JP4257140B2 - Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus - Google Patents

Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus Download PDF

Info

Publication number
JP4257140B2
JP4257140B2 JP2003080784A JP2003080784A JP4257140B2 JP 4257140 B2 JP4257140 B2 JP 4257140B2 JP 2003080784 A JP2003080784 A JP 2003080784A JP 2003080784 A JP2003080784 A JP 2003080784A JP 4257140 B2 JP4257140 B2 JP 4257140B2
Authority
JP
Japan
Prior art keywords
metal oxide
insulating film
oxide insulating
film
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003080784A
Other languages
Japanese (ja)
Other versions
JP2004288980A (en
Inventor
健治 高橋
浩 舟窪
至宣 内田
司 佐竹
慶一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003080784A priority Critical patent/JP4257140B2/en
Publication of JP2004288980A publication Critical patent/JP2004288980A/en
Application granted granted Critical
Publication of JP4257140B2 publication Critical patent/JP4257140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、金属酸化物絶縁膜の膜厚評価装置および膜質評価装置に関する。
【0002】
【従来の技術】
【非特許文献1】
日立国際電気 第49回春季応用物理学関係連合講演会予稿集 28p−A−11−14)
近年、半導体の高集積化に伴い、その絶縁膜には、誘電率の大きな金属酸化物等が用いられている。そして、この金属酸化物絶縁膜として例えば、Al2 3 やHfO2 等が公知であり、このような金属酸化物絶縁膜を成膜する技術として、例えばALD(Atomic Layer Deposition;原子層成膜)法やMOCVD法(有機金属化学的気相成長法)がある。記ALD法(前記非特許文献1参照)は、原料として、例えば、トリメチルアルミニウム(TMA:Al(CH3 3 )と水蒸気(H2 O)を用い、これらの原料を交互にSi基板に吹き付けることにより、Al2 3 の成膜を行うものである。このとき、原料を構成するCH3 基(メチル基)が膜中に取り込まれ、これが不純物(CX y )として振る舞うことにより、膜質を劣化させる原因となっている。
【0003】
また、HfO2 薄膜は、分子構造中に酸素を含まないHf[N(C2 5 2 4 とO2 ガスを原料としてMOCVD法にてSi基板上に形成される。図7は、成膜温度に対するHfO2 薄膜の比誘電率を測定した実験データDを示している。図7から、成膜温度が190〜280℃の範囲では、比誘電率が増加していることが分かる。これは、成膜温度の上昇に伴うHfO2 薄膜の密度の増加によるものと考えられる。また、図7から、成膜温度が400℃では比誘電率が減少していることが分かる。これは、Si基板およびHfO2 薄膜間における成分元素の相互拡散が顕著になり、HfO2 薄膜にSi元素が混入したためであると考えられる。そして、成膜温度450℃で更に比誘電率が増加しているのは、HfO2 薄膜の密度の増加によるものと考えられる。
【0004】
【発明が解決しようとする課題】
ところで、従来より、成膜直後やアニール後等の前記金属酸化物絶縁膜の膜厚および/または膜質を評価するための簡便な装置が望まれている。特に、金属酸化物絶縁膜ではその成膜時の温度やアニール時の温度・時間などの諸条件により、不純物の混入や膜と基板間で各成分元素の相互拡散が起こることによる膜の劣化が発生する。
【0005】
この発明は上述の事柄に留意してなされたもので、その目的は、金属酸化物絶縁膜の膜厚や膜質を評価して膜質劣化の程度や比誘電率の大きさ等を確認できる金属酸化物絶縁膜の膜厚評価装置および膜質評価装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、この発明の金属酸化物絶縁膜の膜厚評価装置は、半導体基板上に形成された金属酸化物絶縁膜表面へのグロー放電によるスパッタリングにより金属酸化物絶縁膜の深さ方向の成分分析を行グロー放電分析手段を用いて金属酸化物絶縁膜の膜厚を評価する装置であって、グロー放電分析手段にて得られた金属酸化物絶縁膜中の成分元素の特性曲線を2次微分して得られた変曲点の位置に基づいて金属酸化物絶縁膜の膜厚を計測する手段と、計測された膜厚が金属酸化物絶縁膜中の成分元素に対応して予め設定されている所定の閾値又は範囲をえたかどうかを判定する手段とを有し、さらに、前記所定の閾値又は範囲が記憶されている記憶部を備えていることを特徴とする。
【0007】
【0008】
そして、この発明の金属酸化物絶縁膜の膜質評価装置は、半導体基板上に形成された金属酸化物絶縁膜表面へのグロー放電によるスパッタリングにより金属酸化物絶縁膜の深さ方向の成分分析を行グロー放電分析手段を用いて金属酸化物絶縁膜の膜質を評価する装置であって、金属酸化物絶縁膜形成直後とアニール後の金属酸化物絶縁膜の膜質を比較することによって、前記半導体基板および金属酸化物絶縁膜間における成分元素の相互拡散の程度を評価して温度と時間のアニール条件を見つけるためグロー放電分析手段にて得られた成分濃度特性曲線の、金属酸化物絶縁膜中の成分元素と前記半導体基板の構成成分元素の拡散度合いを示す指数になる傾きが予め設定されている所定の閾値又は範囲をえたかどうかを判定する手段を有することを特徴とする
【0009】
【発明の実施の形態】
以下、この発明の実施形態を、図を参照しながら説明するが、それによってこの発明は限定されるものではない。
【0010】
図1〜図6は、この発明の一実施形態を示す。の実施形態では、金属酸化物絶縁膜としてHfO2 薄膜を採用している。すなわち、図2に示すように、fO2 薄膜11は、原料にHf[N(C2 5 2 4 及びO2 ガスを用い、MOCVD法により自然酸化膜(SiO2 )12付きのp型Si(100)基板13上に形成される。そして、59は、HfO2 薄膜11、自然酸化膜(SiO2 )12およびSi基板13を有する半導体チップの基盤部分である。
【0011】
まず、グロー放電分析手段としてのマーカス型高周波グロー放電分析装置1について簡単に説明する。
【0012】
図1に示すように、前記グロー放電分析装置1は、HfO2 薄膜11に対してグロー放電を発生させるグロー放電管2と、このグロー放電管2に高周波電力を供給する電源部3と、不活性ガスなどの測定に必要なガスを供給するガス供給部4と、グロー放電管2の放電発光部2aから生じる光Lを分光してその強度を測定する分光器5と、前記光Lの測定値を基に、測定対象成分(Hf,Oの成分、C,N,H等の残留不純物)の濃度を求めて出力する演算処理部6とを主として備えている。7はこの演算処理部6のディスプレイである。
【0013】
前記グロー放電管2は集光レンズ2bを有し、分光器5は集光レンズ2bの焦点位置において光Lを透過させるスリット5aと、スリット5aを透過した光Lを分光する回折格子5bと、各測定対象成分に相当する波長に分光された光を透過させるスリット5cと、スリット5cを透過した光の強度を検出する光電子増倍管(又は固体検出器)5dとを有している。
【0014】
前記電源部3は例えば13MHzの高周波の交流電力を供給する。また、ガス供給部4は不活性ガスとして例えばアルゴンガスArおよび酸素ガスO2 それぞれ供給するボンベ4aと電磁弁4bとを有している。
【0015】
定に際しては、グロー放電管2の陽極とHfO2 薄膜11との間に予備放電が生じ、これに基づいてアルゴンイオンが生成し、このアルゴンイオンが高電界で加速され、HfO2 薄膜11の表面に衝突して発光する。そして、アルゴンイオンの衝突により所定のスパッタリングが行われ、HfO2 薄膜11の表面からイオンを含む粒子(原子、分子も含まれる)が飛び出し、この粒子がプラズマ中で励起され、基底状態に戻る際に元素固有の発光が行われる。れらの光Lはグロー放電管に連接された分光器5方向に導出され、定性分析が行われる。
【0016】
前記演算処理部6は、定時間連続してグロー放電を起こしたときに光電子増倍管5dによって検出された測定値と測定時間の関係をスパッタリング時間に対する測定値を示す測定値データ30として演算処理部6の記憶部6mに記憶する。
【0017】
また、演算処理部6は、測定値データ30を用いて光電子増倍管5dによって検出された各波長の光の強度を測定対象成分(Hf,Oの成分、C,N,H等の残留不純物)の濃度に変換して定量分析を行う。また、この測定値(強度または濃度)を、グロー放電管2に供給した電力の大きさと測定した各成分の濃度とから求められるスパッタリングの進行速度を考慮に入れて演算する。そして、演算処理部6は、試料の深さ位置と各測定対象成分の濃度の関係をスパッタリング深さに対する相対強度変化比率を示す変換値データ31として記憶部6mに記憶する。
【0018】
前記測定値データ30の蓄積はグロー放電と同時に行なう必要があるが、前記変換値データ31の作成および記憶は測定値データ30を基に演算によって求めることができる。したがって、前記測定値データ30の変換は一連のグロー放電が終了した後に、使用者の操作にしたがって行うことが可能である。
【0019】
図3は前記グロー放電分析装置1を用いて、成膜直後のHfO2 薄膜11(図2参照)を分析したときに演算処理部6によって演算された結果の一例を示すものである。この図3において、横軸はスパッタリングの進行速度(T)、縦軸は光強度(I)である。そして、20HfO2 薄膜11中のHf(ハフニウム)特性曲線、21HfO2 薄膜11中のC(炭素)特性曲線、22HfO2 薄膜11中のO(酸素)特性曲線、23はHfO2 薄膜11中のH(水素)特性曲線、24はHfO2 薄膜11中のN(窒素)特性曲線をそれぞれ示している。そして、25Si基板の構成成分特性曲線、すなわち、Si特性曲線を、25aは、自然酸化膜(SiO 2 )12中のSi特性曲線をそれぞれ示している。また、HfO2 薄膜領域を示し、BはSi基板領域を示している。なお、T=0の位置は、グロー放電によるスパッタリングの開始位置であるHfO2 薄膜11の表面11a位置に相当する
【0020】
以下、この発明の特徴的構成について説明する。
【0021】
図1において、39は金属酸化物絶縁膜(HfO2 薄膜)11の膜厚および膜質評価する装置で、この膜厚および膜質評価装置39は、前記Si特性曲線25、もしくは、HfO2 薄膜11中の各成分元素の特性曲線20〜24に基づいてHfO2 薄膜の膜厚dを計測する手段40と、計測された膜厚dが予め設定されている所定の閾値又は所定の範囲をえたかどうかを判定する手段41とを備えている。そして、この判定手段41は、HfO 2 薄膜11中の各成分元素に対応する所定の閾値又は所定の範囲が記憶されている記憶部41aと、HfO 2 薄膜11中の各成分元素に対応する所定の閾値又は所定の範囲を入力する入力部41bを備えるとともに、前記計測された膜厚dが前記閾値又は所定の範囲をえる場合にアラーム信号を出力する手段42を備えている
【0022】
そして、前記膜厚dは、前記グロー放電分析装置1にて得られた前記HfO2 薄膜11中の各成分元素の特性曲線20〜24を2次微分して得られた変曲点の位置を基に計測され。図4において60は、Si基板13中のSi特性曲線25を2次微分して得られた変曲点を示す。また、61は、HfO2 薄膜11中のHf特性曲線20を2次微分して得られた変曲点を示す。
【0023】
また、前記評価装置39は、前記グロー放電分析装置1にて得られたHfO2 薄膜11中の、残留不純物も含めた各成分(Hf,O、C,NおよびH等)の濃度の値がそれぞれ予め設定されている所定の閾値又は所定の範囲をえたかどうかを判定する手段44を有し、更に、前記各成分濃度が前記閾値又は所定の範囲をそれぞれえる場合にアラーム信号を出力する手段45を備えている。
【0024】
5(A)は、HfO2 薄膜11中の残留C量を成膜温度毎にプロットしたものである。図5(A)から、成膜温度が高くなるほど残留C量が減少することが分かる。すなわち、HfO2 薄膜11を成膜する際の原料であるHf[N(C2 5 2 4 中のHfO2 薄膜成分以外である残留不純物の残留量より、成膜時の温度を判断することができる。すなわち、残留不純物の濃度を監視することにより、成膜時の評価を行うことができる。
なお、この実施形態では成膜時の評価を残留不純物の濃度を用いて監視する例を示したが、当然、監視する値としては各成分元素の濃度を意味し、各濃度値に変換する前の各強度値であってもよい。
【0025】
また、図5(B)および図5(C)は、それぞれ、HfO2 薄膜11中の残留N量および残留H量を成膜温度毎にプロットしたものである。
【0026】
これらは前記グロー放電分析装置1にて分析されるが、この分析結果を前記評価装置39で評価でき、膜質劣化の程度を確認できる。
【0027】
なお、膜質を評価するのに、グロー放電分析装置1にて得られた各成分濃度特性曲線のそれぞれ傾きを計測し、これら傾きが予め設定されている所定の閾値又は所定の範囲をえたかどうかを判定し、各傾きが所定の閾値又は範囲をえる場合にアラーム信号を出力するように構成してもよい。すなわち、グロー放電分析装置1にて得られたHfO2 薄膜11中のHf濃度特性曲線、HfO2 薄膜11中のC濃度特性曲線、HfO2 薄膜11中のO濃度特性曲線、HfO2 薄膜11中のH濃度特性曲線、HfO2 薄膜11中のN濃度特性曲線、Si基板の13中のSi濃度特性曲線に基づいて各濃度特性曲線の傾きが予め設定されている所定の閾値又は範囲を越えたかどうかを判定することにより膜質を評価できる。6において、20’は、グロー放電分析装置1にて得られたHfO2 薄膜11中のHf濃度特性曲線を示し、25’は、グロー放電分析装置1にて得られた、Si基板13中のSi濃度特性曲線を示す。これらの特性曲線における各傾きは、それぞれの拡散度合いを示す指数になる。そして、得られる他の成分元素の各濃度特性曲線における各傾きも他の成分元素それぞれの拡散度合いを示す指数になる。
【0028】
そして、HfO2 薄膜11の成膜直後は勿論のこと、アニール後等にも前記評価装置39で評価を行うことにより、Si基板13およびHfO2 薄膜11間における成分元素の相互拡散の度合いを判断できる。すなわち、図3に示した成膜直後における前記各特性曲線20〜25と、アニール後に変動した、特性曲線20〜25に対応する各特性曲線との膜質を比較でき、アニール時の相互拡散の程度も評価できる。この評価は、アニール条件(温度と時間)を見つけるために非常に有用である。
【0029】
このように、HfO2 薄膜11の膜厚dや膜質を評価することにより、膜質劣化の程度や比誘電率の大きさ等を確認することができ、信頼性があり、品質のよい半導体チップを供給することができる。
また、この実施形態ではHfO2 薄膜11の場合について説明したが、この発明はこれに限るものではなく、金属酸化物絶縁膜であれば全てに適用できる。HfO2 薄膜11以外の金属酸化物絶縁膜としては、例えば、ZrSiO4 ,HfSiO4 ,ZrO2 ,Ta2 5 等を挙げることができる。
【0030】
【発明の効果】
以上説明したようにこの発明によれば、金属酸化物絶縁膜の膜厚や膜質を評価して膜質劣化の程度や比誘電率の大きさ等を確認することができる金属酸化物絶縁膜の膜厚評価装置および膜質評価装置を得ることができ
【図面の簡単な説明】
【図1】 この発明の一実施形態を示す全体構成説明図である。
【図2】 上記実施形態で使用したHfO2 薄膜を含む半導体を示す構成説明図である。
【図3】 上記実施形態で使用したHfO2 薄膜の分析結果を示す図である。
【図4】 上記実施形態で使用したHfO2 薄膜の膜厚を計測する手法を説明するための図である。
【図5】 (A)は、上記実施形態で使用したHfO2 薄膜の膜質を評価するために用いられる、HfO2 薄膜中の残留C量を示すプロット図である。
(B)は、上記実施形態で使用したHfO2 薄膜の膜質を評価するために用いられる、HfO2 薄膜中の残留N量を示すプロット図である。
(C)は、上記実施形態で使用したHfO2 薄膜の膜質を評価するために用いられる、HfO2 薄膜中の残留H量を示すプロット図である。
【図6】 上記実施形態で使用したHfO2 薄膜の別の膜質評価方法に用いた成分元素(Hf,Si)濃度特性曲線を示す図である。
【図7】 成膜温度に対するHfO2 薄膜の比誘電率を測定した実験データを示す図である。
【符号の説明】
1…高周波グロー放電分析装置、11…金属酸化物絶縁膜、11a…金属酸化物絶縁膜表面、13…半導体基板、39…金属酸化物絶縁膜の膜厚および膜質評価装置、40…金属酸化物絶縁膜の膜厚を計測する手段、41…計測された膜厚が予め設定されている所定の閾値を越えたかどうかを判定する手段、42…アラーム信号出力手段、61…変曲点、d…膜厚。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus.
[0002]
[Prior art]
[Non-Patent Document 1]
Hitachi Kokusai Electric 49th Spring Applied Physics Related Conference Proceedings 28p-A-11-14)
In recent years, with high integration of semiconductors, metal oxides having a high dielectric constant are used for the insulating films. For example, Al 2 O 3 and HfO 2 are known as the metal oxide insulating film. As a technique for forming such a metal oxide insulating film, for example, ALD (Atomic Layer Deposition); ) Method and MOCVD method (metal organic chemical vapor deposition method). Before SL ALD method (see Non-Patent Document 1), when using, for example, trimethyl aluminum: using (TMA Al (CH 3) 3) and water vapor (H 2 O), the Si substrate of these raw materials are alternately The Al 2 O 3 film is formed by spraying. At this time, the CH 3 group (methyl group) constituting the raw material is taken into the film, and this acts as an impurity (C X H y ), thereby deteriorating the film quality.
[0003]
The HfO 2 thin film is formed on the Si substrate by MOCVD using Hf [N (C 2 H 5 ) 2 ] 4 and O 2 gas that do not contain oxygen in the molecular structure. FIG. 7 shows experimental data D obtained by measuring the relative dielectric constant of the HfO 2 thin film with respect to the film formation temperature. From FIG. 7, it can be seen that the relative dielectric constant increases when the film forming temperature is 190 to 280 ° C. This is considered to be due to an increase in the density of the HfO 2 thin film accompanying an increase in the film formation temperature. In addition, it can be seen from FIG. 7 that the relative dielectric constant decreases when the film forming temperature is 400 ° C. This is presumably because the interdiffusion of component elements between the Si substrate and the HfO 2 thin film becomes significant, and the Si element is mixed into the HfO 2 thin film. The reason why the relative permittivity further increases at the film forming temperature of 450 ° C. is considered to be due to the increase in the density of the HfO 2 thin film.
[0004]
[Problems to be solved by the invention]
Incidentally, there has been a demand for a simple apparatus for evaluating the film thickness and / or film quality of the metal oxide insulating film immediately after film formation or after annealing. In particular, metal oxide insulating films are subject to film deterioration due to contamination by impurities and mutual diffusion of each component element between the film and the substrate, depending on various conditions such as the temperature at the time of film formation and the temperature and time at the time of annealing. appear.
[0005]
The present invention has been made in consideration of the above-mentioned matters, and its purpose is to evaluate the film thickness and film quality of a metal oxide insulating film and to confirm the degree of film quality deterioration and the relative dielectric constant. An object of the present invention is to provide a film thickness evaluation apparatus and a film quality evaluation apparatus for an object insulating film.
[0006]
[Means for Solving the Problems]
To achieve the above object, the present invention film Atsuhyo valent device metal oxide insulating film by sputtering by glow discharge in the formed metal oxide dielectric film surface on a semiconductor substrate of a metal oxide insulating film an apparatus for evaluating the film thickness of the metal oxide insulating film by a line cormorants glow discharge analysis means the component analysis in the depth direction, each component of the obtained in the glow discharge analysis means metal oxide insulating film Means for measuring the film thickness of the metal oxide insulating film based on the position of the inflection point obtained by second-order differentiation of the element characteristic curve , and the measured film thickness is a component element in the metal oxide insulating film and a means for determining whether exceeded a predetermined threshold value or range set in advance corresponding to the further characterized in that the predetermined threshold value or range is a storage unit that is stored And
[0007]
[0008]
The apparatus for evaluating the quality of a metal oxide insulating film according to the present invention performs component analysis in the depth direction of the metal oxide insulating film by sputtering using glow discharge on the surface of the metal oxide insulating film formed on the semiconductor substrate. an apparatus for evaluating the film quality of the metal oxide insulating film using earthenware pots glow discharge analysis means, by comparing the quality of the metal oxide insulating film after the annealing and after the metal oxide insulating film, the semiconductor The component concentration characteristic curve obtained by glow discharge analysis means to find the annealing conditions of temperature and time by evaluating the degree of interdiffusion of the component elements between the substrate and the metal oxide insulating film , in the metal oxide insulating film Yes inclination of the component elements will index indicating the degree of diffusion of the constituent elements of the semiconductor substrate, means for determining whether exceeded a predetermined threshold value or range set in advance And wherein the Rukoto.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereby.
[0010]
1 to 6 show an embodiment of the present invention. In an embodiment of this employs the HfO 2 thin film as a metal oxide insulating film. That is, as shown in FIG. 2, the H fO 2 thin film 11 has a natural oxide film (SiO 2 ) 12 attached by MOCVD using Hf [N (C 2 H 5 ) 2 ] 4 and O 2 gas as raw materials. It is formed on a p-type Si (100) substrate 13. Then, 59, HfO 2 thin film 11, a base portion of a semiconductor chip having a natural oxide film (SiO 2) 12 and the Si substrate 13.
[0011]
First, the Marcus type high-frequency glow discharge analyzer 1 as a glow discharge analysis means will be briefly described.
[0012]
As shown in FIG. 1, the glow discharge analysis apparatus 1 includes a glow discharge tube 2 for generating a glow discharge in the HfO 2 thin film 11, a power supply unit 3 for supplying high-frequency power to the glow discharge tube 2, not A gas supply unit 4 that supplies a gas necessary for measurement of active gas or the like, a spectroscope 5 that splits the light L generated from the discharge light emitting unit 2a of the glow discharge tube 2 and measures the intensity thereof, and the measurement of the light L An arithmetic processing unit 6 that mainly obtains and outputs the concentration of the measurement target component (Hf, O component, residual impurities such as C, N, and H) based on the value is mainly provided. Reference numeral 7 denotes a display of the arithmetic processing unit 6.
[0013]
The glow discharge tube 2 includes a condensing lens 2b, and the spectroscope 5 includes a slit 5a that transmits light L at a focal position of the condensing lens 2b, and a diffraction grating 5b that disperses the light L transmitted through the slit 5a. If has a slit 5 c to transmit light split into wavelengths corresponding to the respective measurement target component, a photomultiplier tube for detecting the intensity of light transmitted through the slit 5 c (or the solid state detector) and 5d ing.
[0014]
The power supply unit 3 supplies high-frequency AC power of , for example, 13 MHz. The gas supply unit 4 is as the inert gas such as argon gas Ar and the oxygen gas O 2 and a cylinder 4a and the electromagnetic valve 4b respectively supply.
[0015]
In measurement, the glow discharge tube 2 preliminary discharge occurs between the anode and the HfO 2 thin film 11, which argon ions are generated on the basis of, the argon ions are accelerated by a high electric field, the HfO 2 film 11 It collides with the surface and emits light. Then , predetermined sputtering is performed by the collision of argon ions, and particles (including atoms and molecules) containing ions are ejected from the surface of the HfO 2 thin film 11, and when these particles are excited in the plasma and return to the ground state. The element emits light unique to the element. These light L is derived in the spectrometer 5 direction which is connected to the glow discharge tube, a qualitative analysis is performed.
[0016]
The arithmetic processing unit 6, the measurement value data 30 indicating the measured values for the sputtering time thus detected measurement value to the photomultiplier 5 d and the relationship of the measurement time when that caused Jo Tokoro time continuously glow discharge Is stored in the storage unit 6m of the arithmetic processing unit 6.
[0017]
The arithmetic processing unit 6, the intensity of light measured components of the respective wavelengths thus detected photomultiplier 5 d using measurements data 30 (Hf, components of O, C, N, such as H Quantitative analysis is performed by converting to the concentration of residual impurities. Further, this measured value (intensity or concentration) is calculated in consideration of the progress speed of sputtering obtained from the magnitude of the electric power supplied to the glow discharge tube 2 and the measured concentration of each component. And the arithmetic processing part 6 memorize | stores the relationship between the depth position of a sample and the density | concentration of each measuring object component in the memory | storage part 6m as the conversion value data 31 which shows the relative intensity change ratio with respect to sputtering depth.
[0018]
The measurement value data 30 needs to be accumulated simultaneously with the glow discharge, but the conversion value data 31 can be created and stored by calculation based on the measurement value data 30. Therefore, the conversion of the measured value data 30 can be performed according to the user's operation after a series of glow discharges is completed.
[0019]
Figure 3 shows with a front Symbol glow discharge analyzer 1, an example of a result calculated by the calculation processing unit 6 when analyzing HfO 2 thin film 11 immediately after the film formation (see Fig. 2). In FIG. 3, the horizontal axis represents the sputtering speed (T), and the vertical axis represents the light intensity (I). Then, 20 of Hf (Hafuniu beam) characteristic curve in HfO 2 thin film 11, 21 is the C (carbon containing) characteristic curve in HfO 2 thin film 11, O (oxygen) characteristics in HfO 2 thin film 11 is 22 the curve 23 is the H (hydrogen) characteristic curve in HfO 2 thin film 11, 24 are respectively the N (nitrogen) characteristic curve in HfO 2 thin film 11. Then, 25 components characteristic curve of the Si substrate, i.e., the S i characteristic curve, 25a denotes a natural oxide film of Si characteristic curve in (SiO 2) 12, respectively. Also, A is shows the HfO 2 thin film region, B denotes an Si substrate region. The position of the T = 0 corresponds to the surface 11a position of HfO 2 thin film 11 is the start position of the sputtering by glow discharge.
[0020]
The characteristic configuration of the present invention will be described below.
[0021]
In Figure 1, 39 is a device for evaluating the thickness and quality of the metal oxide insulating film (HfO 2 film) 11, the thickness and quality evaluation apparatus 39, the S i characteristic curve 25 or,, HfO 2 A means 40 for measuring the film thickness d of the HfO 2 thin film based on the characteristic curves 20 to 24 of each component element in the thin film 11, and a predetermined threshold value or a predetermined range in which the measured film thickness d is set in advance. and a determining means 41 whether or not exceeded. The determination means 41 includes a storage unit 41a in which a predetermined threshold value or a predetermined range corresponding to each component element in the HfO 2 thin film 11 is stored, and a predetermined value corresponding to each component element in the HfO 2 thin film 11. with an input section 41b for inputting a threshold value or a predetermined range, the measured thickness d is provided with a means 42 for outputting an alarm signal to the threshold value or a predetermined range when is exceeded.
[0022]
Then, the film thickness d is, the inflection points obtained by the characteristic curve 20 to 24 of the respective component elements of the glow discharge spectrometer during the previous SL H fO 2 thin film 11 obtained in 1 second derivative and Ru is measured positions based on. 4, 60 denotes an inflection point obtained by the S i characteristic curve 25 in the Si substrate 13 and second derivative. Further, 61 indicates an inflection points obtained the H f characteristic curve in HfO 2 thin film 11 20 secondary differentiation on.
[0023]
The front Symbol evaluation device 39, in HfO 2 thin film 11 obtained in the glow discharge analysis apparatus 1, the concentration of each component including residual impurities (Hf, O, C, N and H, etc.) value has a determining means 44 whether exceeded a predetermined threshold value or a predetermined range which is set in advance, respectively, further, the alarm signal the concentration of each component of the threshold value or a predetermined range when is exceeded, respectively Is provided.
[0024]
FIG. 5A plots the amount of residual C in the HfO 2 thin film 11 for each film formation temperature. FIG. 5A shows that the residual C amount decreases as the film forming temperature increases. That is, the temperature at the time of film formation is determined from the residual amount of residual impurities other than the HfO 2 thin film component in Hf [N (C 2 H 5 ) 2 ] 4 which is a raw material for forming the HfO 2 thin film 11. can do. That is, by monitoring the concentration of residual impurities, it is possible to perform evaluation during film formation.
In this embodiment, an example is shown in which the evaluation at the time of film formation is monitored using the concentration of residual impurities. Naturally, the value to be monitored means the concentration of each component element, and before conversion to each concentration value. The intensity values may be as follows.
[0025]
5B and 5C are plots of the residual N amount and the residual H amount in the HfO 2 thin film 11 for each film formation temperature, respectively.
[0026]
These are analyzed by the glow discharge analyzer 1, but can evaluate the results of this analysis in the previous SL evaluation device 39 can confirm the degree of quality deterioration.
[0027]
Incidentally, to evaluate the quality, each measuring the slope of each component density characteristic curves obtained by the glow discharge analyzer 1, the predetermined threshold value or a predetermined range of these slopes is preset ultra Etaka determine whether each slope may be configured to output an alarm signal if is exceeded a predetermined threshold value or range. That, Hf concentration characteristic curve in HfO 2 thin film 11 obtained by the glow discharge analyzer 1, C concentration characteristic curves in HfO 2 thin film 11, O concentration characteristic curves in HfO 2 thin film 11, HfO 2 thin film H concentration characteristic curve in 11, N concentration characteristic curves in HfO 2 thin film 11, a predetermined inclination of the characteristic curves based on S i concentration curve of 13 in the Si substrate is set in advance Film quality can be assessed by determining whether a threshold or range has been exceeded. In FIG. 6, 20 ′ represents a Hf concentration characteristic curve in the HfO 2 thin film 11 obtained by the glow discharge analyzer 1, and 25 ′ in the Si substrate 13 obtained by the glow discharge analyzer 1. It shows the S i concentration characteristic curve. Each slope of these characteristic curves, ing the index indicating the respective degree of diffusion. And each inclination in each concentration characteristic curve of other component elements obtained also becomes an index which shows the diffusion degree of each other component element.
[0028]
And, of course immediately after formation of the HfO 2 thin film 11, by performing the evaluation in the previous SL evaluation device 39 also after annealing or the like, the degree of interdiffusion of constituent elements between the Si substrate 13 and HfO 2 thin film 11 Can be judged. That is, the respective characteristic curves 20-25 immediately after formation of the film shown in FIG. 3 was varied after annealing, can compare the film quality of each characteristic curve corresponding to the characteristic curve 20-25, interdiffusion during annealing Can also be evaluated. This evaluation is very useful for finding annealing conditions (temperature and time).
[0029]
Thus, by evaluating the film thickness d and the film quality of the HfO 2 thin film 11, the degree of film quality deterioration and the relative dielectric constant can be confirmed, and a reliable and high-quality semiconductor chip can be obtained. it can be supplied.
In this embodiment, the case of the HfO 2 thin film 11 has been described. However, the present invention is not limited to this, and any metal oxide insulating film can be applied. The metallic oxide insulating film other than HfO 2 thin film 11, for example, a ZrSiO 4, HfSiO 4, ZrO 2 , Ta 2 O 5 or the like.
[0030]
【The invention's effect】
As described above, according to the present invention, metal oxide insulating film which can confirm the size of the extent and relative dielectric constant of the evaluation to quality deterioration of the thickness and quality of the metal oxide insulating film Ru can be obtained thickness evaluation device and the film quality evaluation apparatus.
[Brief description of the drawings]
FIG. 1 is an overall configuration explanatory view showing an embodiment of the present invention.
FIG. 2 is a structural explanatory view showing a semiconductor including an HfO 2 thin film used in the embodiment.
FIG. 3 is a diagram showing an analysis result of the HfO 2 thin film used in the embodiment.
FIG. 4 is a diagram for explaining a method for measuring the film thickness of the HfO 2 thin film used in the embodiment.
FIG. 5A is a plot diagram showing the amount of residual C in the HfO 2 thin film used for evaluating the film quality of the HfO 2 thin film used in the embodiment.
(B) is a plot diagram showing the amount of residual N in the HfO 2 thin film used for evaluating the film quality of the HfO 2 thin film used in the embodiment.
(C) is a plot diagram showing the amount of residual H in the HfO 2 thin film used for evaluating the film quality of the HfO 2 thin film used in the embodiment.
FIG. 6 is a diagram showing component element (Hf, Si) concentration characteristic curves used in another film quality evaluation method for the HfO 2 thin film used in the embodiment.
FIG. 7 is a diagram showing experimental data obtained by measuring a relative dielectric constant of an HfO 2 thin film with respect to a film formation temperature.
[Explanation of symbols]
1 ... RF glow discharge spectrometer, 11 ... metal oxide insulating film, 11a ... metal oxide surface of the insulating film, 13 ... semiconductor substrate, 39 ... film thickness and film quality evaluation apparatus of the metal oxide insulating film, 40 ... Means for measuring the film thickness of the metal oxide insulating film, 41... Means for determining whether or not the measured film thickness exceeds a predetermined threshold value, 42... Alarm signal output means, 61. , d ... thickness.

Claims (5)

半導体基板上に形成された金属酸化物絶縁膜表面へのグロー放電によるスパッタリングにより金属酸化物絶縁膜の深さ方向の成分分析を行グロー放電分析手段を用いて金属酸化物絶縁膜の膜厚を評価する装置であって、グロー放電分析手段にて得られた金属酸化物絶縁膜中の成分元素の特性曲線を2次微分して得られた変曲点の位置に基づいて金属酸化物絶縁膜の膜厚を計測する手段と、計測された膜厚が金属酸化物絶縁膜中の成分元素に対応して予め設定されている所定の閾値又は範囲をえたかどうかを判定する手段とを有し、さらに、前記所定の閾値又は範囲が記憶されている記憶部を備えていることを特徴とする金属酸化物絶縁膜の膜厚評価装置。The film thickness of the metal oxide insulating film by a line cormorants glow discharge analysis means the component analysis in the depth direction of the metal oxide insulating film by sputtering by glow discharge in the formed metal oxide dielectric film surface on a semiconductor substrate The metal oxide is based on the position of the inflection point obtained by second-order differentiation of the characteristic curve of each component element in the metal oxide insulating film obtained by the glow discharge analysis means. and means for measuring the thickness of the insulating film, means for determining whether the film was measured thickness has exceeded a predetermined threshold value or range set in advance corresponding to the component elements in the metal oxide dielectric film the a, further, the predetermined metal oxide insulating film of film Atsuhyo value and wherein the threshold or range is provided with a storage unit stored. 前記計測された膜厚が前記予め設定されている所定の閾値又は範囲をえる場合に信号を出力する手段を備えている請求項1に記載の金属酸化物絶縁膜の膜厚評価装置。The measured thickness film Atsuhyo valent device metal oxide insulating film according to claim 1, further comprising means for outputting a signal when a predetermined threshold value or range of the set in advance is exceeded. 半導体基板上に形成された金属酸化物絶縁膜表面へのグロー放電によるスパッタリングにより金属酸化物絶縁膜の深さ方向の成分分析を行グロー放電分析手段を用いて金属酸化物絶縁膜の膜質を評価する装置であって、金属酸化物絶縁膜形成直後とアニール後の金属酸化物絶縁膜の膜質を比較することによって、前記半導体基板および金属酸化物絶縁膜間における成分元素の相互拡散の程度を評価して温度と時間のアニール条件を見つけるためグロー放電分析手段にて得られた成分濃度特性曲線の、金属酸化物絶縁膜中の成分元素と前記半導体基板の構成成分元素の拡散度合いを示す指数になる傾きが予め設定されている所定の閾値又は範囲をえたかどうかを判定する手段を有することを特徴とする金属酸化物絶縁膜の膜質評価装置。By sputtering by glow discharge to formed on a semiconductor substrate a metal oxide insulating film surface of the metal oxide insulating film in the depth direction component analysis using a row cormorants glow discharge analysis means film quality of the metal oxide insulating film The degree of mutual diffusion of component elements between the semiconductor substrate and the metal oxide insulating film by comparing the film quality of the metal oxide insulating film immediately after the formation of the metal oxide insulating film and after the annealing The degree of diffusion of the component elements in the metal oxide insulating film and the constituent elements of the semiconductor substrate of the component concentration characteristic curve obtained by the glow discharge analysis means for evaluating the temperature and time annealing conditions is shown. slope becomes index, film quality evaluation apparatus of the metal oxide insulating film, characterized in that it comprises means for determining whether exceeded a predetermined threshold value or range set in advance. 前記傾きが所定の閾値をえる場合に信号を出力する手段を備えている請求項に記載の金属酸化物絶縁膜の膜質評価装置。 Film quality evaluation apparatus of the metal oxide insulating film according to claim 3, wherein the slope is provided with a means for outputting a signal if is exceeded a predetermined threshold value. 前記半導体基板および金属酸化物絶縁膜間における成分元素の相互拡散の度合いを判断する手段を有するとともに、金属酸化物絶縁膜中に残留する成分元素の濃度または光強度を監視することにより、金属酸化物絶縁膜形成時の温度を判断するよう構成されている請求項3または請求項に記載の金属酸化物絶縁膜の膜質評価装置。A means for determining the degree of mutual diffusion of component elements between the semiconductor substrate and the metal oxide insulating film, and by monitoring the concentration or light intensity of the component elements remaining in the metal oxide insulating film, things insulating film film quality evaluation apparatus of the metal oxide insulating film according to claim 3 or claim 4 is configured to determine the temperature at the time of formation.
JP2003080784A 2003-03-24 2003-03-24 Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus Expired - Fee Related JP4257140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080784A JP4257140B2 (en) 2003-03-24 2003-03-24 Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080784A JP4257140B2 (en) 2003-03-24 2003-03-24 Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2004288980A JP2004288980A (en) 2004-10-14
JP4257140B2 true JP4257140B2 (en) 2009-04-22

Family

ID=33294547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080784A Expired - Fee Related JP4257140B2 (en) 2003-03-24 2003-03-24 Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus

Country Status (1)

Country Link
JP (1) JP4257140B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665191B1 (en) 2005-07-20 2007-01-09 삼성전자주식회사 Apparatus for testing semiconductor device and method thereof
JP4496498B2 (en) * 2006-10-20 2010-07-07 株式会社豊田中央研究所 Surface pretreatment method and surface pretreatment apparatus
KR101647233B1 (en) * 2014-12-24 2016-08-10 주식회사 포스코 Measuring method for thickness of coating layer
CN108107035B (en) * 2017-12-07 2020-02-07 中铝材料应用研究院有限公司 Method for measuring quality of aluminum surface oxide film by glow discharge spectrometer

Also Published As

Publication number Publication date
JP2004288980A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
Renault et al. Angle-resolved x-ray photoelectron spectroscopy of ultrathin Al 2 O 3 films grown by atomic layer deposition
US6395563B1 (en) Device for manufacturing semiconductor device and method of manufacturing the same
Woodworth et al. Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges
Diebold et al. Characterization and production metrology of thin transistor gate oxide films
US6627463B1 (en) Situ measurement of film nitridation using optical emission spectroscopy
US11355324B2 (en) Plasma processing method
Donnelly et al. Critical review: Plasma-surface reactions and the spinning wall method
US20070201016A1 (en) Method And Apparatus For Seasoning Semiconductor Apparatus Of Sensing Plasma Equipment
JP5037303B2 (en) Plasma processing method for semiconductor device having high-k / metal structure
US6052183A (en) In-situ particle monitoring
JP4257140B2 (en) Metal oxide insulating film thickness evaluation apparatus and film quality evaluation apparatus
Lobo et al. Quantitative depth profiling of boron and arsenic ultra low energy implants by pulsed rf-GD-ToFMS
Guha et al. Mass and Auger electron spectroscopy studies of the interactions of atomic and molecular chlorine on a plasma reactor wall
Tempez et al. Combining plasma profiling TOFMS with TOF-SIMS depth profiling for microelectronic applications
Bouza et al. Pulsed radiofrequency glow discharge time of flight mass spectrometry for coated glass analysis
Kim et al. In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor
Mushtaq et al. Comparison of a sample containing oxide with a pure sample with argon–oxygen mixtures
Hartenstein et al. Evaluation of helium-argon mixed gas plasmas for bulk and depth-resolved analyses by radiofrequency glow discharge atomic emission spectroscopy
Espinho et al. The influence of the Ar/O2 ratio on the electron density and electron temperature in microwave discharges
Boffard et al. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures
Mordvintsev et al. Secondary ion mass spectrometry study of the formation of a nanometer oxide film on a titanium nitride surface
Rašković et al. Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples
Hebner Spatially resolved CF, CF2, SiF and SiF2 densities in fluorocarbon containing inductively driven discharges
Candela et al. Measurement of the interlayer between aluminum and silicon dioxide using ellipsometric, capacitance-voltage and auger electron spectroscopy techniques
Boris et al. Hollow cathode enhanced capacitively coupled plasmas in Ar/N

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees