JP4255264B2 - Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film - Google Patents

Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film Download PDF

Info

Publication number
JP4255264B2
JP4255264B2 JP2002314652A JP2002314652A JP4255264B2 JP 4255264 B2 JP4255264 B2 JP 4255264B2 JP 2002314652 A JP2002314652 A JP 2002314652A JP 2002314652 A JP2002314652 A JP 2002314652A JP 4255264 B2 JP4255264 B2 JP 4255264B2
Authority
JP
Japan
Prior art keywords
base layer
temperature corrosion
layer
corrosion
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002314652A
Other languages
Japanese (ja)
Other versions
JP2004149834A (en
Inventor
謙一 山田
政信 入江
芳一 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2002314652A priority Critical patent/JP4255264B2/en
Publication of JP2004149834A publication Critical patent/JP2004149834A/en
Application granted granted Critical
Publication of JP4255264B2 publication Critical patent/JP4255264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、高温腐食環境下にある廃棄物発電設備の蒸気管、スーパーヒーターチューブなどの高温腐食に対して優れた高温耐食性を有する皮膜とその形成方法に関するものである。なお、本発明の技術は、各種ボイラ、ガスタービン、加熱炉などの、断熱皮膜、高温耐食性皮膜を必要とする分野の基材の表面処理技術としても応用できるものである。
【0002】
【従来の技術】
産業廃棄物や生活ごみ等の廃棄物の処理は、焼却処理による減容化技術とともに、エネルギーの安定供給の観点から、その燃焼エネルギーを有効に活用する廃棄物発電等の技術が益々重要となってきている。現在、二酸化炭素の削減や廃棄物処理問題の対策として最も期待されているのが廃棄物発電であり、通常の発電所並である発電効率が30%以上の高効率発電が望まれている。
【0003】
廃棄物発電設備において燃料として使用される廃棄物には、木材、紙、プラスチックなどの可燃物の他、さまざまな物質が不均一に混在している。そのため、廃棄物焼却炉の燃焼ガス中には、一般の化石燃料(重油、石炭など)の燃焼ガスに比べてHClなどの腐食性成分および燃焼飛灰(ダスト)を多く含んでいる。これらの腐蝕性成分やダストが高温になることにより、ボイラチューブなどの基材が腐食することを避けるため、現状の廃棄物発電は、蒸気温度が300℃以下に設定されており、発電効率も5〜15%程度と低くなっている。
【0004】
近年、廃棄物発電設備では、発電効率の向上を目的として高温高圧化が進められているが、ボイラチューブなどの基材の高温腐食環境が苛酷化するため、その腐食劣化が問題となっている。
【0005】
発電効率の向上という目標の実現には、ボイラの蒸気温度を高めることが必須の条件である。このため、高温の廃棄物燃焼ガス中の塩素系ガスやアルカリ溶融塩による激しい腐食に耐える材料の研究開発が行われ、Ni基合金(Alloy625)等の優れた高温耐食合金チューブが開発されている。しかし、これらの合金は枯渇資源を大量に使用し、非常に高価であることから、発電コストの観点からより安価な高温耐食材料が求められている。
【0006】
特許文献1には、Ni等をベースとする耐熱合金基材の表面にZrOを溶射する方法、また、基材と表層の間に傾斜機能材料(FGM:Functionally Graded Materials)からなる中間層を設けて熱応力を緩和する方法が記載されている。
【0007】
このような溶射作業を行うために、各種のプラズマ装置が用いられている。図5は、従来の超音速プラズマ溶射装置の要部の断面図である。同図に示すように、円筒状のトーチ本体51の基端側に、主としてN等のガスが供給流路51aから供給されるチャンバ51bを形成し、このチャンバ51bの中に陰極の電極52が組み込まれている。そして、チャンバ51bと同軸として陽極53を本体51内に配置し、トーチ本体51の末端側であって陽極53の終端から少し離れた位置に溶射材料の供給管54を備えている。
【0008】
このような超音速プラズマ溶射装置では、供給流路51aをチャンバ51bの内周面の接線方向にガスを供給することによって、ガスは、チャンバ51bから陽極53内の流路にかけて図中の実線で示すようにスパイラルの旋回流れとなる。そして、電極52と陽極53との間に100V〜500Vの直流電圧を印加して高電圧の高周波を重畳すると、スパーク電流が流れ、プラズマガスを媒体として直流電流による安定したプラズマアーク55が発生する。このプラズマアーク55は、チャンバ51bから陽極53内を抜けるガス流が旋回流となっていることから、図中の実線で示すように流路断面の中心に収束する。したがって、プラズマアーク55は高速のプラズマガス流による旋回流れの中心に沿って安定した収束流となり、陽極53の終端までの途中でアークが着地することなく、内部流路53aを介して陽極53の終端を出て外まで誘導される。
【0009】
このように、チャンバ51bに供給されたガスは、プラズマガスとして陽極53を出た直後まで効率良く加熱され、高熱容量の超音速プラズマジェットとなって噴射される。そして、供給管54から溶射材料粉末を添加することによって、高速プラズマ流により溶融され、プラズマフレーム56を介して被溶射体の表面に付着して溶射皮膜となる。
【0010】
【特許文献1】
特開平5−279832号公報(段落番号0003、第1図)
【0011】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に記載されたような方法で形成された皮膜は、廃棄物発電の炉内において、燃焼灰と腐食性ガスが複雑に絡み合った過酷な環境下に暴露されると、Cl(クロル)やS(サルファ)を多く含む腐食性ガスが皮膜内の気孔に侵入し、Ni層とZrO層の界面を経時的に腐食するという問題がある。皮膜内の気孔は、下地のNi層やZrOを従来のプラズマ溶射装置で溶射した場合に、下地のNi層やZrOの層に形成されるもので、通常数%程度の気孔が存在する。
【0012】
特に、外部ポート型といわれる従来のプラズマ溶射装置のトーチでは、プラズマフレームが一番高温になる陽極の終端位置から少し離れた位置に溶射材料粉末の供給管54を配置しているので、溶射粉末材料が高融点のものである場合には溶融不足となって、溶射皮膜が劣化して割れやすくなることがある。
【0013】
そこで本発明が解決しようとする課題は、皮膜形成面の高温耐食、耐摩耗性を飛躍的に改善できる高温耐食性皮膜の形成方法および高温耐食性皮膜を提供することにある。
【0014】
【課題を解決するための手段】
前記課題を解決するため、本発明の高温耐食性皮膜の形成方法は、内部ポート型の超音速プラズマ溶射装置により基材の表面にNiおよびCrを主体とした合金からなる下地層を形成し、この下地層の上に安定化ZrOまたは部分安定化ZrOを主体としたセラミックからなる表層を形成することを特徴とする。
【0015】
本発明方法によって形成された被膜には、NiおよびCrを主体とした合金からなる下地層の上にセラミックからなる表層が形成されているので、燃焼灰はセラミック皮膜の上に積層することになり、基材の溶融塩腐食が防止される。特に、内部ポート型の超音速プラズマ溶射装置を用いて溶射被膜が形成されているので、下地層および表層の内部および界面の気孔が小さくなって、燃焼灰が下地層に接触することがほとんど防止されるとともに、表層が均一に形成されて、表層の割れが防止される。
【0016】
ここで、超音速プラズマ溶射装置とは、ガスの旋回流を用いて高い電圧(100V以上)を発生させる溶射装置で、プラズマフレームの吹出速度が1000m/s以上であるプラズマ溶射装置のことをいう。また、内部ポート型の超音速プラズマ溶射装置とは、プラズマアークへの溶射材料粉末の供給ノズルをトーチ本体内に埋設するとともに供給ノズルの先端をプラズマアークの吹出口に隣接して配置し、プラズマフレームの進行方向に対して斜め後方から溶射材料粉末を供給するようにした形式の溶射装置をいう。
【0017】
前記表層を形成した後に、前記表層および前記下地層からなる皮膜を、高周波加熱を用いて、900℃〜1250℃に加熱し0.1秒〜30分間保持する加熱処理を行うことが望ましい。皮膜を900℃以上に加熱することにより、たとえばNi系自溶性合金である下地層が溶融し、凝固した後に気孔率の少ない、緻密な下地層を形成することができる。また、この加熱の段階で下地層に酸化クロムが形成され、耐食性がより向上する。加熱温度が1250℃を超えると、下地層が組成変化してしまい、また表層の皮膜が割れて劣化することがあるので、加熱温度範囲は900℃〜1250℃とする。
【0018】
下地層および表層の皮膜は、上記温度範囲に達しただけでも、高温耐食性の向上が見られる。加熱保持時間を、0.1秒〜30分としたのは、0.1秒未満では計測誤差等により上記温度範囲に達したかどうかの判断が不明となる場合があるからであり、30分を超えると基材の酸化により鋭敏化の影響が発生する可能性があるからである。ここで、鋭敏化とは、酸化によりクロム濃度の偏析が起こり、腐食されやすくなる傾向のことをいう。0.1秒〜30分とすることにより、鋭敏化の影響を排除しながら、高温耐食性を向上させることができる。
なお、この加熱処理でセラミックからなる表層も加熱されるが、内部ポート型のプラズマ溶射装置を用いているので、表層は均一に形成されており、加熱温度が1250℃を超えない限り、表層が割れることはない。
【0019】
本発明の高温耐食性皮膜は、基材の表面に、NiおよびCrを主体とする合金からなる下地層と、安定化ZrOまたは部分安定化ZrOを主体としたセラミックからなる表層とを有する高温耐食性皮膜が形成され、前記基材と前記下地層との境界および前記下地層と前記表層との境界が、前記下地層の溶融と凝固の過程を経て緊密に密着していることを特徴とする。
下地層の上に表層を形成した後に、表層および下地層からなる皮膜を、高周波加熱を用いて900℃〜1250℃に加熱し、0.1秒〜30分間保持する加熱処理を行うことによって、皮膜が下地層の溶融温度まで加熱され、下地層がいったん溶融し、その後凝固することによって、基材と下地層との境界および下地層と表層との境界が緊密に密着する。また、下地層に酸化クロムが形成されるので、皮膜は優れた高温耐食性を発揮する。
【0020】
前記下地層の気孔率は、1%以下であることが好ましい。下地層の上に表層を形成した後に加熱処理を行うことにより、下地層内の気孔が小さくなる。気孔率を1%以下としたのは、気孔率がこれより大きくなると耐食性が低下するからである。このことは、るつぼ埋込法による耐食性試験において、500℃以上の雰囲気中で50時間以上経過したときに、気孔率が1%より大きいときは腐食の進行が著しいことから、実使用面で問題があると判断される。
気孔率を1%以下にすることにより、気孔に腐食性ガスが侵入することが防止され、耐食性を向上させることができる。
【0021】
【発明の実施の形態】
図1は本発明の高温耐食性皮膜の形成方法に用いる内部ポート型の超音速プラズマ溶射装置の要部の断面図、図2は高温耐食性皮膜の断面図である。
図1に示すように、内部ポート型の超音速プラズマ溶射装置1は、溶射材料粉末の供給管2をトーチ本体51内に埋設するとともに、供給管2のノズル先端をプラズマアーク55の吹出口3に隣接して配置し、プラズマフレーム56の進行方向に対して斜め後方から溶射材料粉末を供給するようにしたものである。
【0022】
供給管2から供給される溶射材料粉末は、プラズマフレーム56の最も高温になる吹出口3に隣接する位置からプラズマフレーム56内に斜め後方から供給されるので、プラズマフレーム56の流れを乱さずに、その内部で均一に溶融される。
【0023】
次に、高温耐食性皮膜の形成手順について説明する。
(下地層形成工程)
本発明の下地層4として用いられるNiおよびCrを主体とした合金は、NiおよびCrと、Co、Al、Y、Mo、Fe、W、B、Si、NbおよびTaのうちから選ばれた1種以上との組合せからなる耐熱合金である。たとえば、Ni−Cr−Mo合金のインコネル625、ハステロイC−276、Ni−Cr−B−Si合金のNi系自溶性合金、NiCoCrAlY、NiCrAlYなどである。
【0024】
本工程では、NiおよびCrを主体とした合金の粉末を、内部ポート型の超音速プラズマ溶射装置1の供給管2に供給し、これを吹出口3から噴出されるプラズマフレーム56とともに基材5の表面に噴出し、下地層4を形成する。下地層4の厚みは50μm〜500μm程度に形成することができる。
【0025】
(表層形成工程)
下地層4の上には、表層6を形成する。表層6を形成する安定化ZrOまたは部分安定化ZrOを主体としたセラミック粉末は、ZrOを主成分としてY、MgO、CaOから選ばれた1種以上の安定化材を含む材料である。
【0026】
本工程では、下地層4の上に安定化ZrOまたは部分安定化ZrOを主体としたセラミック粉末を、内部ポート型の超音速プラズマ溶射装置1の供給管2に供給し、これを吹出口3から噴出されるプラズマフレーム56とともに基材5の下地層4の表面に噴出し、表層6を形成する。表層6の厚みは50μm〜500μm程度に形成することができる。
【0027】
内部ポート型の超音速プラズマ溶射装置1は、従来のプラズマ装置よりも粉末供給位置がプラズマフレームの高温部にあるため、溶射材料粉末をよく溶かして吹き付けることができる。特に融点の高いセラミック材料をよく溶かすことができるので、粒子間結合の強い緻密な溶射皮膜を形成することができる。
【0028】
(加熱工程)
表層形成工程の後に、表層6および下地層4を、高周波加熱を用いて900℃〜1250℃に加熱し、0.1秒〜30分間保持する加熱処理を行う。この加熱処理は、下地層4および表層6の材料に応じて、最適な加熱温度と保持時間がある。たとえば、Ni自溶性合金を用いた場合には、加熱温度1080℃で保持時間10秒以上となるようにするとよい。
【0029】
加熱処理によって、下地層4および表層6からなる皮膜が下地層4の溶融温度まで加熱され、下地層4がいったん溶融し、その後凝固することによって、基材5と下地層4との境界7および下地層4と表層6との境界7が緊密に密着し、耐熱性および密着性が向上する。また、下地層4の気孔率は、1%以下(ほとんど0%)になり、腐食性ガスが侵入しにくくなるので、耐食性が向上する。
なお、腐食環境の程度によっては、この加熱処理を省略することもできる。
【0030】
また、一般的な金属皮膜の加熱処理を行うときは、通常、金属皮膜の表面にフラックスなどの酸化防止剤を塗布し、乾燥してから加熱処理を行うのであるが、本発明の高温耐食性皮膜は、下地層4の上層にセラミック層である表層6が形成されているので、酸化防止剤を塗布しなくても、金属皮膜である下地層4が酸化されることはほとんどない。
【0031】
本発明に係る皮膜は、最適な加熱温度に達しただけで高温耐食性の向上が認められるので、この加熱温度での保持時間は0.1秒以上あればよい。加熱保持時間は長いほど気孔率は限りなく0%に近くなり、耐食性能の向上が認められるが、保持時間が長過ぎると基材の酸化や鋭敏化などの影響がでるので、保持時間の上限は30分が適当である。
【0032】
【実施例】
(高温腐食試験)
本発明の高温耐食性皮膜の耐食性を確認するために高温腐食試験を行った。
表1は高温腐食試験条件である。また、図3は高温腐食試験結果を示すグラフである。
【0033】
【表1】

Figure 0004255264
【0034】
表1に示す溶融塩を用いて、腐食温度550℃、650℃、750℃の各温度において腐食時間50時間のるつぼ埋込み方法による高温腐食試験を行った。本発明の試験片は、内部ポート型超音速プラズマ溶射装置を使用して形成した皮膜、およびこの皮膜を1050℃に加熱し、60秒保持した後放冷した皮膜を用いた。比較試験片は、従来の外部ポート型で40kWおよび100kW出力の超音速プラズマ溶射装置を使用して形成した皮膜と、皮膜のないSUS304基材およびインコネル625基材を用いた。溶射で用いた材料は、基材にSUS304、下地層に自溶性合金(膜厚:150μm)、表層にジルコニア/イットリア(ZrO/8%Y 膜厚:200μm)を用いた。
【0035】
図3からわかるように、本発明品(1,2)は、腐食温度550℃、650℃、750℃において皮膜の腐食減量及び皮膜の剥離、割れなどが認められず、優れた高温耐食性を示した。従来の外部ポート型プラズマ溶射装置で形成した比較品(3,4)で形成した皮膜には、皮膜の剥離が認められた。また、SUS304基材およびインコネル625基材も腐食減量を示し、基材断面のミクロ観察により粒界腐食を起こしているのが確認された。なお、この試験で本発明品がプラスの腐食量を示しているのは、試験後に試験片の水洗を行った後に、皮膜内に侵入した溶融灰が一部残留していたためである。
【0036】
(湿式腐食試験)
廃棄物発電所の運転停止時における炉内結露による腐食の発生を想定して、結露に対する耐食性を確認するために湿式腐食試験行った。
表2は湿式腐食試験条件であり、図4は湿式腐食試験結果を示すグラフである。
【0037】
【表2】
Figure 0004255264
【0038】
本発明品(1,2)の試験片は、表層にジルコニア/8%イットリア皮膜、下地層にNi自溶性合金皮膜、基材にSS400を用いた円筒状のもので、表層の外側全体を所定厚みの樹脂で覆い、樹脂の一方の側面を直径15mmだけ切除して基材の直径より小さい窓部を形成し、表面を外部に露出させたものである。比較品(3)の試験片は単層の皮膜のみ、(4)は基材のみである。
これらの試験片を用いて、表2の試験条件で、1Nの硫酸60℃で500mlの中に浸漬し、経時的な重量変化を測定した。
図4からわかるように、SS400基材よりもその上に単層の皮膜がある方が、また単層皮膜よりもその上にジルコニア皮膜がある二層構造皮膜の方が、さらに二層構造皮膜よりも加熱処理(1050℃、60S)を行った二層構造皮膜が良好な湿式腐食性能の結果を示した。
【0039】
【発明の効果】
(1)本発明に係る高温耐食性皮膜は、内部ポート型の超音速プラズマ溶射装置により基材の表面にNiおよびCrを主体とした合金からなる下地層が形成され、この下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層が形成されているので、皮膜形成面の高温耐食性および耐摩耗性が飛躍的に改善される。この高温耐食性皮膜を形成した基材を、廃棄物発電設備などの高温腐食環境下で使用したときに、燃焼灰などが下地層に接触することが防止され、また、運転停止時における露点腐食に対しても優れた耐食性を発揮することができる。これにより、ボイラの蒸気温度500℃以上で、発電効率30%以上の向上を果たすことができる。
(2)皮膜を形成した後に、高周波加熱により皮膜を900℃〜1250℃に加熱し、0.1秒〜30分間保持する加熱処理を行うと、下地層と表層との界面、および下地層と基材との界面の密着性が高められ、酸化クロムが形成され、下地層をより気孔の少ない緻密な層に形成することができ、鋭敏化の影響を排除しながら、高温耐食性をより向上させることができる。
(3) 下地層の気孔率を1%以下に形成すると、気孔に腐食性ガスが侵入することが防止され、耐食性をさらに向上させることができる。
【図面の簡単な説明】
【図1】 本発明の高温耐食性皮膜の形成に用いる内部ポート型の超音速プラズマ溶射装置の要部の断面図である。
【図2】 高温耐食性皮膜の断面図である。
【図3】 高温腐食試験結果を示すグラフである。
【図4】 湿式腐食試験結果を示すグラフである。
【図5】 外部ポート型の超音速プラズマ溶射装置の要部の断面図である。
【符号の説明】
1 超音速プラズマ溶射装置
2 供給管
3 吹出口
4 下地層
5 基材
6 表層
7 境界
51 トーチ本体
55 プラズマアーク
56 プラズマフレーム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating film having excellent high-temperature corrosion resistance against high-temperature corrosion, such as a steam tube and a super heater tube of a waste power generation facility in a high-temperature corrosion environment, and a method for forming the same. The technology of the present invention can also be applied as a surface treatment technology for base materials in fields requiring heat insulating coatings and high temperature corrosion resistant coatings such as various boilers, gas turbines, and heating furnaces.
[0002]
[Prior art]
For the disposal of industrial waste and household waste, waste generation technology that effectively uses the combustion energy is becoming more and more important from the viewpoint of stable energy supply, as well as volume reduction technology through incineration. It is coming. Currently, waste power generation is the most promising measure for the reduction of carbon dioxide and the problem of waste disposal, and high-efficiency power generation with a power generation efficiency of 30% or more, which is equivalent to that of ordinary power plants, is desired.
[0003]
In the waste used as fuel in the waste power generation facility, in addition to combustible materials such as wood, paper, and plastic, various substances are unevenly mixed. Therefore, the combustion gas of the waste incinerator contains more corrosive components such as HCl and combustion fly ash (dust) than the combustion gas of general fossil fuel (heavy oil, coal, etc.). In order to avoid the corrosion of base materials such as boiler tubes due to high temperatures of these corrosive components and dust, the current waste power generation is set at a steam temperature of 300 ° C. or lower, and the power generation efficiency is also low. It is as low as 5-15%.
[0004]
In recent years, waste power generation equipment has been increased in temperature and pressure for the purpose of improving power generation efficiency, but the high temperature corrosion environment of base materials such as boiler tubes has become severe, and its corrosion degradation has become a problem. .
[0005]
In order to realize the goal of improving power generation efficiency, it is essential to raise the steam temperature of the boiler. For this reason, research and development of materials that can withstand severe corrosion caused by chlorine-based gas or alkali molten salt in high-temperature waste combustion gas has been conducted, and excellent high-temperature corrosion-resistant alloy tubes such as Ni-based alloys (Alloy 625) have been developed. . However, since these alloys use a large amount of depleted resources and are very expensive, a cheaper high temperature corrosion resistant material is required from the viewpoint of power generation cost.
[0006]
Patent Document 1 discloses a method of spraying ZrO 2 on the surface of a heat-resistant alloy base material based on Ni or the like, and an intermediate layer made of functionally graded materials (FGM) between the base material and the surface layer. A method of providing and relaxing thermal stress is described.
[0007]
In order to perform such a thermal spraying operation, various plasma apparatuses are used. FIG. 5 is a cross-sectional view of a main part of a conventional supersonic plasma spraying apparatus. As shown in the figure, a chamber 51b in which a gas such as N 2 is mainly supplied from a supply flow path 51a is formed on the base end side of a cylindrical torch body 51, and a cathode electrode 52 is formed in the chamber 51b. Is incorporated. An anode 53 is arranged in the main body 51 so as to be coaxial with the chamber 51 b, and a spray material supply pipe 54 is provided at a position on the terminal side of the torch main body 51 and slightly away from the terminal end of the anode 53.
[0008]
In such a supersonic plasma spraying apparatus, gas is supplied from the chamber 51b to the flow path in the anode 53 through the supply flow path 51a in the tangential direction of the inner peripheral surface of the chamber 51b. As shown, it becomes a spiral swirl flow. When a DC voltage of 100 V to 500 V is applied between the electrode 52 and the anode 53 to superimpose a high voltage high frequency, a spark current flows and a stable plasma arc 55 is generated by the DC current using the plasma gas as a medium. . Since the gas flow passing through the anode 53 from the chamber 51b is a swirl flow, the plasma arc 55 converges to the center of the cross section of the flow path as shown by the solid line in the figure. Therefore, the plasma arc 55 becomes a stable convergent flow along the center of the swirling flow due to the high-speed plasma gas flow, and the arc does not land on the way to the end of the anode 53, and the anode 53 passes through the internal channel 53a. You are guided out of the end.
[0009]
As described above, the gas supplied to the chamber 51b is efficiently heated until immediately after it exits the anode 53 as a plasma gas, and is ejected as a supersonic plasma jet having a high heat capacity. Then, by adding the thermal spray material powder from the supply pipe 54, it is melted by the high-speed plasma flow, and adheres to the surface of the sprayed body through the plasma frame 56 to form a thermal spray coating.
[0010]
[Patent Document 1]
JP-A-5-279832 (paragraph number 0003, FIG. 1)
[0011]
[Problems to be solved by the invention]
However, when the coating formed by the method described in Patent Document 1 is exposed to a harsh environment in which combustion ash and corrosive gas are intertwined in a waste power generation furnace, Cl There is a problem that a corrosive gas containing a large amount of (chlor) and S (sulfur) penetrates into pores in the film and corrodes the interface between the Ni layer and the ZrO 2 layer with time. Pores in the coating, when spraying Ni layer or ZrO 2 underlying the conventional plasma spray device, intended to be formed in the layer of Ni layer and ZrO 2 of the underlying, there are pores usually about several% .
[0012]
In particular, in the torch of a conventional plasma spraying apparatus called an external port type, the spray material powder supply pipe 54 is disposed at a position slightly away from the terminal position of the anode where the plasma flame is at the highest temperature. If the material has a high melting point, it may become insufficiently melted and the sprayed coating may deteriorate and become susceptible to cracking.
[0013]
Therefore, the problem to be solved by the present invention is to provide a method for forming a high temperature corrosion resistant film and a high temperature corrosion resistant film capable of dramatically improving the high temperature corrosion resistance and wear resistance of the film forming surface.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for forming a high-temperature corrosion-resistant film according to the present invention forms an underlayer made of an alloy mainly composed of Ni and Cr on the surface of a substrate by an internal port type supersonic plasma spraying apparatus. A surface layer made of ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 is formed on the underlayer.
[0015]
In the coating formed by the method of the present invention, since the surface layer made of ceramic is formed on the base layer made of an alloy mainly composed of Ni and Cr, the combustion ash is laminated on the ceramic coating. The molten salt corrosion of the substrate is prevented. In particular, since the thermal spray coating is formed using an internal port type supersonic plasma spraying device, the pores in the inside and interface of the underlayer and surface layer become smaller, and almost no combustion ash contacts the underlayer. At the same time, the surface layer is formed uniformly, and cracking of the surface layer is prevented.
[0016]
Here, the supersonic plasma spraying device is a spraying device that generates a high voltage (100 V or more) using a swirling flow of gas, and means a plasma spraying device having a plasma flame blowing speed of 1000 m / s or more. . In addition, an internal port type supersonic plasma spraying device is a plasma spraying material powder supply nozzle for the plasma arc embedded in the torch body, and the tip of the supply nozzle is disposed adjacent to the plasma arc outlet, A thermal spraying device of a type in which the thermal spray material powder is supplied obliquely from behind with respect to the traveling direction of the frame.
[0017]
After forming the surface layer, it is desirable to perform a heat treatment in which the film composed of the surface layer and the base layer is heated to 900 ° C. to 1250 ° C. using high-frequency heating and held for 0.1 seconds to 30 minutes. By heating the film to 900 ° C. or more, for example, a base layer that is a Ni-based self-fluxing alloy is melted and solidified to form a dense base layer having a low porosity. Further, chromium oxide is formed in the underlayer at this heating stage, and the corrosion resistance is further improved. If the heating temperature exceeds 1250 ° C., the composition of the underlayer may change, and the surface film may break and deteriorate, so the heating temperature range is 900 ° C. to 1250 ° C.
[0018]
Even if the coating of the underlayer and the surface layer only reaches the above temperature range, the high temperature corrosion resistance is improved. The reason for setting the heating holding time to 0.1 seconds to 30 minutes is that if it is less than 0.1 seconds, it may be unclear whether the temperature range has been reached due to a measurement error or the like, and 30 minutes. It is because the influence of sensitization may generate | occur | produce by oxidation of a base material when exceeding. Here, sensitization means a tendency that segregation of chromium concentration occurs due to oxidation and is easily corroded. By setting it as 0.1 second-30 minutes, high temperature corrosion resistance can be improved, eliminating the influence of sensitization.
Although the surface layer made of ceramic is also heated by this heat treatment, since the internal port type plasma spraying apparatus is used, the surface layer is formed uniformly, and the surface layer is formed as long as the heating temperature does not exceed 1250 ° C. It will not crack.
[0019]
The high-temperature corrosion-resistant film of the present invention has a high temperature having a base layer made of an alloy mainly composed of Ni and Cr and a surface layer made of a ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 on the surface of the substrate. A corrosion-resistant film is formed, and the boundary between the base material and the base layer and the boundary between the base layer and the surface layer are in close contact with each other through a process of melting and solidification of the base layer. .
After the surface layer is formed on the underlayer, the coating composed of the surface layer and the underlayer is heated to 900 ° C. to 1250 ° C. using high-frequency heating, and is subjected to heat treatment for holding for 0.1 seconds to 30 minutes, The film is heated to the melting temperature of the underlayer, and the underlayer is once melted and then solidified, whereby the boundary between the base material and the underlayer and the boundary between the underlayer and the surface layer are closely adhered. Moreover, since chromium oxide is formed in the underlayer, the coating exhibits excellent high temperature corrosion resistance.
[0020]
The porosity of the underlayer is preferably 1% or less. By performing the heat treatment after forming the surface layer on the base layer, the pores in the base layer are reduced. The reason why the porosity is set to 1% or less is that the corrosion resistance decreases when the porosity is higher than this. This is a problem in practical use because, in the corrosion resistance test by the crucible embedding method, when the porosity is larger than 1% after 50 hours or more in an atmosphere of 500 ° C. or more, the progress of corrosion is remarkable. It is judged that there is.
By setting the porosity to 1% or less, it is possible to prevent the corrosive gas from entering the pores and improve the corrosion resistance.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of an essential part of an internal port type supersonic plasma spraying apparatus used in the method for forming a high-temperature corrosion-resistant coating of the present invention, and FIG. 2 is a cross-sectional view of the high-temperature corrosion-resistant coating.
As shown in FIG. 1, an internal port type supersonic plasma spraying apparatus 1 embeds a supply pipe 2 of sprayed material powder in a torch body 51, and a nozzle tip of the supply pipe 2 at the outlet 3 of a plasma arc 55. The thermal spray material powder is supplied from obliquely behind the traveling direction of the plasma frame 56.
[0022]
The thermal spray material powder supplied from the supply pipe 2 is supplied into the plasma frame 56 from a position adjacent to the blowout port 3 where the plasma frame 56 is the hottest from the rear, so that the flow of the plasma frame 56 is not disturbed. , It is melted uniformly inside.
[0023]
Next, the procedure for forming the high temperature corrosion resistant film will be described.
(Underlayer forming process)
The alloy mainly composed of Ni and Cr used as the underlayer 4 of the present invention is selected from Ni and Cr and Co, Al, Y, Mo, Fe, W, B, Si, Nb and Ta. It is a heat-resistant alloy consisting of a combination with more than seeds. For example, Inconel 625 of Ni—Cr—Mo alloy, Hastelloy C-276, Ni-based self-fluxing alloy of Ni—Cr—B—Si alloy, NiCoCrAlY, NiCrAlY, and the like.
[0024]
In this step, powder of an alloy mainly composed of Ni and Cr is supplied to the supply pipe 2 of the internal port type supersonic plasma spraying apparatus 1, and this is supplied together with the plasma frame 56 ejected from the blowout port 3 to the base material 5. The base layer 4 is formed by spraying on the surface. The thickness of the underlayer 4 can be formed to about 50 μm to 500 μm.
[0025]
(Surface layer forming step)
A surface layer 6 is formed on the base layer 4. Ceramic powder stabilized ZrO 2 or partially stabilized ZrO 2 to form a surface layer 6 mainly includes Y 2 O 3, MgO, 1 or more stabilizer selected from CaO and ZrO 2 as a main component Material.
[0026]
In this step, ceramic powder mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 is supplied onto the underlayer 4 to the supply pipe 2 of the internal port type supersonic plasma spraying apparatus 1, and this is blown out to the outlet. 3 is ejected onto the surface of the base layer 4 of the base material 5 together with the plasma frame 56 ejected from 3 to form the surface layer 6. The thickness of the surface layer 6 can be formed to about 50 μm to 500 μm.
[0027]
Since the internal port type supersonic plasma spraying apparatus 1 has a powder supply position in the high temperature portion of the plasma flame as compared with the conventional plasma apparatus, the spray material powder can be melted and sprayed well. In particular, since a ceramic material having a high melting point can be melted well, a dense sprayed coating with strong interparticle bonding can be formed.
[0028]
(Heating process)
After the surface layer forming step, the surface layer 6 and the base layer 4 are heated to 900 ° C. to 1250 ° C. using high frequency heating, and heat treatment is performed for holding for 0.1 seconds to 30 minutes. This heat treatment has an optimum heating temperature and holding time depending on the material of the underlayer 4 and the surface layer 6. For example, when a Ni self-fluxing alloy is used, the holding time is preferably 10 seconds or longer at a heating temperature of 1080 ° C.
[0029]
By the heat treatment, the coating composed of the base layer 4 and the surface layer 6 is heated to the melting temperature of the base layer 4, and the base layer 4 is once melted and then solidified, whereby the boundary 7 between the base material 5 and the base layer 4 and The boundary 7 between the foundation layer 4 and the surface layer 6 is closely adhered, and heat resistance and adhesion are improved. Further, the porosity of the underlayer 4 is 1% or less (almost 0%), and the corrosive gas is less likely to enter, so that the corrosion resistance is improved.
Note that this heat treatment can be omitted depending on the degree of the corrosive environment.
[0030]
In addition, when performing heat treatment of a general metal film, usually, an anti-oxidant such as flux is applied to the surface of the metal film and dried before heat treatment. Since the surface layer 6 which is a ceramic layer is formed on the upper layer of the underlayer 4, the underlayer 4 which is a metal film is hardly oxidized even if an antioxidant is not applied.
[0031]
Since the coating film according to the present invention is improved in high temperature corrosion resistance only by reaching the optimum heating temperature, the holding time at this heating temperature may be 0.1 seconds or more. The longer the heating and holding time, the porosity becomes nearly 0%, and the corrosion resistance is improved. However, if the holding time is too long, the substrate may be oxidized or sensitized. 30 minutes is appropriate.
[0032]
【Example】
(High temperature corrosion test)
A high temperature corrosion test was conducted to confirm the corrosion resistance of the high temperature corrosion resistant coating of the present invention.
Table 1 shows the hot corrosion test conditions. FIG. 3 is a graph showing the results of the high temperature corrosion test.
[0033]
[Table 1]
Figure 0004255264
[0034]
Using the molten salt shown in Table 1, a high temperature corrosion test was conducted by a crucible embedding method at a corrosion temperature of 550 ° C., 650 ° C., and 750 ° C. with a corrosion time of 50 hours. The test piece of the present invention used a film formed using an internal port type supersonic plasma spraying apparatus, and a film that was heated to 1050 ° C., held for 60 seconds, and then allowed to cool. As a comparative test piece, a coating formed by using a conventional supersonic plasma spraying apparatus of 40 kW and 100 kW with an external port type, a SUS304 base material and an Inconel 625 base material without the coating were used. As materials used for the thermal spraying, SUS304 was used for the base material, a self-fluxing alloy (film thickness: 150 μm) for the underlayer, and zirconia / yttria (ZrO 2 /8% Y 2 O 3 film thickness: 200 μm) for the surface layer.
[0035]
As can be seen from FIG. 3, the products (1, 2) of the present invention exhibit excellent high-temperature corrosion resistance with no corrosion loss of the film and no peeling or cracking of the film at corrosion temperatures of 550 ° C., 650 ° C., and 750 ° C. It was. The film formed by the comparative product (3, 4) formed by the conventional external port type plasma spraying apparatus was found to peel off. In addition, the SUS304 base material and the Inconel 625 base material also showed corrosion weight loss, and it was confirmed that intergranular corrosion was caused by micro observation of the cross section of the base material. The reason why the product of the present invention shows a positive corrosion amount in this test is that some of the molten ash that entered the film remained after the test piece was washed with water after the test.
[0036]
(Wet corrosion test)
Assuming the occurrence of corrosion due to condensation in the furnace when the waste power plant is shut down, a wet corrosion test was conducted to confirm the corrosion resistance against condensation.
Table 2 shows the wet corrosion test conditions, and FIG. 4 is a graph showing the wet corrosion test results.
[0037]
[Table 2]
Figure 0004255264
[0038]
The test piece of the present invention product (1, 2) is a cylindrical one using a zirconia / 8% yttria film as a surface layer, a Ni self-fluxing alloy film as a base layer, and SS400 as a base material. It is covered with a resin having a thickness, and one side surface of the resin is cut by a diameter of 15 mm to form a window portion smaller than the diameter of the substrate, and the surface is exposed to the outside. The test piece of the comparative product (3) is only a single layer film, and (4) is only the base material.
These test pieces were immersed in 500 ml of 1N sulfuric acid at 60 ° C. under the test conditions shown in Table 2, and the change in weight over time was measured.
As can be seen from FIG. 4, the one having a single layer coating on the SS400 substrate, and the two layer structure coating having a zirconia coating thereon more than the single layer coating, As a result, the two-layer structure film subjected to the heat treatment (1050 ° C., 60S) showed the result of good wet corrosion performance.
[0039]
【The invention's effect】
(1) The high-temperature corrosion-resistant film according to the present invention has a base layer made of an alloy mainly composed of Ni and Cr formed on the surface of a substrate by an internal port type supersonic plasma spraying apparatus, and is stable on this base layer. Since the surface layer made of ceramic mainly composed of ZrO 2 or partially stabilized ZrO 2 is formed, the high temperature corrosion resistance and wear resistance of the film forming surface are dramatically improved. When this substrate with a high-temperature corrosion-resistant film is used in a high-temperature corrosive environment such as a waste power generation facility, it prevents the combustion ash from coming into contact with the base layer, and also prevents dew-point corrosion when the operation is stopped. In contrast, excellent corrosion resistance can be exhibited. As a result, it is possible to improve the power generation efficiency by 30% or more when the steam temperature of the boiler is 500 ° C. or higher.
(2) After the film is formed, the film is heated to 900 ° C. to 1250 ° C. by high-frequency heating and subjected to heat treatment for 0.1 seconds to 30 minutes, and the interface between the base layer and the surface layer and the base layer Adhesion at the interface with the base material is enhanced, chromium oxide is formed, and the underlying layer can be formed into a dense layer with fewer pores, further improving high temperature corrosion resistance while eliminating the effects of sensitization be able to.
(3) When the porosity of the underlayer is 1% or less, the corrosive gas is prevented from entering the pores, and the corrosion resistance can be further improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of an internal port type supersonic plasma spraying apparatus used for forming a high temperature corrosion resistant coating according to the present invention.
FIG. 2 is a cross-sectional view of a high temperature corrosion resistant film.
FIG. 3 is a graph showing the results of a high temperature corrosion test.
FIG. 4 is a graph showing wet corrosion test results.
FIG. 5 is a cross-sectional view of a main part of an external port type supersonic plasma spraying apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supersonic plasma spray apparatus 2 Supply pipe 3 Outlet 4 Underlayer 5 Base material 6 Surface layer 7 Boundary 51 Torch main body 55 Plasma arc 56 Plasma flame

Claims (3)

内部ポート型の超音速プラズマ溶射装置により円筒状の基材の表面にNiおよびCrを主体とした合金からなる下地層を形成し、この下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層を形成し、次いで、前記表層および前記下地層からなる皮膜を、高周波加熱を用いて900℃〜1250℃に加熱し、0.1秒〜30分間保持する加熱処理を行って、前記基材と前記下地層との境界および前記下地層と前記表層との境界が、前記下地層の溶融と凝固の過程を経て緊密に密着するようにしたことを特徴とする高温耐食性皮膜の形成方法。Ni and Cr to form a base layer composed of mainly a an alloy on the surface of a cylindrical substrate by internal port type supersonic plasma spraying apparatus, stabilized ZrO 2 or partially over the underlayer stabilized ZrO 2 A heat treatment is performed in which a surface layer made of ceramic mainly is formed, and then the film made of the surface layer and the base layer is heated to 900 ° C. to 1250 ° C. using high-frequency heating and held for 0.1 seconds to 30 minutes. And the boundary between the base material and the base layer and the boundary between the base layer and the surface layer are in close contact with each other through a process of melting and solidification of the base layer. A method of forming a corrosion-resistant film. 円筒状の基材の表面に、NiおよびCrを主体とする合金からなる下地層と、安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層とを有する高温耐食性皮膜が形成され、前記基材と前記下地層との境界および前記下地層と前記表層との境界が、前記下地層の溶融と凝固の過程を経て緊密に密着していることを特徴とする高温耐食性皮膜。 On the surface of the cylindrical substrate, a high temperature corrosion-resistant film having an underlayer made of an alloy mainly composed of Ni and Cr and a surface layer made of a ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 is formed. A high-temperature corrosion-resistant film characterized in that a boundary between the base material and the base layer and a boundary between the base layer and the surface layer are in close contact with each other through a process of melting and solidification of the base layer. 前記下地層の気孔率が1%以下であることを特徴とする請求項2に記載の高温耐食性皮膜。  The high-temperature corrosion-resistant film according to claim 2, wherein the porosity of the underlayer is 1% or less.
JP2002314652A 2002-10-29 2002-10-29 Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film Expired - Lifetime JP4255264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314652A JP4255264B2 (en) 2002-10-29 2002-10-29 Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314652A JP4255264B2 (en) 2002-10-29 2002-10-29 Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film

Publications (2)

Publication Number Publication Date
JP2004149834A JP2004149834A (en) 2004-05-27
JP4255264B2 true JP4255264B2 (en) 2009-04-15

Family

ID=32458908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314652A Expired - Lifetime JP4255264B2 (en) 2002-10-29 2002-10-29 Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film

Country Status (1)

Country Link
JP (1) JP4255264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756929B2 (en) * 2005-06-22 2011-08-24 荏原環境プラント株式会社 Plasma melting furnace
CN108300959A (en) * 2018-04-26 2018-07-20 东莞市华鑫激光科技有限公司 A kind of preparation method for the insulative ceramic coatings being sprayed at metal surface

Also Published As

Publication number Publication date
JP2004149834A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US20070116809A1 (en) Process for coating articles and articles made therefrom
KR920009655B1 (en) Combustion chamber in gas turbine
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
CN112518092B (en) Composite protection process for fire grate segment based on plasma surfacing and laser cladding technology
JP2826824B2 (en) Thermal insulation coating method and gas turbine combustor
JP2008248280A (en) Coating material, manufacturing method thereof, coating method, and moving blade with shroud
JP4475998B2 (en) Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film
JP4255264B2 (en) Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film
US20110165334A1 (en) Coating material for metallic base material surface
CN108611588A (en) A kind of alloy coat and preparation method thereof of high temperature oxidation resisting and sulfur resistive, chlorine corrosion
JP3481055B2 (en) Manufacturing method of corrosion resistant heat transfer tube
JP2008174787A (en) Method for forming thermal spray coating
CN209470528U (en) Spout tile assembly for smelting equipment
JP4464752B2 (en) Adhesion prevention method
JP2001323361A (en) Radiant tube excellent in high temperature oxidation resistance and its production method
JP6802042B2 (en) Boiler water pipe of waste incinerator and its manufacturing method
US20070116884A1 (en) Process for coating articles and articles made therefrom
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JPS61170555A (en) Mud gun nozzle
CN103469199A (en) Laser cladding manufacturing technology of high-performance steam turbine boiler tubes
Yu et al. Failure Mechanism of Water Wall Coating Prepared by Supersonic Arc Spraying
JP2015183195A (en) Anticorrosive coating film, heat transfer pipe and production method thereof
JP2005146409A5 (en)
KR102259947B1 (en) Nozzle of Low NOx Coal Burner and Making Method Thereof
JPH1054516A (en) Gasifying furnace burner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4255264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term