JP4256979B2 - Rectangular electrochemical device storage container - Google Patents

Rectangular electrochemical device storage container Download PDF

Info

Publication number
JP4256979B2
JP4256979B2 JP11274099A JP11274099A JP4256979B2 JP 4256979 B2 JP4256979 B2 JP 4256979B2 JP 11274099 A JP11274099 A JP 11274099A JP 11274099 A JP11274099 A JP 11274099A JP 4256979 B2 JP4256979 B2 JP 4256979B2
Authority
JP
Japan
Prior art keywords
shape
container
rectangular
storage container
electrochemical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11274099A
Other languages
Japanese (ja)
Other versions
JP2000306552A (en
Inventor
成孝 後藤
光 大須賀
幸由 大屋
琢司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11274099A priority Critical patent/JP4256979B2/en
Publication of JP2000306552A publication Critical patent/JP2000306552A/en
Application granted granted Critical
Publication of JP4256979B2 publication Critical patent/JP4256979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池や電気二重層コンデンサーなどの電気化学素子の発電要素を収納するための外装容器に関し、とくに有底角筒状をなす角型電気化学素子収納容器に関する。
【0002】
【従来の技術】
電池などの電気化学素子(以下、電池)の形状は規格によって決まっているものもあるが、電池を組み込む電子機器の形状に合わせて規格外の形状のものもある。とくに、電子機器における薄型化に対応して、近年では扁平な角筒状をなす角形電池の需要が多い。この角形電池は、図6に示した扁平な有底角筒形状の外装容器4内に巻回した電極(巻回群)や電解液を収納し、開口端10に蓋を挿入して溶接などによって封口することで作製される。角形電池の外装容器(以下、容器)はこの扁平な有底角筒形状を基本としながら、生産性などを考慮して様々な形状に変更される。例えば、図7(A)(B)に示した容器5では、開口端10に挿入される蓋33が容器5内部に落下するのを防止するために、開口端10付近にエンボス加工を施して内側に突起部32を突設している(A)。突起部32が蓋33を支えて容器5内部に落下するのを防止するとともに、蓋33を所定の深さに挿入するための位置決めにも利用される(B)。また、図8の外観図に示した容器6は、蓋の挿入時における容器の変形を防止する目的から断面積の異なる上筒部34と下筒部35とを接合した2段角筒状の容器6としている。なお、この2段筒状の容器については特開平9−92235号公報にその技術が開示されている。
【0003】
【発明が解決しようとする課題】
電池は外装容器内部に収納される発電要素における化学反応によって電気を発生させている。この化学反応は発熱反応であり、密閉された容器の内部圧力を上昇させる。そのため、容器はこの圧力によって外側に膨らむように変形する。上述した従来の容器4〜6は単純な角形筒状を基本としているので、側壁面が平面となる。そのため、この壁面に圧力が集中し偏った応力分布となる。したがって、変形しやすい。容器の変形は、電池の装置への装着を困難としたり、装着されている電池が脱落したりする可能性がある。また、容器を装置筐体の一部として一体的に装着する場合も多く、容器の変形によって装置の外観を損なうことも考えられる。
【0004】
上記の容器5は巻回群を挿入するときにも問題がある。図9は容器5に巻回群を挿入した状態を開口端10側からの平面図として示している。角形電池に適用される巻回群30は容器内壁36に接する略長円形の断面形状を有しており、容器2に巻回群30を挿入しようとすると突起部32が干渉する。そのため、電池の生産性を低下させる。
【0005】
上記の2段筒状の容器6は、段付きの部分で蓋の落下を防止できるが、上述の内圧の上昇による変形を抑える効果はない。また、この形状では総厚(開口端面における縦横の寸法)が大きくなり電池の小型化、薄型化を困難にさせる。
【0006】
そこで本発明は、発電要素の化学反応にともなう圧力上昇による形状変形を抑えることができ、さらに巻回群を挿入するさいの作業性を向上させつつ蓋が容器内部に落下しにくい角形電気化学素子の外装容器を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の角形電気化学素子収納容器は有底角筒状の容器であって、略長方形に成形された開口端面形状を断面として維持したまま下方に延長する上筒部と、前記略長方形の短辺側がほぼ半円形に成形された形状を維持したまま底面にに向けて延長する下筒部とが一体的に接続してなり、前記上筒部の長辺側壁面と前記下筒部の長辺側壁面とがほぼ面一になる平面を形成するとともに、前記開口端における前記略長方形の短辺中点と前記底面における前記半円形の中点を結ぶ側線はほぼ直線となっている。
【0008】
より好ましくは、前記開口端近傍における前記略長方形の四隅のうち少なくとも対向する2ヶ所に筒内方向に突出する突起部を形成してなり、その突起部が前記下筒部の内壁に対応する領域外にある角形電気化学素子収納容器とすることである。また、前記下筒部の前記略長方形の長辺側内壁面に凸面部を形成した角形電気化学素子収納容器としてもよい。
【0009】
【発明の実施の形態】
===角形電気化学素子収納容器の形状===
図1は本発明の実施例における角形電気化学素子収納容器(以下、容器)1を斜め上方からの立体図として示している。また、図2(A)〜(D)はこの容器1における四方からの平面図を示し、(A)〜(D)の順に、それぞれ開口端側、長辺側、底面側、短辺側の平面図を示している。容器1は概ね扁平な有底角筒状をなして一体的に成型されている。なお、本実施例における容器4は板厚t=0.35mmのステンレス(SUS304L)製であり、その外形寸法は、幅W=10mm、長さL=34mm、高さH=50mmとなっている。
【0010】
開口端10は角にR部11が形成された略長方形をなし、底面12はこの長方形の短辺側を半円形に形成した形状をなしている。そして、容器1は、開口端10面の略長方形を断面として維持しつつ下方に延長する上筒部13と、長方形の短辺側を半円形に形成した形状を断面として維持しながら底面に向けて延長する下筒部14とからなり、これらの筒部13、14が境界部15を介して連続的に形状変化しながら一体的に接続している。なお、境界部15はこの容器1の製造時におけるプレス加工精度によるもので、上筒部13と下筒部14とが断続的に接続された形状であってもよい。
【0011】
本実施例において、上筒部13の高さh1は約10mmである。この高さh1はこの容器1に発電要素を挿入したり開口端を封口したりして電池を製造するとき、製造装置が上筒部13の短辺側壁面16を基準として位置決めを行うときの精度や、クランプ時のハンドリング性(製造装置の「手」が容器を掴むときの容易性)を考慮して適宜に決定される。
【0012】
また、上筒部13の長辺側壁面18から下筒部14の長編側壁面19へと続く面は平坦であり面一となっている。さらに、開口端10の短辺中点20から低面12の半円形の中点21とを結ぶ側線22は底面12に直交する直線となり、同一平面上にある。すなわち、底面12に平行する断面は、どの高さにおいてもその最大長と最大幅はほぼ等しくなり、開口端面の中心軸23、24を中心にした縦断面は全てほぼ長方形となる。
【0013】
===角形電気化学素子収納容器の特性===
つぎに、本発明における容器を実際に電池に適用したとき、この容器の形状が内部圧力の上昇に対してどのように作用するかを検証する必要がある。そこで、本発明による容器(新型)と図6に示した単純な角筒上の従来容器(旧型)のそれぞれについて、容器内部の圧力上昇にともなう形状の変化をシミュレーションしてみた。図3はそのシミュレーションによって得られた特性比較グラフである。内部圧力の上昇に対する長辺側壁面の変化量を示している。なお、このシミュレーションにさいして、新旧2種類の容器の材質や寸法は上記実施例の容器と同じ数値に統一した。旧型容器は新型容器に対して圧力の上昇に伴なう変化量が大きくなっていることがわかる。これは、旧型容器の短辺側壁面は平面であり、圧力が分散されずそのまま加わる。それに対して、新型容器は電池の発電要素を収納する部分(下筒部)の短辺側が半円形の壁面である。この壁面形状が圧力を分散させ、長辺側壁面に掛かる応力を減少させたためと思われる。
【0014】
===第2の実施例===
図4(A)(B)に本発明の第2の実施例における容器2を示した。(A)に示した外観図のように、容器2は上筒部13の4隅(R部)11に内方向に突出する突起部25が設けてある。本発明の容器は、下筒部の断面積が上筒部の断面積より小さいため、基本的に蓋の挿入時にその蓋が下筒部内に落下しにくい構造となっているが、容器2は突起部25が蓋を支えるためさらに落下しにくい。また、蓋を所定の深さまで挿入するさいの位置合わせも容易となる。この実施例では、R部11の外側からプレス加工することで突起部25を内方向に突設させている。(B)はR部11の拡大図を開口端10側からの平面図として示している。突起部25は下筒部14の半円形の内壁26に対応する領域より外側にあり、巻回群の挿入にさいして干渉しないように配慮されている。なお、突起部25は上筒部13の四隅全部に設ける必要はなく、少なくとも対向する2ヶ所にあればよい。
【0015】
===第3の実施例===
図5(A)(B)は本発明の第3の実施例における容器3を示している。下筒部14の長辺側壁面19にプレス加工などによって凹面部26が形成されている(A)。(B)はこの容器3に巻回群30を挿入した状態での下筒部14における断面図を示しており、容器3内部は凹面部27に対応して凸面部28が形成される。この凸面部28は内部の圧力上昇に伴なう外側への変形を考慮した「オフセット」として機能する。すなわち、容器3の短辺幅Wが製造時の寸法よりも大きくなるまでの時間を遅らせることができる。また、この容器3に巻回群30を挿入する場合、巻回群30の断面形状は短軸方向がへこんだ略長円形(繭型)であるため、この長円のへこみ部分31が凸面部28に対応して巻回群30を挿入するときの妨げとならない。
【0016】
【発明の効果】
本発明の角形電気化学素子収納容器によれば、断面形状が略長方形の上筒部と断面形状がこの略長方形の短辺を半円形とした形状の下筒部とが一体的に接続されてなっている。発電要素が収納される下筒部は、化学反応の発熱に起因する応力を短辺側の半円形側壁によって分散する。そのため、筒内は偏りの少ない一様な応力分布特性が得られ、収納容器の形状の最大変位量を低下させるとともに、形状の経時変化を緩やかにさせることができる。
【0017】
また、略長方形断面をなす上筒部は側面が平面であるため、電池製造時において、製造装置が位置決めの基準としてその平面を利用することができる。上筒部の短辺クランプ時のハンドリング性向上に寄与する。さらに、開口端側に挿入される封口用の蓋もこの略長方形となるので、半円形の側面に比べて嵌合しやすい。従って、厳しい寸法精度を必用とせず不良率を低下させる。
【0018】
また、上筒部と下筒部の長辺側壁面は面一であるとともに開口端の短辺中点と底面の短辺中点とを結ぶ測線は直線である。したがって、容器の幅と長さ寸法を発電要素を収納する下筒部に揃えることができるので、電池の小型/薄型化にも有効である。
【0019】
上筒部と下筒部の断面積の差は、開口端に挿入される蓋が下筒部へ落下しにくい構造となる。さらに、上筒部の開口端付近の四隅の少なくとも対向する2ヶ所に内部に突出する突起部を設けることで蓋の挿入深さを容易に調整することができるとともに、内部への蓋の落下を確実に防止することができる。したがって、蓋を溶接するときの精度や作業性を向上させる。また、この突起部は下筒部の短辺側面の半円より外側に位置するので巻回群の挿入時に干渉することがない。この構造も生産性の向上に寄与する。
【0020】
下筒部の長辺側面に凹面を形成すれば、この部分における形状の経時変化をさらに遅らせることができる。この凹面によって筒内に突出する凸面部は巻回群の繭型断面形状に対応するため、巻回群挿入時の邪魔にならない。
【図面の簡単な説明】
【図1】本発明の実施例における角形電気化学素子収納容器の外観図である。
【図2】上記容器の4面図である。(A)〜(D)の順に、それぞれ開口端側、長辺側、底面側、短辺側の平面図を示している。
【図3】上記容器と従来の容器との性能比較図である。
【図4】本発明の第2の実施例における角形電気化学素子収納容器を示している。(A)は外観図であり、(B)は開口端側からの拡大平面図である。
【図5】本発明の第3の実施例における角形電気化学素子収納容器を示している。(A)は外観図であり、(B)は当該容器に巻回群を挿入した状態での断面図を示している。
【図6】従来の角形電気化学素子収納容器における基本的な形状を示した外観図である。
【図7】上記従来容器の変更例を外観図として示している。
【図8】従来容器のその他の変更例の外観図である。
【図9】上記従来容器に巻回群を挿入した状態を開口端側からの平面図として示している。
【符号の説明】
1〜3 本発明による角形電気化学素子収納容器
4〜6 従来の角形電気化学素子収納容器
10 開口端
12 底面
13 上筒部
14 下筒部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exterior container for storing a power generation element of an electrochemical element such as a battery or an electric double layer capacitor, and more particularly to a rectangular electrochemical element storage container having a bottomed rectangular tube shape.
[0002]
[Prior art]
The shape of an electrochemical element (hereinafter referred to as a battery) such as a battery is determined by the standard, but there is also a non-standard shape according to the shape of an electronic device incorporating the battery. In particular, in response to the thinning of electronic devices, in recent years, there is a great demand for a rectangular battery having a flat rectangular tube shape. This prismatic battery accommodates an electrode (winding group) or electrolyte solution wound in the flat bottomed rectangular tube-shaped outer casing 4 shown in FIG. It is produced by sealing with. A rectangular battery outer container (hereinafter referred to as a container) is based on this flat bottomed rectangular tube shape, and is changed into various shapes in consideration of productivity and the like. For example, in the container 5 shown in FIGS. 7A and 7B, in order to prevent the lid 33 inserted into the opening end 10 from falling into the container 5, embossing is performed in the vicinity of the opening end 10. A protrusion 32 is provided on the inner side (A). The protrusion 32 supports the lid 33 and prevents it from falling into the container 5 and is also used for positioning for inserting the lid 33 to a predetermined depth (B). Further, the container 6 shown in the external view of FIG. 8 has a two-stage rectangular tube shape in which an upper tube portion 34 and a lower tube portion 35 having different cross-sectional areas are joined for the purpose of preventing deformation of the container when the lid is inserted. The container 6 is used. The technology of this two-stage cylindrical container is disclosed in Japanese Patent Laid-Open No. 9-92235.
[0003]
[Problems to be solved by the invention]
The battery generates electricity by a chemical reaction in a power generation element housed in the exterior container. This chemical reaction is an exothermic reaction and raises the internal pressure of the sealed container. Therefore, the container is deformed so as to bulge outward by this pressure. Since the above-described conventional containers 4 to 6 are based on a simple square cylindrical shape, the side wall surfaces are flat. Therefore, the pressure is concentrated on the wall surface, resulting in a biased stress distribution. Therefore, it is easy to deform. The deformation of the container may make it difficult to attach the battery to the device, or the attached battery may fall off. In many cases, the container is integrally mounted as a part of the apparatus housing, and it is conceivable that the appearance of the apparatus is impaired by deformation of the container.
[0004]
The container 5 has a problem when inserting a winding group. FIG. 9 shows a state where the winding group is inserted into the container 5 as a plan view from the opening end 10 side. The winding group 30 applied to the prismatic battery has a substantially oval cross-sectional shape in contact with the inner wall 36 of the container, and the protrusion 32 interferes when trying to insert the winding group 30 into the container 2. Therefore, the productivity of the battery is reduced.
[0005]
The above-mentioned two-stage cylindrical container 6 can prevent the lid from dropping at the stepped portion, but has no effect of suppressing deformation due to the increase in the internal pressure described above. In addition, this shape increases the total thickness (vertical and horizontal dimensions at the opening end face), making it difficult to reduce the size and thickness of the battery.
[0006]
Therefore, the present invention is a rectangular electrochemical element that can suppress shape deformation due to a pressure increase due to a chemical reaction of a power generation element, and further improves workability when inserting a winding group, and the lid is difficult to fall into the container. It aims at providing the exterior container.
[0007]
[Means for Solving the Problems]
The rectangular electrochemical device storage container of the present invention is a bottomed rectangular tube-shaped container, and has an upper cylindrical portion that extends downward while maintaining the shape of the open end surface formed in a substantially rectangular shape as a cross section, and the short shape of the substantially rectangular shape. The lower cylinder part extending toward the bottom surface is integrally connected while maintaining the shape in which the side is substantially semicircular, and the long side wall surface of the upper cylinder part and the length of the lower cylinder part are integrally connected. A flat surface that is substantially flush with the side wall surface is formed, and a side line that connects a short-side midpoint of the substantially rectangular shape at the opening end and a midpoint of the semicircular shape at the bottom surface is a substantially straight line.
[0008]
More preferably, protrusions protruding in the in-cylinder direction are formed in at least two opposing corners of the substantially rectangular four corners in the vicinity of the opening end, and the protrusions correspond to the inner wall of the lower cylinder part. It is to make it a rectangular electrochemical element storage container outside. Moreover, it is good also as a square electrochemical element storage container which formed the convex part in the inner wall surface of the said substantially rectangular long side of the said lower cylinder part.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
=== Shape of Square Electrochemical Element Storage Container ===
FIG. 1 shows a rectangular electrochemical element storage container (hereinafter referred to as a container) 1 according to an embodiment of the present invention as a three-dimensional view obliquely from above. 2 (A) to 2 (D) show plan views from four directions in the container 1, and in the order of (A) to (D), the opening end side, the long side, the bottom side, and the short side, respectively. A plan view is shown. The container 1 is integrally formed in a generally flat bottomed rectangular tube shape. The container 4 in this embodiment is made of stainless steel (SUS304L) having a plate thickness t = 0.35 mm, and the outer dimensions thereof are a width W = 10 mm, a length L = 34 mm, and a height H = 50 mm. .
[0010]
The open end 10 has a substantially rectangular shape with R portions 11 formed at the corners, and the bottom surface 12 has a shape in which the short side of the rectangle is formed in a semicircular shape. The container 1 is directed toward the bottom while maintaining the shape of the upper cylindrical portion 13 extending downward while maintaining the substantially rectangular shape of the open end 10 surface as a cross-section, and the shape in which the rectangular short side is formed in a semicircular shape as the cross-section. The cylindrical portions 13 and 14 are integrally connected via the boundary portion 15 while continuously changing their shapes. In addition, the boundary part 15 is based on the press work precision at the time of manufacture of this container 1, and the shape where the upper cylinder part 13 and the lower cylinder part 14 were connected intermittently may be sufficient.
[0011]
In the present embodiment, the height h1 of the upper tube portion 13 is about 10 mm. This height h1 is a value when the manufacturing apparatus performs positioning with reference to the short side wall surface 16 of the upper cylindrical portion 13 when a battery is manufactured by inserting a power generation element into the container 1 or sealing the open end. It is determined appropriately in consideration of the accuracy and handling property at the time of clamping (ease when the “hand” of the manufacturing apparatus grasps the container).
[0012]
Further, the surface from the long side wall surface 18 of the upper tube portion 13 to the long side wall surface 19 of the lower tube portion 14 is flat and flush. Further, a side line 22 connecting the short-side midpoint 20 of the open end 10 to the semicircular midpoint 21 of the low surface 12 is a straight line orthogonal to the bottom surface 12 and is on the same plane. That is, the maximum length and the maximum width of the cross section parallel to the bottom surface 12 are almost equal at any height, and all the vertical cross sections centering on the central axes 23 and 24 of the opening end surface are substantially rectangular.
[0013]
=== Characteristics of Rectangular Electrochemical Element Storage Container ===
Next, when the container according to the present invention is actually applied to a battery, it is necessary to verify how the shape of the container works against an increase in internal pressure. Therefore, the change in shape of the container according to the present invention (new model) and the conventional container (old model) on the simple rectangular tube shown in FIG. FIG. 3 is a characteristic comparison graph obtained by the simulation. The change amount of the long side wall surface with respect to the increase in internal pressure is shown. In this simulation, the materials and dimensions of the two types of new and old containers were unified to the same numerical values as those of the container of the above embodiment. It can be seen that the amount of change in the old container with the increase in pressure is larger than that in the new container. This is because the side wall surface of the short side of the old container is a flat surface, and pressure is not dispersed but is applied as it is. On the other hand, the new container has a semicircular wall on the short side of the portion (lower tube portion) that houses the power generation element of the battery. This wall shape is thought to be because the pressure is dispersed and the stress applied to the long side wall surface is reduced.
[0014]
=== Second Embodiment ===
4A and 4B show the container 2 in the second embodiment of the present invention. As shown in the external view shown in (A), the container 2 is provided with protrusions 25 protruding inward at the four corners (R portion) 11 of the upper tube portion 13. Since the container of the present invention has a structure in which the cross-sectional area of the lower cylinder part is smaller than the cross-sectional area of the upper cylinder part, the lid is basically not easily dropped into the lower cylinder part when the lid is inserted. Since the protrusion 25 supports the lid, it is more difficult to drop. In addition, alignment when inserting the lid to a predetermined depth is facilitated. In this embodiment, the protrusion 25 is protruded inward by pressing from the outside of the R portion 11. (B) has shown the enlarged view of the R part 11 as a top view from the opening end 10 side. The projecting portion 25 is located outside the region corresponding to the semicircular inner wall 26 of the lower cylindrical portion 14, and is considered so as not to interfere when the winding group is inserted. Note that the protrusions 25 do not have to be provided at all four corners of the upper tube portion 13, and may be provided at least at two opposing locations.
[0015]
=== Third embodiment ===
5A and 5B show the container 3 in the third embodiment of the present invention. A concave portion 26 is formed on the long side wall surface 19 of the lower cylinder portion 14 by pressing or the like (A). (B) shows a cross-sectional view of the lower tube portion 14 with the winding group 30 inserted into the container 3, and a convex surface portion 28 is formed inside the container 3 corresponding to the concave surface portion 27. This convex surface portion 28 functions as an “offset” in consideration of outward deformation accompanying an increase in internal pressure. That is, the time until the short side width W of the container 3 becomes larger than the dimension at the time of manufacture can be delayed. Further, when the winding group 30 is inserted into the container 3, the cross-sectional shape of the winding group 30 is a substantially oval shape (saddle shape) with a concave short axis direction. This does not hinder the insertion of the winding group 30 corresponding to 28.
[0016]
【The invention's effect】
According to the rectangular electrochemical element storage container of the present invention, the upper cylindrical portion having a substantially rectangular cross-sectional shape and the lower cylindrical portion having a cross-sectional shape in which the short side of the substantially rectangular shape is semicircular are integrally connected. It has become. In the lower cylinder portion in which the power generation element is accommodated, the stress caused by the heat generated by the chemical reaction is dispersed by the semicircular side wall on the short side. Therefore, a uniform stress distribution characteristic with little deviation is obtained in the cylinder, and the maximum displacement amount of the shape of the storage container can be reduced, and the change with time of the shape can be moderated.
[0017]
Moreover, since the side surface of the upper cylinder part which makes a substantially rectangular cross section is a flat surface, the manufacturing apparatus can use the flat surface as a positioning reference when manufacturing the battery. Contributes to improved handling when clamping the short side of the upper tube. Further, the lid for sealing inserted on the opening end side is also substantially rectangular, so that it is easier to fit than the semicircular side surface. Accordingly, the dimensional accuracy is reduced without requiring strict dimensional accuracy.
[0018]
Further, the long side wall surfaces of the upper cylinder portion and the lower cylinder portion are flush with each other, and the line connecting the short side midpoint of the opening end and the short side midpoint of the bottom surface is a straight line. Therefore, since the width and length of the container can be aligned with the lower cylinder portion that houses the power generation element, it is effective for reducing the size and thickness of the battery.
[0019]
The difference in cross-sectional area between the upper tube portion and the lower tube portion is a structure in which the lid inserted into the open end is unlikely to drop to the lower tube portion. Furthermore, by providing protrusions that project inward at at least two opposing corners of the four corners near the open end of the upper tube, the insertion depth of the lid can be easily adjusted, and the lid can be prevented from falling into the interior. It can be surely prevented. Therefore, the accuracy and workability when welding the lid are improved. Moreover, since this protrusion part is located outside the semicircle of the short side surface of the lower cylinder part, it does not interfere when the winding group is inserted. This structure also contributes to the improvement of productivity.
[0020]
If a concave surface is formed on the long side surface of the lower cylindrical portion, the change with time in the shape of this portion can be further delayed. The convex portion protruding into the cylinder by the concave surface corresponds to the saddle-shaped cross-sectional shape of the winding group, and therefore does not interfere with the insertion of the winding group.
[Brief description of the drawings]
FIG. 1 is an external view of a rectangular electrochemical element storage container according to an embodiment of the present invention.
FIG. 2 is a four-side view of the container. Plan views of the opening end side, the long side, the bottom side, and the short side are shown in the order of (A) to (D).
FIG. 3 is a performance comparison diagram between the container and a conventional container.
FIG. 4 shows a rectangular electrochemical element storage container according to a second embodiment of the present invention. (A) is an external view, (B) is an enlarged plan view from the opening end side.
FIG. 5 shows a rectangular electrochemical element storage container according to a third embodiment of the present invention. (A) is an external view, (B) has shown sectional drawing in the state which inserted the winding group in the said container.
FIG. 6 is an external view showing a basic shape of a conventional rectangular electrochemical element storage container.
FIG. 7 shows a modified example of the conventional container as an external view.
FIG. 8 is an external view of another modified example of the conventional container.
FIG. 9 shows a state in which a winding group is inserted into the conventional container as a plan view from the open end side.
[Explanation of symbols]
1-3 Square electrochemical element storage container 4-6 according to the present invention Conventional square electrochemical element storage container 10 Open end 12 Bottom surface 13 Upper cylinder part 14 Lower cylinder part

Claims (3)

電気化学素子の発電要素を収納するための有底角筒状の容器であって、略長方形に成形された開口端面形状を断面として維持したまま適宜な高さまで下方に延長する上筒部と、前記略長方形の短辺側がほぼ半円形に成形された形状を維持したまま底面に向けて延長する下筒部とが一体的に接続してなり、前記上筒部の長辺側壁面と前記下筒部の長辺側壁面とがほぼ面一になる平面を形成するとともに、前記開口端における前記略長方形の短辺中点と前記底面における前記半円形の中点を結ぶ側線はほぼ直線となることを特徴とする角形電気化学素子収納容器。A bottomed rectangular tube-shaped container for storing a power generation element of an electrochemical element, and an upper tube portion extending downward to an appropriate height while maintaining an opening end surface shape formed in a substantially rectangular shape as a cross section; A lower cylindrical portion that extends toward the bottom surface while maintaining a shape in which the short side of the substantially rectangular shape is formed in a substantially semicircular shape is integrally connected, and the long side wall surface of the upper cylindrical portion and the lower side A flat surface that is substantially flush with the long side wall surface of the cylindrical portion is formed, and a side line that connects the short-side midpoint of the substantially rectangular shape at the opening end and the midpoint of the semicircular shape at the bottom surface is substantially a straight line. A rectangular electrochemical element storage container. 請求項1において、前記開口端近傍における前記略長方形の四隅のうち少なくとも対向する2ヶ所に筒内方向に突出する突起部を形成してなり、当該突起部を前記下筒部の内壁に対応する領域より外方向にあることを特徴とする角形電気化学素子収納容器。In Claim 1, the projection part which protrudes in a cylinder inward direction is formed in at least two places which oppose among the four corners of the said substantially rectangular shape in the vicinity of the said opening end, The said projection part respond | corresponds to the inner wall of the said lower cylinder part. A rectangular electrochemical element storage container characterized by being outward from the region. 請求項1または2において、前記下筒部は前記略長方形の長辺側内壁面に凸面部を形成してなることを特徴とする角形電気化学素子収納容器。3. The rectangular electrochemical element storage container according to claim 1, wherein the lower cylinder part is formed with a convex part on the inner wall surface of the substantially rectangular long side.
JP11274099A 1999-04-20 1999-04-20 Rectangular electrochemical device storage container Expired - Lifetime JP4256979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11274099A JP4256979B2 (en) 1999-04-20 1999-04-20 Rectangular electrochemical device storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11274099A JP4256979B2 (en) 1999-04-20 1999-04-20 Rectangular electrochemical device storage container

Publications (2)

Publication Number Publication Date
JP2000306552A JP2000306552A (en) 2000-11-02
JP4256979B2 true JP4256979B2 (en) 2009-04-22

Family

ID=14594374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11274099A Expired - Lifetime JP4256979B2 (en) 1999-04-20 1999-04-20 Rectangular electrochemical device storage container

Country Status (1)

Country Link
JP (1) JP4256979B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243274A (en) * 2004-02-24 2005-09-08 Toshiba Corp Nonaqueous rectangular secondary battery
KR100788558B1 (en) 2005-09-22 2007-12-26 삼성에스디아이 주식회사 Pack of secondary battery
KR100709874B1 (en) 2005-12-29 2007-04-20 삼성에스디아이 주식회사 Prismatric type lithium secondary battery and method thereof
JP5456967B2 (en) * 2007-12-06 2014-04-02 冨士発條株式会社 Aluminum prismatic battery case

Also Published As

Publication number Publication date
JP2000306552A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP5987465B2 (en) Storage element and method for manufacturing the same
JP4037046B2 (en) Flat rectangular battery
US10971705B2 (en) Pouch for secondary battery and die for forming the same
KR101296964B1 (en) Battery pack
CN208955087U (en) Secondary cell
CN103137910B (en) The manufacture method of charge storage element and charge storage element
JP2000067821A (en) Prism type battery
CN111834557A (en) Electronic device and method of manufacturing the same
JP4256979B2 (en) Rectangular electrochemical device storage container
JP4201301B2 (en) Sealed battery
CN214123982U (en) Casing and battery
JP4020580B2 (en) Flat rectangular battery
CN219843054U (en) Battery case, battery and battery pack
JP3869697B2 (en) Pack battery
CN216085057U (en) Battery shell, battery shell and battery
CN214280086U (en) Connecting structure of top cover plate and lower plastic
JP7407050B2 (en) Battery with terminal and manufacturing method thereof
CN219873762U (en) End cover plate of cylindrical battery and cylindrical battery
CN218215500U (en) Button cell with right-angle edge folding structure
CN217114561U (en) External insulation structure and battery
CN217589148U (en) Battery case and battery
JPH11219688A (en) Armoring vessel for quadrangular electrochemical element and manufacture of element using armoring vessel
CN218548738U (en) Pole component and secondary battery top cover thereof
CN218215481U (en) Laminated button battery with right-angle edge folding structure
CN217062424U (en) Switching utmost point ear structure and secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term