JP4256526B2 - Displacement measuring device for underground excavator - Google Patents

Displacement measuring device for underground excavator Download PDF

Info

Publication number
JP4256526B2
JP4256526B2 JP09910899A JP9910899A JP4256526B2 JP 4256526 B2 JP4256526 B2 JP 4256526B2 JP 09910899 A JP09910899 A JP 09910899A JP 9910899 A JP9910899 A JP 9910899A JP 4256526 B2 JP4256526 B2 JP 4256526B2
Authority
JP
Japan
Prior art keywords
displacement
wire
measuring
underground excavator
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09910899A
Other languages
Japanese (ja)
Other versions
JP2000291051A (en
Inventor
幹太 宮口
卓美 藤井
貴夫 上田
章二 門中
常康 大西
ヨシ孝 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Takenaka Civil Engineering and Construction Co Ltd filed Critical Takenaka Corp
Priority to JP09910899A priority Critical patent/JP4256526B2/en
Publication of JP2000291051A publication Critical patent/JP2000291051A/en
Application granted granted Critical
Publication of JP4256526B2 publication Critical patent/JP4256526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、計測用ワイヤの下端を地中掘削機に結び、同ワイヤの変位を地上で測定して地中掘削機の位置及び変位を計測する変位計測装置の技術分野に属する。
【0002】
【従来の技術】
地中連続壁等の施工に使用される地中掘削機は、水平変位やねじれ(水平回転)を正確に管理することが求められている。とりわけ掘削深度が100mを超えるような施工では、高精度の計測管理技術が特に要求される。こうした要求を満たす技術として計測用ワイヤによる変位計測装置が開発され使用されている。
【0003】
計測用ワイヤによる変位計測装置の原理は、図に示したように、計測用ワイヤ1の下端を地中掘削機2に結び、同ワイヤ1の変位を地上の検出部3(変位センサー)で測定する。計測用ワイヤ1の上端は固定点4により一定位置へ支持する。従って、計測用ワイヤ1の変位を測定すると、地中掘削機2の位置及び変位を計測できる訳である。
【0004】
従来、このような変位計測装置は種々公知であり、実用に供されている(例えば当出願人の特開平10−299028号、特開平5−209492号、特開平7−34771号公報など参照)。
【0005】
従来一般に、この種の変位計測装置は、図6図7に例示したように、計測ワイヤ1を一定の張力を保持しつつ繰り出す機能要素であるワイヤドラム5とサーボモータ6、及び計測されたワイヤ1の変位を基に地中掘削機2の位置ないし変位を演算し、ディスプレイ8を通じて表示する制御機能要素である制御盤7のほか、前記ワイヤドラム5から繰り出した計測用ワイヤ1の固定点に相当する案内シーブ4、及び同計測用ワイヤ1の変位を計測する機能要素である検出部3(変位センサー)までも、1個の大きなケーシング9の中に納めた大型、大重量の構造とされている。具体的に云うと、ケーシング9の幅は約1mで、奥行き長さは2.5m、高さも2.5mぐらいの大きさであり、重量は1トン乃至2トン程度もある。このように大型、大重量の変位計測装置10を、従来は地上に2台据え付けて、地中掘削機2の水平回転(ねじれ)と変位をそれぞれ計測している。
図7中の符号11は変位計測装置を据え付ける架台である。
【0006】
【本発明が解決しようとする課題】
近年、都市部における地中連続壁工事は、狭隘な場所や、高架の桁下、道路覆工下などのように高さ制限のある場所、或いは構造物に近接した施工など、施工条件の厳しい場所での工事が増加している。これに対応するべく、地中掘削機の小型化や機高の低減化などが進められている。しかし、地中掘削機が小型化したが故に、掘削孔の鉛直度を保持することが益々難しくなっている。
【0007】
掘削孔の鉛直度を保つためには、地中掘削機の変位計測装置の使用が不可欠である。しかし、従来の変位計測装置は、上述したとおり、大深度、大断面用の地中掘削機を対象としたものが主であり、狭隘な場所、高さ制限のある場所などに設置して使用するには問題の多い大きさと重量及び機能であった。特に、次のような問題点が大きい。
【0008】
▲1▼ 変位計測装置が大きいと、周囲の環境、例えば日射、気温や振動などによって架台の変形が生じ易く、それが計測精度に直接影響を及ぼす。特に、架台の熱変形は、変位計測装置の架台の大きさに比例し、全長が3m程度の変位計測装置の場合、10℃の温度変化で約0.36mmだけセンサーの計測値にずれ乃至誤差を生ずる。こうした誤差は、掘削深度100m時に換算すると、計測値としては36mmの誤差となって現れ、計測精度を著しく低下させる。また、日射による熱収縮は時間とともに変化するので、その較正(補正)が困難である。
【0009】
▲2▼ 地中掘削機を地上へ引き上げる際には、変位計測装置と干渉を起こすので、先に変位計測装置を移動させる必要がある。この点、従来の変位計測装置はスライド機構や回転機構を具備し、移動可能な構成になってはいるけれども、それが故に、変位計測装置の設置スペースのほかに、移動して待機させるスペースまでもが必要となっている。
【0010】
ところで、上述した当出願人の特開平10−299028号公報に提案した変位計測装置は、云うなれば従来2台を一組として使用することが必要であった変位計測装置の機能を改良し、1台のみで使用可能としたことが特徴である。
【0011】
そこで本発明の目的は、同上の変位計測装置を更に改良して、地中掘削機の掘削精度(計画位置からのずれの解消)を向上することである。
【0012】
本発明の重要な目的は、計測ワイヤを一定の張力を保持しつつ繰り出す機能要素、及び計測されたワイヤの変位を基に地中掘削機の位置ないし変位を演算し、ディスプレイを通じて表示する制御機能要素を含む本体部のケーシングと、計測用ワイヤの変位を計測する機能要素で成り常に水平状態を保持するように制御される検出部のケーシングとを分離独立した構成とした変位計測装置を提供することである。
【0013】
本発明の更なる目的は、狭隘な場所や、高架の桁下、道路覆工下などのように高さ制限のある場所、或いは構造物に近接した施工など、施工条件の厳しい場所での使用に適し、且つ、熱変形の悪影響を受けることが少なく、設置スペースも小さくて済み、移動や設置を簡単に行える、地中掘削機の変位計測装置を提供することである。
【0014】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1記載の発明に係る地中掘削機の変位計測装置は、
計測用ワイヤの下端を地中掘削機結び、同ワイヤの変位を地上で測定して地中掘削機の位置及び変位を計測する変位計測装置において、
計測ワイヤを一定の張力を保持しつつ繰り出す機能要素、及び計測されたワイヤの変位を基に地中掘削機の位置ないし変位を演算し、ディスプレイを通じて表示する制御機能要素を含む本体部を収納したケーシングと、
計測用ワイヤの変位を計測する機能要素を収納した検出部のケーシングとは分離独立した構成され、検出部のケーシングは水平状態を保持するように制御可能なレベリング機構を介して独立のベースフレーム上に据え付けられており
本体部と検出部は、本体部の機能要素から繰り出された計測用ワイヤの案内シーブを本体部から延びる支持腕によって前記検出部の直上位置に設置し、同案内シーブを経由した計測用ワイヤを検出部の検出器中へ通してその下端を地中掘削機と結ぶことで組み合わされていることを特徴とする。
【0017】
【発明の実施の形態及び実施例】
1は、本発明に係る地中掘削機の変位計測装置実施形態を概念的に示している。この変位計測装置は、図に示したように、計測用ワイヤ1の下端を地中掘削機2に結び、同ワイヤ1の変位を地上の検出部3で測定して地中掘削機2の位置及び変位を計測する構成である。その全体のシステム構成は図に示したとおりである。
【0018】
先ず図1は、計測ワイヤ1を一定の張力を保持しつつ繰り出す機能要素としてのワイヤドラム5とサーボモータ6、及び計測されたワイヤ1の変位を基に地中掘削機の位置ないし変位を演算し、ディスプレイ8を通じて表示する制御機能要素である制御盤7を含み、それらを独立のケーシング9内に納めた本体部20と、前記計測用ワイヤ1の変位を計測する機能要素である検出器3(小型の光学式変位センサー)で成る検出部11のケーシングとが分離独立した構成とされ、両者は、本体部20の前記ワイヤドラム5から繰り出された計測用ワイヤ1の案内シーブ4を、前記検出部11の直上位置に設置し、同案内シーブ4を経由した計測用ワイヤ1を検出部11の検出器3の中へ通して、その下端を図2のように地中掘削機2へ結ぶことで組み合わされている。
【0019】
図1の実施形態は、本体部20のケーシング9の側面へ、支持腕12を取付け部13により起伏自在に設置して、クレーンのブームのように延ばした支持腕12によって案内シーブ4が支持されている。こうして本体部20と検出部11とは各々のケーシングが完全に分離独立した構成である。
【0020】
より具体的な実施例を図に示している。
即ち、本体部20のケーシングは、走行部14を備えた移動車輌の上に据え付けて構成され、同ケーシングの前部に、案内シーブ4の支持手段として、a矢印、及びb矢印のように折り畳まれ、または逆に正反対の順序で展開される支持腕12を備えている。支持腕12の折り畳み機構には、クレーンのブームなどで種々公知の油圧ジャッキによる駆動システムが好適に採用される。
【0021】
一方、検出部11は、図A、Bに詳細を示したように、前記検出器3(光学式変位センサー)を内部に納めたケーシングが、複数の垂直なネジジャッキのようなレベリング機構15を介してベースフレーム16の上に垂直な姿勢で据え付けられて、小型、軽量に構成されている。前記レベリング機構15の操作により検出部11は常に水平状態を保持するように制御される。また、検出部11はベースフレーム16によって、掘削孔17の直上位置へ簡易に設置可能である。
【0022】
従って、上記の構成によれば、掘削孔17の上には、小型の検出部11のみを設置すれば使用可能であり、その移動、設置が簡便である。そして、可及的に小型に構成された検出部11は、大型の本体部20の熱収縮や振動等の影響は一切受けないから、その分計測精度が向上する。検出部11が小型であるだけに、そのレベル調整や保持も容易であり、更に地盤の振動等に対する防振対策も容易に実施できる。
【0025】
【本発明が奏する効果】
請求項1に記載した発明に係る地中掘削機の変位計測装置は、本体部20と検出部11のケーシングを分離独立の構成としたので、狭隘な場所や、高架の桁下、道路覆工下などのように高さ制限のある場所、或いは構造物に近接した施工など、施工条件の厳しい場所での使用に適する。
【0026】
また、検出部11が、本体部20の熱変形の悪影響を受けることが少なく、掘削孔17の上には小型の検出部11を設置するだけで使用可能であるから、設置スペースも小さくて済み、移動や設置を簡単に行える。
【0027】
小型の検出部11は、レベルの調整、保持も容易であり、更に防振対策も容易に実施できる。
【図面の簡単な説明】
【図1】 本発明に係る変位計測装置に実施形態を概念的に示した説明図である。
【図】 図1のより具体的な実施例の立面図である。
【図】 Aは検出部の平面図、Bは立面図である。
【図】 変位計測装置のシステム全体の概要図である。
【図】 変位計測装置の原理説明図である。
【図】 従来の変位計測装置を概念的に示した説明図である。
【図図6のより具体的な実施例の立面図である。
【符号の説明】
1 計測用ワイヤ
2 地中掘削機
5 ワイヤドラム
7 制御盤
20 本体部
3 検出器
11 検出部
15 レベリング機構
4 案内シーブ
12 支持腕
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a displacement measuring apparatus that connects the lower end of a measuring wire to an underground excavator and measures the position and displacement of the underground excavator by measuring the displacement of the wire on the ground.
[0002]
[Prior art]
Underground excavators used for construction of underground underground walls and the like are required to accurately manage horizontal displacement and torsion (horizontal rotation). Particularly in construction where the excavation depth exceeds 100 m, a highly accurate measurement management technique is particularly required. A displacement measuring device using a measuring wire has been developed and used as a technology that satisfies these requirements.
[0003]
As shown in FIG. 5 , the principle of the displacement measuring device using the measuring wire is such that the lower end of the measuring wire 1 is connected to the underground excavator 2 and the displacement of the wire 1 is detected by the detection unit 3 (displacement sensor) on the ground. taking measurement. The upper end of the measuring wire 1 is supported at a fixed position by a fixed point 4. Therefore, when the displacement of the measuring wire 1 is measured, the position and displacement of the underground excavator 2 can be measured.
[0004]
Conventionally, various types of such displacement measuring devices are known and have been put to practical use (see, for example, Japanese Patent Application Laid-Open No. 10-299028, Japanese Patent Application Laid-Open No. 5-209492, Japanese Patent Application Laid-Open No. 7-34771, etc. by the present applicant). .
[0005]
The conventional general, this type of displacement measuring device, as illustrated in FIGS. 6 and 7, the wire drum 5 and the servo motor 6 is measured wire 1 a functional element that feeds while maintaining a constant tension, and measured Based on the displacement of the wire 1, the position or displacement of the underground excavator 2 is calculated and displayed on the display 8. In addition to the control panel 7 which is a control function element, the fixed point of the measuring wire 1 fed out from the wire drum 5 A large and heavy structure housed in one large casing 9 is also included in the guide sheave 4 corresponding to the above and the detecting unit 3 (displacement sensor) which is a functional element for measuring the displacement of the measuring wire 1. Has been. More specifically, the width of the casing 9 is about 1 m, the depth length is 2.5 m, the height is about 2.5 m, and the weight is about 1 to 2 tons. Conventionally, two large and heavy displacement measuring devices 10 are installed on the ground, and the horizontal rotation (twist) and displacement of the underground excavator 2 are measured.
Reference numeral 11 in FIG. 7 denotes a mount on which the displacement measuring device is installed.
[0006]
[Problems to be solved by the present invention]
In recent years, continuous underground wall construction in urban areas has severe construction conditions, such as narrow places, places where there are height restrictions such as under underpasses and under road linings, or construction close to structures. Construction on site is increasing. To cope with this, downsizing of underground excavators and reduction of machine height are being promoted. However, since the underground excavator has been downsized, it becomes increasingly difficult to maintain the verticality of the excavation hole.
[0007]
In order to maintain the verticality of the excavation hole, it is indispensable to use a displacement measuring device of the underground excavator. However, as described above, conventional displacement measuring devices are mainly intended for underground excavators for large depths and large cross sections, and are used by installing them in confined places and places with height restrictions. There were many problems with size, weight and function. In particular, the following problems are significant.
[0008]
(1) If the displacement measuring device is large, the pedestal is likely to be deformed by the surrounding environment such as solar radiation, temperature and vibration, which directly affects the measurement accuracy. In particular, the thermal deformation of the gantry is proportional to the size of the gantry of the displacement measuring device, and in the case of a displacement measuring device having a total length of about 3 m, a deviation or error in the measured value of the sensor by about 0.36 mm with a temperature change of 10 ° C. Is produced. When converted to an excavation depth of 100 m, such an error appears as an error of 36 mm as a measurement value, which significantly reduces the measurement accuracy. Moreover, since heat shrinkage due to solar radiation changes with time, it is difficult to calibrate (correct) it.
[0009]
{Circle around (2)} When the underground excavator is lifted to the ground, it causes interference with the displacement measuring device, so it is necessary to move the displacement measuring device first. In this regard, the conventional displacement measurement device has a slide mechanism and a rotation mechanism, and is configured to be movable, but therefore, in addition to the installation space for the displacement measurement device, up to the space to move and wait It is necessary.
[0010]
By the way, the displacement measuring apparatus proposed in the above-mentioned Japanese Patent Application Laid-Open No. 10-299028 has improved the function of the displacement measuring apparatus that conventionally required two sets to be used as a set, The feature is that only one unit can be used.
[0011]
Accordingly, an object of the present invention is to further improve the displacement measuring apparatus of the above to improve the excavation accuracy of the underground excavator (elimination of deviation from the planned position).
[0012]
An important object of the present invention is to provide a functional element that feeds a measurement wire while maintaining a constant tension, and a control function that calculates the position or displacement of the underground excavator based on the measured displacement of the wire and displays it through a display. Provides a displacement measuring device that has a separate and independent configuration of the casing of the main body including the elements and the casing of the detection unit , which is composed of functional elements that measure the displacement of the measurement wire and is controlled to always maintain a horizontal state. It is to be.
[0013]
A further object of the present invention is to be used in a narrow place, a place with a height restriction such as under an elevated girder or under a road lining, or a place with severe construction conditions such as construction close to a structure. It is an object of the present invention to provide a displacement measuring apparatus for an underground excavator that is suitable for the above-mentioned, is less susceptible to the adverse effects of thermal deformation, requires only a small installation space, and can be easily moved and installed.
[0014]
[Means for Solving the Problems]
As a means for solving the above-described problem, a displacement measuring device for an underground excavator according to the invention of claim 1 is:
The lower end of the measuring wire knot and underground excavator, the displacement measurement apparatus for measuring the position and the displacement of the underground excavator by measuring the displacement of the wire on the ground,
A functional element that feeds the measuring wire while maintaining a constant tension, and a main body including a control functional element that calculates the position or displacement of the underground excavator based on the measured displacement of the wire and displays it through the display . A casing ,
A casing of the detection unit accommodating functional elements for measuring the displacement of the measurement wire is a separate and independent configuration, the casing of the detector is independent of the base frame via a controllable leveling mechanism to maintain the horizontal state Installed on top ,
The main body part and the detection part are installed at a position immediately above the detection part by means of a support arm extending from the main body part of the measurement wire guide sheave drawn out from the functional element of the main body part, and the measurement wire passing through the guide sheave It is characterized by being combined by passing through the detector of the detection unit and connecting the lower end with an underground excavator .
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Figure 1 conceptually illustrates an embodiment of a displacement measurement apparatus of the underground excavator according to the present invention. As shown in FIG. 2 , this displacement measuring apparatus connects the lower end of the measuring wire 1 to the underground excavator 2, and the displacement of the wire 1 is measured by the ground detection unit 3 to detect the displacement of the underground excavator 2. This is a configuration for measuring the position and displacement. The entire system configuration is as shown in FIG.
[0018]
First, FIG. 1 calculates the position or displacement of an underground excavator based on a wire drum 5 and a servo motor 6 as functional elements that feed the measuring wire 1 while maintaining a constant tension, and the measured displacement of the wire 1. A control panel 7 which is a control function element to be displayed through the display 8, a main body 20 in which they are housed in an independent casing 9, and a detector 3 which is a function element for measuring the displacement of the measurement wire 1. and casing (compact optical displacement sensor) in adult Ru detection unit 11 is a separate and independent configuration, both, the guide sheave 4 of the wire drum 5 from the fed-out measuring wire 1 of the body portion 20, The measuring wire 1 installed at a position directly above the detection unit 11 and passing through the guide sheave 4 is passed through the detector 3 of the detection unit 11 and its lower end is passed to the underground excavator 2 as shown in FIG. tying It is combined.
[0019]
In the embodiment of FIG. 1, the guide sheave 4 is supported on the side surface of the casing 9 of the main body portion 20 by the support arm 12 being installed so that it can be raised and lowered by the attachment portion 13 and extending like a boom of a crane. Tei Ru. Thus, the main body 20 and the detection unit 11 are configured such that each casing is completely separated and independent.
[0020]
It is shown in Figure 2 a more concrete example.
That is, the casing of the main body portion 20 is configured to be installed on a moving vehicle having the traveling portion 14, and is folded at the front portion of the casing as support means for the guide sheave 4 as indicated by arrows a and b. It is provided with a supporting Jiude 12 that will be deployed, or conversely in the opposite order. For the folding mechanism of the support arm 12, various known hydraulic jack drive systems such as crane booms are preferably employed.
[0021]
On the other hand, the detection unit 11, FIG. 3 A, as shown in detail in B, the detector 3 (optical displacement sensor) casing was housed therein, leveling mechanism 15 such as a plurality of vertical screw jacks It is installed in a vertical posture on the base frame 16 via the, and is configured to be small and lightweight. By operating the leveling mechanism 15, the detection unit 11 is controlled so as to always maintain a horizontal state. The detection unit 11 can be easily installed at a position directly above the excavation hole 17 by the base frame 16.
[0022]
Therefore, according to said structure, it can be used if only the small detection part 11 is installed on the excavation hole 17, and the movement and installation are simple. And since the detection part 11 comprised as small as possible is not influenced at all by the thermal contraction, vibration, etc. of the large-sized main-body part 20, a measurement precision improves that much. Since the detection unit 11 is small in size, it can be easily adjusted and maintained, and can be easily subjected to anti-vibration measures against ground vibration and the like.
[0025]
[Effects of the present invention]
Since the displacement measuring device of the underground excavator according to the invention described in claim 1 is configured such that the casing of the main body portion 20 and the detection portion 11 is separated and independent, a narrow place, an overhead girder, a road lining It is suitable for use in places where the construction conditions are severe, such as places where the height is limited, such as below, or construction close to the structure.
[0026]
In addition, since the detection unit 11 is less likely to be adversely affected by the thermal deformation of the main body unit 20 and can be used simply by installing the small detection unit 11 on the excavation hole 17, the installation space can be reduced. Easy to move and install.
[0027]
The small detection unit 11 can easily adjust and maintain the level, and can easily implement a vibration-proof measure.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram conceptually showing an embodiment of a displacement measuring apparatus according to the present invention.
FIG. 2 is an elevational view of the more specific embodiment of FIG.
[3] A plan view of the detection unit, B is an elevational view.
FIG. 4 is a schematic diagram of the entire system of the displacement measuring apparatus.
FIG. 5 is a diagram illustrating the principle of a displacement measuring device.
FIG. 6 is an explanatory view conceptually showing a conventional displacement measuring apparatus.
FIG. 7 is an elevation view of the more specific embodiment of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measuring wire 2 Underground excavator 5 Wire drum 7 Control panel 20 Main part 3 Detector 11 Detection part 15 Leveling mechanism 4 Guide sheave 12 Support arm

Claims (1)

計測用ワイヤの下端を地中掘削機結び、同ワイヤの変位を地上で測定して地中掘削機の位置及び変位を計測する変位計測装置において、
計測ワイヤを一定の張力を保持しつつ繰り出す機能要素、及び計測されたワイヤの変位を基に地中掘削機の位置ないし変位を演算し、ディスプレイを通じて表示する制御機能要素を含む本体部を収納したケーシングと、
計測用ワイヤの変位を計測する機能要素を収納した検出部のケーシングとは分離独立した構成され、検出部のケーシングは水平状態を保持するように制御可能なレベリング機構を介して独立のベースフレーム上に据え付けられており
本体部と検出部は、本体部の機能要素から繰り出された計測用ワイヤの案内シーブを本体部から延びる支持腕によって前記検出部の直上位置に設置し、同案内シーブを経由した計測用ワイヤを検出部の検出器中へ通してその下端を地中掘削機と結ぶことで組み合わされていることを特徴とする、地中掘削機の変位計測装置。
The lower end of the measuring wire knot and underground excavator, the displacement measurement apparatus for measuring the position and the displacement of the underground excavator by measuring the displacement of the wire on the ground,
A functional element that feeds the measuring wire while maintaining a constant tension, and a main body including a control functional element that calculates the position or displacement of the underground excavator based on the measured displacement of the wire and displays it through the display . A casing ,
A casing of the detection unit accommodating functional elements for measuring the displacement of the measurement wire is a separate and independent configuration, the casing of the detector is independent of the base frame via a controllable leveling mechanism to maintain the horizontal state Installed on top ,
The main body part and the detection part are installed at a position immediately above the detection part by means of a support arm extending from the main body part of the measurement wire guide sheave drawn out from the functional element of the main body part, and the measurement wire passing through the guide sheave A displacement measuring device for an underground excavator, wherein the displacement measuring device is combined by passing the lower end of the detector into a detector and connecting the lower end to the underground excavator .
JP09910899A 1999-04-06 1999-04-06 Displacement measuring device for underground excavator Expired - Fee Related JP4256526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09910899A JP4256526B2 (en) 1999-04-06 1999-04-06 Displacement measuring device for underground excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09910899A JP4256526B2 (en) 1999-04-06 1999-04-06 Displacement measuring device for underground excavator

Publications (2)

Publication Number Publication Date
JP2000291051A JP2000291051A (en) 2000-10-17
JP4256526B2 true JP4256526B2 (en) 2009-04-22

Family

ID=14238644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09910899A Expired - Fee Related JP4256526B2 (en) 1999-04-06 1999-04-06 Displacement measuring device for underground excavator

Country Status (1)

Country Link
JP (1) JP4256526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715203B (en) 2018-09-28 2021-01-01 日商川崎重工業股份有限公司 Teaching position setting method and teaching position setting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715203B (en) 2018-09-28 2021-01-01 日商川崎重工業股份有限公司 Teaching position setting method and teaching position setting device

Also Published As

Publication number Publication date
JP2000291051A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
US4129224A (en) Automatic control of backhoe digging depth
KR101459063B1 (en) Method and arrangement for producing a trench wall element
FI71601C (en) Device for controlling excavation depth.
US8033751B2 (en) Gyro compensated inclinometer for cross slope control of concrete screed
JP4256526B2 (en) Displacement measuring device for underground excavator
CN106744325A (en) A kind of method and apparatus measured with forecast crane arm support head sidesway
US9617712B2 (en) Method for determining the position of a cutting device in the ground using a mobile carriage
JPH06108456A (en) Position measurement apparatus for excavator for underground continuous wall
JP2014101713A (en) Position measuring apparatus for pile driving machine
JP3742936B2 (en) Method and apparatus for measuring excavation accuracy of underground excavator
JP3318322B2 (en) Underground diaphragm wall excavator position detector
JP2747896B2 (en) Earth strength test equipment
JPH09310500A (en) Large building lifting method
JP4026899B2 (en) Drilling machine verticality measuring device
JP2567801B2 (en) Position measuring method and device for underground excavator
JP3259162B2 (en) Underground excavator position measuring device
JPH01137093A (en) Excavation monitor
CN206156613U (en) Adopt gyroscope mode to detect check out test set of jib loading boom angle
JP3924047B2 (en) Boom angle meter
JP3929610B2 (en) Carriage for moving tracking measuring device of automatic tracking measuring system
KR102234865B1 (en) Quick stand for light wave measuring equipment for railway tunnel
JP2915795B2 (en) Underground excavator horizontal displacement measuring device and underground excavation method
JP2913628B1 (en) Underground diaphragm wall excavator position detector
JPS63247425A (en) Excavator for underground wall
JPH0527433Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees