられている。エンジン2はそのエンジン本体201の要部を成すシリンダブロック3とその上側のシリンダヘッド4の各内部に下ウォータジャケット5、上ウォータジャケット6を形成している。
1 and 2 show an exhaust gas recirculation device for an engine as an embodiment of the present invention.
This engine exhaust gas recirculation device 1 is provided in a water-cooled engine 2 mounted on an automobile (not shown). In the engine 2, a lower water jacket 5 and an upper water jacket 6 are formed in each of a cylinder block 3 that forms a main part of the engine body 201 and a cylinder head 4 on the upper side.

シリンダブロック3はその長手方向Xに複数のシリンダSを互いに所定間隔を介し順次配列し、シリンダSの外周回りで上壁wbや外壁wcに覆われた部位に下ウォータジャケット5を形成している。しかも、シリンダブロック3はその外壁wcの長手方向Xの一端にウオーターポンプ9からの冷却水を分岐路R1を介し下ウォータジャケット5に流入する下ポンプ側開口7が形成され、更に、下ウォータジャケット5の冷却水をシリンダヘッド4の上ウォータジャケット5に導く端部連通口8を上壁wbの他端側に形成する。   The cylinder block 3 sequentially arranges a plurality of cylinders S in the longitudinal direction X at predetermined intervals, and forms a lower water jacket 5 around the outer periphery of the cylinder S at a portion covered by the upper wall wb and the outer wall wc. . Moreover, the cylinder block 3 is formed with a lower pump side opening 7 through which the cooling water from the water pump 9 flows into the lower water jacket 5 via the branch path R1 at one end in the longitudinal direction X of the outer wall wc. 5 is formed on the other end side of the upper wall wb. The end communication port 8 for guiding the cooling water 5 to the upper water jacket 5 of the cylinder head 4 is formed.

シリンダヘッド4はシリンダブロック3の上壁wbに重なる下壁whを形成され、その周縁より立ちあがるよう外周壁wrが形成される。更に、図2に示すように、下壁whの各気筒対向部には、シリンダヘッド4の幅方向Y、即ち、左右の外周壁側wrに向けて延出する吸気路IN側の吸気ポート11と排気路EX側の排気ポート12とが互いに離れる方向に延出形成される。しかも、各吸気、排気ポート11、12と干渉しない位置に上ウォータジャケット6が形成される。なお、このシリンダヘッド4には不図示の動弁系が装着されてからその外周壁の上部に不図示のヘッドカバーが重ね合わされて一体結合される。   The cylinder head 4 is formed with a lower wall wh that overlaps the upper wall wb of the cylinder block 3, and an outer peripheral wall wr is formed so as to rise from the periphery. Further, as shown in FIG. 2, the intake port 11 on the intake path IN side extending in the width direction Y of the cylinder head 4, that is, toward the left and right outer peripheral wall sides wr, is provided at each cylinder facing portion of the lower wall wh. And the exhaust port 12 on the exhaust path EX side are formed so as to extend away from each other. Moreover, the upper water jacket 6 is formed at a position where it does not interfere with the intake and exhaust ports 11 and 12. The cylinder head 4 is mounted with a valve system (not shown), and then a head cover (not shown) is superimposed on the upper portion of the outer peripheral wall and integrally coupled.

更に、このシリンダヘッド4にはその外周壁の長手方向Xの一端側のである端部側壁401にウオーターポンプ9からの冷却水を上分岐路R2を介し上ウォータジャケット6に流入する上ポンプ側開口13と、上ウォータジャケット6の冷却水をシリンダヘッド4の他端部の外周壁である端部側壁402より流出させる上流出口14が形成される。ここで、シリンダブロック3とシリンダヘッド4とは複数のヘッドボルト15で一体的に締結される。なお、その際、両者の上壁wbと下壁whとにわたり複数箇所で連通補助穴16が形成され、これらは端部連通口8と同様に下ウォータジャケット5の冷却水を上ウォータジャケット6に導入するよう機能する。   Further, the cylinder head 4 has an upper pump side opening through which cooling water from the water pump 9 flows into the upper water jacket 6 via the upper branch path R2 on the end side wall 401 which is one end side in the longitudinal direction X of the outer peripheral wall. 13 and the upstream outlet 14 through which the cooling water of the upper water jacket 6 flows out from the end side wall 402 which is the outer peripheral wall of the other end of the cylinder head 4 is formed. Here, the cylinder block 3 and the cylinder head 4 are integrally fastened by a plurality of head bolts 15. In this case, communication auxiliary holes 16 are formed at a plurality of locations across the upper wall wb and the lower wall wh of both, and the cooling water of the lower water jacket 5 is supplied to the upper water jacket 6 in the same manner as the end communication port 8. Works to introduce.

シリンダヘッド4の長手方向(エンジン本体の長手方向と同一)Xに沿って形成される一側壁403側(図1で下側壁)の外壁面には排気マニホールド17が一体結合され、他側壁404側(図1で上側壁)の外壁面には吸気マニホールド18が一体結合される。排気マニホールド17は各気筒の排気ポート12からの排気ガスを合流部で合流させ、不図示の排気管側に流出し、吸気マニホールド18は、不図示の吸気管からの吸気を各気筒の吸気ポート19に分岐して供給する。なお吸気マニホールド18の分岐部181には後述の排気ガス導入路Rgの一部を成すEGRパイプ21のジョイント部211が形成され、排気ガス導入路Rgからの排気ガスであるEGRガスを分岐部181内の吸気に流入することができるように形成されている。   An exhaust manifold 17 is integrally coupled to the outer wall surface on the side wall 403 side (lower side wall in FIG. 1) formed along the longitudinal direction (same as the longitudinal direction of the engine body) X of the cylinder head 4, and the other side wall 404 side. An intake manifold 18 is integrally coupled to the outer wall surface (the upper side wall in FIG. 1). The exhaust manifold 17 joins the exhaust gas from the exhaust port 12 of each cylinder at the junction and flows out to the exhaust pipe side (not shown). The intake manifold 18 draws intake air from the intake pipe (not shown) to the intake port of each cylinder. It branches to 19 and is supplied. A joint portion 211 of an EGR pipe 21 that forms a part of an exhaust gas introduction path Rg described later is formed in the branch section 181 of the intake manifold 18, and EGR gas that is exhaust gas from the exhaust gas introduction path Rg is branched into the branch section 181. It is formed so that it can flow into the intake air inside.

図1に示すように、シリンダヘッド4の端部側壁402にはサーモスタット22のケーシング23が一体的に取り付けられる。
図1に示すように、ケーシング23は端部側壁402に重なるフランジを備える基部231とその突端側に一体結合される蓋部232とを有し、その内部に端部側壁402側の上流出口14に対向する流入室24と、感温切換え弁25を収容する排出室26と、エンジン2の近傍のラジエータ27からの冷却水が流入する戻り室28とをこの順に配列して形成される。しかも、これら各室に干渉しない状態でサーモスタット内ガス路29が形成されている。
As shown in FIG. 1, the casing 23 of the thermostat 22 is integrally attached to the end side wall 402 of the cylinder head 4.
As shown in FIG. 1, the casing 23 has a base portion 231 having a flange that overlaps the end side wall 402 and a lid portion 232 that is integrally coupled to the projecting end side thereof, and the upstream outlet 14 on the end side wall 402 side therein. Are formed in this order by arranging an inflow chamber 24 opposite to the discharge chamber 26, a discharge chamber 26 that houses the temperature-sensitive switching valve 25, and a return chamber 28 into which cooling water from the radiator 27 in the vicinity of the engine 2 flows. Moreover, the thermostat gas passage 29 is formed without interfering with these chambers.

サーモスタット22の流入室24と排出室26間には第1弁座31が形成され、戻り室28と排出室26間には第2弁座32が形成される。
感温切換え弁25はケーシング23側に取付け金具33を介し支持される芯軸34とそれに相対移動可能に外嵌される感温部35と、感温部35に一体結合される外軸36に支持される第1、第2弁体37、38と、外軸36と第2弁座328側を閉弁付勢するバネ39とを備える。
A first valve seat 31 is formed between the inflow chamber 24 and the discharge chamber 26 of the thermostat 22, and a second valve seat 32 is formed between the return chamber 28 and the discharge chamber 26.
The temperature-sensing switching valve 25 includes a core shaft 34 supported on the casing 23 side via a mounting bracket 33, a temperature-sensing portion 35 that is externally fitted so as to be movable relative thereto, and an outer shaft 36 that is integrally coupled to the temperature-sensing portion 35. First and second valve bodies 37 and 38 to be supported, and a spring 39 for closing and energizing the outer shaft 36 and the second valve seat 328 side are provided.

ここで、常温時に感温切換え弁25は冷態位置P0に保持され、第1弁体37が第1弁座31を開き、流入室24と排出室26を連通する。一方、冷却水の温度が所定温度(例えば85℃)を上回ると、第2弁体38が第2弁座32を開き、ラジエータ27を備える冷却路43から戻り室28に戻った冷却水を排出室26に流すように切換え作動する。
更に、ケーシング23の基部231には排出室26との対向部に排出室26に達した冷却水を冷却水吸入路41に排出する排出口42が形成され、流入室24との対向部にラジエータ27へ連通する冷却路43に冷却水を導入する導入口44が形成される。
Here, at the normal temperature, the temperature sensing switching valve 25 is held at the cold position P0, the first valve body 37 opens the first valve seat 31, and the inflow chamber 24 and the discharge chamber 26 are communicated. On the other hand, when the temperature of the cooling water exceeds a predetermined temperature (for example, 85 ° C.), the second valve body 38 opens the second valve seat 32, and the cooling water returned to the return chamber 28 is discharged from the cooling path 43 including the radiator 27. The switching operation is performed so as to flow into the chamber 26.
Further, a discharge port 42 for discharging the cooling water reaching the discharge chamber 26 to the cooling water suction passage 41 is formed in the base portion 231 of the casing 23 at a portion facing the discharge chamber 26, and a radiator is formed at the portion facing the inflow chamber 24. An introduction port 44 for introducing cooling water is formed in the cooling path 43 communicating with 27.

次に、本発明の要部を成す排気ガス再循環装置1を説明する。
エンジンの排気ガス再循環装置1は、エンジン本体の長手方向Xの一方端側に位置する端部気筒sの排気路EXより排気ガスをEGRガスとして取出し、排気ガス導入路Rgを成すシリンダヘッド内ガス路45、サーモスタット内ガス路29及びEGRバルブ46を備えたEGRパイプ21を介して吸気路IN側に導入している。
Next, the exhaust gas recirculation device 1 constituting the main part of the present invention will be described.
An exhaust gas recirculation device 1 for an engine takes out exhaust gas as EGR gas from an exhaust passage EX of an end cylinder s located on one end side in the longitudinal direction X of the engine body, and the inside of the cylinder head forming the exhaust gas introduction passage Rg The gas passage 45, the thermostat gas passage 29, and the EGR pipe 21 provided with the EGR valve 46 are introduced into the intake passage IN side.

ここで、シリンダヘッド4の下壁wh(図3参照)に形成されるシリンダヘッド内ガス路45は排気ポート12より分岐してエンジン本体長手方向Xに延出し端部側壁402の端部開口47に達する。
端部側壁402にはサーモスタット22の基部231が不図示のボルトで締め付け結合されている。この際、 端部側壁402の上流出口14はサーモスタット22の流入室24に端部開口47は基部231に形成されるサーモスタット側開口48にそれぞれ連通するよう形成されている。
Here, the cylinder head gas passage 45 formed in the lower wall wh (see FIG. 3) of the cylinder head 4 branches off from the exhaust port 12 and extends in the engine body longitudinal direction X, and the end opening 47 of the end side wall 402. To reach.
A base 231 of the thermostat 22 is fastened to the end side wall 402 with a bolt (not shown). At this time, the upstream outlet 14 of the end side wall 402 is formed to communicate with the inflow chamber 24 of the thermostat 22, and the end opening 47 communicates with the thermostat side opening 48 formed in the base 231.

サーモスタット22の基部231にはサーモスタット内ガス路29が形成される。このサーモスタット内ガス路29はサーモスタット側開口48よりエンジン本体長手方向Xに延出する延長路491と、EGRガスをエンジン本体の長手方向Xから幅方向Xに向け流動偏向させる湾曲路492と、湾曲路492よりエンジン本体幅方向Xである吸気路IN側に延びる幅方向延出路493と、幅方向延出路493のEGRガスを吸気路INに延びるEGRパイプ21に接続される端部流出開口494とを備える。   A thermostat gas passage 29 is formed in the base 231 of the thermostat 22. The gas path 29 in the thermostat has an extended path 491 extending in the engine body longitudinal direction X from the thermostat side opening 48, a curved path 492 for deflecting EGR gas from the engine body longitudinal direction X to the width direction X, and a curve. A width extending passage 493 extending from the passage 492 toward the intake passage IN which is the engine body width direction X, and an end outflow opening 494 connected to the EGR pipe 21 extending the EGR gas from the width extending passage 493 to the intake passage IN Is provided.

図4に示すように延長路491は基部231内の流入室24に沿って直状に形成され、その流路断面の大部分がパイプ状壁部で覆われ、流入室24に膨出するように形成される。このため、サーモスタット内ガス路である延長路491のEGRガスは冷却水通路を成す流入室24に近接して形成されるので、EGRガスが冷却水に冷却されEGRガスの冷却効率が高まる。   As shown in FIG. 4, the extension path 491 is formed in a straight shape along the inflow chamber 24 in the base portion 231, and most of the cross section of the flow path is covered with a pipe-shaped wall portion so as to swell into the inflow chamber 24. Formed. For this reason, since the EGR gas in the extension passage 491 that is the gas passage in the thermostat is formed in the vicinity of the inflow chamber 24 that forms the cooling water passage, the EGR gas is cooled by the cooling water and the cooling efficiency of the EGR gas is increased.

EGRパイプ21は吸気路側流路部材をなし、途中にEGRバルブ46を備え、端部流出開口494と吸気マニホールド18の分岐部181のジョイント部211とを連通可能に形成される。EGRバルブ46はエンジン運転状態に応じてEGRガスの流量を制御手段51で増減調整する。
このようなエンジンの排気ガス再循環装置の作動を説明する。
エンジン2の冷態始動時において、ウォーターポンプ9が駆動すると、低温の冷却水はシリンダブロックの下ウォータジャケット5とシリンダヘッド3の上ウォータジャケット6に流入し、上流出口14を経てサーモスタットの流入室24に達する。
The EGR pipe 21 serves as an intake passage side flow path member, and includes an EGR valve 46 in the middle, and is formed so that the end outlet opening 494 and the joint portion 211 of the branch portion 181 of the intake manifold 18 can communicate with each other. The EGR valve 46 adjusts the flow rate of the EGR gas by the control means 51 according to the engine operating state.
The operation of such an engine exhaust gas recirculation device will be described.
When the water pump 9 is driven during the cold start of the engine 2, the low-temperature cooling water flows into the lower water jacket 5 of the cylinder block and the upper water jacket 6 of the cylinder head 3, and enters the thermostat inflow chamber via the upstream outlet 14. Reach 24.

この時、流入室24と排出室26が連通するので、冷却水はそのまま冷却水吸入路41よりウォーターポンプ9に戻り、暖気運転される。暖気完了時には、流入室24と排出室26は遮断し、戻り室28と排出室26とが連通し、流入室24の冷却水は冷却路43のラジエータ27に流動し、冷却された冷却水は戻り室28より排出室26を経て冷却水吸入路41よりウォーターポンプ9に戻り、放熱運転される。
このような冷却水の循環が成されている間において、排気路EXの排気ガスの一部は排気ガス導入路Rgを経て、EGRバルブ46で流量規制され、吸気マニホールド18の分岐部181のジョイント部211より吸気路INに流入され、NOx低減、燃費改善に寄与する。
At this time, since the inflow chamber 24 and the discharge chamber 26 communicate with each other, the cooling water returns to the water pump 9 from the cooling water suction passage 41 as it is, and the warming-up operation is performed. When the warm-up is completed, the inflow chamber 24 and the discharge chamber 26 are shut off, the return chamber 28 and the discharge chamber 26 communicate with each other, the cooling water in the inflow chamber 24 flows to the radiator 27 in the cooling path 43, and the cooled cooling water The return chamber 28 passes through the discharge chamber 26 and returns to the water pump 9 from the cooling water suction passage 41 to perform a heat radiation operation.
While such cooling water is circulated, a part of the exhaust gas in the exhaust passage EX passes through the exhaust gas introduction passage Rg, the flow rate is regulated by the EGR valve 46, and the joint of the branch portion 181 of the intake manifold 18 is connected. From the portion 211 to the intake passage IN, contributing to NOx reduction and fuel efficiency improvement.

この際、制御手段51はエンジン回転数信号とエンジン負荷信号を取り込み、それに応じた運転域に相当するEGRガス供給率をマップ等で演算し、演算されたEGRガス供給率相当のEGRバルブ46の開度を保持するようにEGRバルブ46制御を行う。この際、EGRバルブ46の開度相当のEGRガスが排気ガス導入路Rgを通過し、特に、サーモスタットの基部の延長路491を通過する時には冷却水流動路である流入室24に沿って突出し形成されるので、流入室24の冷却水で延長路491の流路壁を介しEGRガスが冷却水によって効率よく冷却される。更に、湾曲路492や幅方向延出路493の通過時にもサーモスタット内の排出室26や戻り室28の冷却水で効率良く冷却され、EGRガスの冷却効率がより高まる。このため、排気ガス導入路Rgを比較的短くでき、この点でエンジンのコンパクト化を図れ、EGRガスの吸気系への吸入量が比較的増加し、リーンバーン運転域での燃費がより改善される。   At this time, the control means 51 takes in the engine rotational speed signal and the engine load signal, calculates the EGR gas supply rate corresponding to the operating range according to the map, etc., and calculates the EGR valve 46 corresponding to the calculated EGR gas supply rate. The EGR valve 46 is controlled so as to maintain the opening degree. At this time, EGR gas corresponding to the opening degree of the EGR valve 46 passes through the exhaust gas introduction passage Rg, and particularly protrudes along the inflow chamber 24 which is a cooling water flow passage when passing through the extension passage 491 at the base of the thermostat. Therefore, the EGR gas is efficiently cooled by the cooling water in the inflow chamber 24 via the flow path wall of the extension passage 491. Further, even when passing through the curved path 492 and the width direction extending path 493, the cooling is efficiently performed by the cooling water in the discharge chamber 26 and the return chamber 28 in the thermostat, and the cooling efficiency of the EGR gas is further increased. For this reason, the exhaust gas introduction path Rg can be made relatively short, the engine can be made compact in this respect, the intake amount of the EGR gas into the intake system is relatively increased, and the fuel consumption in the lean burn operation region is further improved. The

しかも、サーモスタット内ガス路29はエンジン本体内ガス路からのEGRガスをエンジン本体の長手方向Xから幅方向Xに向け流動偏向させる湾曲路492や幅方向延出路493が形成されたので、排気ガス導入路Rgの内、排気路EX側より吸気路IN側に排気ガスを流動させる流路部分(例えば図13のシリンダヘッド内ガス路150)をエンジン本体長手方向Xの端部に形成することなく、サーモスタット内のサーモスタット内ガス路29に代えることができる。このため、エンジン本体の長手方向Xの長さを短縮できる。   In addition, the gas path 29 in the thermostat is formed with a curved path 492 and a width direction extending path 493 for deflecting the EGR gas from the gas path in the engine body from the longitudinal direction X to the width direction X of the engine body. Of the introduction passage Rg, a flow passage portion (for example, the gas passage 150 in the cylinder head in FIG. 13) for flowing the exhaust gas from the exhaust passage EX side to the intake passage IN side is not formed at the end in the engine body longitudinal direction X. The gas path 29 in the thermostat in the thermostat can be replaced. For this reason, the length of the engine body in the longitudinal direction X can be shortened.

上述のエンジン2はシリンダブロック3の下ウォータジャケット5の冷却水を全てシリンダヘッド4の上ウォータジャケット6に流動させるものであったが、場合により、図2に2点鎖線で示すように、シリンダブロック3に下流出開口60を形成し、同部からの冷却水を第2サーモスタット70およびバイパス路43a(図2、図7参照)を介して冷却路43に合流させる構成を採ってもよい。   In the engine 2 described above, all of the cooling water in the lower water jacket 5 of the cylinder block 3 flows to the upper water jacket 6 of the cylinder head 4, but in some cases, as shown by a two-dot chain line in FIG. A configuration may be adopted in which the lower outflow opening 60 is formed in the block 3 and the cooling water from the same portion is joined to the cooling path 43 via the second thermostat 70 and the bypass path 43a (see FIGS. 2 and 7).

なお、図2には下流出開口60がシリンダブロック3の側端部に直接開口する図を概略的に示した。ここで、第2実施形態としてのサーモスタット61は、具体的には、図5に示すように、端部連通口8aが不図示の流路を介しシリンダヘッド4側に延び、その先端に下流出開口60aを形成し、そこにシリンダヘッド4側の第2サーモスタット70が配備される。
このような第2サーモスタット70を含むここでのサーモスタット61は図1のエンジン2に対し、先に説明したサーモスタット22に代えて装着されることより、エンジン本体側の重複説明を略す。
Note that FIG. 2 schematically shows a view in which the lower outflow opening 60 opens directly to the side end of the cylinder block 3. Here, in the thermostat 61 as the second embodiment, specifically, as shown in FIG. 5, the end communication port 8a extends to the cylinder head 4 side through a flow path (not shown), and flows out downward at the tip. The opening 60a is formed, and the second thermostat 70 on the cylinder head 4 side is provided there.
Such a thermostat 61 including the second thermostat 70 is attached to the engine 2 of FIG. 1 in place of the thermostat 22 described above, so that the redundant description on the engine body side is omitted.

図5、図7、図8に示すように第2実施形態としてのサーモスタット61はその基部611が端部側壁402に不図示のボルトで締め付け結合されている。基部611の突端側に蓋部612が一体結合され、流入室24a、排出室26a、戻り室28a(図7参照)がこの順に配列形成される。流入室24aはラジエータ27側の冷却路43に導入口44aを介し連通し、排出室26aはポンプ9側の吸入路41に排出口42aを介し連通し、戻り室28aは冷却路43に常時連通する。   As shown in FIGS. 5, 7, and 8, the thermostat 61 according to the second embodiment has a base portion 611 that is fastened to an end side wall 402 by a bolt (not shown). A lid 612 is integrally coupled to the protruding end side of the base 611, and an inflow chamber 24a, a discharge chamber 26a, and a return chamber 28a (see FIG. 7) are arranged in this order. The inflow chamber 24 a communicates with the cooling path 43 on the radiator 27 side via the introduction port 44 a, the discharge chamber 26 a communicates with the suction path 41 on the pump 9 side via the discharge port 42 a, and the return chamber 28 a always communicates with the cooling path 43. To do.

図5に示すように端部側壁402の上流出口14はサーモスタット61の流入室24aに、端部開口47は基部611に形成されるサーモスタット側開口48aにそれぞれ連通するよう形成されている。
サーモスタット61の基部611にはサーモスタット内ガス路49aが形成される。このサーモスタット内ガス路49aはサーモスタット側開口48aよりエンジン本体長手方向Xに延出する延長路491aと、EGRガスをエンジン本体長手方向Xから幅方向Xに向け流動偏向させる湾曲路492aと、湾曲路492aよりエンジン本体幅方向Xである吸気路IN側に延びる幅方向延出路493aと、幅方向延出路493aのEGRガスを吸気路INに延びるEGRパイプ21に接続される端部流出開口494aとを備える。
As shown in FIG. 5, the upstream outlet 14 of the end side wall 402 communicates with the inflow chamber 24 a of the thermostat 61, and the end opening 47 communicates with a thermostat side opening 48 a formed in the base 611.
A thermostat internal gas passage 49 a is formed in the base 611 of the thermostat 61. The gas path 49a in the thermostat includes an extension path 491a extending from the thermostat side opening 48a in the engine body longitudinal direction X, a curved path 492a for deflecting EGR gas from the engine body longitudinal direction X to the width direction X, and a curved path A width direction extension passage 493a extending from the air passage 492a toward the intake passage IN which is the engine body width direction X, and an end outflow opening 494a connected to the EGR pipe 21 extending from the EGR gas of the width direction extension passage 493a to the intake passage IN Prepare.

図8に示すように延長路491aは基部611内の流入室24aに沿って直状に形成され、その流路断面の流路壁部の大部分が流入室24a膨出するように形成される。このため、サーモスタット内ガス路49aである延長路491aのEGRガスは冷却水通路を成す流入室24aの冷却水に冷却されEGRガスの冷却効率が高まる。   As shown in FIG. 8, the extension path 491a is formed in a straight shape along the inflow chamber 24a in the base 611, and is formed so that most of the flow path wall portion in the cross section of the flow path bulges out the inflow chamber 24a. . For this reason, the EGR gas in the extension passage 491a which is the gas passage 49a in the thermostat is cooled by the cooling water in the inflow chamber 24a forming the cooling water passage, and the cooling efficiency of the EGR gas is increased.

EGRパイプ21aは吸気路側流路部材をなし、途中にEGRバルブ46aを備え、端部流出開口494aと吸気マニホールド18のジョイント部211とを連通する。EGRバルブ46はエンジン運転状態に応じてEGRガスの流量を制御手段51で増減調整する。
なお、サーモスタット61の全体形状及び立体的形状を表示するため、図7より図12に各断面形状を具体的に表示した。また、図5中の符号65はヒータパイプ連結端を、符号66、67はヒータパイプ戻り端を示す。
The EGR pipe 21a is an intake passage side flow path member, and is provided with an EGR valve 46a in the middle to communicate the end outlet opening 494a and the joint portion 211 of the intake manifold 18. The EGR valve 46 adjusts the flow rate of the EGR gas by the control means 51 according to the engine operating state.
In addition, in order to display the whole shape and three-dimensional shape of the thermostat 61, each cross-sectional shape was specifically displayed from FIG. 7 to FIG. In FIG. 5, reference numeral 65 denotes a heater pipe connection end, and reference numerals 66 and 67 denote a heater pipe return end.

このようなエンジンの排気ガス再循環装置1aの作動を説明する。
エンジン2の冷態始動時において、冷却水は流入室24a、排出室26aを経て冷却水吸入路41よりウォーターポンプ9に戻り、暖気運転され、暖気完了時には流入室24の冷却水はラジエータ27、戻り室28a、排出室26aを経て冷却水吸入路41よりウォーターポンプ9に戻り、放熱運転される。
The operation of the engine exhaust gas recirculation device 1a will be described.
At the time of cold start of the engine 2, the cooling water returns to the water pump 9 from the cooling water suction passage 41 through the inflow chamber 24a and the discharge chamber 26a and is warmed up. When the warming is completed, the cooling water in the inflow chamber 24 is supplied to the radiator 27, It returns to the water pump 9 from the cooling water suction passage 41 through the return chamber 28a and the discharge chamber 26a, and is radiated.

このような冷却水の循環が成されている間において、排気路EXの排気ガスの一部はサーモスタット内ガス路49aを備えた排気ガス導入路Rgを経てEGRバルブ46で流量規制され、分岐部181のジョイント部211より吸気路INに流入され、NOx低減、燃費改善に寄与する。   While such cooling water is circulated, a part of the exhaust gas in the exhaust passage EX is regulated in flow rate by the EGR valve 46 via the exhaust gas introduction passage Rg provided with the thermostat gas passage 49a. 181 flows into the intake passage IN from the joint portion 211 and contributes to NOx reduction and fuel consumption improvement.

この際、制御手段51は運転域に応じたEGRガス供給率相当のEGRバルブ46の開度を求め、同開度を保持するようにEGRバルブ46の制御を行う。この際、EGRガスが排気ガス導入路Rgを通過し、特に、サーモスタット内ガス路49aの延長路491aを通過する時には流入室24aに沿って延長路491aの流路壁が突出し形成されるので、流入室24aの冷却水でEGRガスが効率よく冷却される。更に、湾曲路492aや幅方向延出路493aの通過時にもサーモスタット内の排出室26aや戻り室28aの冷却水で効率良く冷却され、EGRガスの冷却効率がより高まる。このため、排気ガス導入路Rgを比較的短くでき、この点でエンジンのコンパクト化を図れ、EGRガスの吸気系への吸入量が比較的増加し、リーンバーン運転域での燃費がより改善される。   At this time, the control means 51 obtains the opening degree of the EGR valve 46 corresponding to the EGR gas supply rate corresponding to the operating region, and controls the EGR valve 46 so as to maintain the opening degree. At this time, since the EGR gas passes through the exhaust gas introduction path Rg, and particularly when passing through the extension path 491a of the thermostat gas path 49a, the flow path wall of the extension path 491a projects along the inflow chamber 24a. The EGR gas is efficiently cooled by the cooling water in the inflow chamber 24a. Further, even when passing through the curved path 492a and the width direction extending path 493a, the cooling is efficiently performed by the cooling water in the discharge chamber 26a and the return chamber 28a in the thermostat, and the cooling efficiency of the EGR gas is further increased. For this reason, the exhaust gas introduction path Rg can be made relatively short, the engine can be made compact in this respect, the intake amount of the EGR gas into the intake system is relatively increased, and the fuel consumption in the lean burn operation region is further improved. The

上述のところにおいて、エンジンの排気ガス再循環装置はガソリンエンジンに採用されるものとしたが、ディーゼルエンジン用にも同様に適用できる。   In the above description, the exhaust gas recirculation device of the engine is used for a gasoline engine, but it can be similarly applied to a diesel engine.

本発明の一実施形態としてのエンジンの排気ガス再循環装置の全体概略構成図である。1 is an overall schematic configuration diagram of an exhaust gas recirculation device for an engine as one embodiment of the present invention. 本発明の一実施形態としてのエンジンの排気ガス再循環装置を備えたエンジンの全体概略構成図である。1 is an overall schematic configuration diagram of an engine including an exhaust gas recirculation device for an engine as an embodiment of the present invention. 図1の上流出開口近傍の流路方向拡大断面図である。FIG. 2 is an enlarged cross-sectional view in the flow channel direction in the vicinity of the upper outlet opening of FIG. 1. 図1の上流出開口近傍の流路断面方向拡大断面図である。FIG. 2 is an enlarged cross-sectional view in the flow path cross-sectional direction near the upper outflow opening of FIG. 1. 本発明の変形例で用いるサーモスタットの平面図である。It is a top view of the thermostat used by the modification of this invention. 図5のサーモスタットの正面図である。It is a front view of the thermostat of FIG. 図6のサーモスタットのE―E線断面図である。It is the EE sectional view taken on the line of the thermostat of FIG. 図6のサーモスタットのF―F線断面図である。FIG. 7 is a cross-sectional view of the thermostat of FIG. 6 taken along the line FF. 図5のサーモスタットのC−C線断面図である。It is CC sectional view taken on the line of the thermostat of FIG. 図5のサーモスタットのD−D線断面図である。It is the DD sectional view taken on the line of the thermostat of FIG. 図6のサーモスタットのG−G線断面図である。It is the GG sectional view taken on the line of the thermostat of FIG. 図5のサーモスタットの裏面図である。It is a reverse view of the thermostat of FIG. 従来のエンジンの排気ガス再循環装置の要部概略構成図である。It is a principal part schematic block diagram of the exhaust-gas recirculation apparatus of the conventional engine.

符号の説明Explanation of symbols

1 エンジン冷却装置
2 エンジン
21 吸気路側流路部材
22、61 サーモスタット
23 ケーシング
29 サーモスタット内ガス路
492 湾曲路
402 端部壁面
45 エンジン本体内ガス路
EX 排気路
IN 吸気路
Rg 排気ガス導入路
X エンジン本体の長手方向
Y 幅方向
DESCRIPTION OF SYMBOLS 1 Engine cooling device 2 Engine 21 Intake path side flow path member 22, 61 Thermostat 23 Casing 29 Thermostat gas path 492 Curved path 402 End wall surface 45 Engine main body gas path EX Exhaust path IN Intake path Rg Exhaust gas introduction path X Engine main body Longitudinal direction Y width direction

Claims (1)

エンジン本体の長手方向に沿って形成される一側壁側に排気路が他側壁側に吸気路が形成された水冷式のエンジンに装着され、上記排気路の排気ガスの一部をEGRガスとして排気ガス導入路を通して吸気路へ導入させるエンジンの排気ガス再循環装置において、
上記エンジン本体の長手方向の端部側壁に一体的に取り付けられる基部を有すると共に上記端部側壁側の流出口を通してエンジン本体からの冷却水を流入させる流入室が上記基部に形成されたサーモスタットを備え、
上記排気ガス導入路は、上記排気路より分岐して延出し上記エンジン本体の長手方向の端部側壁に形成された端部開口に達するエンジン本体内ガス路と、上記端部開口に連通し上記端部側壁へ締め付け結合される上記サーモスタットの基部に形成されたサーモスタット側開口を有するサーモスタット内ガス路と、同サーモスタット内ガス路からのEGRガスを吸気路に導入する吸気路側流路部材とを備え、
上記サーモスタット内ガス路は、上記端部開口に連通するサーモスタット側開口よりエンジン本体長手方向に延出形成されると共に流路断面の要部がパイプ状壁部を成して上記流入室に膨出するよう形成される延長路と、EGRガスをエンジン本体の長手方向から幅方向に向け流動偏向させる湾曲路と、同湾曲路を上記吸気路に延びる上記吸気路側流路部材に接続する端部流出開口とを有する、ことを特徴とするエンジンの排気ガス再循環装置。
It is mounted on a water-cooled engine in which an exhaust passage is formed on one side wall formed along the longitudinal direction of the engine body and an intake passage is formed on the other side wall, and a part of the exhaust gas in the exhaust passage is exhausted as EGR gas. In the exhaust gas recirculation device of the engine that is introduced into the intake passage through the gas introduction passage,
Comprising a thermostat inlet chamber for flowing cooling water from the engine body through the outlet port of said end side wall is formed on said base and having a base portion which is integrally attached to the longitudinal end side wall of the engine body ,
The exhaust gas introduction path is branched from the exhaust path, extends to the end opening formed in the side wall in the longitudinal direction of the engine body, and communicates with the end opening. A thermostat gas passage having a thermostat side opening formed at a base portion of the thermostat to be tightly coupled to an end side wall; and an intake passage side flow path member for introducing EGR gas from the thermostat gas path into the intake passage. ,
The gas path in the thermostat is formed to extend in the longitudinal direction of the engine body from the thermostat side opening communicating with the end opening, and the main part of the flow passage section forms a pipe-like wall portion and bulges into the inflow chamber. An extension path formed to flow, a curved path for deflecting the flow of EGR gas from the longitudinal direction of the engine body in the width direction, and an end outflow connecting the curved path to the intake path side flow path member extending to the intake path An exhaust gas recirculation device for an engine having an opening.
JP2003389515A 2003-11-19 2003-11-19 Engine exhaust gas recirculation system Expired - Lifetime JP4258357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389515A JP4258357B2 (en) 2003-11-19 2003-11-19 Engine exhaust gas recirculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389515A JP4258357B2 (en) 2003-11-19 2003-11-19 Engine exhaust gas recirculation system

Publications (2)

Publication Number Publication Date
JP2005147091A JP2005147091A (en) 2005-06-09
JP4258357B2 true JP4258357B2 (en) 2009-04-30

Family

ID=34696239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389515A Expired - Lifetime JP4258357B2 (en) 2003-11-19 2003-11-19 Engine exhaust gas recirculation system

Country Status (1)

Country Link
JP (1) JP4258357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996229B2 (en) * 2012-03-27 2016-09-21 ダイハツ工業株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2005147091A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
RU129154U1 (en) ENGINE COOLING SYSTEM WITH CYLINDER HEAD INTEGRATED WITH EXHAUST SYSTEM (OPTIONS)
JP2002242767A (en) Egr gas cooling system for internal combustion engine
KR102395302B1 (en) Cylinder head with intergeated exhaust manifold and engine cooling system having the same
JP5316349B2 (en) EGR device
KR101795167B1 (en) Cylinder head-integrated exhaust manifold and egr cooler
US6321730B1 (en) Internal combustion engine having combustion heater
US7438063B1 (en) Exhaust gas recirculation system of vehicle
JP2009062836A (en) Cylinder head of internal combustion engine
JP6174348B2 (en) Internal combustion engine for vehicles
JP4071370B2 (en) EGR valve device for in-cylinder injection engine
JP2006329128A (en) Cooling structure of internal combustion engine
JP2007046599A (en) Exhaust manifold assembly body for internal combustion engine and exhaust gas controller and control method for internal combustion engine equipped with assembly body
JP4258357B2 (en) Engine exhaust gas recirculation system
JP4363176B2 (en) Engine exhaust gas recirculation system
JP2009221988A (en) Cylinder head for internal combustion engine
EP3889418A1 (en) Egr system of engine, engine comprising egr system and automobile
JP2003278544A (en) Air bleeding structure for vehicular water cooling system
JP4411969B2 (en) Engine cooling system
JP5637964B2 (en) Internal combustion engine cooling structure
JP2000161130A (en) Head overheat part cooling structure for monoblock engine
JP7168398B2 (en) Cooling device for vehicle internal combustion engine
JP4186302B2 (en) Oil control valve cooling structure for internal combustion engine
JP2006143012A (en) Temperature adjusting device for vehicle
JP2011122514A (en) Exhaust gas recirculation device for internal combustion engine
JP5440399B2 (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term