JP4257952B2 - Thermomechanical reproducibility test equipment - Google Patents

Thermomechanical reproducibility test equipment Download PDF

Info

Publication number
JP4257952B2
JP4257952B2 JP17991499A JP17991499A JP4257952B2 JP 4257952 B2 JP4257952 B2 JP 4257952B2 JP 17991499 A JP17991499 A JP 17991499A JP 17991499 A JP17991499 A JP 17991499A JP 4257952 B2 JP4257952 B2 JP 4257952B2
Authority
JP
Japan
Prior art keywords
test piece
heating
thermomechanical
processing
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17991499A
Other languages
Japanese (ja)
Other versions
JP2001004508A (en
Inventor
史郎 鳥塚
寿 長井
護 池田
州弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Fuji Electronics Industry Co Ltd
Original Assignee
National Institute for Materials Science
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Fuji Electronics Industry Co Ltd filed Critical National Institute for Materials Science
Priority to JP17991499A priority Critical patent/JP4257952B2/en
Publication of JP2001004508A publication Critical patent/JP2001004508A/en
Application granted granted Critical
Publication of JP4257952B2 publication Critical patent/JP4257952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は種々の金属試験片における変形方向を変化させた加工機構と加工における試験片と加工具(アンビル)の任意温度制御機構を組合わせた加工熱処理再現試験装置に関する。
【0002】
【従来の技術】
従来の加工熱処理再現試験装置では、円柱小試験片での単軸圧縮加工や板材小試験片での平面歪圧縮加工のように一方向による加工しかできなかった。また、試験片と加工具が常時接触しているため、試験片の回転や移動は不可能であった。
【0003】
従って、鍛造加工のような変形方向を変化させる加工は不可能であった。
【0004】
従来の加工熱処理再現試験装置では、試験片の均熱性を確保するために小試験片しか採用できなかったので、小試験片では金属組織変化を研究することは可能であったが、引張試験等の力学的性質の解明試験、即ち、機械試験を行えるような大試験片(機械試験片)が採用できなかった。
【0005】
従来の加工熱処理再現試験装置では、加工時および加工後の加工具(アンビル)の熱伝導(抜熱)による試験片の温度低下や加工具と試験片の接触具合により試験片の均熱性が補償されなかった。
【0006】
また、試験片と加工具をそれぞれ専用の加熱源で加熱制御することはできなかった。
【0007】
【発明が解決しようとする課題】
従来の加工熱処理再現試験装置では、試験片の一方向からの加工で、多方向からの加工ができなかった。また、試験片温度の均熱性を確保するために小試験片しか加工処理できなかった。また、試験片と加工具を別々に加熱制御できなかった。
【0008】
本発明は上記の事情に鑑みてなされたもので、加工機能としては試験片を回転させると共に回転軸に沿った横方向にも移動させて広範囲の変形加工を可能とし、加熱機能としては、試験片と加工具とをそれぞれ単独、又は任意に連動する加熱制御を行うことで加工熱処理条件の多様化を図ると共に、試験片からの加工具や試験片端部への抜熱を緩和して均熱部を拡大させる事で大試験片の採用を可能とした加工熱処理再現試験装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、金属試験片を熱処理過程で加工する加工熱処理再現試験装置において、試験片を挟んで対向する位置に加工具を把持した一組あるいは複数組のアクチェータを配置した試験片の加工手段と、加工軸と直交する回転軸に試験片を把持し間欠的に停止させる回転機構を備えた試験片の間欠的回転手段と、前記加工具と試験片とを複数の加熱源で加熱制御する加熱手段とを具備することを特徴とするものである。
【0010】
また本発明は、前記加工熱処理再現試験装置において、試験片が回転軸方向に自由に伸縮出来る伸縮スライド機構を備えたことを特徴とするものである。
【0011】
また本発明は、前記加工熱処理再現試験装置において、試験片を回転軸方向に強制的に所定量移動させる回転軸スライド機構を備えたことを特徴とするものである。
【0012】
また本発明は、前記加工熱処理再現試験装置において、試験片を加工軸方向に自由に平行移動出来る加工軸スライド機構を備えたことを特徴とするものである。
【0013】
また本発明は、前記加工熱処理再現試験装置において、一組あるいは複数組のアクチュエータの加工具を取付ない開放軸端部にストローク調整機構を備えたことを特徴とするものである。
【0014】
また本発明は、前記加工熱処理再現試験装置において、対向するアクチュエータの一方を固定式もしくは手動操作可能な半固定式の加工具保持機構としたことを特徴とするものである。
【0015】
また本発明は、前記加工熱処理再現試験装置において、アクチュエータが把持した加工具で加工される試験片を間欠的停止点で安定的に支える試験片サポート機構を備えたことを特徴とするものである。
【0016】
また本発明は、前記加工熱処理再現試験装置において、試験片と加工具とを各々所定の温度パターンで加熱制御する加熱機構を備えたことを特徴とするものである。
【0017】
また本発明は、前記加工熱処理再現試験装置において、試験片を試験片の長手方向および厚み方向の二方向から同時に加熱制御できる加熱機構を備えたことを特徴とするものである。
【0018】
【発明の実施の形態】
以下図面を参照して本発明の実施形態例を詳細に説明する。
【0019】
図1は本発明の一実施形態例に係る加工熱処理再現試験装置を示す概略構成説明図、図2は本発明の一実施形態例に係る加工熱処理再現試験装置を示す具体的構成説明図、図3(a)は本発明に係る試験片サポート機構の一例を示す断面図、図3(b)は本発明に係る試験片回転位置保持機構を示す構成説明図、図4は本発明の一実施形態例に係る加工熱処理再現試験装置の加熱・温度制御機構を示す構成説明図、図5は本発明に係る第1の加熱機構を示す構成説明図、図6は本発明に係る第2の加熱機構を示す構成説明図、図7は本発明に係る第3の加熱機構を示す構成説明図である。
【0020】
図において、1は試験片、2,2′は試験片ホルダー、3,3′は加工軸スライド機構、4,4′は伸縮スライド機構、5,5′は間欠回転機構、6,6′は試験片サポート機構、7はVブロック、8はサポートガイド、9,9′は回転軸スライド機構、10,10′は回転電極(ドラム)、11,11′は加工具、12,12′は加工具ホルダー、13,13′はピストンロッド、14,14′は油圧アクチュエータ、15,15′はストローク調整機構、16,16′はストロークエンド、17,17′はピニオン、21は加熱源の高周波誘導加熱電源、22,22′は高周波誘導加熱用ブスバー、23,23′は高周波導入端子、24,24′は高周波誘導加熱用フィーダー、25は加熱コイル、26は加熱源の直接通電加熱電源、27,27′は通電加熱用ブスバー、28,28′は直接通電導入端子、29,29′は通電加熱用フィーダー、30,30′は給電ブラシ、31,31′は熱電対、32は放射温度計(ファイバーセンサ)、33,33′はハーメティックシール(温度計測端子)、34,34′は温度変換器(1)、35は温度変換器(2)、36はプログラムパターン発生器(1)、37はプログラムパターン発生器(2)、38は温度制御器(1)、39は温度制御器(2)、40は加熱源の直接通電加熱電源、41,41′通電加熱用ブスバー、42,42′は通電加熱用フィーダー、3aはスライド軸、3bはスライダー、3cは引張バネ、3dはV溝である。
【0021】
すなわち、先ず、本発明の一実施形態例に係る加工熱処理再現試験装置を概略的に説明すると、図1に示すように、試験片を変形加工する手段及び試験片と加工具とを加熱する手段よりなり、試験片1を試験片ホルダー2,2′で掴み、回転機構5,5′で間欠回転させる。試験片1は回転電極10,10′を介して回転軸スライド機構9により横移動させる。
【0022】
試験片1の両側面の対向位置には加工具11,11′があり、この加工具11,11′をそれぞれ対応した油圧アクチュエータ14,14′で操作して試験片1を変形加工する。
【0023】
試験片1は回転電極10,10′と連結し、給電ブラシ30,30′を介して直接通電加熱電源26より低周波電力が供給されて直接通電抵抗加熱される。
【0024】
加工具11,11′は高周波誘導加熱電源21より高周波電力が高周波誘導加熱コイル25に供給されて高周波誘導加熱される。
【0025】
次に、本発明の一実施形態例に係る加工熱処理再現試験装置を具体的に説明すると、図2に示すように、試験片1は両端部を試験片ホルダー2,2′に把持されて、スライド機構3,3′、回転電極10,10′、伸縮スライド機構4,4′を介して間欠回転機構5,5′に連結されている。
【0026】
前記間欠回転軸4,4′はボールスプラインで回転電極10,10′と嵌合しており、軸方向にスライド出来る。回転電極10内部は図3(a)に示すように回転電極10のドラム内部にスライダー3bが有り、引張バネ3cでV溝3dに引き付けている。
【0027】
スライダー3bはスライド軸3aと一体となり、試験片ホルダー2と連結している。試験片1に所定外の偏芯荷重が加わると、スライダー3bは回転電極10のドラム内面とV溝3d間を滑り、偏芯荷重と引張バネ3cの引張荷重とのバランス点で停止する。
【0028】
前記試験片ホルダー2,2′には、図3(b)に示すようなVブロック7が取付けて有り、加工時に間欠回転機構5,5′の停止点においてVホルダー6で支える。
【0029】
このVホルダー6とスライダー3bは、加工時に試験片1が回転軸と平行に移動するスライド機構となっている。
【0030】
前記間欠回転機構5,5′と直交する加工軸上に油圧アクチュエータ14,14′があり、ピストンロッド13,13′の先端に加工具ホルダー12,12′と加工具11,11′が取付けられており、加工具11,11′は試験片1の両側面の対向する位置に配置されている。
【0031】
前記試験片ホルダー2,2′は、間欠回転軸4,4′のボールスプラインで回転軸方向に自由に伸縮できる。
【0032】
回転軸スライド機構9,9′は、回転電極10,10′を回転軸方向に強制的に移動させることができる。
【0033】
前記油圧アクチュエータ14,14′の開放端には、油圧アクチュエータ14,14′とネジで咬合ったネジ歯車15,15′があり、ピニオン17,17′で回転させる。
【0034】
前記ネジ歯車15,15′は、加工軸に沿って移動するのでロッドエンド16,16′のストロークを調整することが出来る。
【0035】
図2は試験片1の長手方向からの直接通電加熱と加工具11,11′の高周波誘導加熱方式の機構で、高周波導入端子23,23′で加熱コイル25と接続し、加工具11,11′を高周波誘導加熱する。
【0036】
直接通電導入端子28,28′は、給電ブラシ30,30′を介して回転電極10,10′、試験片ホルダー2,2′と連結し、試験片1に電流を流しジュール加熱する。
【0037】
ハーメティックシール(温度計測端子)33には試験片1及び加工具11の温度が出力される。
【0038】
図4において通電加熱用フィーダー29,29′は、試験片ホルダー(通電加熱用電極)2,2′と加工具ホルダー12,12′のいずれにも取付けられるようになっている。即ち、通電加熱電源26から出力された電力を図5のように直接試験片1に供給することも、図6ように加工具11,11′を介しても供給できる構造になっている。
【0039】
加熱コイル25は、試験片1を加熱するものと加工具11,11′を加熱するものが準備されており試験目的に応じて取り替えることができる。
【0040】
試験片1および加工具11,11′には温度を検出する熱電対31,31′が溶着されている。加工具11,11′には材質により熱電対が溶着出来ない場合も有り、その場合は放射温度計(ファイバーセンサ)32により温度を検出する。
【0041】
温度センサーにより検出された温度信号は温度変換器(1)(熱電対用)34,34′または温度変換器(2)(放射用)35に入り、リニアライズされた信号となって出力される。
【0042】
温度パターン発生器は2台設けてあり、それぞれ試験片用プログラムパターン発生器(1)(温度信号発生器)36と加工具用プログラムパターン発生器(2)(温度信号発生器)37がある。これらの発生器からは試験片1と加工具11,11′の加熱温度パターンが出力される。
【0043】
温度変換器(1)(熱電対用)34または温度変換器(2)(放射用)35と試験片用プログラムパターン発生器(1)(温度信号発生器)36の信号が比較され偏差信号となり、高周波誘導加熱用温度制御器38に導かれる。また、温度変換器(1)(熱電対用)34,34′と加工具用プログラムパターン発生器(2)(温度信号発生器)37の信号が比較され偏差信号となり、温度制御器39に導かれる。
【0044】
前記偏差信号が“負(マイナス)“の場合は加熱不足で、“正(プラス)“の場合が冷却不足である。この信号が各温度制御器38,39に入力されるとPID演算・増幅され通電加熱電源26および高周波誘導加熱電源21にあるサイリスタスタックのゲート信号として出力される。
【0045】
前記通電加熱電源26および高周波誘導加熱電源21では電力制御をサイリスタで行なっている。
【0046】
前記温度制御器38,39の出力信号は通電加熱電源21,26のゲートアンプを経てサイリスタのゲートに繋がっており、サイリスタが温度制御器38,39の出力信号によってコントロールされることになる。
【0047】
前記通電加熱電源26ではその制御された電力をそのまま出力トランスに供給している。
【0048】
前記高周波誘導加熱電源21では制御された電力を高周波に変換し、整合を取るための変成器を介して高周波電力を供給している。
【0049】
前記通電加熱電源26から出力された電力は通電加熱用ブスバー27,27′と通電加熱用フィーダー29,29′を経由して試験片ホルダー(通電加熱用電極部)2,2′(または加工具ホルダー12,12′と加工具11,11′)から試験片1へと供給され、試験片1が目標温度まで加熱することになる。
【0050】
前記高周波誘導加熱電源21から出力された電力は高周波誘導加熱用ブスバー22,22′と高周波誘導加熱用フィーダー24,24′を経由して加熱コイル25に導かれる。
【0051】
加熱コイル25は目的に応じて加工具11,11′加熱用と試験片1加熱用があり、通電加熱手段と任意に組み合わせて使用することができる。
【0052】
次に、加熱手段の具体例について説明する。
【0053】
加熱手段として直接通電加熱方式と高周波誘導加熱方式のそれぞれの長所を組合わせたり、同じ加熱源を複数用いるもので次の三方式がある。
【0054】
ここでは、加工熱処理試験においての代表的な試験加工方法である平面歪圧縮加工において採用した例を説明する。
【0055】
図5は加熱手段の具体例1を示し、試験片1の長手方向からの直接通電加熱と加工具11,11′の高周波誘導加熱方式で、高周波誘導加熱電源21から高周波誘導加熱用ブスバー22,22′および高周波誘導加熱用フィーダー24,24′を経由して加熱コイル25に高周波電力が供給され、加工具11,11′が高周波誘導加熱されると共に、通電加熱電源26から通電加熱用ブスバー27,27′および通電加熱用フィーダー29,29′を経由して試験片ホルダー(通電加熱用電極部)2,2′に低周波電力が供給されて試験片1が直接通電加熱される。
【0056】
図6は加熱手段の具体例2を示し、試験片1の厚み方向からの直接通電加熱と試験片1の高周波誘導加熱方式で、高周波誘導加熱電源21から高周波誘導加熱用ブスバー22,22′および高周波誘導加熱用フィーダー24,24′を経由して加熱コイル25に高周波電力が供給され、試験片1が高周波誘導加熱されると共に、通電加熱電源26から通電加熱用ブスバー27,27′および通電加熱用フィーダー29,29′を経由して加工具ホルダー12,12′に低周波電力が供給され加工具11,11′を介して試験片1が厚み方向から直接通電加熱される。
【0057】
図7は加熱手段の具体例3を示し、試験片1の厚み方向および長手方向からの直接通電加熱方式で、通電加熱電源26から通電加熱用ブスバー27,27′および通電加熱用フィーダー29,29′を経由して試験片ホルダー(通電加熱用電極部)2,2′に低周波電力が供給されて試験片1が長手方向から直接通電加熱されると共に、通電加熱電源40から通電加熱用ブスバー41,41′および通電加熱用フィーダー42,42′を経由して加工具ホルダー12,12′に低周波電力が供給され加工具11,11′を介して試験片1が厚み方向から直接通電加熱される。
【0058】
次に、本発明の実施形態例の特徴についてまず、加熱面から説明する。
【0059】
▲1▼加工熱処理に於いては、加工時の試験片温度と加工具温度とは加工条件の重要な要素となっている。
【0060】
従来方式では試験片と加工具とを1つの加熱源で加熱制御していた為、それぞれを任意温度に制御するのが困難だったが、本発明では試験片と加工具それぞれに加熱源を備えているので任意の加熱制御が可能となり、熱処理条件を多用化することが出来る。
【0061】
▲2▼加工具を介して試験片を通電加熱する場合、試験片端部の試験片ホルダーへの抜熱が生じる為、均熱部が加工領域より狭くなる傾向が強い。本発明ではこの現象を改善する目的で加工領域の両側に高周波加熱コイルを設置して前記抜熱を高周波加熱で補う事で加工領域を均一温度に保持することが出来る。(図6参照)
▲3▼試験片を長手方向に通電加熱し、加工具を高周波加熱する場合(図5参照)試験片を高温域で溶体化処理する際でも加工具は加工温度(溶体化温度よりも低温域)に保持する為、省エネルギーが図られると共に、極めて高価な加工具の高温疲労に伴う損傷を防止する事が出来る。
【0062】
本発明の実施形態例の特徴についてメカニズムの面から説明する。
【0063】
▲1▼加工機構は図2の様に、試験片回転軸に直交し試験片を挟んだ対向位置に2つのアクチェータが配置されている。
【0064】
試験片は回転軸芯に対して平行移動するスライダーと連結した試験片ホルダーに把持されている。スライダーは回転ドラム内のVホルダーと引張バネとで回転軸芯に引付けられて居り、それ以上の外力が発生した場合外力との釣合点に移動する。
【0065】
加工の際、2つのアクチェータは回転軸芯に対し対称に同芯加工する場合と非対称に偏芯加工する場合があり、通常偏芯加工が多い。本機構での偏芯加工は、2つのアクチェータが発生する加工荷重の釣合点に試験片とスライダーとが移動する為、試験片への曲げ荷重を小さくする事が出来る。
【0066】
又、加工中に過負荷が発生した場合でも、過負荷と引張バネとの釣合点にスライダーが移動する為、回転機構の損傷を抑制する事が出来る。
【0067】
▲2▼左右の試験片ホルダーは、外部からそれぞれ同期駆動しているので、回転時に試験片に捩り荷重が発生する事がない。
【0068】
また、加工時には左右のVホルダーに支えられているので捩りが発生しない。
【0069】
▲3▼回転軸はスプライン方式で回転ドラムと連結している為、軸方向に円滑に移動する事が出来る。
【0070】
従って、試験片を軸方向に強制的に移動する場合も試験片に軸垂力が発生する事は無い。
【0071】
又、温度変化による試験片の膨張・収縮に際しても軸垂力の発生は極めて少ない。
【0072】
尚、機械試験片が採取可能な大試験片とは、長さは100mm以上必要であり、圧縮加工等の加工を付与せしめるためには、厚さと幅はそれぞれ20mm以上必要である。従って、厚さ20mm×幅20mm×長さ100mm形状の試験片を標準とする。
【0073】
ところで、上記標準試験片の全領域が被加工部というのではなく、被加工部の領域は試験片の長さ方向において中央部の10から20mmあれば充分である。それは、その加工された部分を引張試験片の平行部とし、被加工部以外の両端部を掴み部とすれば十分に引張試験が可能だからである。
【0074】
上記試験片に対して、加工前および加工中において温度の均熱性を補償する様な加熱・温度制御を施し、従来の単軸加工熱処理や本発明の変形方向を変化させる加工を可能にするためには本発明の加工熱処理再現試験装置は「複数のアクチェータを用いた加工機構」、「複数の加熱源と温度制御を備えた加熱機構」および「試験片の方向と位置を変化させることが可能な試験片回転・移動機構」を備えていることが肝要である。
【0075】
【発明の効果】
以上述べたように本発明によれば、試験片を回転できると共に横方向に移動できため多方向からの加工が可能になり、かつ、試験片と加工具をそれぞれ単独・任意に加熱制御でき、しかも試験片の加工具や試験片ホルダーによる抜熱を抑制して試験片の均熱性を補償できるため大きな機械試験片を用いることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る加工熱処理再現試験装置を示す概略構成説明図である。
【図2】本発明の一実施形態例に係る加工熱処理再現試験装置を示す具体的構成説明図である。
【図3】(a)は本発明に係る試験片サポート機構の一例を示す断面図であり、(b)は本発明に係る試験片回転位置保持機構を示す構成説明図である。
【図4】本発明の一実施形態例に係る加工熱処理再現試験装置の加熱・温度制御機構を示す構成説明図である。
【図5】本発明に係る第1の加熱機構を示す構成説明図である。
【図6】本発明に係る第2の加熱機構を示す構成説明図である。
【図7】本発明に係る第3の加熱機構を示す構成説明図である。
【符号の説明】
1 試験片
2,2′ 試験片ホルダー
3,3′ 加工軸スライド機構
4,4′ 伸縮スライド機構
5,5′ 間欠回転機構
6,6′ 試験片サポート機構
9,9′ 回転軸スライド機構
10,10′ 回転電極(ドラム)
11,11′ 加工具
14,14′ 油圧アクチュエータ
21 加熱源の高周波誘導加熱電源
25 加熱コイル
26,40 加熱源の直接通電加熱電源
34,34′ 温度変換器(1)
35 温度変換器(2)
36 プログラムパターン発生器(1)
37 プログラムパターン発生器(2)
38 温度制御器(1)
39 温度制御器(2)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machining heat treatment reproduction test apparatus that combines a machining mechanism in which the deformation direction of various metal test pieces is changed, and an arbitrary temperature control mechanism of a test piece and a working tool (anvil) in machining.
[0002]
[Prior art]
Conventional thermomechanical heat treatment reproduction test apparatuses can only perform processing in one direction, such as uniaxial compression processing with small cylindrical specimens and plane strain compression processing with small plate specimens. Moreover, since the test piece and the processing tool are always in contact, the test piece cannot be rotated or moved.
[0003]
Therefore, it is impossible to change the deformation direction such as forging.
[0004]
In conventional thermomechanical reproduction test equipment, only small specimens could be used to ensure the thermal uniformity of the specimens, so it was possible to study changes in the metal structure with small specimens, but tensile tests, etc. Thus, a large test piece (mechanical test piece) that can perform a mechanical property elucidation test, that is, a mechanical test, could not be employed.
[0005]
In conventional thermomechanical reproduction test equipment, the temperature uniformity of the test piece is compensated by the temperature drop of the test piece due to heat conduction (heat removal) of the processing tool (anvil) during and after processing and the contact condition between the processing tool and the test piece. Was not.
[0006]
Moreover, it was not possible to control the heating of the test piece and the processing tool with dedicated heating sources.
[0007]
[Problems to be solved by the invention]
In the conventional heat treatment reproducibility test apparatus, processing from one direction of the test piece cannot be performed from multiple directions. Further, only small test pieces could be processed to ensure the uniformity of the test piece temperature. Moreover, it was not possible to control the heating of the test piece and the processing tool separately.
[0008]
The present invention has been made in view of the above circumstances. As a processing function, the test piece is rotated and moved in the lateral direction along the rotation axis to enable a wide range of deformation processing. The heat treatment conditions are diversified by performing heating control for each piece and the tool individually or arbitrarily. In addition, heat removal from the test piece to the end of the work tool and the test piece is alleviated. An object of the present invention is to provide a thermomechanical reproducibility test apparatus that can employ a large specimen by enlarging the part.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a heat treatment reproduction test apparatus for processing a metal test piece in a heat treatment process, and a set or a plurality of sets of actuators holding a processing tool are arranged at opposite positions across the test piece. The test piece processing means, the test piece intermittent rotation means provided with a rotating mechanism for holding the test piece on a rotation axis perpendicular to the processing axis and intermittently stopping, and the processing tool and the test piece are a plurality of And heating means for controlling heating with a heating source.
[0010]
Further, the present invention is characterized in that the thermomechanical reproduction test apparatus is provided with a telescopic slide mechanism in which the test piece can freely expand and contract in the direction of the rotation axis.
[0011]
Further, the present invention is characterized in that the thermomechanical reproduction test apparatus includes a rotating shaft slide mechanism for forcibly moving a test piece in a rotating shaft direction by a predetermined amount.
[0012]
Further, the present invention is characterized in that the machining heat treatment reproduction test apparatus is provided with a machining axis slide mechanism capable of freely translating the test piece in the machining axis direction.
[0013]
Further, the present invention is characterized in that in the thermomechanical reproduction test apparatus, a stroke adjusting mechanism is provided at an open shaft end portion to which a working tool of one or a plurality of sets of actuators is not attached.
[0014]
Further, the present invention is characterized in that, in the machining heat treatment reproduction test apparatus, one of the opposing actuators is a semi-fixed type work tool holding mechanism that can be fixed or manually operated.
[0015]
Further, the present invention is characterized in that the thermomechanical reproduction test apparatus includes a test piece support mechanism that stably supports a test piece processed by a processing tool held by an actuator at an intermittent stop point. .
[0016]
Further, the present invention is characterized in that the thermomechanical reproduction test apparatus includes a heating mechanism that controls heating of the test piece and the processing tool in a predetermined temperature pattern.
[0017]
Further, the present invention is characterized in that the thermomechanical reproduction test apparatus is provided with a heating mechanism capable of simultaneously controlling the heating of the test piece from the two directions of the longitudinal direction and the thickness direction of the test piece.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0019]
FIG. 1 is a schematic configuration explanatory view showing a thermomechanical reproduction test apparatus according to an embodiment of the present invention, and FIG. 2 is a specific configuration explanatory diagram showing a thermomechanical reproduction test apparatus according to an embodiment of the present invention. 3 (a) is a cross-sectional view showing an example of a test piece support mechanism according to the present invention, FIG. 3 (b) is a configuration explanatory view showing a test piece rotation position holding mechanism according to the present invention, and FIG. 4 is an embodiment of the present invention. FIG. 5 is a structural explanatory view showing a first heating mechanism according to the present invention, and FIG. 6 is a second heating according to the present invention. FIG. 7 is a structural explanatory view showing a third heating mechanism according to the present invention.
[0020]
In the figure, 1 is a test piece, 2 and 2 'are test piece holders, 3 and 3' are machining shaft slide mechanisms, 4 and 4 'are telescopic slide mechanisms, 5 and 5' are intermittent rotation mechanisms, and 6 and 6 'are Specimen support mechanism, 7 is a V block, 8 is a support guide, 9 and 9 'are rotating shaft slide mechanisms, 10 and 10' are rotating electrodes (drums), 11 and 11 'are processing tools, and 12 and 12' are added Tool holder, 13 and 13 'are piston rods, 14 and 14' are hydraulic actuators, 15 and 15 'are stroke adjusting mechanisms, 16 and 16' are stroke ends, 17 and 17 'are pinions, and 21 is a high frequency induction of a heating source Heating power source, 22 and 22 'are high frequency induction heating bus bars, 23 and 23' are high frequency introduction terminals, 24 and 24 'are high frequency induction heating feeders, 25 is a heating coil, 26 is a direct current heating power source of a heating source, 2 , 27 'are bus bars for energization heating, 28 and 28' are direct energization introduction terminals, 29 and 29 'are energization heating feeders, 30 and 30' are power supply brushes, 31 and 31 'are thermocouples, and 32 is a radiation thermometer. (Fiber sensor), 33 and 33 'are hermetic seals (temperature measurement terminals), 34 and 34' are temperature converters (1), 35 is a temperature converter (2), and 36 is a program pattern generator (1). , 37 is a program pattern generator (2), 38 is a temperature controller (1), 39 is a temperature controller (2), 40 is a direct energization heating power source of a heating source, 41, 41 'energization heating bus bar, 42, Reference numeral 42 ′ denotes a current heating feeder, 3 a a slide shaft, 3 b a slider, 3 c a tension spring, and 3 d a V-groove.
[0021]
That is, first, the thermomechanical reproduction test apparatus according to an embodiment of the present invention will be schematically described. As shown in FIG. 1, means for deforming a test piece and means for heating a test piece and a processing tool. The test piece 1 is gripped by the test piece holders 2 and 2 'and intermittently rotated by the rotation mechanisms 5 and 5'. The test piece 1 is moved laterally by the rotary shaft slide mechanism 9 through the rotary electrodes 10 and 10 '.
[0022]
There are processing tools 11 and 11 ′ at opposite positions on both side surfaces of the test piece 1, and the processing tools 11 and 11 ′ are respectively operated by corresponding hydraulic actuators 14 and 14 ′ to deform the test piece 1.
[0023]
The test piece 1 is connected to the rotating electrodes 10 and 10 ', and is supplied with low frequency power from the direct energization heating power source 26 through the power supply brushes 30 and 30', and is directly energized and heated.
[0024]
The processing tools 11, 11 ′ are supplied with high frequency power from a high frequency induction heating power source 21 to a high frequency induction heating coil 25 and are heated by high frequency induction.
[0025]
Next, the processing heat treatment reproduction test apparatus according to an embodiment of the present invention will be described in detail. As shown in FIG. 2, the test piece 1 is held at both ends by the test piece holders 2 and 2 ′. It is connected to intermittent rotation mechanisms 5 and 5 'via slide mechanisms 3 and 3', rotating electrodes 10 and 10 ', and telescopic slide mechanisms 4 and 4'.
[0026]
The intermittent rotating shafts 4 and 4 'are ball splines and are fitted to the rotating electrodes 10 and 10' and can slide in the axial direction. As shown in FIG. 3A, the inside of the rotating electrode 10 has a slider 3b inside the drum of the rotating electrode 10, and is attracted to the V groove 3d by a tension spring 3c.
[0027]
The slider 3 b is integrated with the slide shaft 3 a and is connected to the test piece holder 2. When an eccentric load other than a predetermined value is applied to the test piece 1, the slider 3b slides between the drum inner surface of the rotary electrode 10 and the V groove 3d, and stops at a balance point between the eccentric load and the tensile load of the tension spring 3c.
[0028]
A V block 7 as shown in FIG. 3B is attached to the test piece holders 2 and 2 ', and is supported by the V holder 6 at the stopping point of the intermittent rotation mechanisms 5 and 5' during processing.
[0029]
The V holder 6 and the slider 3b are a slide mechanism that moves the test piece 1 parallel to the rotation axis during processing.
[0030]
Hydraulic actuators 14 and 14 'are provided on a processing axis orthogonal to the intermittent rotation mechanisms 5 and 5', and processing tool holders 12 and 12 'and processing tools 11 and 11' are attached to the tip ends of the piston rods 13 and 13 '. The processing tools 11 and 11 ′ are arranged at opposing positions on both side surfaces of the test piece 1.
[0031]
The test specimen holders 2 and 2 'can freely expand and contract in the direction of the rotation axis by ball splines of the intermittent rotation axes 4 and 4'.
[0032]
The rotary shaft slide mechanisms 9, 9 'can forcibly move the rotary electrodes 10, 10' in the direction of the rotary shaft.
[0033]
At the open ends of the hydraulic actuators 14 and 14 ', there are screw gears 15 and 15' engaged with the hydraulic actuators 14 and 14 'by screws, which are rotated by pinions 17 and 17'.
[0034]
Since the screw gears 15 and 15 'move along the machining axis, the stroke of the rod ends 16 and 16' can be adjusted.
[0035]
FIG. 2 shows the mechanism of direct current heating from the longitudinal direction of the test piece 1 and the high frequency induction heating system of the processing tools 11 and 11 ′. The processing tools 11 and 11 are connected to the heating coil 25 by the high frequency introduction terminals 23 and 23 ′. 'Is heated by high frequency induction.
[0036]
The direct current introduction terminals 28 and 28 'are connected to the rotating electrodes 10 and 10' and the test piece holders 2 and 2 'via the power supply brushes 30 and 30', and a current is supplied to the test piece 1 to perform Joule heating.
[0037]
The hermetic seal (temperature measurement terminal) 33 outputs the temperatures of the test piece 1 and the processing tool 11.
[0038]
In FIG. 4, feeders 29 and 29 'for electric heating are attached to both test piece holders (electrodes for electric heating) 2, 2' and processing tool holders 12 and 12 '. That is, the power output from the energization heating power supply 26 can be supplied directly to the test piece 1 as shown in FIG. 5 or can be supplied via the processing tools 11 and 11 ′ as shown in FIG.
[0039]
As the heating coil 25, one for heating the test piece 1 and one for heating the processing tools 11, 11 ′ are prepared and can be replaced depending on the purpose of the test.
[0040]
Thermocouples 31 and 31 'for detecting temperature are welded to the test piece 1 and the processing tools 11 and 11'. In some cases, thermocouples cannot be welded to the processing tools 11 and 11 ′ depending on the material. In this case, the temperature is detected by a radiation thermometer (fiber sensor) 32.
[0041]
The temperature signal detected by the temperature sensor enters the temperature converter (1) (for thermocouple) 34, 34 'or the temperature converter (2) (for radiation) 35 and is output as a linearized signal. .
[0042]
Two temperature pattern generators are provided, each having a test piece program pattern generator (1) (temperature signal generator) 36 and a processing tool program pattern generator (2) (temperature signal generator) 37. From these generators, heating temperature patterns of the test piece 1 and the processing tools 11 and 11 'are output.
[0043]
The signals of the temperature converter (1) (for thermocouple) 34 or the temperature converter (2) (for radiation) 35 and the program pattern generator for test piece (1) (temperature signal generator) 36 are compared to produce a deviation signal. Then, it is guided to the high-frequency induction heating temperature controller 38. In addition, the signals from the temperature converter (1) (for thermocouple) 34, 34 'and the processing tool program pattern generator (2) (temperature signal generator) 37 are compared to produce a deviation signal, which is introduced to the temperature controller 39. It is burned.
[0044]
When the deviation signal is “negative”, the heating is insufficient, and when it is “positive”, the cooling is insufficient. When this signal is input to each of the temperature controllers 38 and 39, PID calculation and amplification are performed and output as a gate signal of a thyristor stack in the energizing heating power source 26 and the high frequency induction heating power source 21.
[0045]
The energization heating power source 26 and the high frequency induction heating power source 21 perform power control with a thyristor.
[0046]
The output signals of the temperature controllers 38 and 39 are connected to the gates of the thyristors through the gate amplifiers of the energizing heating power sources 21 and 26, and the thyristors are controlled by the output signals of the temperature controllers 38 and 39.
[0047]
The energization heating power supply 26 supplies the controlled power as it is to the output transformer.
[0048]
The high frequency induction heating power source 21 converts the controlled power into a high frequency and supplies the high frequency power through a transformer for matching.
[0049]
The electric power output from the energization heating power supply 26 passes through the energization heating bus bars 27, 27 'and the energization heating feeders 29, 29', and the specimen holders (energization heating electrode portions) 2, 2 '(or processing tools). The holder 12, 12 'and the processing tool 11, 11') are supplied to the test piece 1, and the test piece 1 is heated to the target temperature.
[0050]
The electric power output from the high frequency induction heating power source 21 is guided to the heating coil 25 via the high frequency induction heating bus bars 22 and 22 'and the high frequency induction heating feeders 24 and 24'.
[0051]
The heating coil 25 can be used for heating the processing tools 11 and 11 'and for heating the test piece 1 depending on the purpose, and can be used in any combination with the energization heating means.
[0052]
Next, a specific example of the heating means will be described.
[0053]
As the heating means, there are the following three methods in which the advantages of the direct current heating method and the high frequency induction heating method are combined or a plurality of the same heating sources are used.
[0054]
Here, the example employ | adopted in the plane distortion compression process which is a typical test processing method in a heat processing test is demonstrated.
[0055]
FIG. 5 shows a specific example 1 of the heating means, which is a direct current heating from the longitudinal direction of the test piece 1 and a high frequency induction heating method of the processing tools 11 and 11 ′, from a high frequency induction heating power source 21 to a high frequency induction heating bus bar 22, High-frequency power is supplied to the heating coil 25 through the feeder 22 'and the high-frequency induction heating feeders 24, 24', and the processing tools 11, 11 'are induction-heated at high frequency. , 27 ′ and current heating feeders 29, 29 ′, low frequency power is supplied to the test piece holders (energization heating electrode portions) 2, 2 ′, and the test piece 1 is directly heated.
[0056]
FIG. 6 shows a specific example 2 of the heating means. In the direct current heating from the thickness direction of the test piece 1 and the high frequency induction heating method of the test piece 1, a high frequency induction heating bus bar 22, 22 ' High-frequency power is supplied to the heating coil 25 via the high-frequency induction heating feeders 24 and 24 ′, the test piece 1 is heated by high-frequency induction, and the current heating bus bars 27 and 27 ′ and current heating are supplied from the current heating power source 26. Low-frequency electric power is supplied to the processing tool holders 12 and 12 'via the feeders 29 and 29', and the test piece 1 is directly heated in the thickness direction via the processing tools 11 and 11 '.
[0057]
FIG. 7 shows a specific example 3 of the heating means, which is a direct current heating method from the thickness direction and the longitudinal direction of the test piece 1, and the current heating bus bars 27 and 27 ′ and the current heating feeders 29 and 29 from the current heating power source 26. The low frequency power is supplied to the test piece holders (electrode portions for energization heating) 2 and 2 ′ via the ′, and the test piece 1 is directly energized and heated from the longitudinal direction, and the energization heating bus bar is supplied from the energization heating power source 40. The low-frequency power is supplied to the processing tool holders 12 and 12 'via the 41 and 41' and the electrification heating feeders 42 and 42 ', and the test piece 1 is directly energized and heated from the thickness direction via the processing tools 11 and 11'. Is done.
[0058]
Next, features of the embodiment of the present invention will be described first from the heating surface.
[0059]
(1) In thermomechanical processing, the specimen temperature and the tool temperature during processing are important elements of processing conditions.
[0060]
In the conventional method, since the test piece and the processing tool were controlled by one heating source, it was difficult to control each of them to an arbitrary temperature. However, in the present invention, each of the test piece and the processing tool is provided with a heating source. Therefore, arbitrary heating control is possible, and heat treatment conditions can be diversified.
[0061]
{Circle around (2)} When the test piece is energized and heated via the processing tool, heat is removed from the end of the test piece to the test piece holder, so that the soaking part tends to be narrower than the processing region. In the present invention, in order to improve this phenomenon, a high frequency heating coil is installed on both sides of the processing region, and the heat removal can be supplemented with high frequency heating to keep the processing region at a uniform temperature. (See Figure 6)
(3) When the test piece is energized and heated in the longitudinal direction and the processing tool is heated at a high frequency (see FIG. 5), the processing tool is processed at a lower temperature than the solution temperature even when the test piece is solution treated in a high temperature range. ) Can save energy and can prevent damage due to high temperature fatigue of extremely expensive processing tools.
[0062]
The features of the embodiment of the present invention will be described from the viewpoint of the mechanism.
[0063]
{Circle around (1)} As shown in FIG. 2, two actuators are arranged at opposing positions perpendicular to the test piece rotation axis and sandwiching the test piece.
[0064]
The test piece is held by a test piece holder connected to a slider that moves in parallel with the rotation axis. The slider is attracted to the axis of rotation by the V holder in the rotating drum and the tension spring, and moves to the balance point with the external force when an external force exceeding that is generated.
[0065]
At the time of machining, the two actuators can be symmetrically concentric with respect to the axis of rotation, or asymmetrically eccentric, and are usually often eccentric. In the eccentric machining by this mechanism, since the test piece and the slider move to the balance point of the machining load generated by the two actuators, the bending load on the test piece can be reduced.
[0066]
Even if an overload occurs during processing, the slider moves to the balance point between the overload and the tension spring, so that damage to the rotating mechanism can be suppressed.
[0067]
(2) Since the left and right specimen holders are driven synchronously from the outside, no torsional load is generated on the specimen during rotation.
[0068]
In addition, twisting does not occur because it is supported by the left and right V holders during processing.
[0069]
(3) Since the rotating shaft is connected to the rotating drum by a spline method, it can move smoothly in the axial direction.
[0070]
Accordingly, even when the test piece is forcibly moved in the axial direction, no axial force is generated on the test piece.
[0071]
In addition, the axial force is very little generated when the test piece expands or contracts due to a temperature change.
[0072]
A large test piece from which a mechanical test piece can be collected must have a length of 100 mm or more, and a thickness and a width of 20 mm or more are required in order to apply a compression process or the like. Therefore, a test piece having a shape of thickness 20 mm × width 20 mm × length 100 mm is used as a standard.
[0073]
By the way, the entire region of the standard test piece is not a workpiece, and it is sufficient that the region of the workpiece is 10 to 20 mm at the center in the length direction of the specimen. This is because a tensile test can be sufficiently performed if the processed portion is a parallel portion of the tensile test piece and both end portions other than the processed portion are gripped portions.
[0074]
In order to enable the above-mentioned test piece to be heated and temperature-controlled so as to compensate for the temperature uniformity before and during processing, and to enable conventional uniaxial processing heat treatment and processing that changes the deformation direction of the present invention. The heat treatment reproduction test apparatus of the present invention can change the direction and position of the test piece "processing mechanism using multiple actuators", "heating mechanism with multiple heating sources and temperature control" and "test piece" It is important to have a "special specimen rotation / movement mechanism".
[0075]
【The invention's effect】
As described above, according to the present invention, the test piece can be rotated and moved in the lateral direction, so that processing from multiple directions is possible, and each of the test piece and the processing tool can be controlled independently and arbitrarily, In addition, it is possible to use a large mechanical test piece because heat removal by the processing tool of the test piece and the test piece holder can be suppressed to compensate the thermal uniformity of the test piece.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory view showing a thermomechanical reproduction test apparatus according to an embodiment of the present invention.
FIG. 2 is a specific configuration explanatory view showing a thermomechanical reproduction test apparatus according to an embodiment of the present invention.
3A is a cross-sectional view showing an example of a test piece support mechanism according to the present invention, and FIG. 3B is a configuration explanatory view showing a test piece rotation position holding mechanism according to the present invention.
FIG. 4 is a configuration explanatory view showing a heating / temperature control mechanism of a thermomechanical reproduction test apparatus according to an embodiment of the present invention.
FIG. 5 is a structural explanatory view showing a first heating mechanism according to the present invention.
FIG. 6 is a structural explanatory view showing a second heating mechanism according to the present invention.
FIG. 7 is a structural explanatory view showing a third heating mechanism according to the present invention.
[Explanation of symbols]
1 Test piece 2, 2 'Test piece holder 3, 3' Processing shaft slide mechanism 4, 4 'Telescopic slide mechanism 5, 5' Intermittent rotation mechanism 6, 6 'Test piece support mechanism 9, 9' Rotary shaft slide mechanism 10, 10 'Rotating electrode (drum)
11, 11 'Processing tool 14, 14' Hydraulic actuator 21 High frequency induction heating power source 25 of heating source Heating coil 26, 40 Direct energization heating power source 34, 34 'of heating source Temperature converter (1)
35 Temperature converter (2)
36 Program pattern generator (1)
37 Program pattern generator (2)
38 Temperature controller (1)
39 Temperature controller (2)

Claims (9)

金属試験片を熱処理過程で加工する加工熱処理再現試験装置において、
試験片を挟んで対向する位置に加工具を把持した一組あるいは複数組のアクチェータを配置した試験片の加工手段と、
加工軸と直交する回転軸に試験片を把持し間欠的に停止させる回転機構を備えた試験片の間欠的回転手段と、
前記加工具と試験片とを複数の加熱源で加熱制御する加熱手段と
を具備することを特徴とする加工熱処理再現試験装置。
In a thermomechanical reproduction test device that processes metal specimens in the heat treatment process,
A test piece processing means in which one or a plurality of sets of actuators holding a processing tool are disposed at positions facing each other across the test piece,
An intermittent rotation means for the test piece provided with a rotation mechanism for gripping and stopping the test piece intermittently on a rotation axis orthogonal to the machining axis;
A heat treatment reproducibility testing apparatus comprising heating means for controlling heating of the processing tool and the test piece with a plurality of heating sources.
請求項1記載の加工熱処理再現試験装置において、
試験片が回転軸方向に自由に伸縮出来る伸縮スライド機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A thermomechanical reproduction test apparatus characterized in that the test piece is provided with an expansion / contraction slide mechanism that can freely expand and contract in the direction of the rotation axis.
請求項1記載の加工熱処理再現試験装置において、
試験片を回転軸方向に強制的に所定量移動させる回転軸スライド機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A thermomechanical reproduction test apparatus comprising a rotating shaft slide mechanism for forcibly moving a test piece in a rotating shaft direction by a predetermined amount.
請求項1記載の加工熱処理再現試験装置において、
試験片を加工軸方向に自由に平行移動出来る加工軸スライド機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A machining heat treatment reproduction test apparatus comprising a machining axis slide mechanism capable of freely translating a test piece in the machining axis direction.
請求項1記載の加工熱処理再現試験装置において、
一組あるいは複数組のアクチュエータの加工具を取付ない開放軸端部にストローク調整機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A heat treatment reproduction test apparatus comprising a stroke adjusting mechanism at an open shaft end portion to which a working tool for one or a plurality of sets of actuators is not attached.
請求項1記載の加工熱処理再現試験装置において、
対向するアクチュエータの一方を固定式もしくは手動操作可能な半固定式の加工具保持機構としたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A machining heat treatment reproduction test apparatus characterized in that one of the opposing actuators is a fixed or semi-fixed work tool holding mechanism that can be manually operated.
請求項1記載の加工熱処理再現試験装置において、
アクチュエータが把持した加工具で加工される試験片を間欠的停止点で安定的に支える試験片サポート機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A thermo-mechanical heat treatment reproduction test apparatus comprising a test piece support mechanism that stably supports a test piece processed by a processing tool held by an actuator at an intermittent stop point.
請求項1記載の加工熱処理再現試験装置において、
試験片と加工具とを各々所定の温度パターンで加熱制御する加熱機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A thermomechanical reproduction test apparatus comprising a heating mechanism that controls heating of a test piece and a processing tool in a predetermined temperature pattern.
請求項1記載の加工熱処理再現試験装置において、
試験片を試験片の長手方向および厚み方向の二方向から同時に加熱制御できる加熱機構を備えたことを特徴とする加工熱処理再現試験装置。
In the thermomechanical processing reproduction test apparatus according to claim 1,
A thermomechanical reproducibility testing apparatus comprising a heating mechanism capable of simultaneously controlling heating of a test piece from two directions of a longitudinal direction and a thickness direction of the test piece.
JP17991499A 1999-06-25 1999-06-25 Thermomechanical reproducibility test equipment Expired - Lifetime JP4257952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17991499A JP4257952B2 (en) 1999-06-25 1999-06-25 Thermomechanical reproducibility test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17991499A JP4257952B2 (en) 1999-06-25 1999-06-25 Thermomechanical reproducibility test equipment

Publications (2)

Publication Number Publication Date
JP2001004508A JP2001004508A (en) 2001-01-12
JP4257952B2 true JP4257952B2 (en) 2009-04-30

Family

ID=16074133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17991499A Expired - Lifetime JP4257952B2 (en) 1999-06-25 1999-06-25 Thermomechanical reproducibility test equipment

Country Status (1)

Country Link
JP (1) JP4257952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288465A (en) * 2011-07-18 2011-12-21 中国科学院金属研究所 Electrochemical cathode hydrogen filling method of steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231483B6 (en) * 2019-05-23 2023-06-30 Jfeテクノリサーチ株式会社 Method and apparatus for tensile test of metallic materials
CN111504800B (en) * 2020-05-19 2024-01-30 中国石油大学(华东) Multifunctional micro-sample testing system and method, petrochemical industry and nuclear power equipment
KR102267228B1 (en) * 2020-11-23 2021-06-21 주식회사 지노테크 High temperature durability tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288465A (en) * 2011-07-18 2011-12-21 中国科学院金属研究所 Electrochemical cathode hydrogen filling method of steel

Also Published As

Publication number Publication date
JP2001004508A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
EP1886114B1 (en) A technique for applying direct resistance heating current to a specific location in a specimen under test while substantially reducing thermal gradients in the specimen gauge length
KR101204519B1 (en) Titanium stretch forming apparatus and method
CN102925632B (en) Vertical high-frequency quenching machine
RU2544327C2 (en) Method and device for wire welding
JP2011136342A (en) Heating device and heating method
JPWO2012014672A1 (en) Spring manufacturing method and electric heating apparatus
EP0582654B1 (en) A dynamic thermal-mechanical material testing system utilizing a balanced magnetic field
JP7231483B6 (en) Method and apparatus for tensile test of metallic materials
JP4257952B2 (en) Thermomechanical reproducibility test equipment
NL2026681A (en) System and method for testing uniaxial tensile high-temperature mechanical properties of plate
US5315085A (en) Oven that exhibits both self-resistive and self-inductive heating
JP5662468B2 (en) Stretch molding apparatus and method with supplemental heating
EP3466557A1 (en) Race production method
JP2019152522A (en) Thermal fatigue test device and thermal fatigue test method
CN203227925U (en) Laser annealing device for rod part of blind rivet
CN107586925A (en) A kind of induction coil for eliminating engine valve residual stress, device and method
US10954575B2 (en) Device and method for tempering sections of metal components
CN210636030U (en) Annealing equipment for driving cylindrical gear of gap bridge box
CN114574687A (en) Device, system and method for assisting laser shock peening by thermoelectric composite energy field
KR101176068B1 (en) Apparatus and method for local laser heat treatment
KR102219502B1 (en) Billet gradient furnace using multiple heating plates with thermocouple
JP6497172B2 (en) Metal processing apparatus and metal member manufacturing method
JP2023176710A (en) Hot working reproduction test device and hot working reproduction test system
CN115125371A (en) Device for controlling temperature of aluminum alloy during heating and quenching
EP3778055A1 (en) Forming finished parts using a movable gantry press and a plurality of die assemblies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4257952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term