JP4256802B2 - Sensitized latex and immunoassay - Google Patents

Sensitized latex and immunoassay Download PDF

Info

Publication number
JP4256802B2
JP4256802B2 JP2004053371A JP2004053371A JP4256802B2 JP 4256802 B2 JP4256802 B2 JP 4256802B2 JP 2004053371 A JP2004053371 A JP 2004053371A JP 2004053371 A JP2004053371 A JP 2004053371A JP 4256802 B2 JP4256802 B2 JP 4256802B2
Authority
JP
Japan
Prior art keywords
bacteria
antibody
nitrospira
latex
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004053371A
Other languages
Japanese (ja)
Other versions
JP2005241518A (en
Inventor
敏一 橋本
文雄 三品
剛一 奥村
冨美子 長井
修太 山本
治司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Yakult Honsha Co Ltd
Original Assignee
Japan Sewage Works Agency
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Yakult Honsha Co Ltd filed Critical Japan Sewage Works Agency
Priority to JP2004053371A priority Critical patent/JP4256802B2/en
Publication of JP2005241518A publication Critical patent/JP2005241518A/en
Application granted granted Critical
Publication of JP4256802B2 publication Critical patent/JP4256802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中等に存在するニトロスピラ属に属する細菌を、迅速・簡便に測定する当該抗体感作ラテックス、免疫学的手法、および好気性生物処理施設の運転管理法に関するものである。   The present invention relates to an antibody-sensitized latex, an immunological technique, and an aerobic organism that rapidly and easily measures a bacterium belonging to the genus Nitrospira present in biological nitrogen treatment processes such as activated sludge, water, and soil. It relates to the operation management method of the treatment facility.

更に詳しくは、徒来、長期間を要し、また技術的にも熟練が必要とされていたニトロスピラ属の細菌の検出を、簡便な操作で、正確に実施することを可能にすると共に、新規な抗体感作ラテックス、ニトロスピラ属細菌の測定方法、および活性汚泥等の生物学的窒素処理プロセスを的確に運転管理する方法を確立するものである。   In more detail, it is possible to accurately detect bacteria of the genus Nitrospira, which has required a long period of time and technical skill, with a simple operation. A method for accurately operating and managing biological nitrogen treatment processes such as activated antibody sludge, a method for measuring a novel antibody-sensitized latex, a nitrospira bacterium, and the like.

我々の生活環境から排出される廃水、ゴミ等は多くの窒素化合物を含み、それらは地下水、河川、湖沼などの周辺環境へ排出され、重大な環境問題を引き起こすことがある。その対策として活性汚泥を使った生物学的硝化・脱窒法が開発され、様々な下水処理場で利用されている。その処理法の内、硝化行程においては、活性汚泥中に存在する硝化細菌が重要な役割を担っている。   Wastewater, garbage, etc. discharged from our living environment contain a lot of nitrogen compounds, which are discharged into the surrounding environment such as groundwater, rivers and lakes, and may cause serious environmental problems. As a countermeasure, biological nitrification and denitrification using activated sludge has been developed and used in various sewage treatment plants. Among the treatment methods, nitrifying bacteria present in activated sludge play an important role in the nitrification process.

生物学的脱窒処理プロセスでは硝化反応が律速段階となっているため、処理プロセスの安定化や更なる高度効率化を図るためには、硝化反応にかかわる微生物群(硝化細菌、アンモニア酸化細菌と亜硝酸酸化細菌で構成される)の解析が必要不可欠であると考えられている。   In the biological denitrification process, the nitrification reaction is at the rate-determining stage. Therefore, in order to stabilize the treatment process and further increase the efficiency, microorganism groups related to the nitrification reaction (nitrifying bacteria, ammonia oxidizing bacteria and Analysis of nitrite-oxidizing bacteria) is considered essential.

一般に硝化反応にかかわる細菌は独立栄養細菌であり、有機物を除去する従属栄養細菌に比較して比増殖速度が小さく、pH、水温などの環境条件の影響を受けやすいため、硝化反応槽(反応タンク)に硝化細菌を高密度に保持することは非常に重要である。   Bacteria involved in the nitrification reaction are autotrophic bacteria, and have a low specific growth rate compared to heterotrophic bacteria that remove organic matter and are susceptible to environmental conditions such as pH and water temperature. It is very important to keep nitrifying bacteria at a high density.

しかしながら、これら処理槽の評価及び維持管理はシステムのインプット及びアウトプットの解析により判定されているが、肝心の菌叢の判定等は全く行われていないのが現状である。   However, the evaluation and maintenance of these treatment tanks are determined by analyzing the input and output of the system, but at present the determination of the essential flora is not performed at all.

具体的には、従来、下水処理施設の活性汚泥処理槽等の生物学的窒素処理プロセス中や土壌中の亜硝酸酸化細菌の定量方法としては、一般に、試料を採取し、1ヶ月から2ヶ月位の培養期間を経た後、当該試料における亜硝酸の消費の有無から、それらを間接的に測定する方法が知られていた(非特許文献1参照)。   Specifically, conventionally, as a method for quantifying nitrite-oxidizing bacteria in biological nitrogen treatment processes such as activated sludge treatment tanks in sewage treatment facilities and in soil, samples are generally collected and from 1 month to 2 months. After passing through a culture period of about 5 minutes, there has been known a method of indirectly measuring these samples from the presence or absence of consumption of nitrous acid (see Non-Patent Document 1).

また、従来、かかる方法を利用することによって、活性汚泥等の生物学的窒素処理プロセスや土壌中の硝化細菌の動向を管理するを行おうとの試みがあったが、当該方法では、硝化細菌数の測定に熟練性が要求され、また、かなりの日数が必要となることから、測定結果から硝化細菌の動向を日常的に管理するための迅速な対応が取れないのが現状であった。   Conventionally, there has been an attempt to manage biological nitrogen treatment processes such as activated sludge and the trend of nitrifying bacteria in soil by using such a method. Since skill is required for the measurement of this, and a considerable number of days are required, it is currently impossible to take a quick response for daily management of the trend of nitrifying bacteria from the measurement results.

そこで、発明者らは、代表的な硝化細菌であるニトロソモナス属の細菌(アンモニア酸化細菌)とニトロバクター属の細菌(亜硝酸酸化細菌)についてこれらの菌を特異的に認識する抗体を用いる検出方法を開発し、該方法によりアンモニア酸化細菌または亜硝酸酸化細菌を、迅速・簡便に検出する方法を提供している(特許文献1参照)。更に、当該抗体をラテックス粒子に吸着させた抗体感作ラテックスを使用することで、さらに容易にアンモニア酸化細菌、亜硝酸酸化細菌の検出を行う方法についても提供してきた(特許文献2参照)。   Therefore, the inventors detected nitrosomonas bacteria (ammonia-oxidizing bacteria) and nitrobacter bacteria (nitrite-oxidizing bacteria), which are representative nitrifying bacteria, using antibodies that specifically recognize these bacteria. A method has been developed, and a method for quickly and simply detecting ammonia-oxidizing bacteria or nitrite-oxidizing bacteria by the method is provided (see Patent Document 1). Furthermore, a method of detecting ammonia-oxidizing bacteria and nitrite-oxidizing bacteria more easily by using antibody-sensitized latex in which the antibody is adsorbed on latex particles has been provided (see Patent Document 2).

一方、1990年以降、水環境分野に分子生物学的手法を使った解析技術が導入されたことにより、硝化細菌の分布やポピュレーションに関する知見は徐々に更新されつつある。特に亜硝酸酸化細菌については、新たにニトロスピラ属の細菌が見出され、優占種として検出される窒素処理プロセスが頻繁に報告されるようになった。このことから、当該生物学的窒素処理プロセスでの窒素の除去効率を正しく把握するためには、ニトロソモナス属及びニトロバクター属の細菌に加えて、ニトロスピラ属の細菌数をいかに正確に測定するかという点が重要な課題となっている。   On the other hand, since 1990, with the introduction of analysis techniques using molecular biological techniques in the field of water environment, knowledge on the distribution and population of nitrifying bacteria is gradually being updated. Especially for nitrite-oxidizing bacteria, a new nitrospyra bacterium was found, and a nitrogen treatment process detected as a dominant species has been frequently reported. Therefore, in order to accurately grasp the nitrogen removal efficiency in the biological nitrogen treatment process, how to accurately measure the number of bacteria in the genus Nitrospira in addition to the bacteria in the genus Nitrosomonas and Nitrobacter This is an important issue.

しかしながら、上述した測定方法では、生物学的窒素処理プロセスより入手した活性汚泥等の検体を用い培養する過程で、ニトロソモナス属細菌やニトロバクター属細菌等、ニトロスピラ属細菌以外の菌体が優勢となってしまい、正確な結果が得られないといった問題があった。また、ニトロスピラ属細菌自体が従来の方法では単離できないため、ニトロスピラ属細菌を特異的に認識する抗体を得ることができず、当該菌を検出・定量することはできないという問題があった。
木村龍介ら、土壌微生物実験法、207-214頁(1992) 特開平05−322896号公報 特開平08−029426号公報
However, in the measurement method described above, in the process of culturing using a sample such as activated sludge obtained from a biological nitrogen treatment process, cells other than nitrospira bacteria such as nitrosomonas bacteria and nitrobacter bacteria are dominant. As a result, there was a problem that an accurate result could not be obtained. In addition, since the nitrospira bacterium itself cannot be isolated by conventional methods, there is a problem in that an antibody that specifically recognizes the nitrospira bacterium cannot be obtained, and the bacterium cannot be detected or quantified.
Kimura Ryusuke et al., Soil Microbial Experimental Method, pp. 207-214 (1992) JP 05-322896 A Japanese Patent Application Laid-Open No. 08-029426

この様な状況を踏まえ、本発明者等は、更に、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中等などに存在するニトロスピラ属の細菌を簡便かつ迅速に測定する方法を開発することを目的として鋭意検討を行った。その結果、本発明者らは、ニトロスピラ属の細菌に特異的な抗体を作製し、当該抗体をラテックス粒子に吸着させた抗体感作ラテックスを用いることにより、簡単な操作で目的とするニトロスピラ属の細菌を迅速に測定できることを見出し、本発明を完成するに至った。   In light of this situation, the present inventors will further develop a method for easily and rapidly measuring nitrospyra bacteria present in biological nitrogen treatment processes such as activated sludge, water, soil, etc. We conducted an intensive study for the purpose. As a result, the present inventors produced an antibody specific to a bacterium of the genus Nitrospira, and used the antibody-sensitized latex in which the antibody was adsorbed on latex particles, thereby allowing the target nitrospira genus to be obtained by a simple operation. The present inventors have found that bacteria can be measured quickly and have completed the present invention.

すなわち、本発明の目的は、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中等のニトロスピラ属の細菌を迅速・簡便に検出することを可能にする新規なニトロスピラ属の細菌測定用抗体感作ラテックスを提供することにある。また、別の目的は、上記測定用抗体感作ラテックスを利用することによって、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中等のニトロスピラ属の細菌を、迅速・簡便に測定する免疫学的測定法を提供することにある。更に別の目的は、好気性生物処理施設の日々の管理について、ニトロスピラ属をはじめとする硝化細菌数を指標とした好気性生物処理槽の運転管理法を提供することにある。   That is, the object of the present invention is to provide a novel nitrospira antibody-sensing antibody sensation for measuring bacteria of the genus Spirobacterium that enables rapid and simple detection of biological nitrogen treatment processes such as activated sludge, nitrospira spp. It is to provide a latex product. Another objective is to use the above-described antibody-sensitized latex for measurement to perform rapid and simple measurement of biological nitrogen treatment processes such as activated sludge and nitrospira bacteria in water and soil. It is to provide a static measurement method. Still another object is to provide an operation management method for an aerobic biological treatment tank using the number of nitrifying bacteria including Nitrospira as an index for daily management of an aerobic biological treatment facility.

請求項1に記載された発明に係るニトロスピラ属細菌測定用抗体感作ラテックスは、亜硝酸酸化活性を有するニトロスピラ属細菌に特異的な抗体を比重が略1.5g/mlで平均粒径が1.0〜1.5μmのラテックス粒子に吸着させたことを特徴とするものである。   The antibody-sensitized latex for measuring a nitrospira bacterium according to the invention described in claim 1 is an antibody specific for a nitrospira bacterium having nitrite oxidation activity, having a specific gravity of about 1.5 g / ml and an average particle size of 1. It is characterized by being adsorbed on latex particles of 0.0 to 1.5 μm.

請求項2に記載された発明に係るニトロスピラ属細菌測定用抗体感作ラテックスを用いた免疫学的測定法は、請求項1に記載の抗体感作ラテックスと被検試料とを混合し、予め定められた時間静置した後、個々のラテックス粒子同士が凝集したことを示す凝集像の発生の有無を確認することを特徴とするものである。   An immunological measurement method using the antibody-sensitized latex for measuring nitrospira bacteria according to the invention described in claim 2 is a method in which the antibody-sensitized latex according to claim 1 is mixed with a test sample. After standing for a given time, the presence or absence of the occurrence of an aggregate image indicating that the individual latex particles have aggregated is confirmed.

本発明は以上説明した通り、ニトロスピラ属の細菌に特異的な抗体をラテックス粒子に吸着させた測定用抗体感作ラテックスに係るものであり、当該抗体感作ラテックスを用いることにより、従来、長期間を要し、技術的にも熟練が必要とされていた、ニトロスピラ属の細菌の検出・測定を容易にかつ簡便に行うことを可能とするものである。また、別の本発明は、ニトロスピラ属の細菌に対する特異的な抗体を作製し、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中のニトロスピラ属の細菌を同定し、その菌数を迅速かつ適正に測定することを可能にするものである。更に別の発明では、ニトロスピラ属をはじめとする硝化細菌数を指標とし、好気性生物処理槽の運転条件を制御することにより、好気性生物処理施設の運転管理が容易となる。   As described above, the present invention relates to an antibody-sensitized latex for measurement in which an antibody specific to a bacterium of the genus Nitrospira is adsorbed on latex particles. By using the antibody-sensitized latex, Therefore, it is possible to easily and conveniently perform detection and measurement of bacteria belonging to the genus Nitrospira, which has been technically required for skill. Another invention of the present invention is to produce a specific antibody against a nitrospira bacterium, to identify a biological nitrogen treatment process such as activated sludge, to identify a nitrospira bacterium in water or soil, and to rapidly increase the number of bacteria. And it makes it possible to measure appropriately. In yet another invention, the operation management of the aerobic biological treatment facility is facilitated by controlling the operating conditions of the aerobic biological treatment tank using the number of nitrifying bacteria including the genus Nitrospira as an index.

本発明のニトロスピラ属細菌測定用抗体感作ラテックスは、亜硝酸酸化活性を有するニトロスピラ属細菌に特異的な抗体を比重が略1.5g/mlで平均粒径が1.0〜1.5μmのラテックス粒子に吸着させたものであり、これにより、従来、長期間を要し、技術的にも熟練が必要とされていた、ニトロスピラ属の細菌の検出・測定を容易にかつ簡便に行うことができる。   The antibody-sensitized latex for measuring nitrospira bacteria of the present invention is an antibody specific for nitrospira bacteria having nitrite oxidation activity having a specific gravity of approximately 1.5 g / ml and an average particle diameter of 1.0 to 1.5 μm. It is adsorbed on latex particles, which makes it easy and simple to detect and measure nitrospyra bacteria, which conventionally required a long period of time and technical skill. it can.

本発明の方法は、ニトロスピラ属の細菌に対する抗体と、抗体とを反応させる免疫学的測定法であればよく、検体としては、例えば、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中から採取した試料等をそのままあるいは希釈して用いることができる。より具体的には、検体中に存在するニトロスピラ属の細菌を、これらに特異的な抗体により検出・定量する免疫測定法等が挙げられる。   The method of the present invention may be an immunoassay method in which an antibody against a nitrospyra bacterium is reacted with the antibody. Examples of the specimen include biological nitrogen treatment processes such as activated sludge, water, and soil. Samples collected from can be used as they are or after dilution. More specifically, an immunoassay method for detecting and quantifying a nitrospyra bacterium present in a specimen with an antibody specific to these bacteria can be mentioned.

免疫測定法としては、例えばラテックス凝集法や逆受身ラテックス(赤血球)凝集法等の免疫凝集法、免疫クロマト法、蛍光抗体法、酵素抗体法及び放射免疫測定法などが挙げられるが、簡便性、及び迅速性の点から免疫凝集法及び免疫クロマト法が好ましい。また、当該免疫凝集法のうち、抗原または抗体を結合した赤血球またはラテックス粒子を用いる間接凝集反応である逆受身ラテックス(赤血球)凝集法が特に好ましい。   Examples of the immunoassay include immunoagglutination such as latex agglutination and reverse passive latex (erythrocyte) agglutination, immunochromatography, fluorescent antibody method, enzyme antibody method, and radioimmunoassay. From the viewpoint of rapidity, immunoaggregation and immunochromatography are preferred. Of the immunoaggregation methods, the reverse passive latex (erythrocyte) aggregation method, which is an indirect agglutination reaction using erythrocytes or latex particles bound with an antigen or antibody, is particularly preferred.

本発明の免疫凝集法に使用する不溶性担体としては、赤血球、金コロイド粒子等の無機化合物粒子およびラテックス粒子等の有機高分子粒子等の何れを用いてもよいが、ラテックス粒子を用いることが抗原または抗体感作後の試薬の安定性の点から好ましい。   As the insoluble carrier used in the immunoaggregation method of the present invention, any of inorganic compound particles such as red blood cells and gold colloid particles and organic polymer particles such as latex particles may be used. Or it is preferable from the point of stability of the reagent after antibody sensitization.

本発明で云うニトロスピラ属の細菌とは、亜硝酸酸化活性、すなわち亜硝酸の酸化により硝酸を生成する作用を有する微生物、所謂、亜硝酸酸化菌の一属である。現在、DDBJ(DNA Data Bank of Japan)にはニトロスピラ様細菌の16S−rRNA塩基配列が43本登録されており、その配列を用いた系統解析結果から、4つの系統(種)が提案されている。   The bacterium of the genus Nitrospira referred to in the present invention is a genus of so-called nitrite-oxidizing bacteria, which is a microorganism having an action of producing nitric acid by nitrite oxidation activity, that is, nitrite oxidation. Currently, 43 DNA sequences of 16S-rRNA of nitrospira-like bacteria are registered in DDBJ (DNA Data Bank of Japan), and four strains (species) have been proposed from the results of phylogenetic analysis using the sequences. .

しかし、純粋培養に成功した菌株は淡水性のニトロスピラ モスコビエンシス(Nitrospira moscoviensis)、および深海から単離されたニトロスピラ マリナ(Nitrospira marina ATCC43039株)の2株しかなく、活性汚泥、土壌、その他下水処理リアクターなどの通常の生物学的窒素処理プロセスからは単離されていない。本発明では、抗体を調製するためのニトロスピラ属の細菌として、ニトロスピラ モスコビエンシスを用いたが、他にニトロスピラ属の純粋培養株が確立された場合には、当該菌株を用いても同様に抗体を調製し得ることは言うまでもない。   However, there are only two strains that have succeeded in pure culture: fresh water nitrospira moscoviensis (Nitrospira moscoviensis) and nitrospira marina (Nitrospira marina ATCC43039) isolated from the deep sea. It has not been isolated from normal biological nitrogen treatment processes such as reactors. In the present invention, nitrospira moscobiensis was used as a nitrospira bacterium for preparing the antibody. However, when a pure culture of nitrospira is established, the antibody can be similarly used even if the strain is used. It goes without saying that can be prepared.

これらの菌に特異的な抗体は、上記の菌体を抗原としてウサギ、マウス、ラット、ニワトリ、羊、馬などの動物を免疫し、得られた抗体を細菌の検出用抗体とし用いればよい。さらには、公知の方法(特許文献1に記載の方法等)により製造した抗血清を、更に、プロテインGを結合したアフィニティークロマト等の適宣の精製手段で精製して使用される。   Antibodies specific to these bacteria may be used to immunize animals such as rabbits, mice, rats, chickens, sheep, and horses using the above bacterial cells as antigens, and the obtained antibodies may be used as antibodies for detecting bacteria. Furthermore, the antiserum produced by a known method (such as the method described in Patent Document 1) is further purified by an appropriate purification means such as affinity chromatography bound with protein G and used.

以下、免疫凝集法の場合を例にとり、より詳細に説明する。用いるラテックス粒子としては、比重が1.0g以上/mlであり、好ましくは1.5mg/ml前後、特に1.2〜1.8mg/mlの高比重ラテックス粒子が好適なものとして用いられ、さらに平均粒子径は約0.1〜4.0μm、好ましくは平均1.0〜1.5μm前後、更に好ましくは平均1.3μm前後のラテックス粒子が好適なものとして用いられ、更にはラテックス粒子に着色したものが好適なものとして用いられる。このようなラテックス粒子としては、例えば、バクトラテックス0.81(ディフコ(DIFCO)社製、平均粒径0.81μm、比重1.0g/ml)や、IMMUTEX Hシリーズ(JSR社製、比重は1.5g/ml、平均粒径は0.94μm〜4.9μm、着色したラテックスを含む)およびポリビーズ#15706、#15709(ポリサイエンス社製)等の市販製品が例示できるが、これに限らず、これらと同じ効果を有するものであればその種類を問わず使用することが可能である。   Hereinafter, the case of the immunoagglutination method will be described as an example in more detail. As latex particles to be used, specific gravity is 1.0 g / ml or more, preferably around 1.5 mg / ml, particularly high specific gravity latex particles of 1.2 to 1.8 mg / ml are preferably used. Latex particles having an average particle size of about 0.1 to 4.0 μm, preferably about 1.0 to 1.5 μm, more preferably about 1.3 μm on average are preferably used, and the latex particles are further colored. Is used as a preferred one. Examples of such latex particles include Bact latex 0.81 (manufactured by DIFCO, average particle size 0.81 μm, specific gravity 1.0 g / ml), and IMMUTEX H series (manufactured by JSR, specific gravity 1). 0.5 g / ml, the average particle size is 0.94 μm to 4.9 μm, including colored latex) and polybeads # 15706, # 15709 (manufactured by Polysciences), but not limited to this, Any of these types can be used as long as they have the same effects.

ニトロスピラ属の細菌に特異的な抗体を調製するには、まず、菌を亜硝酸を増殖基質とする無機塩液体培地を用いて培養し、必要に応じて殺菌し、集菌し、抗原とする。次いで、この抗原を、ウサギの耳静脈から注射により投与し、抗体価の上昇を確認した上で、全採血し、遠心分離などの適宣な処理を施した後、56℃で不活化を行い、抗血清とする。更に、プロテインGを結合したアフィニティークロマト等の適宣の精製手段で精製して使用される。   To prepare an antibody specific to a bacterium belonging to the genus Nitrospira, first cultivate the bacterium using an inorganic salt liquid medium containing nitrite as a growth substrate, sterilize it if necessary, collect it, and use it as an antigen. . Next, this antigen is administered by injection from the ear vein of a rabbit, and after confirming an increase in antibody titer, whole blood is collected, subjected to appropriate treatment such as centrifugation, and then inactivated at 56 ° C. Antiserum. Further, it is used after being purified by an appropriate purification means such as affinity chromatography to which protein G is bound.

次いで、上記特異的な抗体を吸着させる担体のラテックス粒子や、また、感作ラテックスの製造方法等は、特に限定されるものではなく、例えば本発明者らが報告した方法(特許文献2に記載の方法)に従い調製することができる。   Next, the latex particles of the carrier for adsorbing the specific antibody and the method for producing the sensitized latex are not particularly limited. For example, the method reported by the present inventors (described in Patent Document 2) Can be prepared according to the above method).

これら抗体を担体粒子に担持させて免疫学的凝集反応粒子とする方法は、物理吸着法と化学結合法があるが、どちらも本発明の免疫学的凝集反応に好適に使用することができる。凝集反応粒子としてラテックス粒子を用いる場合は、物理的吸着法で充分に抗原または抗体を感作させることが可能である。   There are a physical adsorption method and a chemical bonding method as a method for carrying these antibodies on carrier particles to form immunological agglutination reaction particles, both of which can be suitably used for the immunological agglutination reaction of the present invention. When latex particles are used as the agglutination reaction particles, the antigen or antibody can be sufficiently sensitized by a physical adsorption method.

上記のラテックス粒子に抗体を感作させる場合は、緩衝液中において行うことが好ましい。すなわち、適当な濃度に希釈したラテックス粒子の懸濁液と抗体または抗原の溶液とを混合し、しばらく放置した後に洗浄して感作ラテックス粒子を製造する。希釈に用いる緩衝液としては、一般に担持された抗原または抗体の測定対象物質である抗体または抗原との反応を阻害しないイオン強度、pHを有するものが選択される。例えば、TBS、PBS、GBS、リン酸緩衝液およびホウ酸緩衝液が利用できる。中でも、リン酸緩衝液、ホウ酸緩衝液およびGBSは感作ラテックス粒子の凝集性、自己凝集の起こりにくさから好適なものとして用いられる。pH5〜10の範囲で選択されることが一般的であり、特にpH6〜9の範囲が好適なものとして選択される。   When the antibody is sensitized to the latex particles, it is preferably performed in a buffer solution. That is, a suspension of latex particles diluted to an appropriate concentration and an antibody or antigen solution are mixed and allowed to stand for a while before washing to produce sensitized latex particles. As the buffer used for dilution, a buffer having an ionic strength and pH that does not inhibit the reaction with the antibody or antigen, which is generally a supported antigen or antibody measurement target substance, is selected. For example, TBS, PBS, GBS, phosphate buffer and borate buffer can be used. Among them, phosphate buffer, borate buffer and GBS are preferably used because of the aggregation property of the sensitized latex particles and the difficulty of self-aggregation. In general, the pH is selected within the range of 5 to 10, and the pH range of 6 to 9 is particularly preferable.

感作時のラテックス粒子の濃度は0.01〜0.5(w/v)%が適当であり、特に0.05〜0.25(w/v)%程度で良好な結果が得られる。また、抗体を感作させる場合における抗体溶液の抗体タンパク質濃度は、1.0〜1000μgが適当であり、それ以外では感度の低下や感作ラテックス粒子の自己凝集により陽性・陰性の判断がつきにくくなる。更に、感作反応時の温度については、0〜60℃の範囲内で行うが、室温または室温よりやや高めの温度(〜40℃)で反応を行うと、感度のよいラテックス粒子が得られる。   The concentration of latex particles at the time of sensitization is suitably from 0.01 to 0.5 (w / v)%, and good results are obtained particularly at about 0.05 to 0.25 (w / v)%. In addition, the antibody protein concentration of the antibody solution in the case of sensitizing the antibody is suitably 1.0 to 1000 μg. Otherwise, it is difficult to make a positive / negative judgment due to a decrease in sensitivity or self-aggregation of sensitized latex particles. Become. Furthermore, the temperature during the sensitization reaction is in the range of 0 to 60 ° C., but when the reaction is performed at room temperature or a temperature slightly higher than room temperature (˜40 ° C.), latex particles with good sensitivity can be obtained.

これらの感作ラテックスを用いて、ニトロスピラ属の細菌の検出、菌数の測定を行うには、逆受身ラテックス凝集法が好ましい。逆受身ラテックス凝集法とは、被検物質と特異的に結合する性質をもつ物質(抗体など)を高比重の標識物質(ラテックス粒子など)に結合させた免疫学的凝集反応粒子を含む液状の試薬と、被検物質を含む試料を混合し、対象物質の検出あるいは定量を行う方法である。より詳細には、適当な段階に希釈した試料と、抗体感作ラテックスを含む試薬とを混合し、凝集像が観察される希釈度を確認し、一方で、既知菌数の菌液を含む標準試料を用いた混合試験を行い、その結果との比較から、菌数を算出すればよい。   The reverse passive latex agglutination method is preferred for detecting nitrospyra bacteria and measuring the number of bacteria using these sensitized latexes. The reverse passive latex agglutination method is a liquid containing immunological agglutination reaction particles in which a substance (such as an antibody) that specifically binds to a test substance is bound to a high-specific gravity labeling substance (such as a latex particle). In this method, a reagent and a sample containing a test substance are mixed to detect or quantify the target substance. More specifically, a sample diluted at an appropriate stage and a reagent containing antibody-sensitized latex are mixed to confirm the dilution at which an aggregated image is observed, while a standard containing a bacterial solution of a known number of bacteria. A mixing test using a sample is performed, and the number of bacteria may be calculated from comparison with the result.

さらに詳細には、U型のマイクロタイタープレートに、緩衝液で段階的に希釈した抗原または標準試料を添加し、各穴に等量の試薬を分注した後、室温で4〜15時間静置した後、肉眼または10倍程度のルーペを用い、観察・判定するものである。具体的には、緩衝液のみの場合の凝集像を陰性とし、各穴の凝集像を判定し、陽性の凝集像を示した被検穴の希釈倍率と標準抗原を用いた凝集試験の結果から、菌数を計算する。   More specifically, an antigen or standard sample diluted stepwise with a buffer solution is added to a U-shaped microtiter plate, an equal amount of reagent is dispensed into each well, and then allowed to stand at room temperature for 4 to 15 hours. After that, observation and determination are performed using the naked eye or a magnifier of about 10 times. Specifically, the agglutination image in the case of only the buffer solution is regarded as negative, the agglutination image of each hole is determined, and from the result of the agglutination test using the dilution factor of the test hole that showed a positive agglutination image and the standard antigen Calculate the number of bacteria.

本発明においては、このほかにも本発明に係るラテックス粒子と被検試料とをスライドガラス上で混合し、光学顕微鏡的に凝集像の成否を判断する方法(顕微鏡ラテックス法)や、免疫クロマト法等、免疫学的凝集反応粒子を用いる様々な定性・定量方法に利用できることは言うまでもない。   In the present invention, in addition to this, the latex particles according to the present invention and a test sample are mixed on a slide glass, and a method of determining the success or failure of an aggregated image by an optical microscope (microscopic latex method), or immunochromatography Needless to say, the present invention can be applied to various qualitative and quantitative methods using immunological agglutination reaction particles.

なお、従来から、一般的に、抗体を吸着させる担体としてラテックス粒子が存在することは知られていたが、これを実際にニトロスピラ属の細菌の検出・同定に使用した例はこれまで報告されておらず、その有効性は本発明者らによって初めて検討されたものである。また、ニトロスピラ属の細菌に特異的な抗体を用いて、特に活性汚泥等の生物学的窒素処理プロセス、水中、土壌中の活性(亜硝酸の酸化)のある目的微生物を同定し、その菌数を迅速かつ適正に管理する方法を確立することを可能にし得るとの知見は、本発明者らによって初めて得られたものである。   Conventionally, it has been known that latex particles generally exist as a carrier on which antibodies are adsorbed. However, there have been reports of examples in which this is actually used for detection and identification of bacteria of the genus Nitrospira. The effectiveness has not been studied for the first time by the present inventors. In addition, by using antibodies specific to the bacteria of the genus Nitrospira, we identify target microorganisms that have biological nitrogen treatment processes such as activated sludge, activity in water and soil (oxidation of nitrite), and their number The inventors have for the first time obtained the knowledge that it is possible to establish a method for quickly and appropriately managing the risk.

更に、本発明では、好気性生物処理槽内のニトロスピラ属細菌数を測定し、目標の硝化率を維持するために必要なニトロスピラ属細菌数となるように、槽内の固形物滞留時間、槽内の溶存酸素量、槽内への流入負荷から選ばれる少なくとも1つの運転条件を制御する。更に好ましくは、ニトロスピラ属細菌に加えて、ニトロソモナス属細菌数およびニトロバクター属細菌数を測定し、目標の硝化率を維持するために必要なニトロソモナス属細菌数、ニトロバクター属細菌数およびニトロスピラ属細菌数となるように、槽内の固形物滞留時間、槽内の溶存酸素量、槽内への流入負荷から選ばれる少なくとも1つの運転条件を制御する。これにより、好気性生物処理施設日々の運転管理について、ニトロスピラ属をはじめとする硝化細菌数を指標とした管理が容易となる。   Furthermore, in the present invention, the number of nitrospira bacteria in the aerobic biological treatment tank is measured, and the solid residence time in the tank, the tank so that the nitrospira bacteria number necessary for maintaining the target nitrification rate is obtained. At least one operating condition selected from the amount of dissolved oxygen in the tank and the inflow load into the tank. More preferably, in addition to nitrospyra, the number of nitrosomonas and nitrobacter is measured, and the number of nitrosomonas, nitrobacter and nitrospira necessary to maintain the target nitrification rate. At least one operating condition selected from the solid residence time in the tank, the dissolved oxygen amount in the tank, and the inflow load into the tank is controlled so that the number of bacteria belongs. This facilitates the daily operation management of the aerobic biological treatment facility using the number of nitrifying bacteria including Nitrospira as an index.

ここでいう好気性生物処理とは溶存酸素の存在のもとに、さまざまな好気性微生物が関与して、有機性物質、アンモニア性窒素、臭気、鉄などを酸化分解し、除去する処理方法である。好気性処理を大別すると、曝気によって生物フロックを浮遊させた状態で有機物質を酸化分解する方法と、担体に微生物を付着増殖させて生物膜を形成させ、これを廃水に接触させて酸化分解する方式に分かれる。前者の代表が活性汚泥法であり、下水処理で広く用いられている。後者は一般に生物膜法と呼ばれている。   The aerobic biological treatment mentioned here is a treatment method in which various aerobic microorganisms are involved in the presence of dissolved oxygen to oxidatively decompose and remove organic substances, ammonia nitrogen, odor, iron, etc. is there. The aerobic treatment can be broadly divided into a method of oxidizing and decomposing organic substances in a state where biological flocs are suspended by aeration, and a biofilm is formed by attaching microorganisms to a carrier to form a biofilm, which is then contacted with wastewater to oxidatively decompose It is divided into methods. The former representative is the activated sludge method, which is widely used in sewage treatment. The latter is generally called biofilm method.

ここでいう活性汚泥法とは、標準活性汚泥法、酸素活性汚泥法、長時間エアレーション法、オキシデーションディッチ法、回分式活性汚泥法等が含まれ、さらには循環式硝化脱窒法、硝化内生脱窒法、嫌気−無酸素−好気法、嫌気−好気活性汚泥法が含まれる。またここでいう生物膜法とは、微生物を担体(支持体あるいは接触材ともいう)に固定化させることから、最近は生物固定法と呼ぶことが多い。担体の状態から分類すると、担体を処理槽に浸漬させておく場合(固定床)と処理槽内で動かす場合(流動床)に分けられる。   The activated sludge method mentioned here includes standard activated sludge method, oxygen activated sludge method, long-time aeration method, oxidation ditch method, batch activated sludge method, etc., as well as circulating nitrification denitrification method, nitrification endogenous Denitrification methods, anaerobic-anoxic-aerobic methods, anaerobic-aerobic activated sludge methods are included. The biofilm method here is often called a biofixation method recently because microorganisms are immobilized on a carrier (also called a support or contact material). When classified according to the state of the carrier, it can be divided into a case where the carrier is immersed in the treatment tank (fixed bed) and a case where the carrier is moved in the treatment tank (fluidized bed).

また主に窒素化合物やリンの除去を目的として生物膜を用いて高濃度廃水を嫌気性処理した後に好気性処理する方法などの好気性処理と嫌気性処理の併用技術が活用されているが、このような好気性生物処理を含む生物処理方法に広く応用できることは言うまでもない。   In addition, a combination of aerobic treatment and anaerobic treatment, such as a method of anaerobic treatment after anaerobic treatment of high-concentration wastewater using a biofilm mainly for the purpose of removing nitrogen compounds and phosphorus, is utilized. It goes without saying that it can be widely applied to biological treatment methods including such aerobic biological treatment.

以下、実施例により、本発明を更に詳細に説明するが、本発明は当該実施例によりなんら限定されるものではない。   Hereinafter, although an example explains the present invention still in detail, the present invention is not limited at all by the example.

実施例1.抗原に用いる菌体の調製
ニトロスピラ モスコビエンシスを表1の培地で培養した。この株はドイツ・ハンブルグ大学 エバ スピーク博士(Universitat Hamburg、 Dr. Eva Spieck)から分与された(非特許文献2参照)。培養は3段階(100mLスケールの種培養、1Lスケールの中間培養、4Lスケールの最終培養)に分けて行い、いずれの段階も培養温度は37℃、培養期間は7〜10日間とした。
Ehrich S., D.Behrens,E.Lebedeva, W.Ludwig, and E.Bock. (1995) A new obligately chemolitoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. microbiol. 164: pp 16-23.
Example 1. Preparation of Bacteria Used for Antigen Nitrospira moscoviensis was cultured in the medium shown in Table 1. This strain was distributed from Dr. Eva Spieck, University of Hamburg, Germany (see Non-Patent Document 2). The culture was divided into three stages (100 mL scale seed culture, 1 L scale intermediate culture, 4 L scale final culture), and in each stage, the culture temperature was 37 ° C. and the culture period was 7 to 10 days.
Ehrich S., D. Behrens, E. Lebedeva, W. Ludwig, and E. Bock. (1995) A new obligately chemolitoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. Nov. And its phylogenetic relationship. Arch. Microbiol. 164 : pp 16-23.

Figure 0004256802
Figure 0004256802

菌の増殖が最大になったと考えられる時点で最終培養を停止し、当該培養液を4.0℃で24,000×g 10分間遠心分離し、菌を回収した。PBS 30mLを加えピペッティングにより菌を分散させた後、等量の0.6%ホルマリンを添加し十分に攪拌した。この溶液を37℃で1時間静置した後、さらに菌が死滅するまで4.0℃で固定した。固定菌体を24,000×g 10分間遠心分離して回収しPBSで洗浄した後、再度24,000×g 10分間遠心分離した菌体を抗原に用いた。さらに、660nmの吸光度が0.5となるようにPBSで調整し、供試抗原とした。   The final culture was stopped when the growth of the bacteria was considered to be maximum, and the culture was centrifuged at 24,000 × g for 10 minutes at 4.0 ° C. to collect the bacteria. After adding 30 mL of PBS and dispersing the bacteria by pipetting, an equal amount of 0.6% formalin was added and sufficiently stirred. This solution was allowed to stand at 37 ° C. for 1 hour, and then fixed at 4.0 ° C. until the bacteria were killed. The fixed cells were collected by centrifugation at 24,000 × g for 10 minutes, washed with PBS, and then centrifuged again at 24,000 × g for 10 minutes for use as an antigen. Furthermore, it adjusted with PBS so that the light absorbency of 660 nm might be set to 0.5 as a test antigen.

抗原の純度は、ニトロスピラに特異的なDNAプローブ NSR1156およびNtspa0662を用いて確認した。すなわち、当該プローブを用いてハイブリダイゼーション試験を行い、菌懸濁液中にDSM10035以外の菌が混入していないかどうかを確認した。   Antigen purity was confirmed using DNA probes NSR1156 and Ntspa0662 specific for nitrospira. That is, a hybridization test was performed using the probe, and it was confirmed whether bacteria other than DSM10035 were mixed in the bacterial suspension.

実施例2.ポリクローナル抗体の作製方法
KBL:Jw(日本白色種)ウサギを2羽使用した。抗原の投与量は1回あたり0.5mLとし、7〜10日毎に耳静脈から注射した。免疫中のウサギから試験的に血清を採取し、ニトロスピラ モスコヴィエンシスDSM10035株に対する抗体価の上昇度を酵素結合免疫測定法(enzyme linked immunosorbent assay、ELISA法)ELISA法により調べた。具体的には、炭酸・重炭酸緩衝液で吸光度(A660nm)=0.05に調整した抗原を96穴プレートに1ウェルあたり100μL分注し、4.0℃で16時間吸着させた。洗浄液(0.05%Triton-X100を含むPBS(−))で各ウェルを洗浄後、ブロッキング液(1.0%BSAを含む炭酸・重炭酸緩衝液)を120μL/ウェル添加し、37℃で1時間反応させた。ウェルを洗浄した後、0.05%Triton-X100、1.0%BSAを含むPBS(−)で段階希釈した血清を1ウェルあたり90μL加え、37℃で1.5時間反応させた。ウェルの洗浄後、ペルオキシターゼ標識2次抗体(抗ウサギ免疫グロブリンG(IgG)−ヒツジIgG)を100μL/ウェル添加し、遮光してさらに37℃、1.5時間反応させた。反応終了後、洗浄したウェルに過酸化水素をふくむO−フェニレンジアミンの加クエン酸緩衝液を100μL/ウェル添加し、遮光して37℃で10分放置し、発色させた。2.5M硫酸を50μL/ウェル添加し反応を停止させた後、492nmの吸光度(A660nm)を測定した。なお抗体価は、A492nmの発色強度が0.5を示す血清の希釈倍率の逆数で示した。抗体価の上昇が認められない場合に、心臓から全採血を行った。56℃で不活化し、ニトロスピラ属の細菌に対応する抗血清とした。
Example 2 Preparation method of polyclonal antibody Two KBL: Jw (Japanese white breed) rabbits were used. The dose of the antigen was 0.5 mL per time, and injection was performed from the ear vein every 7 to 10 days. Serum was experimentally collected from immunized rabbits, and the degree of increase in antibody titer against nitrospira moscoviensis strain DSM10035 was examined by enzyme linked immunosorbent assay (ELISA) ELISA. Specifically, an antigen adjusted to an absorbance (A 660 nm ) = 0.05 with a carbonate / bicarbonate buffer solution was dispensed at 100 μL per well in a 96-well plate and adsorbed at 4.0 ° C. for 16 hours. After washing each well with a washing solution (PBS (-) containing 0.05% Triton-X100), a blocking solution (a carbonate / bicarbonate buffer containing 1.0% BSA) was added at 120 μL / well, and the mixture was incubated at 37 ° C. The reaction was carried out for 1 hour. After washing the wells, 90 μL of serum serially diluted with PBS (−) containing 0.05% Triton-X100 and 1.0% BSA was added and reacted at 37 ° C. for 1.5 hours. After washing the wells, a peroxidase-labeled secondary antibody (anti-rabbit immunoglobulin G (IgG) -sheep IgG) was added at 100 μL / well, followed by further reaction at 37 ° C. for 1.5 hours in the dark. After completion of the reaction, 100 μL / well of a citrate buffer solution of O-phenylenediamine containing hydrogen peroxide was added to the washed wells, and the mixture was allowed to stand at 37 ° C. for 10 minutes in the dark to develop color. After stopping the reaction by adding 50 μL / well of 2.5 M sulfuric acid, the absorbance at 492 nm (A 660 nm ) was measured. The antibody titer was shown as the reciprocal of the dilution ratio of serum having a color development intensity of A 492 nm of 0.5. When no increase in antibody titer was observed, whole blood was collected from the heart. It was inactivated at 56 ° C. to obtain an antiserum corresponding to a bacterium of the genus Nitrospira.

実施例3.免疫グロブリンG(Immunoglobulin G:IgG)の精製
プロテインGを結合したアフィニティークロマト(Mab TrapGキット アマシャム・ファルマシア製)により抗血清からIgGを分画した。この精製IgGを抗ニトロスピラ抗体とし、以下の実験に用いた。
Example 3 FIG. Purification of Immunoglobulin G (IgG) IgG was fractionated from the antiserum by affinity chromatography coupled with protein G (Mab TrapG kit, Amersham Pharmacia). This purified IgG was used as an anti-nitrospira antibody and used in the following experiments.

実施例4.交差反応性試験
抗ニトロスピラ抗体と表2に示す各細菌との交差反応性をELISA法により調べた。交差反応性は、抗ニトロスピラ抗体のニトロスピラ モスコヴィエンシス (DSM10035株)に対する抗体価(ELISA法を応用した呈色反応による吸光度(OD492=0.5)を示す希釈倍率の逆数)を100%とした場合の、当該抗体と各菌体との交差反応性を%で示した。
Example 4 Cross-reactivity test The cross-reactivity between the anti-nitrospira antibody and each bacterium shown in Table 2 was examined by ELISA. The cross-reactivity is defined as the antibody titer against the anti-nitrospira antibody nitrospira moscoviensis (DSM10035 strain) (absorbance (OD 492 = 0.5) representing the absorbance by color reaction applying ELISA method) is 100%. The cross-reactivity between the antibody and each cell was shown in%.

Figure 0004256802
Figure 0004256802

一般に活性汚泥等の水質浄化プロセスからは、シュードモナス、アルカリゲネス、フラボバクテリウムなどのグラム陰性桿菌が優占種として報告される例が多い。しかし表3に示す通り、今回作製した抗ニトロスピラ抗体には、これらの菌に対する交差反応性が認められず高い特異性を有することが明らかとなった。そして、これらの高い特異性を有する抗血清は、当該抗体の各細菌に対する凝集反応等の反応特性を直接指標として、あるいは当該反応特性に相関する発色反応を指標として、また、検出用抗体感作ラテックスを用いて、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中のニトロスピラ属の細菌を簡便に検出するのに有用であることが判明した。   In general, there are many cases where Gram-negative bacilli such as Pseudomonas, Alkaligenes, and Flavobacterium are reported as dominant species from water purification processes such as activated sludge. However, as shown in Table 3, it was revealed that the anti-nitrospira antibody produced this time has high specificity without any cross-reactivity with these bacteria. These antisera having high specificity can be obtained by directly using reaction characteristics such as agglutination reaction of the antibody against each bacterium as an index, or using a color reaction correlated with the reaction characteristics as an index, and sensitizing an antibody for detection. It has been found that latex is useful for conveniently detecting biological nitrogen treatment processes such as activated sludge, nitrospira bacteria in water and soil.

Figure 0004256802
Figure 0004256802

実施例5.ニトロスピラ用ラテックス試薬の調製
ニトロスピラ用ラテックス試薬の検出感度を高めるため、ラテックス粒子に感作させるタンパク質量およびラテックス粒子の粒径を最適化した。抗体感作ラテックス試薬の調製は、公知の特許文献2に記載した方法に準じて行った。
Embodiment 5 FIG. Preparation of Latex Reagent for Nitrospira To increase the detection sensitivity of the latex reagent for nitrospira, the amount of protein sensitized to latex particles and the particle size of latex particles were optimized. The antibody-sensitized latex reagent was prepared in accordance with the method described in Patent Document 2.

Figure 0004256802
Figure 0004256802

具体的には、抗ニトロスピラ抗体を、50〜500μg/mLとなるようにGBSで希釈した。当該抗体希釈液1容にGBSで0.25%w/vに希釈したポリスチレン製高比重ラテックス溶液(JSR製、比重1.5g/ml)1容を混和し、37℃で1.0時間反応させた。反応終了後、ブロッキング溶液(1.0%BSAを含む0.1MGBS)を加えラテックス粒子上の抗体未吸着部分をBSAでブロッキングした。30分間ブロッキング反応した後、2,700×g 10分間 室温で遠心分離し未結合の抗体を取り除いた。この抗体結合ラテックス粒子は保存溶液(1.0%BSA、0.08%NaN3を含む0.1M GBS pH8.2)で2度遠心洗浄を繰り返した後、最終的に粒子濃度が0.05%(w/v)になるように保存溶液に懸濁し、ニトロスピラ用ラテックス試薬とした。この操作を、表4に記載した各粒径のラテックス粒子について行った。   Specifically, the anti-nitrospira antibody was diluted with GBS so as to be 50 to 500 μg / mL. 1 volume of the antibody diluted solution is mixed with 1 volume of polystyrene high specific gravity latex solution (JSR, specific gravity 1.5 g / ml) diluted to 0.25% w / v with GBS and reacted at 37 ° C. for 1.0 hour. I let you. After completion of the reaction, a blocking solution (0.1 MGBS containing 1.0% BSA) was added to block the antibody non-adsorbed portion on the latex particles with BSA. After a blocking reaction for 30 minutes, the unbound antibody was removed by centrifugation at 2,700 × g for 10 minutes at room temperature. The antibody-bound latex particles were repeatedly washed twice with a stock solution (0.1 M GBS pH 8.2 containing 1.0% BSA and 0.08% NaN3), and finally the particle concentration was 0.05%. (W / v) was suspended in a stock solution to obtain a latex reagent for nitrospira. This operation was performed on latex particles having various particle sizes described in Table 4.

実施例6.逆受身ラテックス凝集法によるニトロスピラの検出
既知菌数のホルマリン固定済みニトロスピラ モスコヴィエンシス(DSM10035株)を保存溶液を用いて2の階乗希釈した。各希釈液50μLを96ウェルUVプレート(SJ103-20 三光純薬株式会社)に分注した後、種々の濃度の抗体を感作させた高比重ラテックス試薬を等量添加した。混合液が飛び散らない程度の強さで十分攪拌した後、室温で4.0時間反応させ、検出可能な最少菌量を求めた。この試験を、表4に示す各粒径について実施し、検出感度の最も高い粒径と抗体タンパク質感作濃度を調べた。
Example 6 Detection of Nitrospira by Reverse Passive Latex Aggregation Method A known number of formalin-fixed nitrospira moscoviensis (DSM10035 strain) was diluted to a factorial of 2 using a stock solution. After 50 μL of each diluted solution was dispensed into a 96-well UV plate (SJ103-20 Sanko Junyaku Co., Ltd.), equal amounts of high specific gravity latex reagents sensitized with various concentrations of antibodies were added. The mixture was sufficiently stirred to such an extent that the mixture did not scatter, and then allowed to react at room temperature for 4.0 hours to determine the minimum detectable bacterial amount. This test was carried out for each particle size shown in Table 4 to examine the particle size with the highest detection sensitivity and the antibody protein sensitization concentration.

その結果、図1に示す通り直径が0.9〜1.4μmまでの間では粒径に比例して試薬の測定感度が高まることが明らかとなった。反対に、直径が1.4μmを超えると、感度の低下が認められた。また、同一粒子でも感作させる抗体量により検出感度は変化することから、抗体を感作させるラテックス粒子の粒径、および感作抗体タンパク質量を適宜調節することにより、任意の検出感度を持つニトロスピラ用ラテックス試薬を作製することが可能であった。また、製品No.H1009の高比重ラテックス粒子を用いることにより、ラテックス試薬の検出感度を最高で7.0×10cells/mLまで高められることを明らかにした。過去に我々は、日本各地の廃水処理施設から活性汚泥を採取し、当該汚泥中に棲息する硝化細菌群を蛍光in−situハイブリダイゼーション法(以下FISH法と略す)により解析してきた。その結果、ニトロスピラ属細菌の菌数は10〜10cells/mLの間で推移していることを明らかにしている。よって今回得られたニトロスピラ用ラテックス試薬の検出感度は、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中に棲息するニトロスピラを検出・定量する手法として十分実用可能なレベルであると考えられた。 As a result, as shown in FIG. 1, it was revealed that the measurement sensitivity of the reagent is increased in proportion to the particle diameter when the diameter is from 0.9 to 1.4 μm. On the other hand, when the diameter exceeded 1.4 μm, a decrease in sensitivity was observed. In addition, since the detection sensitivity varies depending on the amount of antibody to be sensitized even with the same particle, the nitrospira having an arbitrary detection sensitivity can be obtained by appropriately adjusting the particle size of the latex particle to sensitize the antibody and the amount of sensitized antibody protein. It was possible to prepare a latex reagent for use. Product No. It was clarified that the detection sensitivity of latex reagent can be increased up to 7.0 × 10 5 cells / mL by using high specific gravity latex particles of H1009. In the past, we have collected activated sludge from wastewater treatment facilities in various parts of Japan, and analyzed the nitrifying bacteria inhabited in the sludge by the fluorescent in-situ hybridization method (hereinafter abbreviated as FISH method). As a result, it has been clarified that the number of bacteria of the genus Nitrospira changes between 10 6 to 10 8 cells / mL. Therefore, the detection sensitivity of the latex reagent for nitrospira obtained this time is considered to be sufficiently practical as a biological nitrogen treatment process such as activated sludge, and a method for detecting and quantifying nitrospira inhabiting in water and soil. It was.

実施例7.実試料中のニトロスピラ属細菌数の測定
本発明に係る免疫学的測定法の有効性を確認するために、逆受身ラテックス凝集法により、活性汚泥中のニトロスピラ属の細菌を検出・定量した。
Example 7 Measurement of the number of Nitrospira bacteria in the actual sample In order to confirm the effectiveness of the immunoassay method according to the present invention, the bacteria of the genus Nitrospira in the activated sludge were detected and quantified by the reverse passive latex agglutination method.

被検試料には、標準活性汚泥法4施設、オキシデーションディッチ法6施設、AO法1施設および膜分離法1施設の計12施設の反応タンクから採取した活性汚泥を用いた。また比較対照試験として、ニトロスピラ属の細菌に特異的なDNAプローブNtspa0662を用いてAmannらの方法に従い(非特許文献3参照)FISH法によりニトロスピラ属の細菌数を求めた。さらに、培養法である最確数法(MPN法)により亜硝酸酸化細菌数を求めた。
Amann R. (1995) In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes ; Molecular Microbial Ecology Manual 3.3.6 : pp 1-15.
As the test sample, activated sludge collected from reaction tanks of a total of 12 facilities including 4 standard activated sludge method facilities, 6 oxidation ditch method facilities, 1 A 2 O method facility and 1 membrane separation method facility was used. In addition, as a comparative control test, the number of bacteria of the genus Nitrospira was determined by the FISH method according to the method of Amann et al. Using a DNA probe Ntspa0662 specific to the genus Nitrospira (see Non-Patent Document 3). Furthermore, the number of nitrite-oxidizing bacteria was determined by the most probable number method (MPN method) which is a culture method.
Amann R. (1995) In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes; Molecular Microbial Ecology Manual 3.3.6: pp 1-15.

RPLA法により実処理施設の活性汚泥中の亜硝酸酸化細菌を測定した結果(図2)、ニトロスピラ属の細菌は全ての試料から検出され、菌数は10〜10オーダーであった。またFISH法でも14試料から菌が検出され、その測定値は6試料でRPLA法の値とほぼ一致した。なお、他の試料についてはFISH法の測定値がRPLA法よりも1オーダー程度低くなる傾向が認められた。また、処理方法の違いによる影響も認められなかった。 As a result of measuring nitrite-oxidizing bacteria in the activated sludge of the actual treatment facility by the RPLA method (FIG. 2), bacteria of the genus Nitrospira were detected from all samples, and the number of bacteria was on the order of 10 6 to 10 8 . In the FISH method, bacteria were detected from 14 samples, and the measured values of the 6 samples almost coincided with the values of the RPLA method. In addition, about the other sample, the tendency for the measured value of FISH method to become about 1 order lower than RPLA method was recognized. Moreover, the influence by the difference in a processing method was not recognized.

一方、MPN法では逆受身ラテックス凝集法よりも1〜5オーダー以上低い値を示した。MPN法による測定値については、混合培養系試料の硝化細菌数をMPN法で測定した場合、抗原抗体法に比較して2〜5オーダー小さい計測効率であることが知られている(非特許文献4参照)。今回行った実験においても、同様の結果が得られており、硝化細菌の測定法としてMPN法よりも逆受身ラテックス凝集法の方が適していることが示された。
荒木 信夫, 大橋 晶良, 原田 秀樹, Izarul Machdar (1999) FISH法を適用した生物膜内硝化細菌の菌数計測と空間分布の観察 ; 水環境学会誌 22 : (2) pp152-159.
On the other hand, the MPN method showed a value 1 to 5 orders lower than the reverse passive latex agglomeration method. Regarding the measurement value by the MPN method, it is known that the measurement efficiency is 2 to 5 orders of magnitude smaller than the antigen-antibody method when the number of nitrifying bacteria in the mixed culture sample is measured by the MPN method (non-patent document). 4). In the experiment conducted this time, similar results were obtained, and it was shown that the reverse passive latex agglutination method was more suitable than the MPN method for measuring nitrifying bacteria.
Nobuo Araki, Akiyoshi Ohashi, Hideki Harada, Izarul Machdar (1999) Counting the number of nitrifying bacteria in biofilm and observing the spatial distribution using FISH method; Journal of Japan Society on Water Environment 22: (2) pp152-159.

一方、一般的にFISH法は16S−リボソーマルDNAおよびRNAの塩基配列情報が細菌間で異なること利用した検出方法であり、分子生物学的な環境微生物の解析手法として非常に有用な方法であると考えられている。しかしこの方法では、細胞内に多数のターゲット(リボゾーマルRNA)が存在していることが必須であるために、当該リボソーマルRNA分子を十分に含まない細胞(飢餓状態にある細胞など)では検出することができないことが問題として挙げられている。一方、活性汚泥等の生物学的窒素処理プロセスに棲息する微生物は、流入水質の多様性等の原因で、常に何らかの環境ストレスを受けながら棲息しているため、菌体内に十分なリボソームRNAが合成されていない場合が多い。よって、今回も亜硝酸酸化活性があってもFISH法では十分に検出されないニトロスピラ属の細菌が存在すると推測された。   On the other hand, in general, the FISH method is a detection method utilizing the fact that the base sequence information of 16S-ribosomal DNA and RNA differs between bacteria, and is a very useful method as a molecular biological environmental microorganism analysis method. It is considered. However, in this method, since it is essential that a large number of targets (ribosomal RNA) are present in the cell, detection is required in cells that do not sufficiently contain the ribosomal RNA molecule (such as a starved cell). The problem is that it is not possible. On the other hand, microorganisms that inhabit biological nitrogen treatment processes such as activated sludge always inhabit some kind of environmental stress due to the diversity of influent water quality, etc., so sufficient ribosomal RNA is synthesized in the cells. Often not. Therefore, it has been speculated that there are bacteria of the genus Nitrospira that are not sufficiently detected by the FISH method even though they have nitrite oxidation activity this time.

また、逆受身ラテックス凝集法では、抗体を利用しているため、既に活性をなくしているが抗原性は残存しているような死菌体も測定している可能性が考えられた。これらのことが原因で、逆受身ラテックス凝集法によるニトロスピラ属細菌の測定値とFISH法による測定値は一致せず、逆受身ラテックス凝集法の方がFISH法の測定値よりも高い値になったと考えられた。   In addition, since the passive passive latex agglutination method uses an antibody, it may be possible to measure dead cells that have already lost activity but remain antigenic. For these reasons, the measured values of the nitrospyra bacteria by the reverse passive latex agglutination method and the measured values by the FISH method do not match, and the reverse passive latex agglutination method has a higher value than the measured value of the FISH method. it was thought.

しかしながら、活性汚泥等の水質浄化工程中、水中、土壌中等のニトロスピラ属の細菌を同定し、その菌数を迅速かつ適正に管理する方法を確立することを目的とする今回の開発目標に関しては、本発明のニトロスピラ属の細菌測定用抗体感作ラテックス粒子による逆受身ラテックス凝集法は、迅速性、簡便性の面で優れた方法であることが確認できた。   However, regarding the current development goal of identifying the bacteria of the genus Nitrospira in water, soil, etc. during water purification processes such as activated sludge and establishing a method for quickly and appropriately managing the number of bacteria, It was confirmed that the reverse passive latex agglutination method using the antibody-sensitized latex particles for the measurement of bacteria of the genus Nitrospira of the present invention is an excellent method in terms of rapidity and simplicity.

実施例8.下水処理施設の運転管理への応用
下水処理施設(10施設)の硝化反応タンクについてニトロスピラ属細菌数と処理水中のケルダール態窒素量の関係を求めた。試料数は、春、夏、秋および冬について各施設1試料ずつ採取し、計40試料を解析した。その結果、図3に示す通り、ニトロスピラ属細菌数が10cells/mL以上保持されている反応タンクでは、90%以上のケルダール態窒素が除去されていることが明らかとなった。また、10〜10cells/mlの菌数が保持されているタンクでは、約9割のタンクで80%以上のケルダール態窒素が除去されていた。
Example 8 FIG. Application to operation management of sewage treatment facilities The relationship between the number of Nitrospira bacteria and the amount of Kjeldahl nitrogen in the effluent was determined for the nitrification reaction tanks of sewage treatment facilities (10 facilities). As for the number of samples, one sample was collected from each facility for spring, summer, autumn and winter, and a total of 40 samples were analyzed. As a result, as shown in FIG. 3, it was revealed that 90% or more of Kjeldahl nitrogen was removed from the reaction tank in which the number of bacteria of the genus Spirobacterium was maintained at 10 7 cells / mL or more. Moreover, in the tank in which the number of bacteria of 10 6 to 10 7 cells / ml is maintained, 80% or more of Kjeldahl nitrogen is removed in about 90% of the tanks.

硝化率は次の式で表される。
硝化率(%) =(流入水のケルダール態窒素濃度 − 処理水のケルダール態窒素濃度)/(流入水のケルダール態窒素濃度)×100
よって、以上の結果から、ニトロスピラ属の細菌数が10cells/mL以上、更に好ましくは10cells/ml以上となるよう、硝化反応タンクの運転条件を調整すれば、80%以上の硝化率を維持できると考えられた。
The nitrification rate is expressed by the following formula.
Nitrification rate (%) = (Kjeldahl nitrogen concentration in influent water-Kjeldahl nitrogen concentration in treated water) / (Kjeldahl nitrogen concentration in influent water) x 100
Therefore, from the above results, if the operating conditions of the nitrification reaction tank are adjusted so that the number of bacteria of the genus Nitrospira is 10 6 cells / mL or more, more preferably 10 7 cells / ml or more, the nitrification rate is 80% or more. It was thought that it could be maintained.

硝化細菌の増殖速度は、有機物を分解する細菌の増殖速度と比較してかなり小さいため、生物学的な硝化・脱窒プロセスのようにC−BODの酸化分解と硝化を同一の反応タンク内で行う場合には、硝化細菌を系内に保持できる条件(式1)が必要となる。
SRTN≧1/μN −(式1)
SRTN:硝化細菌を反応タンク系内に維持するために必要な固形物滞留時間(SRT)(d)
μN :硝化細菌の比増殖速度
Since the growth rate of nitrifying bacteria is considerably smaller than the growth rate of bacteria that decompose organic matter, oxidative degradation of C-BOD and nitrification are performed in the same reaction tank as in the biological nitrification / denitrification process. When performing, the condition (Formula 1) which can hold | maintain nitrifying bacteria in a system is needed.
SRTN ≧ 1 / μN − (Formula 1)
SRTN: Solid residence time (SRT) required to maintain nitrifying bacteria in the reaction tank system (d)
μN: Specific growth rate of nitrifying bacteria

活性汚泥プロセスでは、硝化細菌のSRTと活性汚泥プロセスのSRTが同じであることから、当該プロセスに硝化細菌を維持し硝化を促進させるためには、式1を満たすSRTの設定が必要であった。   In the activated sludge process, the SRT of the nitrifying bacteria and the SRT of the activated sludge process are the same. Therefore, in order to maintain the nitrifying bacteria and promote nitrification in the process, it was necessary to set the SRT satisfying Equation 1. .

硝化細菌の増殖速度は水温の影響を受けるので、低水温期では、硝化細菌を反応タンク内に保持するために必要な固形物滞留時間(SRT)は長くなる。現在では、標準活性汚泥法として設計されている下水処理施設における硝化反応に対する水温と固形物滞留時間の関係から、完全に硝化を生じさせることができる水温ごとのSRTの値を経験的に定量化し、その値による運転条件の管理が行われてきた。しかし、この方法はあくまでも経験式に基づくため、この式から導かれるSRTの値によって全ての反応タンクで最良の硝化率が得られるわけではなかった。   Since the growth rate of nitrifying bacteria is affected by the water temperature, the solid residence time (SRT) required for holding the nitrifying bacteria in the reaction tank becomes longer in the low water temperature period. At present, the SRT value for each water temperature that can cause complete nitrification is empirically quantified from the relationship between the water temperature and solids retention time for the nitrification reaction in a sewage treatment facility designed as a standard activated sludge process. Management of operating conditions based on these values has been carried out. However, since this method is based solely on empirical formulas, the best nitrification rate was not obtained in all reaction tanks by the SRT value derived from this formula.

しかしながら、本発明では迅速かつ簡便に反応タンク内の硝化細菌を測定し、測定データをもとに、良好な硝化率が維持できる量の硝化細菌が保持できるようにSRTを調整することができ、個々の反応タンクごとに適した運転管理を行うことが可能となる。   However, in the present invention, the nitrifying bacteria in the reaction tank can be measured quickly and easily, and based on the measurement data, the SRT can be adjusted so that an amount of nitrifying bacteria that can maintain a good nitrification rate can be retained. It becomes possible to perform operation management suitable for each individual reaction tank.

また、硝化細菌数の測定には、既存の硝化細菌測定法である最確数法や蛍光in−situハイブリダイゼーション法、定量的PCR法なども使用することができる。しかし、これらの方法は、測定期間が長かったり、熟練性や高価な機器、試薬が必要であったりすることから、施設内で容易に測定することはできなかった。   For the measurement of the number of nitrifying bacteria, the most probable number method, the fluorescent in-situ hybridization method, the quantitative PCR method, etc., which are existing nitrifying bacteria measurement methods, can also be used. However, these methods cannot be easily measured in a facility because of a long measurement period, skill, expensive equipment, and reagents.

したがって、菌数を指標とする活性汚泥プロセスの運転管理方法は、本発明によりはじめて実現するものであり、既存の方法と比較してより効率的な方法であるといえる。   Therefore, the operation management method of the activated sludge process using the number of bacteria as an index is realized for the first time by the present invention, and can be said to be a more efficient method than the existing methods.

以上詳述したように、本発明は、ニトロスピラ属の細菌に特異的な抗体をラテックス粒子に吸着させた測定用抗体感作ラテックスに係るものであり、当該抗体感作ラテックスを用いることにより、従来、長期間を要し、技術的にも熟練が必要とされていた、ニトロスピラ属の細菌の検出・測定を容易にかつ簡便に行うことを可能とするものである。   As described in detail above, the present invention relates to an antibody-sensitized latex for measurement in which an antibody specific to a bacterium of the genus Nitrospira is adsorbed on latex particles, and by using the antibody-sensitized latex, Therefore, it is possible to easily and conveniently perform detection and measurement of nitrospira bacteria, which require a long period of time and technical skill.

また、本発明は、ニトロスピラ属の細菌に対する特異的な抗体を作製し、活性汚泥等の生物学的窒素処理プロセス、水中、土壌中のニトロスピラ属の細菌を同定し、その菌数を迅速かつ適正に測定することを可能にするものである。   In addition, the present invention produces a specific antibody against a nitrospira bacterium, identifies a biological nitrogen treatment process such as activated sludge, identifies nitrospira bacteria in water and soil, and quickly and appropriately counts the number of bacteria. It makes it possible to measure.

また本発明は、下水処理施設の反応タンク中の硝化細菌数を迅速かつ簡便に測定し、これを指標として、活性汚泥プロセスの固形物滞留時間等の運転条件を制御することにより、活性汚泥プロセスの運転管理が容易となる。   In addition, the present invention quickly and easily measures the number of nitrifying bacteria in a reaction tank of a sewage treatment facility, and uses this as an index to control the operating conditions such as the solids residence time of the activated sludge process, thereby enabling the activated sludge process. Operation management becomes easier.

ラテックス粒子の粒径と測定下限値との関係を示す線図である。It is a diagram which shows the relationship between the particle size of a latex particle, and a measurement lower limit. RPLA法、FISH方及びMPN方によるニトロスピラ属の細菌の測定値を示す線図である。It is a diagram which shows the measured value of the bacterium of the genus Nitrospira by RPLA method, FISH method, and MPN method. ニトロスピラ属細菌数と硝化率との関係を示す線図である。It is a diagram which shows the relationship between the number of nitrospyra bacteria and a nitrification rate.

Claims (2)

亜硝酸酸化活性を有するニトロスピラ属細菌に特異的な抗体を比重が略1.5g/mlで平均粒径が1.0〜1.5μmのラテックス粒子に吸着させたことを特徴とするニトロスピラ属に属する細菌の測定用抗体感作ラテックス。   An antibody specific to a nitrospyra bacterium having nitrite oxidation activity is adsorbed on latex particles having a specific gravity of about 1.5 g / ml and an average particle size of 1.0 to 1.5 μm. Antibody-sensitized latex for measurement of bacteria belonging to it. 請求項1に記載の抗体感作ラテックスと被検試料とを混合し、予め定められた時間静置した後、個々のラテックス粒子同士が凝集したことを示す凝集像の発生の有無を確認することを特徴とする免疫学的測定法。   The antibody-sensitized latex according to claim 1 is mixed with a test sample and allowed to stand for a predetermined time, and then the presence or absence of an aggregated image indicating that individual latex particles are aggregated is confirmed. An immunological assay characterized by
JP2004053371A 2004-02-27 2004-02-27 Sensitized latex and immunoassay Expired - Lifetime JP4256802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053371A JP4256802B2 (en) 2004-02-27 2004-02-27 Sensitized latex and immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053371A JP4256802B2 (en) 2004-02-27 2004-02-27 Sensitized latex and immunoassay

Publications (2)

Publication Number Publication Date
JP2005241518A JP2005241518A (en) 2005-09-08
JP4256802B2 true JP4256802B2 (en) 2009-04-22

Family

ID=35023393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053371A Expired - Lifetime JP4256802B2 (en) 2004-02-27 2004-02-27 Sensitized latex and immunoassay

Country Status (1)

Country Link
JP (1) JP4256802B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471749B1 (en) * 2009-08-28 2016-05-18 Kansai Coke And Chemicals Co., Ltd. Biotreatment method
JP5782416B2 (en) * 2012-09-20 2015-09-24 株式会社神鋼環境ソリューション Method and apparatus for treating water to be treated
JP5782415B2 (en) * 2012-09-20 2015-09-24 株式会社神鋼環境ソリューション Method and apparatus for treating water to be treated

Also Published As

Publication number Publication date
JP2005241518A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
Okabe et al. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms
Kelly et al. Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system
Rongsayamanont et al. Relationship between respirometric activity and community of entrapped nitrifying bacteria: implications for partial nitrification
Nielsen et al. Quantification of cell‐specific substrate uptake by probe‐defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization
Nielsen et al. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography
Völsch et al. Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry
Carles et al. Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system
Rittmann et al. Molecular and modeling analyses of the structure and function of nitrifying activated sludge
Liao et al. Relationship of species-specific filament levels to filamentous bulking in activated sludge
JPH0231892A (en) Control for hydrophilically active sludge type water disposal process
Nielsen et al. Use of microautoradiography and fluorescent in situ hybridization for characterization of microbial activity in activated sludge
Konuma et al. Comparison of enumeration methods for ammonia-oxidizing bacteria
WO2007013157A1 (en) Antibody-sensitized latex
Feng Emergence of rapid methods for identifying microbial pathogens in foods
Bedrina et al. Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials
Yamaguchi et al. Detection of specific bacterial cells with 2-hydroxy-3-naphthoic acid-2'-phenylanilide phosphate and fast red TR in situ hybridization
Okabe et al. Sulfate reduction and sulfide oxidation in aerobic mixed population biofilms
JP4256802B2 (en) Sensitized latex and immunoassay
Caravelli et al. Effect of ozone on filamentous bulking in a laboratory scale activated sludge reactor using respirometry and INT-dehydrogenase activity
Dhall et al. Restructuring BOD: COD ratio of dairy milk industrial wastewaters in BOD analysis by formulating a specific microbial seed
Hung et al. Physical Enrichment of Polyphosphate‐Accumulating Organisms in Activated Sludge
Block et al. Ecotoxicity testing using aquatic bacteria
JPH05322896A (en) Method and antibody for managing active sludge
KR20080034970A (en) Antibody-sensitized latex
EP0752586A1 (en) Antibody-sensitized latex used for detecting nitrate or nitrite bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5