JP4253896B2 - Method for producing laminated structure made of thermoplastic resin - Google Patents

Method for producing laminated structure made of thermoplastic resin Download PDF

Info

Publication number
JP4253896B2
JP4253896B2 JP03565999A JP3565999A JP4253896B2 JP 4253896 B2 JP4253896 B2 JP 4253896B2 JP 03565999 A JP03565999 A JP 03565999A JP 3565999 A JP3565999 A JP 3565999A JP 4253896 B2 JP4253896 B2 JP 4253896B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
laminated structure
tmb
tma
stretched film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03565999A
Other languages
Japanese (ja)
Other versions
JP2000233465A5 (en
JP2000233465A (en
Inventor
賢一 東
徹 矢部
幸一 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP03565999A priority Critical patent/JP4253896B2/en
Publication of JP2000233465A publication Critical patent/JP2000233465A/en
Publication of JP2000233465A5 publication Critical patent/JP2000233465A5/en
Application granted granted Critical
Publication of JP4253896B2 publication Critical patent/JP4253896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂製積層構造体およびその製造方法に関し、詳しくは、剛性および耐衝撃性に優れ、かつ低線膨張率を有する熱可塑性樹脂製積層構造体およびその製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂は成形性に優れることから、押出成形や射出成形など種々の成形方法によって、フィルム、シートあるいは立体形状を有する構造体などの様々な形状に成形されて広く用いられている。昨今、環境問題への材料面での対応が要求されており、また、リサイクル性の向上も望まれている背景から、熱可塑性樹脂の適用範囲は拡大しており、特にオレフィン系重合体、その中でもプロピレン系重合体は、安価で性能が高く、環境適性に優れることから注目されている。
【0003】
しかしながら、熱可塑性樹脂は、材料として有する機械的強度に限界があるため、その適用範囲が限られるのが現状である。
そこで、熱可塑性樹脂の機械的強度を向上させるために、例えばフィルム分野においてはテンター法やチューブラー法などによって延伸加工することにより分子を配向させ、機械的強度を向上させる方法が一般的に行われている。
例えば、プロピレン系重合体では、Tダイ加工によって製膜したシートを適当な温度に加熱して、テンター法によって二軸延伸することにより、同じ材料の無延伸フィルムと比較して、機械的強度が飛躍的に向上したフィルムが得られることは公知である。
【0004】
しかしながら、厚さが100μmを越えるフィルムまたはシート、あるいは射出成形法による構造体の分野では、機械的強度を向上させる方法としては、フィラーと呼ばれる無機材料やガラス繊維などを樹脂に配合する方法が一般的に用いられているが、こうした方法は樹脂材料のコストアップとなることはもちろん、樹脂のリサイクル性を制限することにもつながる。
【0005】
また、特開昭48−83188号公報には、熱可塑性樹脂の延伸フィルムを積み重ね、該樹脂の融点以下の温度でフィルム同士を圧着して得られる積層構造体が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、上記の積層構造体は単層フィルムの積み重ねによるため、積層構造体を構成するフィルム間の接着強度と積層構造体の剛性を両立することができず、剛性の高い積層構造体が得られていない。本発明の目的は、剛性のみならず耐衝撃性に優れ、かつ低線膨張率を有する熱可塑性樹脂製積層構造体製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題に鑑み、熱可塑性樹脂製積層構造体製造方法について鋭意検討した結果、特定の層構成を有する熱可塑性樹脂製多層延伸フィルムを2枚以上積層し一体化す積層構造体製造方法が本発明の目的を達成することを見出し、本発明を完成させた。
【0008】
すなわち、本発明は融解主ピーク温度がTma(℃)である熱可塑性樹脂(A)からなる層と融解主ピーク温度がTmb(℃)である熱可塑性樹脂(B)からなる層との少なくとも2層から構成され、かつTma(℃)とTmb(℃)が、Tma<Tmb−5(℃)の関係を満たす多層延伸フィルムを、少なくとも2枚積層し、Tma−20(℃)以上、Tmb(℃)以下の温度で加熱融着することを特徴とする熱可塑性樹脂製積層構造体の製造方法である。
以下、本発明を詳細に説明する。
【0009】
【発明の実施の形態】
本発明の熱可塑性樹脂製積層構造体(以下、単に「積層構造体」と称する)は、下記に示す特定の多層延伸フィルムを少なくとも2枚積層し、一体化してなる積層構造体である。
本発明で用いる多層延伸フィルムは、融解主ピーク温度がTma(℃)である熱可塑性樹脂(A)からなる層と融解主ピーク温度がTmb(℃)である熱可塑性樹脂(B)からなる層との少なくとも2層から構成され、かつTma(℃)とTmb(℃)が、Tma<Tmb−5(℃)の関係を満たすフィルムである。
【0010】
すなわち、熱可塑性樹脂(A)の融解主ピーク温度Tma(℃)は、熱可塑性樹脂(B)の融解主ピーク温度Tmb(℃)よりも5℃を越えて低くなければならない。この関係を満たさないと積み重ねた多層延伸フィルムを加熱によって融着させて一体化する際にフィルム同士の十分な接着強度が得られない。多層延伸フィルムを複数枚積層し一体化の加工を容易にする観点からは、これらの関係は、Tma<Tmb−20(℃)であればさらに好ましい。
【0011】
本発明でいう融解主ピーク温度(Tm)とは、示差走査熱量計(パーキンエルマー社製DSC)を用いて、得られた融解吸熱カーブの最大ピークのピーク温度をいう。
【0012】
本発明で用いる多層延伸フィルムは、上記の条件を満足するものであれば特に制限はなく、一軸延伸フィルムまたは二軸延伸フィルムのいずれでもよい。
【0013】
本発明で用いる多層延伸フィルムは、その延伸方向および延伸倍率を必要に応じて選定することができるが、得られる積層構造体の機械的性質に異方性が生じることを避ける観点からは、二軸延伸されることが望ましく、その倍率は、引き取り方向(MD方向)、横方向(TD方向:MD方向に直交する方向)、それぞれの方向に対して通常2〜10倍、好ましくは3〜9倍である。積層構造体の剛性を高める観点からは、延伸倍率は高いほど望ましいが、安定的に延伸加工を行なうためには、例えばプロピレン系重合体をテンター法で二軸延伸する場合、引き取り方向に5倍、横方向に8倍程度の延伸倍率が一般的である。
【0014】
このような多層延伸フィルムは、例えば共押出Tダイ法によって原反シートを得た後テンター法によって二軸延伸する方法、共押出インフレーション法によって原反シートを得た後チューブラー法によって二軸延伸する方法、あるいは、共押出Tダイ法によって原反シートを得た後ロール延伸機によって縦方向一軸延伸のみ行なう方法等によって製造される。また、同時二軸延伸型テンター法を適用することも可能である。
【0015】
本発明で用いる多層延伸フィルムは、得られる積層構造体の剛性と、積層構造体を構成する各フィルム間の接着強度とを考慮すると、両表面層及び芯層の3層から構成され、両表面層が熱可塑性樹脂(A)からなり、芯層が熱可塑性樹脂(B)からなるフィルムが好ましい。この場合、芯層と表面層の厚みの比率は、積層構造体の剛性を高める観点から、(表面層:芯層:表面層)=1:2:1〜1:30:1程度であることが好ましい。また、必要に応じ、リサイクル樹脂層等を設けた四層以上の構成のフィルムとすることもできる。
【0016】
多層延伸フィルムの厚みは任意に選択可能であるが、上記公知の方法によって製造される多層延伸フィルムの厚みは、通常10〜60μm程度である。
多層延伸フィルムの表面には、公知の表面処理、例えばコロナ放電処理などが施されてもよい。
【0017】
本発明の積層構造体は、融解主ピーク温度がTma(℃)である熱可塑性樹脂(A)からなる層と融解主ピーク温度がTmb(℃)である熱可塑性樹脂(B)からなる層との少なくとも2層から構成され、かつTma(℃)とTmb(℃)が、Tma<Tmb−5(℃)の関係を満たす多層延伸フィルムを、少なくとも2枚積層し、Tma−20(℃)以上、かつTmb(℃)以下、好ましくはTma−10(℃)以上、かつTmb−10(℃)の温度で加熱融着することにより製造される。
【0018】
多層延伸フィルムの積層枚数は少なくとも2枚であるが、得ようとする積層構造体の厚みに応じて積層する枚数を適宜選択できる。通常、積層構造体の厚みは1〜5mm程度であり、この場合、例えば厚みが40μmの多層延伸フィルムを用いると、積層する枚数は25枚〜125枚程度である。
【0019】
多層延伸フィルムを積層する方向は、特に限定されるものではなく、例えばすべて同じ方向でもよいし、あるいは1枚ごとに90度方向を変えるなどしてもよい。特に、一軸延伸フィルムのような異方性の強い多層延伸フィルムの場合は、積層する方向を適宜変えることによって得られる積層構造体の異方性を制御することができる。
さらに、多層延伸フィルムは、種類の異なるものを組み合わせて積層することもできる。例えば、芯層を融解主ピーク温度がTmb(℃)の樹脂層、両表面層を融解主ピーク温度がTma(℃)の樹脂層とした2種3層構成の多層延伸フィルムを所定の枚数積層し、最表面の多層延伸フィルムのみ融解主ピーク温度がTmb(℃)の樹脂層と融解主ピーク温度がTma(℃)の樹脂層の2種2層構成の延伸フィルムを用いて、積層構造体の表面を融解主ピーク温度がTmb(℃)の樹脂層とすることができる。
【0020】
また、文字や色などが印刷された多層延伸フィルムを積層することもできる。さらには、耐候剤を添加した多層延伸フィルムを積層することもできる。
多層延伸フィルムを積層する方法は任意であり、フィルムを1枚ずつ切りとって所定の枚数積層することもできるが、紙管などに長尺巻いたフィルムの一箇所を切断してフィルムをMD方向に展開して所定枚数をそのまま採取する方法、フィルムをカセ巻きにしてそのまま採取する方法などが好ましい。
【0021】
所定の枚数積層した多層延伸フィルムを一体化する方法は特に制限されるものではなく、公知の装置を用いて加熱融着する方法が挙げられる。例えば、温調機能を備えた油圧プレス機、電動プレス機、あるいは射出成型機などで、該多層延伸フィルムを加熱しながら挟むことによって多層延伸フィルムを加熱融着することが可能である。この際、金型を用いて該多層延伸フィルムを挟み加熱融着する方法がさらに好ましい。金型の材質は金属に限定されるものではなく、セラミックなどを用いることもできる。所定の枚数積層した多層延伸フィルムは、通常、所定の大きさにカットされたものを用いるが、長尺の状態で連続的に装置に供給されてもよい。
【0022】
加熱温度は、熱可塑性樹脂(A)の融解主ピーク温度Tma−20(℃)以上、かつ熱可塑性樹脂(B)の融解主ピーク温度Tmb(℃)以下の温度である。加熱温度が熱可塑性樹脂(B)の融解主ピーク温度Tmb(℃)を超えると、多層延伸フィルムの分子の配向が緩和を起こし、剛性が得られなくなるため好ましくない。また、加熱温度が熱可塑性樹脂(A)の融解主ピーク温度Tma−20(℃)を下回ると、各フィルム間の接着強度が得られなくなるため好ましくない。
【0023】
加熱時間は、得ようとする積層構造体の厚みによって異なるが、通常1〜3分程度であり、適宜調整可能である。また、加熱融着後の降温は任意であり、積層構造体を取り出して放冷してもよいが、作業性を考慮すると、冷却水により金型が冷却できる構造の装置を用い、積層構造体を冷却してから取り出す方法が好ましい。
多層延伸フィルムを金型を用いて加熱融着する際には、積層した多層延伸フィルムの間の空気を排除する観点から、圧力を加えて多層延伸フィルムを挟む方法が好ましい。この際の圧力の値は特に制限されるものではないが、フィルム面1cm2あたり10N〜2kNが好ましい。
【0024】
加熱融着の際に用いる金型は、特に限定されるものではなく、例えば平面形状、曲面形状を有する金型であってもよい。曲面形状を有する金型を用いることにより、立体形状を有する積層構造体を得ることが可能である。この際、金型内に圧縮された気体を注入する、いわゆる圧空成形法を適用してもよい。また、金型表面は、通常、平滑な面であるが、必要に応じてエンボス加工などを施すことも可能である。
金型を該温度まで加熱するタイミングは、該多層延伸フィルムを積層したものをセットし、金型を閉じた後であることが好ましい。
【0025】
また、本発明の積層構造体は、少なくとも2枚の上記多層延伸フィルムを連続的に供給し、2本のロールの間で連続的に加熱融着して得ることもできる。この場合、フィルムの加熱は、それぞれのフィルムを赤外線ヒーターなどで、熱可塑性樹脂(A)の融解主ピーク温度Tma−20(℃)以上、かつ熱可塑性樹脂(B)の融解主ピーク温度Tmb(℃)以下の温度に予め加熱する方式が適用できる。
【0026】
熱可塑性樹脂(A)および熱可塑性樹脂(B)は、上記のような融解主ピーク温度の関係を満足する熱可塑性樹脂であれば特に限定されるものではなく、例えばエチレンの繰り返し単位を主成分とするエチレン系重合体、プロピレンの繰り返し単位を主成分とするプロピレン系重合体、ブテン−1の繰り返し単位を主成分とするブテン−1系重合体、ポリエステル、ポリアミド、ポリ(4−メチルペンテン−1)樹脂などが挙げられる。これらの中でもリサイクル性に優れる点でプロピレン系重合体が好ましい。
熱可塑性樹脂(A)および熱可塑性樹脂(B)としてプロピレン系重合体を用いる場合には、例えば結晶性プロピレン単独重合体、結晶性プロピレン−エチレンランダム共重合体、結晶性プロピレン−α−オレフィンランダム共重合体、プロピレンと、エチレン及び/又は炭素数4〜10のα−オレフィンとの結晶性ブロック共重合体が適用可能である。上記α−オレフィンとしては、例えばブテン−1、ペンテン−1、ヘキセン−1、オクテン−1、デセン−1等の炭素数4〜10のα−オレフィンが挙げられる。
【0027】
プロピレン系重合体には、水添テルペン系樹脂、水添石油樹脂、ジシクロペンタジエン樹脂、クマロン樹脂、ロジンとその誘導体などの炭化水素系重合体を含有させることができる。これらの炭化水素系重合体を添加することによって多層延伸フィルムを製膜する際の延伸性が向上し、かつ得られる多層延伸フィルムの剛性が向上する。したがって、本発明の積層構造体の剛性をさらに向上させることができる。
炭化水素系重合体の含有量は、例えば1〜30重量%、好ましくは5〜15重量%である。熱可塑性樹脂(A)、(B)からなる層の両層ともにプロピレン系重合体を用いる場合、炭化水素系重合体は、(A)、(B)の両層ともに添加することができるが、該(B)層に添加する方が多層延伸フィルムの加工の容易性の点で好ましい。
【0028】
また、本発明で用いる熱可塑性樹脂には、必要に応じて各種添加剤、充填剤、例えば酸化防止剤、防曇剤、帯電防止剤、造核剤、紫外線吸収剤、顔料などを含ませることができる。また、本発明の妨げにならない範囲で他の熱可塑性樹脂をブレンドして使用してもよい。例えば、リサイクル樹脂などをブレンドすることもできる。
本発明で得られた熱可塑性樹脂製積層構造体は、真空成形法、圧空成形法、プレス成形法など公知の方法を用いて、さらに所要の形状に成形加工することができる。また、他の成形品に貼合して使用することもできる。
【0029】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、これら実施例は本発明を何ら限定するものではない。
【0030】
はじめに、以下の実施例および比較例における物性値の測定方法を説明する。
(1)融解主ピーク温度(Tm)
結晶性プロピレン系重合体については、示差走査熱量計(パーキンエルマー社製DSC)を用いて、予め試料10mgを窒素雰囲気下で220℃で5分間溶融した後、5℃/分の降温速度で40℃まで降温した。その後、5℃/分で昇温させて、得られた融解吸熱カーブの最大ピークのピーク温度を融解主ピーク温度(Tm)とした。
なお、本測定器を用いて5℃/分の昇温速度で測定したインジウム(In)の融解主ピーク温度は、156.6℃であった。
(2)エチレン単位の含有量
高分子分析ハンドブック(1995年、紀伊国屋書店発行)の615〜616ページに記載されている方法により13C−NMR法で測定を行った。
(3)プロピレン単位の含有量
高分子分析ハンドブック(1995年、紀伊国屋書店発行)の615〜619ページに記載されている方法により13C−NMR法で測定を行った。
【0031】
(4)メルトフローレート(MFR)
JIS K7210に従い、プロピレン系重合体は表1の条件14に従い測定を行った。
(5)曲げ弾性率
JIS K7203に準じて測定した。
(6)線膨張率
線膨張率はTMA(島津製作所製、DT−40)を用いて、JIS K7197に準じて測定した。測定温度範囲は20℃〜100℃である。
(7)耐衝撃性能
積層構造体を100mm×100mmの大きさに切断し、−30℃の恒温槽内に5時間放置した後、恒温槽内に設置したホルダー(開口部径50mmφ)に固定し、レオメトリクス社製ハイレートインパクト試験機RIT−8000を用いて、先端径5/8インチのダートで、試料を1m/秒の一定速度で打抜いた時の破壊エネルギー値を計測した。耐衝撃性能に優れた材料は高い破壊エネルギー値を示し、耐衝撃性能が劣る材料は低い破壊エネルギー値を示す。
【0032】
実施例1
プロピレン−エチレン共重合体(住友化学工業(株)製ノーブレンFS2011D、エチレン単位の含有量=0.4重量%、Tm=158℃)およびプロピレン−エチレン−ブテン−1共重合体(住友化学工業(株)製WS709N、エチレン単位の含有量=3.0重量%、ブテン−1単位の含有量=7.7%、Tm=132℃)を用いて2種3層構成の多層延伸フィルムを製膜した。具体的には、三菱重工業(株)製共押出テンター装置を用いて次のように多層延伸フィルムを製膜した。まず、プロピレン−エチレン共重合体を65mmφ押出機にて230℃で溶融混練して、230℃に温調されたマルチマニホールド式Tダイの芯層に導き、プロピレン−エチレン−ブテン−1共重合体を50mmφ押出機で同様に溶融混練して該Tダイの両表面層に導き、20℃に温調した冷却ロールで引取って厚さ900μm、層比1:20:1の2種3層原反シートを得た。この原反シートをロール延伸機に導き、原反シートを120℃に予熱した後、MD方向に5倍延伸した。さらに、これを157℃に温調したテンターに導き、TD方向に8倍延伸した。これらの工程を連続的に行うことにより、厚さ22μmの2種3層二軸延伸フィルムを得た。
次に、MD×TD=30cm×30cmの大きさにカットした該多層延伸フィルムを136枚、同じ方向に積み重ね、これを125℃に温調したプレス機で2分間プレスして加熱融着し、厚さ3mmの積層構造体を得た。プレスの圧力は、フィルム1cm2あたり300Nとした。評価結果を表1に示す。
【0033】
比較例1
プロピレン−エチレンブロック共重合体(住友化学工業(株)製ノーブレンAH561、エチレン単位の含有量=7.6重量%、Tm=161℃)を下記条件にて成形し、厚み3mmのシートを得た。評価結果を表1に示す。
成形機:日精樹脂工業(株)製 FS160S25ASEN
成形品サイズ:100mm×400mm×3mm
シリンダー温度:220℃、金型温度:40℃
【0034】
【表1】

Figure 0004253896
【0035】
【発明の効果】
以上述べたように、本発明によれば、剛性のみならず耐衝撃性に優れ、かつ低線膨張率を有する熱可塑性樹脂製積層構造体が提供できる。
また、本発明は、上記の優れた物性を有する積層構造体を容易かつ効率的に製造する方法が提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated structure made of a thermoplastic resin and a method for producing the same, and more particularly relates to a laminated structure made of a thermoplastic resin that is excellent in rigidity and impact resistance and has a low coefficient of linear expansion and a method for producing the same.
[0002]
[Prior art]
Thermoplastic resins are widely used because they are excellent in moldability and are molded into various shapes such as films, sheets, and three-dimensional structures by various molding methods such as extrusion molding and injection molding. In recent years, there has been a demand for materials in response to environmental problems, and because of the desire to improve recyclability, the scope of application of thermoplastic resins has expanded. Among these, propylene-based polymers are attracting attention because they are inexpensive, have high performance, and are excellent in environmental suitability.
[0003]
However, since the thermoplastic resin has a limit in mechanical strength as a material, its application range is currently limited.
Therefore, in order to improve the mechanical strength of the thermoplastic resin, for example, in the film field, a method of improving the mechanical strength by orienting molecules by stretching by the tenter method or the tubular method is generally performed. It has been broken.
For example, in a propylene-based polymer, a sheet formed by T-die processing is heated to an appropriate temperature and biaxially stretched by a tenter method, so that the mechanical strength is higher than that of an unstretched film of the same material. It is well known that dramatically improved films can be obtained.
[0004]
However, in the field of a film or sheet having a thickness exceeding 100 μm, or a structure by an injection molding method, as a method for improving mechanical strength, a method of blending an inorganic material called filler or glass fiber with a resin is generally used. However, this method not only increases the cost of the resin material but also limits the recyclability of the resin.
[0005]
Japanese Laid-Open Patent Publication No. 48-83188 discloses a laminated structure obtained by stacking stretched thermoplastic resin films and pressing the films together at a temperature not higher than the melting point of the resin.
[0006]
[Problems to be solved by the invention]
However, since the above laminated structure is formed by stacking single layer films, it is impossible to achieve both the adhesive strength between the films constituting the laminated structure and the rigidity of the laminated structure, and a highly rigid laminated structure is obtained. Not. An object of the present invention is excellent in impact resistance as well as stiffness only, and is to provide a method for producing a thermoplastic resin laminated structure having a low linear expansion coefficient.
[0007]
[Means for Solving the Problems]
The present inventors, in view of the above problems, as a result of the production method of intensive studies for the thermoplastic resin laminated structure, you integral laminated thermoplastic resin multilayer stretched film having a specific layer structure two or more stacked It has been found that a method for producing a structure achieves the object of the present invention, and the present invention has been completed.
[0008]
That is, the present invention provides at least a layer made of a thermoplastic resin (A) having a melting main peak temperature of Tma (° C.) and a layer made of a thermoplastic resin (B) having a melting main peak temperature of Tmb (° C.). At least two multi-layer stretched films composed of two layers and satisfying the relationship of Tma <Tmb-5 (° C.) with Tma (° C.) and Tmb (° C.) being laminated to Tma-20 (° C.) or higher, Tmb A method for producing a laminated structure made of a thermoplastic resin, characterized by heat-sealing at a temperature of (° C.) or less.
Hereinafter, the present invention will be described in detail.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic resin laminate structure of the present invention (hereinafter simply referred to as “laminate structure”) is a laminate structure in which at least two specific multilayer stretched films shown below are laminated and integrated.
The multilayer stretched film used in the present invention includes a layer made of a thermoplastic resin (A) having a melting main peak temperature of Tma (° C.) and a layer made of a thermoplastic resin (B) having a melting main peak temperature of Tmb (° C.). And Tma (° C.) and Tmb (° C.) satisfy the relationship Tma <Tmb-5 (° C.).
[0010]
That is, the melting main peak temperature Tma (° C.) of the thermoplastic resin (A) must be lower by 5 ° C. than the melting main peak temperature Tmb (° C.) of the thermoplastic resin (B). If this relationship is not satisfied, when the stacked multilayer stretched films are fused and integrated by heating, sufficient adhesive strength between the films cannot be obtained. From the viewpoint of facilitating integration by laminating a plurality of multilayer stretched films, these relationships are more preferably Tma <Tmb−20 (° C.).
[0011]
The melting main peak temperature (Tm) referred to in the present invention refers to the peak temperature of the maximum peak of the melting endothermic curve obtained using a differential scanning calorimeter (DSC manufactured by Perkin Elmer).
[0012]
The multilayer stretched film used in the present invention is not particularly limited as long as it satisfies the above conditions, and may be either a uniaxially stretched film or a biaxially stretched film.
[0013]
In the multilayer stretched film used in the present invention, the stretching direction and the stretching ratio can be selected as necessary. From the viewpoint of avoiding the occurrence of anisotropy in the mechanical properties of the resulting laminated structure, two It is desirable to be axially stretched, and the magnification is usually 2 to 10 times, preferably 3 to 9 times in the take-up direction (MD direction) and the transverse direction (TD direction: direction orthogonal to the MD direction). Is double. From the viewpoint of increasing the rigidity of the laminated structure, the higher the draw ratio, the better. However, in order to perform the stretching process stably, for example, when biaxially stretching a propylene polymer by the tenter method, it is 5 times in the take-up direction. A stretching ratio of about 8 times in the transverse direction is common.
[0014]
Such a multilayer stretched film is obtained, for example, by obtaining a raw sheet by a coextrusion T-die method and then biaxially stretching by a tenter method, or obtaining a raw sheet by a coextrusion inflation method and then biaxially stretching by a tubular method. Or a method of performing only uniaxial stretching in the machine direction by a roll stretching machine after obtaining a raw sheet by a coextrusion T-die method. It is also possible to apply the simultaneous biaxial stretching type tenter method.
[0015]
The multilayer stretched film used in the present invention is composed of three layers of both the surface layer and the core layer in consideration of the rigidity of the resulting laminated structure and the adhesive strength between the films constituting the laminated structure. A film in which the layer is made of the thermoplastic resin (A) and the core layer is made of the thermoplastic resin (B) is preferable. In this case, the ratio of the thickness of the core layer to the surface layer is about (surface layer: core layer: surface layer) = 1: 2: 1 to 1: 30: 1 from the viewpoint of increasing the rigidity of the laminated structure. Is preferred. Moreover, it can also be set as the film of the structure of four or more layers which provided the recycled resin layer etc. as needed.
[0016]
Although the thickness of a multilayer stretched film can be selected arbitrarily, the thickness of the multilayer stretched film manufactured by the said well-known method is about 10-60 micrometers normally.
The surface of the multilayer stretched film may be subjected to a known surface treatment such as corona discharge treatment.
[0017]
The laminated structure of the present invention comprises a layer made of a thermoplastic resin (A) having a melting main peak temperature of Tma (° C.) and a layer made of a thermoplastic resin (B) having a melting main peak temperature of Tmb (° C.). And at least two multilayer stretched films satisfying the relationship of Tma <Tmb-5 (° C.) with Tma (° C.) and Tmb (° C.) being equal to or higher than Tma-20 (° C.). And Tmb (° C.) or less, preferably Tma-10 (° C.) or more and Tmb-10 (° C.).
[0018]
The number of laminated stretched films is at least two, but the number of laminated layers can be appropriately selected according to the thickness of the laminated structure to be obtained. Usually, the thickness of the laminated structure is about 1 to 5 mm. In this case, for example, when a multilayer stretched film having a thickness of 40 μm is used, the number of laminated layers is about 25 to 125.
[0019]
The direction in which the multilayer stretched film is laminated is not particularly limited. For example, all the same directions may be used, or the direction may be changed by 90 degrees for each sheet. In particular, in the case of a multilayer anisotropic film having strong anisotropy such as a uniaxially stretched film, the anisotropy of the laminated structure obtained by appropriately changing the laminating direction can be controlled.
Furthermore, a multilayer stretched film can also be laminated | stacked combining the thing from which a kind differs. For example, a predetermined number of multilayer stretched films of two types and three layers, in which a core layer is a resin layer having a melting main peak temperature of Tmb (° C.) and both surface layers are resin layers having a melting main peak temperature of Tma (° C.) In addition, only the outermost multilayer stretched film is a laminated structure using a stretched film having two types and two layers of a resin layer having a melting main peak temperature of Tmb (° C.) and a resin layer having a melting main peak temperature of Tma (° C.). The surface of can be a resin layer having a melting main peak temperature of Tmb (° C.).
[0020]
Moreover, a multilayer stretched film on which characters, colors, and the like are printed can be laminated. Furthermore, a multilayer stretched film to which a weathering agent is added can be laminated.
The method of laminating the multi-layer stretched film is arbitrary, and it is possible to cut a film one by one and laminate a predetermined number, but cut one part of the film wound around a paper tube or the like in the MD direction. A method of unfolding and collecting a predetermined number of sheets as it is, a method of collecting a film as a roll and collecting it as it is, and the like are preferable.
[0021]
A method for integrating a predetermined number of laminated multilayer stretched films is not particularly limited, and examples thereof include a method of heat-sealing using a known apparatus. For example, the multilayer stretched film can be heat-sealed by sandwiching the multilayer stretched film while heating with a hydraulic press machine, an electric press machine, or an injection molding machine having a temperature control function. At this time, a method of sandwiching the multilayer stretched film using a mold and heat-sealing is more preferable. The material of the mold is not limited to metal, and ceramic or the like can also be used. A multi-layer stretched film in which a predetermined number of layers are laminated usually uses a film cut to a predetermined size, but may be continuously supplied to the apparatus in a long state.
[0022]
The heating temperature is a temperature not lower than the melting main peak temperature Tma-20 (° C.) of the thermoplastic resin (A) and not higher than the melting main peak temperature Tmb (° C.) of the thermoplastic resin (B). When the heating temperature exceeds the melting main peak temperature Tmb (° C.) of the thermoplastic resin (B), the orientation of the molecules of the multilayer stretched film is relaxed and rigidity is not obtained, which is not preferable. Moreover, when the heating temperature is lower than the melting main peak temperature Tma-20 (° C.) of the thermoplastic resin (A), the adhesive strength between the films cannot be obtained, which is not preferable.
[0023]
The heating time varies depending on the thickness of the laminated structure to be obtained, but is usually about 1 to 3 minutes and can be adjusted as appropriate. The temperature can be lowered after heat fusion, and the laminated structure may be taken out and allowed to cool. However, in consideration of workability, an apparatus having a structure in which the mold can be cooled by cooling water is used. A method of taking out after cooling is preferable.
When the multilayer stretched film is heat-sealed using a mold, a method of sandwiching the multilayer stretched film by applying pressure is preferable from the viewpoint of eliminating air between the laminated multilayer stretched films. The value of the pressure at this time is not particularly limited, but is preferably 10 N to 2 kN per 1 cm 2 of the film surface.
[0024]
The mold used for heat fusion is not particularly limited, and may be a mold having a planar shape or a curved shape, for example. By using a mold having a curved surface shape, a laminated structure having a three-dimensional shape can be obtained. At this time, a so-called compressed air molding method in which a compressed gas is injected into the mold may be applied. In addition, the mold surface is usually a smooth surface, but embossing or the like can be performed as necessary.
The timing for heating the mold to the temperature is preferably after the laminated multilayer film is set and the mold is closed.
[0025]
The laminated structure of the present invention can also be obtained by continuously supplying at least two of the above multilayer stretched films and continuously heat-sealing between two rolls. In this case, the heating of the film is carried out using an infrared heater or the like for each film, and the melting main peak temperature Tma-20 (° C.) or higher of the thermoplastic resin (A) and the melting main peak temperature Tmb ( A method of heating in advance to a temperature below (° C.) is applicable.
[0026]
The thermoplastic resin (A) and the thermoplastic resin (B) are not particularly limited as long as the thermoplastic resin satisfies the relationship of the melting main peak temperature as described above. For example, the main component is an ethylene repeating unit. An ethylene polymer, a propylene polymer having a propylene repeating unit as a main component, a butene-1 polymer having a butene-1 repeating unit as a main component, polyester, polyamide, poly (4-methylpentene- 1) Resin etc. are mentioned. Among these, a propylene-based polymer is preferable from the viewpoint of excellent recyclability.
When a propylene-based polymer is used as the thermoplastic resin (A) and the thermoplastic resin (B), for example, a crystalline propylene homopolymer, a crystalline propylene-ethylene random copolymer, a crystalline propylene-α-olefin random A crystalline block copolymer of a copolymer, propylene, and / or ethylene and / or an α-olefin having 4 to 10 carbon atoms is applicable. Examples of the α-olefin include α-olefins having 4 to 10 carbon atoms such as butene-1, pentene-1, hexene-1, octene-1, and decene-1.
[0027]
The propylene polymer can contain hydrocarbon polymers such as hydrogenated terpene resin, hydrogenated petroleum resin, dicyclopentadiene resin, coumarone resin, rosin and its derivatives. By adding these hydrocarbon polymers, stretchability when forming a multilayer stretched film is improved, and the rigidity of the resulting multilayer stretched film is improved. Therefore, the rigidity of the laminated structure of the present invention can be further improved.
The content of the hydrocarbon polymer is, for example, 1 to 30% by weight, preferably 5 to 15% by weight. When both layers of the thermoplastic resin (A) and (B) are made of a propylene polymer, the hydrocarbon polymer can be added to both the layers (A) and (B). The addition to the layer (B) is preferable from the viewpoint of ease of processing of the multilayer stretched film.
[0028]
Further, the thermoplastic resin used in the present invention may contain various additives and fillers as necessary, for example, an antioxidant, an antifogging agent, an antistatic agent, a nucleating agent, an ultraviolet absorber, and a pigment. Can do. Further, other thermoplastic resins may be blended and used within the range not hindering the present invention. For example, a recycled resin can be blended.
The thermoplastic resin laminate structure obtained in the present invention can be further molded into a required shape using a known method such as a vacuum molding method, a pressure molding method, or a press molding method. It can also be used by being bonded to other molded products.
[0029]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but these examples are not intended to limit the present invention.
[0030]
First, methods for measuring physical property values in the following Examples and Comparative Examples will be described.
(1) Melting main peak temperature (Tm)
For the crystalline propylene polymer, a 10 mg sample was previously melted at 220 ° C. for 5 minutes in a nitrogen atmosphere using a differential scanning calorimeter (DSC manufactured by Perkin Elmer), and then cooled at a rate of temperature decrease of 5 ° C./min. The temperature was lowered to ° C. Thereafter, the temperature was raised at 5 ° C./min, and the peak temperature of the maximum peak of the obtained melting endothermic curve was defined as the melting main peak temperature (Tm).
The melting main peak temperature of indium (In) measured at a rate of temperature increase of 5 ° C./min using this measuring device was 156.6 ° C.
(2) Content of ethylene unit Measurement was performed by 13 C-NMR method according to the method described on pages 615 to 616 of the Polymer Analysis Handbook (published by Kinokuniya Shoten in 1995).
(3) Content of propylene unit Measurement was performed by 13 C-NMR method according to the method described on pages 615 to 619 of the Polymer Analysis Handbook (published by Kinokuniya Shoten in 1995).
[0031]
(4) Melt flow rate (MFR)
In accordance with JIS K7210, the propylene-based polymer was measured according to condition 14 in Table 1.
(5) Flexural modulus Measured according to JIS K7203.
(6) Linear expansion coefficient The linear expansion coefficient was measured according to JIS K7197 using TMA (manufactured by Shimadzu Corporation, DT-40). The measurement temperature range is 20 ° C to 100 ° C.
(7) Impact resistance performance The laminated structure is cut to a size of 100 mm x 100 mm, left in a thermostatic bath at -30 ° C for 5 hours, and then fixed to a holder (opening diameter 50 mmφ) installed in the thermostatic bath. Using a high-rate impact tester RIT-8000 manufactured by Rheometrics, the fracture energy value was measured when the sample was punched at a constant speed of 1 m / sec with a dart having a tip diameter of 5/8 inch. A material having excellent impact resistance exhibits a high fracture energy value, and a material having inferior impact resistance exhibits a low fracture energy value.
[0032]
Example 1
Propylene-ethylene copolymer (Nobrene FS2011D manufactured by Sumitomo Chemical Co., Ltd., ethylene unit content = 0.4 wt%, Tm = 158 ° C.) and propylene-ethylene-butene-1 copolymer (Sumitomo Chemical ( Co., Ltd. WS709N, ethylene unit content = 3.0% by weight, butene-1 unit content = 7.7%, Tm = 132 ° C.) did. Specifically, a multilayer stretched film was formed as follows using a coextrusion tenter device manufactured by Mitsubishi Heavy Industries, Ltd. First, a propylene-ethylene-butene-1 copolymer was melt-kneaded at 230 ° C. with a 65 mmφ extruder and led to a core layer of a multi-manifold T-die temperature-controlled at 230 ° C. Was melted and kneaded in the same manner with a 50 mmφ extruder, led to both surface layers of the T-die, and taken up by a cooling roll adjusted to 20 ° C., and the thickness was 900 μm and the layer ratio was 1: 20: 1. An anti-sheet was obtained. The raw sheet was guided to a roll stretching machine, and the raw sheet was preheated to 120 ° C. and then stretched 5 times in the MD direction. Furthermore, this was led to a tenter whose temperature was adjusted to 157 ° C., and stretched 8 times in the TD direction. By continuously performing these steps, a two-type three-layer biaxially stretched film having a thickness of 22 μm was obtained.
Next, 136 sheets of the multilayer stretched film cut into a size of MD × TD = 30 cm × 30 cm are stacked in the same direction, and this is heated and fused by pressing for 2 minutes with a press machine adjusted to 125 ° C., A laminated structure having a thickness of 3 mm was obtained. The press pressure was 300 N per cm 2 of film. The evaluation results are shown in Table 1.
[0033]
Comparative Example 1
A propylene-ethylene block copolymer (Nobrene AH561 manufactured by Sumitomo Chemical Co., Ltd., ethylene unit content = 7.6 wt%, Tm = 161 ° C.) was molded under the following conditions to obtain a sheet having a thickness of 3 mm. . The evaluation results are shown in Table 1.
Molding machine: FS160S25ASEN made by Nissei Plastic Industry Co., Ltd.
Molded product size: 100mm x 400mm x 3mm
Cylinder temperature: 220 ° C, mold temperature: 40 ° C
[0034]
[Table 1]
Figure 0004253896
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a laminated structure made of a thermoplastic resin that is excellent not only in rigidity but also in impact resistance and having a low linear expansion coefficient.
Further, the present invention can provide a method for easily and efficiently producing a laminated structure having the above excellent physical properties.

Claims (3)

融解主ピーク温度がTma(℃)である熱可塑性樹脂(A)からなる層と融解主ピーク温度がTmb(℃)である熱可塑性樹脂(B)からなる層との少なくとも2層から構成され、かつTma(℃)とTmb(℃)が、Tma<Tmb−5(℃)の関係を満たす多層二軸延伸フィルムを、少なくとも2枚積層し、金型を用いて、Tma−20(℃)以上、Tmb(℃)以下の温度で加熱融着することを特徴とする、厚み1〜5mmの熱可塑性樹脂製積層構造体の製造方法。It is composed of at least two layers of a layer made of a thermoplastic resin (A) having a melting main peak temperature of Tma (° C.) and a layer made of a thermoplastic resin (B) having a melting main peak temperature of Tmb (° C.), And, at least two multilayer biaxially stretched films satisfying the relationship of Tma (° C.) and Tmb (° C.) of Tma <Tmb-5 (° C.) are laminated, and Tma-20 (° C.) or higher is used by using a mold. A method for producing a laminated structure made of a thermoplastic resin having a thickness of 1 to 5 mm , characterized by heating and fusing at a temperature of Tmb (° C.) or less. Tma(℃)とTmb(℃)が、Tma<Tmb−20(℃)の関係を満たす請求項1記載の熱可塑性樹脂製積層構造体の製造方法。  The method for producing a laminated structure made of thermoplastic resin according to claim 1, wherein Tma (° C) and Tmb (° C) satisfy a relationship of Tma <Tmb-20 (° C). 金型が曲面形状を有する金型である請求項1または2記載の熱可塑性樹脂製積層構造体の製造方法。The method for producing a laminated structure of a thermoplastic resin according to claim 1 or 2, wherein the mold is a mold having a curved shape.
JP03565999A 1999-02-15 1999-02-15 Method for producing laminated structure made of thermoplastic resin Expired - Fee Related JP4253896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03565999A JP4253896B2 (en) 1999-02-15 1999-02-15 Method for producing laminated structure made of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03565999A JP4253896B2 (en) 1999-02-15 1999-02-15 Method for producing laminated structure made of thermoplastic resin

Publications (3)

Publication Number Publication Date
JP2000233465A JP2000233465A (en) 2000-08-29
JP2000233465A5 JP2000233465A5 (en) 2006-03-30
JP4253896B2 true JP4253896B2 (en) 2009-04-15

Family

ID=12448012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03565999A Expired - Fee Related JP4253896B2 (en) 1999-02-15 1999-02-15 Method for producing laminated structure made of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP4253896B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944267B2 (en) * 2016-04-05 2021-10-06 サンアロマー株式会社 Polypropylene sheet and its molded product and its manufacturing method

Also Published As

Publication number Publication date
JP2000233465A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
EP1951524B1 (en) Oriented multi-layer shrink labels
AU715460B2 (en) High density polyethylene film with high biaxial orientation
US4623587A (en) Multi-layer film or sheet material
KR100786005B1 (en) Multilayered aliphatic polyester film
EP2598326B1 (en) Heat sealable film with linear tear properties
KR101294457B1 (en) Biaxially stretched polyamide resin film
EP2427334B1 (en) Heat sealable and oriented multi-layer polypropylene-based films for shrink applications
US6168826B1 (en) Biaxially oriented polyethylene film with improved optics and sealability properties
KR20080044762A (en) Film for packaging
EP1115564A1 (en) Medium density polyethylene film having unidirectional tear
JP2021091116A (en) Polypropylene-based multilayer sheet and method for producing the same
JP4253896B2 (en) Method for producing laminated structure made of thermoplastic resin
JP4362896B2 (en) Thermoplastic resin molded body and method for producing the same
JP2023015849A (en) Laminate for vacuum heat insulation material outer package
JPH071570A (en) Crystallizing method for crystalline poly (alkylene carbonate) and non-crystalline poly (alkylene carbonate), and high oxygen shielding highly transparent laminated sheet and its preparation
JP2008105428A (en) Polylactic acid-based laminated biaxially drawn film
JP3029229B2 (en) Method for producing gas barrier sheet and thermoformed product
JP7405099B2 (en) Method for manufacturing biaxially oriented polypropylene film
KR102465570B1 (en) Biaxially Oriented Polypropylene Film
JP3029230B2 (en) Method for producing gas barrier sheet and thermoformed product
JPH0243630B2 (en)
JP2001063494A (en) Bumper beam
WO2023286541A1 (en) Biaxially oriented laminated polypropylene film
JP2023013959A (en) Biaxially oriented laminated polypropylene film
JP3534531B2 (en) Laminated sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees