JP4252092B2 - Driving method of gas discharge device - Google Patents

Driving method of gas discharge device Download PDF

Info

Publication number
JP4252092B2
JP4252092B2 JP2007007678A JP2007007678A JP4252092B2 JP 4252092 B2 JP4252092 B2 JP 4252092B2 JP 2007007678 A JP2007007678 A JP 2007007678A JP 2007007678 A JP2007007678 A JP 2007007678A JP 4252092 B2 JP4252092 B2 JP 4252092B2
Authority
JP
Japan
Prior art keywords
voltage
electrode
address
main electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007007678A
Other languages
Japanese (ja)
Other versions
JP2007164209A (en
Inventor
康宣 橋本
靖司 米田
健司 粟本
誠一 岩佐
Original Assignee
株式会社日立プラズマパテントライセンシング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラズマパテントライセンシング filed Critical 株式会社日立プラズマパテントライセンシング
Priority to JP2007007678A priority Critical patent/JP4252092B2/en
Publication of JP2007164209A publication Critical patent/JP2007164209A/en
Application granted granted Critical
Publication of JP4252092B2 publication Critical patent/JP4252092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、PDP(Plasma Display Panel:プラズマディスプレイパネル)、PALC(Plasma Addressed Liquid Crystal :プラズマアドレス液晶) に代表されるガス放電デバイスの駆動方法に関する。   The present invention relates to a method for driving a gas discharge device represented by PDP (Plasma Display Panel) and PALC (Plasma Addressed Liquid Crystal).

PDPは、カラー表示の実用化を機に大画面のテレビジョン表示デバイスとして普及しつつある。画面が大きくなるほど、セル構造の均等化が難しくなるので、放電特性のバラツキを許容することのできる電圧マージンの広い駆動方法が必要になる。   PDP is becoming widespread as a large-screen television display device with the practical use of color display. As the screen becomes larger, it becomes more difficult to equalize the cell structure. Therefore, a driving method with a wide voltage margin that can allow variations in discharge characteristics is required.

カラー表示デバイスとして3電極面放電構造のAC型PDPが商品化されている。これは、マトリクス表示のライン(行)毎に点灯維持のための一対の主電極(第1及び第2の電極)が配置され、列毎にアドレッシングのための第3の電極であるアドレス電極が配置されたものである。アドレッシングに際しては一方の主電極(第2の電極)が行選択に用いられる。面放電構造においては、カラー表示のための蛍光体層を主電極対を配置した基板と対向する他方の基板上に配置することによって、放電時のイオン衝撃による蛍光体層の劣化を軽減し、長寿命化を図ることができる。蛍光体層を背面側の基板上に配置した“反射型”は、前面側の基板上に配置した“透過型”よりも発光効率に優れる。   An AC type PDP having a three-electrode surface discharge structure has been commercialized as a color display device. This is because a pair of main electrodes (first and second electrodes) for maintaining lighting is arranged for each line (row) of the matrix display, and an address electrode as a third electrode for addressing is arranged for each column. It is arranged. In addressing, one main electrode (second electrode) is used for row selection. In the surface discharge structure, the phosphor layer for color display is disposed on the other substrate opposite to the substrate on which the main electrode pair is disposed, thereby reducing deterioration of the phosphor layer due to ion bombardment during discharge, Long life can be achieved. The “reflection type” in which the phosphor layer is disposed on the back side substrate is superior in light emission efficiency to the “transmission type” in which the phosphor layer is disposed on the front side substrate.

表示に際しては主電極を覆う誘電体層のメモリ機能が利用される。すなわち、ライン走査形式で表示内容に応じた帯電状態を形成するアドレッシングを行い、各ラインの主電極対に対して交番極性の点灯維持電圧Vsを印加する。点灯維持電圧Vsは(1)式を満たす。   For display, a memory function of a dielectric layer covering the main electrode is used. That is, addressing for forming a charged state according to display contents is performed in a line scanning format, and a lighting sustaining voltage Vs having an alternating polarity is applied to the main electrode pair of each line. The lighting sustaining voltage Vs satisfies the formula (1).

Vf−Vw<Vs<Vf …(1)
Vf:放電開始電圧
Vw:壁電圧
点灯維持電圧Vsの印加により、壁電荷の存在するセルのみにおいてセル電圧Vc(印加電圧と壁電圧の和であり実効電圧Veffともいう)が放電開始電圧Vfを越えて基板面に沿った面放電が生じる。点灯維持電圧Vsの印加周期を短くすれば、見かけの上で連続した点灯状態が得られる。
Vf−Vw <Vs <Vf (1)
Vf: discharge start voltage Vw: wall voltage lighting sustaining voltage Vs is applied, so that the cell voltage Vc (the sum of the applied voltage and the wall voltage, also referred to as effective voltage Veff) becomes the discharge start voltage Vf only in the cells where wall charges exist. A surface discharge is generated along the substrate surface. If the application period of the lighting sustaining voltage Vs is shortened, an apparently continuous lighting state can be obtained.

表示の輝度は、単位時間あたりの放電回数に依存する。したがって、中間調はセル毎に1フィールドの放電回数を階調レベルに応じて設定することによって再現される。カラー表示は階調表示の一種であって、表示色は3原色の輝度の組合せによって決まる。なお、本明細書における「フィールド」とは、時系列の画像表示の単位画像である。すなわち、テレビジョンの場合にはインタレース形式のフレームの各フィールドを意味し、コンピュータ出力に代表されるノンインタレース形式(1対1インタレース形式とみなせる)の場合にはフレームそのものを意味する。   The brightness of the display depends on the number of discharges per unit time. Therefore, the halftone is reproduced by setting the number of discharges in one field for each cell in accordance with the gradation level. The color display is a kind of gradation display, and the display color is determined by the combination of the luminances of the three primary colors. Note that “field” in this specification is a unit image for time-series image display. That is, in the case of television, it means each field of an interlace format frame, and in the case of a non-interlace format typified by computer output (which can be regarded as a one-to-one interlace format), it means the frame itself.

PDPによる階調表示には、1フィールドを輝度(つまり放電回数)の重み付けをした複数のサブフィールドで構成し、サブフィールド単位の点灯の有無の組合せによって1フィールドの総放電回数を設定する方法が用いられる。点灯維持電圧Vsの印加周期(駆動周波数)を一定とした場合、輝度の重みが異なれば点灯維持電圧Vsの印加時間が異なることになる。基本的には各サブフィールドに対して重みが2q (q=0,1,2,3…)で表されるいわゆる“バイナリーの重み付け”を行う。例えばサブフィールド数kが8であれば、階調レベルが「0」〜「255」の256(=28)階調の表示が可能である。バイナリーの重み付けは重みに冗長性がなく多階調化に適している。ただし、動画表示における疑輪郭の防止などの目的で意図的に重みを重複させることもある。 For gradation display by PDP, there is a method in which one field is composed of a plurality of subfields weighted with luminance (that is, the number of discharges), and the total number of discharges in one field is set according to the combination of the presence or absence of lighting in subfield units. Used. When the application period (drive frequency) of the lighting sustain voltage Vs is constant, the application time of the lighting sustain voltage Vs differs if the luminance weight is different. Basically, so-called “binary weighting” in which the weight is expressed by 2 q (q = 0, 1, 2, 3,...) Is performed on each subfield. For example, if the number of subfields k is 8, 256 (= 2 8 ) gradations with gradation levels “0” to “255” can be displayed. Binary weighting has no redundancy in weight and is suitable for multi-gradation. However, the weight may be intentionally overlapped for the purpose of preventing the suspicious contour in the moving image display.

各サブフィールドには、アドレッシング期間と点灯維持期間とに加えて、全てのセルについて帯電状態を均等化するためのアドレッシング準備期間が割り当てられる。点灯維持のための壁電荷の残存するセルと残存しないセルとが混在していると、アドレッシングのための放電の制御が困難になるからである。   In addition to the addressing period and the lighting sustain period, an addressing preparation period for equalizing the charged state for all cells is assigned to each subfield. This is because if the cells with remaining wall charges and the cells without remaining for lighting are mixed, it becomes difficult to control the discharge for addressing.

従来においては、全てのセルに放電開始電圧を越える電圧を印加して強い放電を生じさせることによって、画面全体をほぼ無帯電状態とするアドレッシング準備が行われていた。強い放電で全てのセルに過剰の壁電荷が形成される。その後に電圧の印加を停止すると、壁電圧による自己消去放電が生じて壁電荷が消失する。そして、アドレッシング準備期間に続くアドレッシング期間において、点灯させるべきセルのみでアドレス放電を起こさせてそれらセルに新たに壁電荷を形成するアドレッシングが行われていた。   Conventionally, an addressing preparation for making the entire screen almost uncharged by applying a voltage exceeding the discharge start voltage to all cells to generate a strong discharge has been performed. Excessive wall charges are formed in all cells by strong discharge. When the voltage application is stopped thereafter, self-erasing discharge due to the wall voltage occurs and the wall charge disappears. In the addressing period following the addressing preparation period, addressing is performed in which address discharge is caused only in the cells to be lit and new wall charges are formed in those cells.

従来の駆動方法では、アドレッシング準備として壁電荷を消去してしまうので、セル構造の微妙な差異に因るセル毎の放電開始電圧Vfのバラツキを考慮してアドレッシングの印加電圧を設定する必要があった。つまり、適正にアドレッシングを行うことのできる電圧マージンが放電開始電圧Vfのバラツキ幅の分だけ狭くなるという問題があった。   In the conventional driving method, wall charges are erased as preparation for addressing, and therefore it is necessary to set the addressing applied voltage in consideration of the variation in the discharge start voltage Vf for each cell due to subtle differences in the cell structure. It was. That is, there is a problem that a voltage margin that can be properly addressed is narrowed by the variation width of the discharge start voltage Vf.

また、アドレッシング準備期間において、その後の点灯維持期間で点灯させるセルだけでなく点灯させないセルでも強い放電を生じさせるので、特に全体的に暗い画像を表示するときに、画面の大半を占める背景部分が明るく見えてコントラストが低下するという背景輝度の増大の問題もあった。   In addition, in the addressing preparation period, a strong discharge is generated not only in the cells that are lit in the subsequent lighting maintenance period but also in the cells that are not lit, so the background portion that occupies most of the screen is displayed especially when displaying a dark image as a whole. There was also a problem of an increase in background brightness that appeared bright and the contrast was reduced.

さらに、アドレッシング準備期間において印加する電圧の極性によって、点灯維持期間の最後に印加する点灯維持電圧Vsの極性が決まってしまうので、全てのサブフィールドについて点灯維持期間での放電回数(つまり、印加する点灯維持電圧パルスの個数)を奇数又は偶数のどちらかに統一する必要があった。そのため、各サブフィールドの放電回数を最小でも2回単位で選定しなければならず、きめの細かい輝度の調整を行うことができなかった。なお、一部のサブフィールドについて他と点灯維持電圧Vsの極性を異なるようにすると、自己消去放電を起こさせるために印加する電圧を極めて高くしなければならなくなり、実用的でなくなってしまう。   Furthermore, since the polarity of the lighting sustain voltage Vs applied at the end of the lighting sustaining period is determined by the polarity of the voltage applied in the addressing preparation period, the number of discharges in the lighting sustaining period (that is, applied) for all subfields. It was necessary to unify the number of sustaining voltage pulses) to either odd or even. For this reason, the number of discharges of each subfield must be selected in units of 2 at a minimum, and fine brightness adjustment cannot be performed. Note that if the polarity of the sustaining voltage Vs is made different from that of the other subfields, the voltage applied to cause the self-erase discharge must be made extremely high, which becomes impractical.

本発明は、放電開始電圧のバラツキによる電圧マージンの縮小を解消し、駆動の信頼性を高めることを目的としている。他の目的は、画像の表示を行う場合において背景輝度を低減し、表示のコントラストを高めることにある。さらに他の目的は、印加電圧の極性の制限を緩和し、駆動シーケンスの自由度を高めることにある。   An object of the present invention is to eliminate a reduction in voltage margin due to variations in discharge start voltage and to improve driving reliability. Another object is to reduce background luminance and increase display contrast when displaying an image. Still another object is to relax the limitation on the polarity of the applied voltage and increase the degree of freedom of the drive sequence.

独立に放電を生じさせることのできる複数の電極間隙のそれぞれで、放電開始電圧の差異に係わらず所定駆動電圧の印加によって適正強度の放電を確実に生じさせるため、前処理として各電極間隙に緩やかに上昇する電圧を印加し、それによって各電極間隙にその放電開始電圧の高低に応じた値の壁電圧を生じさせる。これにより、所定駆動電圧を印加したときに各電極間隙に加わる実効電圧を、それぞれの放電開始電圧に対して一定値だけ高い電圧にすることができる。すなわち、放電強度を決める実効電圧と放電開始電圧との差電圧が均等化されることになり、所定駆動電圧のマージンが拡がる。   In each of the plurality of electrode gaps that can generate discharge independently, regardless of the difference in the discharge start voltage, a predetermined drive voltage is applied to ensure that an appropriate intensity of discharge is generated. As a result, a wall voltage having a value corresponding to the level of the discharge start voltage is generated in each electrode gap. Thus, the effective voltage applied to each electrode gap when a predetermined drive voltage is applied can be set to a voltage higher than the discharge start voltage by a certain value. That is, the difference voltage between the effective voltage that determines the discharge intensity and the discharge start voltage is equalized, and the margin of the predetermined drive voltage is expanded.

図1及び図2は本発明の原理図、図3は本発明に係る微小放電の電流−電圧特性を示す波形図である。   1 and 2 are principle diagrams of the present invention, and FIG. 3 is a waveform diagram showing current-voltage characteristics of a microdischarge according to the present invention.

一対の電極の間に、図1(A)に実線で示されるように第1設定値(例示は0ボルト)から第2設定値Vrまで“緩やか”に上昇する電圧を印加する。この電圧を「電荷調整電圧」と呼称する。例示の電荷調整電圧は正極性のランプ電圧であるが、負極性の電圧とすることもでき、波形もランプに限定されない。   Between the pair of electrodes, as shown by a solid line in FIG. 1A, a voltage that rises “slowly” from the first set value (illustration is 0 volts) to the second set value Vr is applied. This voltage is referred to as a “charge adjustment voltage”. The exemplary charge adjustment voltage is a positive-polarity lamp voltage, but can be a negative-polarity voltage, and the waveform is not limited to a lamp.

印加の開始時点での電極間の壁電圧の値をVwprとする。印加電圧の上昇につれて、図1(C)のように実効電圧はVwprから徐々に上昇する。実効電圧が放電開始電圧Vfに達してから若干の遅れ時間が経過した時点で最初の放電が起こる。このとき、実効電圧は放電開始電圧Vfより若干高い程度であるので、放電は弱く直ぐに終わる。微量の壁電荷が消失するだけで実効電圧が放電開始電圧Vfより低くなるからである。このパルス性の放電において壁電圧の降下速度が印加電圧の上昇速度を瞬間的に上回って実効電圧が一旦降下する。実効電圧が降下するとき、dV/di(Vは実効電圧、iは電流)の値は負となる(図3参照)。放電が終了して上昇に転じた実効電圧が印加電圧の上昇にともなって再び放電開始電圧Vfを越えると、2回目の放電が起こる。この放電も弱く直ぐに終わる。以後、電荷調整電圧を印加している期間においては、弱い放電(これを微小放電と呼称する)が周期的に起こり、微小放電が起こる毎に壁電圧が若干ずつ低下する。ただし、実効電圧は、最初の微小放電が起こった時点から電圧の印加を終了するまで、微小放電毎に放電開始電圧Vfを跨ぐ微小電圧範囲内で周期的に変化するものの、ほぼ放電開始電圧Vfに保持される。そして、電荷調整電圧の印加を終了すると、実効電圧は最終の微小放電の終了時点の壁電圧の値Vwrまで低下する。この値Vwrは概略的には(1)式で表されるとおり、放電開始電圧Vfと印加電圧の最大値Vrとの差に相当する。   The value of the wall voltage between the electrodes at the start of application is Vwpr. As the applied voltage increases, the effective voltage gradually increases from Vwpr as shown in FIG. The first discharge occurs when a slight delay time elapses after the effective voltage reaches the discharge start voltage Vf. At this time, since the effective voltage is slightly higher than the discharge start voltage Vf, the discharge is weak and ends immediately. This is because the effective voltage becomes lower than the discharge start voltage Vf only by the disappearance of a small amount of wall charges. In this pulsed discharge, the wall voltage drop rate instantaneously exceeds the applied voltage rise rate, and the effective voltage temporarily drops. When the effective voltage drops, the value of dV / di (V is the effective voltage and i is the current) becomes negative (see FIG. 3). When the effective voltage, which has started to rise after the discharge is finished, exceeds the discharge start voltage Vf again as the applied voltage rises, a second discharge occurs. This discharge is weak and ends soon. Thereafter, during the period in which the charge adjustment voltage is applied, weak discharge (this is referred to as “micro discharge”) occurs periodically, and the wall voltage slightly decreases every time the micro discharge occurs. However, although the effective voltage periodically changes within a minute voltage range across the discharge start voltage Vf for each minute discharge from the time when the first minute discharge occurs until the application of the voltage is finished, the effective voltage is almost the discharge start voltage Vf. Retained. When the application of the charge adjustment voltage is finished, the effective voltage drops to the wall voltage value Vwr at the end of the final minute discharge. This value Vwr roughly corresponds to the difference between the discharge start voltage Vf and the maximum value Vr of the applied voltage, as represented by the equation (1).

Vwr=Vf−Vr …(1)
このように電荷調整電圧を印加して連続的に微小放電を起こさせることにより、印加開始時点の壁電圧の値Vwprが放電を生じさせることのできる範囲内の値であれば、電極対の構造に依存する放電開始電圧Vfに応じた値Vwrの壁電圧が生じるように、壁電荷量を調整することができる。
Vwr = Vf−Vr (1)
If the wall voltage value Vwpr at the start of application is a value within a range in which discharge can be caused by applying a charge adjustment voltage in this manner to continuously cause a minute discharge, the structure of the electrode pair The wall charge amount can be adjusted so that a wall voltage having a value Vwr corresponding to the discharge start voltage Vf depending on the voltage Vf is generated.

ここでいう“緩やか”とは、電圧の変化率が連続的に微小放電の起こる範囲内の値であることを意味する。微小放電の起こる範囲の上限の具体値は、例えば商品化されているPDPにおいて10[V/μs]程度である。(1)式から明らかなように、印加終了時点の壁電圧の値Vwrは、印加開始時点の壁電圧の値Vwprには依存せず、印加電圧の最大値Vrの設定によって決まる。また、微小放電では放電ガスがほとんど励起されず発光が生じないか生じても極めて微弱であるので、微小放電の回数が多数であっても表示のコントラストを損なうことはない。   Here, “slow” means that the voltage change rate is a value within a range in which minute discharges continuously occur. The specific value of the upper limit of the range in which micro discharge occurs is, for example, about 10 [V / μs] in a commercialized PDP. As apparent from the equation (1), the wall voltage value Vwr at the end of application does not depend on the wall voltage value Vwpr at the start of application, but is determined by the setting of the maximum value Vr of the applied voltage. In addition, since the discharge gas is hardly excited and light emission does not occur or occurs in the minute discharge, the display contrast is not impaired even if the number of the minute discharges is large.

なお、図1において1点鎖線で示されるように、急激に上昇する電圧(矩形波形を含む)を印加した場合には、最初に放電が起こるときの実効電圧が放電開始電圧Vfより大幅に高いので、強い放電が起こって壁電圧の極性が反転する。そのため、以降に実効電圧が放電開始電圧Vfを越えることはなく、一回きりの放電となる。また、これとは逆に、上昇の割合が上述の緩やかな範囲の下限よりも小さい極めて緩やかな所定の電圧を印加した場合には、実効電圧が放電開始電圧Vfに近くそれを越えない状態のまま連続的に電流が流れて壁電圧が徐々に降下する。実効電圧及び電流はほぼ一定であり、dV/diの値は常に正である。この現象を利用して壁電圧を調整することができるが、本発明のように微小放電を起こさせるのと比べると、壁電圧を十分に降下させるのに要する時間が大幅に長い。本発明の方が短い時間で壁電圧の調整を完了することができる。   In addition, as shown by a one-dot chain line in FIG. 1, when a rapidly rising voltage (including a rectangular waveform) is applied, the effective voltage when the discharge first occurs is significantly higher than the discharge start voltage Vf. Therefore, a strong discharge occurs and the polarity of the wall voltage is reversed. Therefore, thereafter, the effective voltage does not exceed the discharge start voltage Vf, and the discharge is performed only once. On the other hand, when a very gentle predetermined voltage whose rate of increase is smaller than the lower limit of the above-mentioned gentle range is applied, the effective voltage is close to the discharge start voltage Vf and does not exceed it. As the current continuously flows, the wall voltage gradually drops. The effective voltage and current are almost constant, and the value of dV / di is always positive. Although this phenomenon can be used to adjust the wall voltage, the time required to sufficiently lower the wall voltage is significantly longer than when a minute discharge is caused as in the present invention. The wall voltage adjustment can be completed in a shorter time in the present invention.

次に、図2のように電荷調整電圧の印加に続いてそれと同極性の矩形波電圧を印加する場合を考える。矩形波電圧の波高値(振幅)をVpとすると、矩形波電圧の印加時点の実効電圧Vcは、(2)式で表されるとおり、その電極間隙の放電開始電圧VfよりもΔV(=Vp−Vr)だけ異なる値となる。そして、ΔVが正ならば放電が起き、負であれば放電は起きない。   Next, consider the case of applying a rectangular wave voltage having the same polarity as the charge adjustment voltage as shown in FIG. Assuming that the peak value (amplitude) of the rectangular wave voltage is Vp, the effective voltage Vc at the time of applying the rectangular wave voltage is ΔV (= Vp) than the discharge start voltage Vf of the electrode gap, as expressed by the equation (2). -Vr) is a different value. If ΔV is positive, discharge occurs, and if ΔV is negative, discharge does not occur.

Vc=Vwr+Vp
=Vf−Vr+Vp=Vf+ΔV …(2)
ΔV:Vp−Vr
つまり、Vr及びVpの値を選定することにより、複数の電極間隙のそれぞれの放電開始電圧に差異があったとしても、全ての電極間隙の放電強度が揃う。矩形波電圧が例えばPDPの駆動におけるアドレッシングのためのパルスとすると、このパルスの印加の前に微小放電を起こさせて壁電圧を調整しておくことによりアドレッシングの電圧マージンが拡がることになる。
Vc = Vwr + Vp
= Vf−Vr + Vp = Vf + ΔV (2)
ΔV: Vp−Vr
That is, by selecting the values of Vr and Vp, even if there is a difference in the discharge start voltages of the plurality of electrode gaps, the discharge intensities of all the electrode gaps are uniform. If the rectangular wave voltage is, for example, a pulse for addressing in driving the PDP, the voltage margin for addressing is expanded by adjusting the wall voltage by causing a minute discharge before the application of this pulse.

電圧マージンを拡げるためには、矩形波電圧と電荷調整電圧とが同極性であることが必要である。逆極性であると、複数の電極間隙の放電開始電圧の差異を拡げるように壁電圧が変化し、電圧マージンを狭めることになる。   In order to widen the voltage margin, it is necessary that the rectangular wave voltage and the charge adjustment voltage have the same polarity. When the polarity is reversed, the wall voltage changes so as to widen the difference in the discharge start voltage between the plurality of electrode gaps, and the voltage margin is narrowed.

以上ように微小放電を起こさせて放電開始電圧の高低に応じた値の壁電圧を生じさせるには、電荷調整電圧の印加開始時点での壁電圧の値Vwprが印加終了時点の値Vwrより高くなけばならない。したがって、複数の電極間隙の一部又は全部の壁電圧がこの条件を満たしていない場合には、予め全ての電極間隙で条件を満たす壁電圧を生じさせておく必要がある。ただし、連続した微小放電が起こるのであれば、値Vwrは放電開始電圧Vfに依存して値Vwprの高低に依存しないので、値Vwprを厳密に制御する必要はない。   As described above, in order to cause a minute discharge to generate a wall voltage having a value corresponding to the level of the discharge start voltage, the wall voltage value Vwpr at the start of application of the charge adjustment voltage is higher than the value Vwr at the end of application. Must be. Therefore, when some or all of the wall voltages of the plurality of electrode gaps do not satisfy this condition, it is necessary to generate a wall voltage that satisfies the conditions in all the electrode gaps in advance. However, if continuous minute discharge occurs, the value Vwr does not depend on the level of the value Vwpr depending on the discharge start voltage Vf, and therefore it is not necessary to strictly control the value Vwpr.

ここで、PDPのアドレッシングの前処理(アドレッシング準備)として微小放電を生じさせる場合を想定する。この場合、あるサブフィールドの点灯維持の終了後に電荷調整電圧の極性に応じて選定した極性の電圧を電荷調整電圧に先立って印加する。この電圧を「電荷形成電圧」と呼称する。全てのセルで放電を起こさせることもできるし、壁電荷の存在していない(以前のアドレッシングで消去された)セルのみで放電を起こさせることもできる。このように電荷形成電圧及び電荷調整電圧の計2回の電圧印加を行うアドレッシング準備においては、従来のように1回の電圧印加で壁電荷を消去するのとは違って、点灯維持の終了段階での壁電圧の極性に係わらず、全てのセルに所望の壁電圧を生じさせることが可能である。したがって、全てのサブフィールドの点灯維持期間の放電回数を揃える必要がなくなり、各サブフィールドの放電回数を1回単位で設定して輝度の重み付けを最適化することができる。また、自己消去放電の起こるような過剰の壁電圧を生じさせるものでないので、電荷形成電圧の印加による放電での壁電荷の移動量は少なく発光強度は小さい。つまり、従来よりもコントラストが向上する。   Here, it is assumed that a minute discharge is generated as preprocessing (addressing preparation) for addressing the PDP. In this case, a voltage having a polarity selected according to the polarity of the charge adjustment voltage is applied prior to the charge adjustment voltage after completion of the lighting maintenance of a certain subfield. This voltage is referred to as a “charge forming voltage”. It is possible to cause a discharge in all the cells, or it is possible to cause a discharge only in a cell having no wall charge (erased by the previous addressing). Thus, in the addressing preparation in which the voltage formation voltage and the charge adjustment voltage are applied twice in total, unlike the conventional case where the wall charge is erased by one voltage application, the lighting maintenance end stage. It is possible to generate a desired wall voltage in all the cells regardless of the polarity of the wall voltage. Therefore, it is not necessary to equalize the number of discharges in the lighting sustain period of all subfields, and the weighting of luminance can be optimized by setting the number of discharges of each subfield in units of one. Further, since it does not cause an excessive wall voltage that causes a self-erasing discharge, the amount of wall charge movement in the discharge due to the application of the charge forming voltage is small and the emission intensity is small. That is, the contrast is improved as compared with the conventional case.

請求項1の発明の方法は、各セルが電極対を形成して面放電を生じさせる第1および第2の主電極と、前記第1および第2の主電極と対向するアドレス電極とをもつ複数のセルを有するガス放電デバイスの駆動方法であって、少なくとも2つのサブフィールドの繰り返しによって階調をもつフレームを表示し、各サブフィールドはアドレス準備期間とアドレス期間とサステイン期間とを含み、さらに前記フレームは、サステイン期間の最後のサステインパルスが前記第1の主電極に印加される少なくとも1つのサブフィールドと、サステイン期間の最後のサステインパルスが前記第2の主電極に印加される少なくとも1つのサブフィールドとを含んでなり、少なくとも前記2つのサブフィールドの各アドレス準備期間には、前記複数のセルの前記第1の主電極と前記第2の主電極との間及び前記第2の主電極と前記アドレス電極との間に、当該第2の主電極側が正極となり第1の主電極及びアドレス電極側が負極となる第1の電圧パルスと前記第2の主電極側が負極となり第1の主電極及びアドレス電極側が正極となる第2の電圧パルスとをそれぞれ印加することによって、前記第1の主電極と前記第2の主電極との間及び前記第2の主電極と前記アドレス電極との間にそれぞれ放電を生じさせて前記複数のセルに対する電荷の形成及び形成した電荷の調整を行うものである。 The method of the invention of claim 1 has a first and second main electrode in which each cell forms an electrode pair to generate a surface discharge, and an address electrode facing the first and second main electrodes. A method of driving a gas discharge device having a plurality of cells, wherein a frame having a gray level is displayed by repeating at least two subfields, each subfield including an address preparation period, an address period, and a sustain period, and The frame includes at least one subfield in which the last sustain pulse of the sustain period is applied to the first main electrode, and at least one subfield in which the last sustain pulse of the sustain period is applied to the second main electrode. Each of the plurality of cells in each address preparation period of at least the two subfields. During serial and between the second main electrode of said first main electrode and the second main electrode and between the address electrode, the first main electrode and the address electrode side the second main electrode side becomes positive electrode By applying a first voltage pulse that is a negative electrode and a second voltage pulse that is a negative electrode on the second main electrode side and a positive electrode on the first main electrode and the address electrode side , respectively, A discharge is generated between the second main electrode and between the second main electrode and the address electrode to form charges for the plurality of cells and adjust the formed charges.

請求項の発明の方法は、少なくとも前記2つのサブフィールドの各サステイン期間におけるサステインパルスの個数を、1個単位で設定するものである。 According to a second aspect of the present invention, the number of sustain pulses in each sustain period of at least the two subfields is set in units of one.

請求項3の発明の方法において、前記アドレス準備期間において第1の主電極と第2の主電極との間及び第2の主電極とアドレス電極との間に印加される第2の電圧パルスは、それぞれの印加される電極間の電位差が時間とともに単調に増大するランプ波形の電圧パルスである。 4. The method according to claim 3, wherein the second voltage pulse applied between the first main electrode and the second main electrode and between the second main electrode and the address electrode in the address preparation period is: A voltage pulse having a ramp waveform in which the potential difference between the applied electrodes monotonously increases with time.

請求項4の発明の方法において、前記アドレス準備期間において第1の主電極と第2の主電極との間及び第2の主電極とアドレス電極との間に印加される第2の電圧パルスは、それぞれの印加される電極間の電位差が時間とともに段階的に増大する階段波形の電圧パルスである。 5. The method according to claim 4, wherein the second voltage pulse applied between the first main electrode and the second main electrode and between the second main electrode and the address electrode in the address preparation period is: A voltage pulse having a staircase waveform in which the potential difference between the applied electrodes increases stepwise with time.

請求項5の発明の方法において、前記アドレス準備期間において第1の主電極と第2の主電極との間及び第2の主電極とアドレス電極との間に印加される第2の電圧パルスは、それぞれの印加される電極間の電位差が時間とともに単調に増大する鈍波波形の電圧パルスである。 6. The method according to claim 5, wherein the second voltage pulse applied between the first main electrode and the second main electrode and between the second main electrode and the address electrode in the address preparation period is: A voltage pulse having an obtuse waveform in which the potential difference between the applied electrodes monotonously increases with time.

本発明によれば、印加電圧の極性の制限が緩和され、駆動シーケンスの自由度が高まる。   According to the present invention, the restriction on the polarity of the applied voltage is relaxed, and the degree of freedom of the drive sequence is increased.

図4は本発明に係るプラズマ表示装置100の構成図である。   FIG. 4 is a configuration diagram of the plasma display device 100 according to the present invention.

プラズマ表示装置100は、マトリクス形式の薄型カラー表示デバイスであるAC型のPDP1と、m列nラインの画面ESを構成する縦横に並んだ多数のセルCを選択的に点灯させるための駆動ユニット80とから構成されており、壁掛け式テレビジョン受像機、コンピュータシステムのモニターなどとして利用される。   The plasma display device 100 includes an AC type PDP 1 which is a thin color display device in a matrix format, and a driving unit 80 for selectively lighting a large number of cells C arranged vertically and horizontally that constitute an m-column n-line screen ES. And is used as a wall-mounted television receiver, a computer system monitor, and the like.

PDP1は、点灯維持放電(表示放電ともいう)を生じさせるための電極対をなす第1及び第2の主電極X,Yが平行配置され、各セルCにおいて主電極X,Yと第3の電極としてのアドレス電極Aとが交差する3電極面放電構造のPDPである。主電極X,Yは画面ESのライン方向(水平方向)に延び、第2の主電極Yはアドレッシングに際してライン単位にセルCを選択するためのスキャン電極として用いられる。アドレス電極Aは列方向(垂直方向)に延びており、列単位にセルCを選択するためのデータ電極として用いられる。基板面のうちの主電極群とアドレス電極群とが交差する範囲が表示領域(すなわち画面ES)となる。   In the PDP 1, first and second main electrodes X and Y forming an electrode pair for generating a lighting sustain discharge (also referred to as a display discharge) are arranged in parallel, and in each cell C, the main electrodes X and Y and the third electrode This is a PDP having a three-electrode surface discharge structure in which an address electrode A as an electrode intersects. The main electrodes X and Y extend in the line direction (horizontal direction) of the screen ES, and the second main electrode Y is used as a scan electrode for selecting the cell C for each line at the time of addressing. The address electrode A extends in the column direction (vertical direction), and is used as a data electrode for selecting the cell C for each column. A range where the main electrode group and the address electrode group intersect on the substrate surface is a display area (that is, a screen ES).

駆動ユニット80は、コントローラ81、データ処理回路83、電源回路84、Xドライバ85、スキャンドライバ86、Y共通ドライバ87、及びアドレスドライバ89を有している。なお、駆動ユニット80はPDP1の背面側に配置され、各ドライバとPDP1の電極とが図示しないフレキシブルケーブルで電気的に接続される。駆動ユニット80にはTVチューナ、コンピュータなどの外部装置からR,G,Bの各色の輝度レベル(階調レベル)を示す画素単位のフィールドデータDFが、各種の同期信号とともに入力される。   The drive unit 80 includes a controller 81, a data processing circuit 83, a power supply circuit 84, an X driver 85, a scan driver 86, a Y common driver 87, and an address driver 89. The drive unit 80 is disposed on the back side of the PDP 1, and each driver and the electrode of the PDP 1 are electrically connected by a flexible cable (not shown). The drive unit 80 receives field data DF in units of pixels indicating luminance levels (gradation levels) of R, G, and B colors from various external devices such as a TV tuner and a computer together with various synchronization signals.

フィールドデータDFは、データ処理回路83におけるフレームメモリ830に一旦格納された後、後述のようにフィールドを所定数のサブフィールドに分割して階調表示を行うためのサブフィールドデータDsfに変換される。サブフィールドデータDsfはフレームメモリ830に格納され、適時にアドレスドライバ89に転送される。サブフィールドデータDsfの各ビットの値は、サブフィールドにおけるセルの点灯の要否を示す情報、厳密にはアドレス放電の要否を示す情報である。   The field data DF is temporarily stored in the frame memory 830 in the data processing circuit 83, and then converted into subfield data Dsf for gradation display by dividing the field into a predetermined number of subfields as described later. . The subfield data Dsf is stored in the frame memory 830 and transferred to the address driver 89 at an appropriate time. The value of each bit of the subfield data Dsf is information indicating whether or not the cells need to be turned on in the subfield, strictly speaking, information indicating whether or not address discharge is necessary.

Xドライバ85は全ての主電極Xに一括に駆動電圧を印加する。主電極Xの電気的な共通化は図示のようなパネル上の連結に限られず、Xドライバ85の内部配線、又は接続用ケーブル上での配線により行うことができる。スキャンドライバ86はアドレッシングにおいて各主電極Yに個別に駆動電圧を印加する。Y共通ドライバ87は点灯維持に際して全ての主電極Yに一括に駆動電圧を印加する。また、アドレスドライバ89はサブフィールドデータDsfに応じて計m本のアドレス電極Aに選択的に駆動電圧を印加する。これらドライバには電源回路84から図示しない配線導体を介して所定の電力が供給される。   The X driver 85 applies a driving voltage to all the main electrodes X at once. The electrical sharing of the main electrode X is not limited to the connection on the panel as shown in the figure, but can be performed by the internal wiring of the X driver 85 or the wiring on the connection cable. The scan driver 86 individually applies a drive voltage to each main electrode Y in addressing. The Y common driver 87 applies a driving voltage to all the main electrodes Y at the same time when maintaining lighting. The address driver 89 selectively applies a driving voltage to a total of m address electrodes A in accordance with the subfield data Dsf. These drivers are supplied with predetermined power from a power supply circuit 84 via a wiring conductor (not shown).

図5はPDP1の内部構造を示す斜視図である。   FIG. 5 is a perspective view showing the internal structure of the PDP 1.

PDP1では、前面側基板構体の基材であるガラス基板11の内面に、行毎に一対ずつ主電極X,Yが配列されている。行は画面における水平方向のセル列である。主電極X,Yは、それぞれが透明導電膜41と金属膜(バス導体)42とからなり、低融点ガラスからなる厚さ30μm程度の誘電体層17で被覆されている。誘電体層17の表面にはマグネシア(MgO)からなる厚さ数千オングストロームの保護膜18が設けられている。アドレス電極Aは、背面側基板構体の基材であるガラス基板21の内面に配列されており、厚さ10μm程度の誘電体層24によって被覆されている。誘電体層24の上には、高さ150μmの平面視直線帯状の隔壁29が各アドレス電極Aの間に1つずつ設けられている。これらの隔壁29によって放電空間30が行方向にサブピクセル(単位発光領域)毎に区画され、且つ放電空間30の間隙寸法が規定されている。そして、アドレス電極Aの上方及び隔壁29の側面を含めて背面側の内面を被覆するように、カラー表示のためのR,G,Bの3色の蛍光体層28R,28G,28Bが設けられている。放電空間30には主成分のネオンにキセノンを混合した放電ガスが充填されており、蛍光体層28R,28G,28Bは放電時にキセノンが放つ紫外線によって局部的に励起されて発光する。表示の1ピクセル(画素)は行方向に並ぶ3個のサブピクセルで構成される。各サブピクセル内の構造体がセル(表示素子)Cである。隔壁29の配置パターンがストライプパターンであることから、放電空間30のうちの各列に対応した部分は全ての行Lに跨がって列方向に連続している。   In the PDP 1, a pair of main electrodes X and Y are arranged for each row on the inner surface of the glass substrate 11 which is a base material of the front substrate structure. A row is a horizontal cell column on the screen. The main electrodes X and Y each consist of a transparent conductive film 41 and a metal film (bus conductor) 42 and are covered with a dielectric layer 17 made of low melting point glass and having a thickness of about 30 μm. A protective film 18 made of magnesia (MgO) and having a thickness of several thousand angstroms is provided on the surface of the dielectric layer 17. The address electrodes A are arranged on the inner surface of the glass substrate 21 which is a base material of the back side substrate structure, and are covered with a dielectric layer 24 having a thickness of about 10 μm. On the dielectric layer 24, one partition wall 29 having a height of 150 μm in a straight line in plan view is provided between the address electrodes A. These partition walls 29 divide the discharge space 30 into sub-pixels (unit light-emitting regions) in the row direction, and the gap size of the discharge space 30 is defined. Then, phosphor layers 28R, 28G, and 28B of three colors R, G, and B for color display are provided so as to cover the inner surface on the back side including the upper side of the address electrode A and the side surface of the partition wall 29. ing. The discharge space 30 is filled with a discharge gas in which xenon is mixed with neon as a main component, and the phosphor layers 28R, 28G, and 28B are locally excited by ultraviolet rays emitted by xenon during discharge and emit light. One pixel (pixel) for display is composed of three sub-pixels arranged in the row direction. A structure in each sub-pixel is a cell (display element) C. Since the arrangement pattern of the barrier ribs 29 is a stripe pattern, the portion corresponding to each column in the discharge space 30 extends across all rows L in the column direction.

以下、プラズマ表示装置100におけるPDP1の駆動方法を説明する。最初に階調表示及び駆動シーケンスの概要を説明し、その後に本発明に特有の印加電圧について詳述する。   Hereinafter, a method for driving the PDP 1 in the plasma display device 100 will be described. First, the outline of the gradation display and the drive sequence will be described, and then the applied voltage unique to the present invention will be described in detail.

図6はフィールド構成を示す図である。   FIG. 6 is a diagram showing a field configuration.

テレビジョン映像の表示においては、2値の点灯制御によって階調再現を行うために、入力画像である時系列の各フィールドf(符号の添字は表示順位を表す)を例えば8個のサブフレームsf1,sf2,sf3,sf4,sf5,sf6,sf7,sf8に分割する。言い換えれば、フレームを構成する各フィールドfを8個のサブフレームsf1〜sf8の集合に置き換える。なお、コンピュータ出力などのノンインタレース形式の画像を再生する場合には、各フレームを8分割する。そして、これらサブフィールドsf1〜sf8における輝度の相対比率がおおよそ1:2:4:8:16:32:64:128となるように重み付けをして各サブフィールドsf1〜sf8のサステイン放電回数を設定する。サブフィールド単位の点灯/非点灯の組合せでRGBの各色毎に256段階の輝度設定を行うことができるので、表示可能な色の数は2563 となる。ただし、サブフィールドsf1〜sf8を輝度の重みの順に表示する必要はない。例えば重みの大きいサブフィールドsf8をフィールド期間Tfの中間に配置するといった最適化を行うことができる。 In the display of a television image, in order to perform gradation reproduction by binary lighting control, each time-series field f that is an input image (the subscript of the code represents the display order) is, for example, eight subframes sf1. , Sf2, sf3, sf4, sf5, sf6, sf7, sf8. In other words, each field f constituting the frame is replaced with a set of eight subframes sf1 to sf8. Note that when a non-interlaced image such as a computer output is reproduced, each frame is divided into eight. Then, the number of sustain discharges in each subfield sf1 to sf8 is set by weighting so that the relative ratio of luminance in these subfields sf1 to sf8 is approximately 1: 2: 4: 8: 16: 32: 64: 128. To do. Since 256 levels of luminance can be set for each color of RGB by a combination of lighting / non-lighting in subfield units, the number of colors that can be displayed is 256 3 . However, it is not necessary to display the subfields sf1 to sf8 in order of luminance weight. For example, optimization can be performed such that the subfield sf8 having a large weight is arranged in the middle of the field period Tf.

各サブフィールドsfj (j=1〜8)に割り当てるサブフィールド期間Tsfj は、本発明に特有の電荷調整を行うアドレッシング準備期間TR、表示内容に応じた帯電分布を形成するアドレッシング期間TA、及び階調レベルに応じた輝度を確保するために点灯状態を維持するサステイン期間TSからなる。各サブフィールド期間Tsfjにおいて、アドレッシング準備期間TR及びアドレッシング期間TAの長さは輝度の重みに係わらず一定であるが、サステイン期間TSの長さは輝度の重みが大きいほど長い。つまり、1つのフィールドfに対応する8つのサブフィールド期間Tsfjの長さは互いに異なる。 Subfield period Tsf j to be allocated to each subfield sf j (j = 1~8) of the present invention for addressing preparation period TR for performing specific charge adjustment, addressing period TA for forming a charge distribution corresponding to display contents, and It consists of a sustain period TS in which the lighting state is maintained in order to ensure the luminance according to the gradation level. In each subfield period Tsf j , the length of the addressing preparation period TR and the addressing period TA is constant regardless of the luminance weight, but the length of the sustain period TS is longer as the luminance weight is larger. In other words, the length of the eight subfield periods Tsf j corresponding to one field f are different from each other.

図7は駆動シーケンスの第1例を示す電圧波形図である。同図では、主電極X,Yの符号には対応する行の配列順位を示す文字(1,2…n)を添え、アドレス電極Aの符号には対応する列の配列順位を示す文字(1〜m)を添えてある。以下に説明する他の図においても同様である。   FIG. 7 is a voltage waveform diagram showing a first example of the drive sequence. In the figure, characters (1, 2,... N) indicating the corresponding row arrangement order are attached to the codes of the main electrodes X and Y, and characters (1) indicating the arrangement order of the corresponding columns are assigned to the code of the address electrode A. ~ M). The same applies to other drawings described below.

サブフィールド毎に繰り返される駆動シーケンスの概要は次のとおりである。アドレッシング準備期間TRにおいては、全てのアドレス電極A1〜Amに対してパルスPra1とそれの反対極性のパルスPra2とを順に印加し、全ての主電極X1〜Xnに対してパルスPrx1とそれの反対極性のパルスPrx2とを順に印加し、全ての主電極Y1〜Ynに対してパルスPry1とそれの反対極性のパルスPry2とを順に印加する。ここでいうパルスの印加とは、一時的に電極を基準電位(例えば接地電位)と異なる電位にバイアスすることである。本例において、パルスPra1,Pra2,Prx1,Prx2,Pry1,Pry2は微小放電の生じる変化率のランプ電圧パルスである。また、パルスPra1,Prx1は負極性であり、パルスPry1は正極性である。   The outline of the driving sequence repeated for each subfield is as follows. In the addressing preparation period TR, the pulse Pra1 and the pulse Pra2 having the opposite polarity are sequentially applied to all the address electrodes A1 to Am, and the pulse Prx1 and the opposite polarity are applied to all the main electrodes X1 to Xn. The pulse Prx2 is sequentially applied, and the pulse Pry1 and the pulse Pry2 having the opposite polarity are sequentially applied to all the main electrodes Y1 to Yn. The application of a pulse here means that the electrode is temporarily biased to a potential different from a reference potential (for example, ground potential). In this example, the pulses Pra1, Pra2, Prx1, Prx2, Pry1, Pry2 are ramp voltage pulses having a change rate at which a minute discharge occurs. Further, the pulses Pra1 and Prx1 have a negative polarity, and the pulse Pry1 has a positive polarity.

パルスPra2,Prx2,Pry2の印加が図1で説明した電荷調整電圧の印加に相当する。パルスPra1,Prx1,Pry1は、1つ前のサブフィールドにおいて点灯した“前回点灯セル”及び点灯しなかった“前回非点灯セル”に適当な壁電圧を生じさせるために印加される。パルスPra1,Prx1,Pry1の印加は電荷形成電圧の印加に相当する。   The application of the pulses Pra2, Prx2, Pry2 corresponds to the application of the charge adjustment voltage described in FIG. The pulses Pra1, Prx1, Pry1 are applied to generate appropriate wall voltages for the “previously lit cells” that are lit in the previous subfield and the “previously unlit cells” that are not lit. The application of the pulses Pra1, Prx1, Pry1 corresponds to the application of a charge forming voltage.

アドレッシング期間TAにおいては、1行ずつ順に各行を選択し、該当する主電極YにスキャンパルスPyを印加する。行の選択と同時に、アドレス放電を起こさせるべきセルに該当するアドレス電極Aに対してスキャンパルスPyと反対極性のアドレスパルスPaを印加する。書込みアドレス形式の場合は点灯すべきセル(今回点灯セル)にアドレスパルスPaを印加し、逆に消去アドレス形式の場合は点灯すべきでないセル(今回非点灯セル)にアドレスパルスPaを印加する。本発明はどちらのアドレス形式にも適用可能であるが、図7で例示の駆動シーケンスは書込みアドレス形式である。   In the addressing period TA, each row is selected one by one in order, and the scan pulse Py is applied to the corresponding main electrode Y. Simultaneously with the selection of the row, an address pulse Pa having a polarity opposite to that of the scan pulse Py is applied to the address electrode A corresponding to the cell in which the address discharge is to occur. In the case of the write address format, the address pulse Pa is applied to the cell to be lit (currently lit cell), and conversely, in the case of the erase address format, the address pulse Pa is applied to the cell that should not be lit (currently unlit cell). Although the present invention is applicable to either address format, the drive sequence illustrated in FIG. 7 is a write address format.

スキャンパルスPyとアドレスパルスPaとが印加されたセルでは、アドレス電極Aと主電極Yとの間で放電が起こり、それがトリガーとなって主電極X,Yの間でも放電が起こる。これら一連の放電であるアドレス放電には、アドレス電極Aと主電極Yとの間(以下、電極間隙AYという)の放電開始電圧VfAYと、主電極X,Yの間(以下、電極間隙XYという)の放電開始電圧VfXYとが係わる。したがって、上述のアドレッシング準備期間TRにおいては、電極間隙XYと電極間隙AYの双方について壁電圧の調整を行うのである。 In the cell to which the scan pulse Py and the address pulse Pa are applied, a discharge occurs between the address electrode A and the main electrode Y, and this also triggers a discharge between the main electrodes X and Y. The address discharge, which is a series of these discharges, includes a discharge start voltage Vf AY between the address electrode A and the main electrode Y (hereinafter referred to as the electrode gap AY) and the main electrodes X and Y (hereinafter referred to as the electrode gap XY). The discharge start voltage Vf XY . Therefore, in the addressing preparation period TR described above, the wall voltage is adjusted for both the electrode gap XY and the electrode gap AY.

サステイン期間TSにおいては、最初に全ての主電極Y1〜Ynに対して所定極性(例示では正極性)のサステインパルスPsを印加する。その後、主電極X1〜Xnと主電極Y1〜Ynとに対して交互にサステインパルスPsを印加する。本例では最終のサステインパルスPsは主電極X1〜Xnに印加される。サステインパルスPsの印加によって、アドレッシング期間TAにおいて壁電荷の残された今回点灯セルで面放電が生じる。そして、面放電が生じる毎に電極間の壁電圧の極性が反転する。なお、サステイン期間TSにわたって不要の放電を防止するために全てのアドレス電極A1〜AmをサステインパルスPsと同極性にバイアスする。   In the sustain period TS, first, a sustain pulse Ps having a predetermined polarity (positive polarity in the example) is applied to all the main electrodes Y1 to Yn. Thereafter, a sustain pulse Ps is alternately applied to the main electrodes X1 to Xn and the main electrodes Y1 to Yn. In this example, the final sustain pulse Ps is applied to the main electrodes X1 to Xn. By applying the sustain pulse Ps, a surface discharge is generated in the currently lit cell in which wall charges remain in the addressing period TA. Then, every time surface discharge occurs, the polarity of the wall voltage between the electrodes is reversed. Note that all address electrodes A1 to Am are biased to the same polarity as the sustain pulse Ps in order to prevent unnecessary discharge over the sustain period TS.

図8は図7に対応した印加電圧と壁電圧の波形図である。同図ではランプ電圧の変化率及び最大値が例示してある。   FIG. 8 is a waveform diagram of applied voltage and wall voltage corresponding to FIG. In the figure, the change rate and the maximum value of the lamp voltage are illustrated.

アドレッシング準備期間TRにおけるパルス印加の作用は1つ前のサブフィールドの点灯状態によって異なる。
〔前回非点灯セル〕
まず、前回非点灯セルでは、アドレッシング準備期間TRの開始時点での電極間隙XYの壁電圧VwsXY及び電極間隙AYの壁電圧VwsAYは図中の鎖線で示されるとおりほぼ零である。したがって、パルスPrx1,Pry1,Pra1の印加においては、印加電圧が各電極間隙XY,AYの放電開始電圧VfXY,VfAYを超えた時点から微小放電が始まる。前回非点灯セルで放電を起こすには、電極間隙XYに対する印加電圧の最大値VprXY及び電極間隙AYに対する印加電圧の最大値VprAYが(3)(4)式を満たさなければならない。
The action of pulse application in the addressing preparation period TR varies depending on the lighting state of the previous subfield.
[Previous unlit cell]
First, in the previous non-lighting cell, the wall voltage Vws XY of the electrode gap XY and the wall voltage Vws AY of the electrode gap AY at the start of the addressing preparation period TR are substantially zero as shown by the chain line in the figure. Therefore, in the application of the pulses Prx1, Pry1, and Pra1, a minute discharge starts when the applied voltage exceeds the discharge start voltages Vf XY and Vf AY of the electrode gaps XY and AY. To generate discharge in the last non-lighted cell, the maximum value Vpr AY maximum value Vpr XY and the voltage applied to the electrode gap AY of the voltage applied to the electrode gap XY is (3) (4) must a met expression.

VprXY>VfXY …(3)
VprAY>VfAY …(4)
図中の括弧で囲まれた数値は、VfXY=220±αボルト、VfAY=170±βボルトである場合の具体値である。例示におけるVprXYは270(=170+100)ボルトであり、VprAYは220(=120+100)である。
Vpr XY > Vf XY (3)
Vpr AY > Vf AY (4)
Numerical values enclosed in parentheses in the figure are specific values when Vf XY = 220 ± α volts and Vf AY = 170 ± β volts. In the example, Vpr XY is 270 (= 170 + 100) volts, and Vpr AY is 220 (= 120 + 100).

パルスPrx1,Pry1,Pra1の印加終了時点の電極間隙XYの壁電圧をVwprXYとし、同時点の電極間隙AYの壁電圧をVwprAYとすると、(5)(6)式が成り立つ。 When the wall voltage of the electrode gap XY at the end of application of the pulses Prx1, Pry1, and Pra1 is Vwpr XY, and the wall voltage of the electrode gap AY at the same point is Vwpr AY , equations (5) and (6) are established.

VwprXY=VprXY−VfXY …(5)
VwprAY=VprAY−VfAY …(6)
パルスPrx1,Pry1,Pra1に続いてパルスPrx2,Pry2,Pra2を印加したときの放電が起こる条件は、電極間隙XYに対する印加電圧の最大値をVrXYとし、電極間隙AYに対する印加電圧の最大値をVrAYとして(7)(8)式で表される。
Vwpr XY = Vpr XY -Vf XY (5)
Vwpr AY = Vpr AY -Vf AY (6)
Pulse Prx 1, Pry1, PRA1 followed by pulse Prx2, Pry2, Pra2 condition discharge occurs when applying a is the maximum value of the voltage applied to the electrode gap XY and Vr XY, the maximum value of the voltage applied to the electrode gap AY Vr AY is expressed by equations (7) and (8).

VrXY+VwprXY>VfXY …(7)
VrAY+VwprAY>VfAY …(8)
パルスPrx2,Pry2,Pra2の印加終了時点の電極間隙XYの壁電圧をVwrXYとし、電極間隙AYの壁電圧をVwrAYとすると、(9)(10)式が成り立つ。
Vr XY + Vwpr XY > Vf XY (7)
Vr AY + Vwpr AY > Vf AY (8)
When the wall voltage of the electrode gap XY at the end of application of the pulses Prx2, Pry2 and Pra2 is Vwr XY, and the wall voltage of the electrode gap AY is Vwr AY , equations (9) and (10) are established.

VwrXY=VfXY−VrXY …(9)
VwrAY=VfAY−VrAY …(10)
なお、VrXY,VrAYの値が放電開始電圧を超えると壁電圧の極性が変わる。書込みアドレス形式の場合は、壁電圧VwrXYがサステイン期間TSで放電の起きない十分に小さい値でなければならない。また、アドレッシングにおいてアドレスパルスPaとスキャンパルスPyが同時に印加されるセル以外で電極間隙AYで放電が起きてはならないので、壁電圧VwrAYの値も十分に小さくしなくてはならない。
Vwr XY = Vf XY -Vr XY (9)
Vwr AY = Vf AY -Vr AY (10)
Note that when the values of Vr XY and Vr AY exceed the discharge start voltage, the polarity of the wall voltage changes. In the case of the write address format, the wall voltage Vwr XY must be a sufficiently small value so that no discharge occurs in the sustain period TS. In addition, since the discharge should not occur in the electrode gap AY except for the cells to which the address pulse Pa and the scan pulse Py are simultaneously applied in the addressing, the value of the wall voltage Vwr AY must be sufficiently small.

壁電圧VwrXY,VwrAYの値は零近辺に設定することもできる。セルの放電開始電圧のバラツキがあるので、そのバラツキ程度の値にはなるが、小さな値である。(7)〜(10)式から明らかなように壁電圧には(11)(12)式の関係がある。
The values of the wall voltages Vwr XY and Vwr AY can be set near zero. Since there is a variation in the discharge start voltage of the cell, the value is about the variation, but it is a small value. As is clear from the equations (7) to ( 10 ), the wall voltage has the relationship of equations (11) and (12).

VwprXY>VwrXY …(11)
VwprAY>VwrAY …(12)
したがって、VwrXY,VwrAYの値が小さければ、VwprXY,VwprAYの値も小さく設定できる。VwrXY,VwrAY,VwprXY,VwprAYの値が小さければ、電荷形成のための放電及び電荷調整のための放電における壁電圧変化量が少なく、発光量も少ない。
〔前回点灯セル〕
一方、前回点灯セルについては、パルスPrx1,Pry1,Pra1によって壁電圧の極性を反転させる。アドレッシング準備期間TRの開始時点では、アドレス電極Aの近傍の壁電荷はほぼ零であるので、この時点の電極間隙AYの壁電圧VwsAYは、電極間隙XYの壁電圧VwsXYの半分である。
Vwpr XY > Vwr XY (11)
Vwpr AY > Vwr AY (12)
Therefore, if the values of Vwr XY and Vwr AY are small, the values of Vwpr XY and Vwpr AY can be set small. If the values of Vwr XY , Vwr AY , Vwpr XY , and Vwpr AY are small, the amount of wall voltage change in the discharge for charge formation and the discharge for charge adjustment is small, and the light emission amount is also small.
[Last light cell]
On the other hand, for the previously lighted cell, the polarity of the wall voltage is inverted by the pulses Prx1, Pry1, and Pra1. Since the wall charge near the address electrode A is almost zero at the start of the addressing preparation period TR, the wall voltage Vws AY of the electrode gap AY at this time is half of the wall voltage Vws XY of the electrode gap XY.

アドレッシング準備期間TRの開始時点での壁電圧VwsXY,VwsAYの極性は、パルスPrx1,Pry1,Pra1による印加電圧の極性と同一であるので、(3)式及び(4)式を満たしておれば放電は起こる。放電が起これば、パルスPrx1,Pry1,Pra1の印加終了後の壁電圧は前回非点灯セルと同一になり、パルスPrx2,Pry2,Pra2の印加による壁電圧の推移は前回非点灯セルと同様である。 Since the polarities of the wall voltages Vws XY and Vws AY at the start of the addressing preparation period TR are the same as the polarities of the voltages applied by the pulses Prx1, Pry1, and Pra1, the expressions (3) and (4) must be satisfied. If this happens, discharge will occur. If a discharge occurs, the wall voltage after the application of the pulses Prx1, Pry1, and Pra1 is the same as the previous non-lighting cell, and the transition of the wall voltage due to the application of the pulses Prx2, Pry2, and Pra2 is the same as the previous non-lighting cell. is there.

図9は駆動シーケンスの第2例を示す電圧波形図である。   FIG. 9 is a voltage waveform diagram showing a second example of the drive sequence.

本例と図7の例とを見比べることによりサステインパルスPaの個数に制約がないことが判る。すなわち、上述の図7の例ではサステイン期間TSの最終のサステインパルスPaが主電極X1〜Xnに印加されたが、本例では主電極Y1〜Ynに印加される。つまり、サステイン期間TSの終了時点での壁電圧の極性が図7の例と反対になる。しかし、アドレッシング準備期間TRにおいては図7の例と同一条件のパルスPrx1,Pry1,Pra1,Prx2,Pry2,Pra2が印加される。   By comparing this example with the example of FIG. 7, it can be seen that there is no restriction on the number of sustain pulses Pa. That is, in the example of FIG. 7 described above, the final sustain pulse Pa in the sustain period TS is applied to the main electrodes X1 to Xn, but in this example is applied to the main electrodes Y1 to Yn. That is, the polarity of the wall voltage at the end of the sustain period TS is opposite to the example of FIG. However, in the addressing preparation period TR, pulses Prx1, Pry1, Pra1, Prx2, Pry2, and Pra2 having the same conditions as in the example of FIG. 7 are applied.

図10は図9に対応した印加電圧と壁電圧の波形図である。   FIG. 10 is a waveform diagram of applied voltage and wall voltage corresponding to FIG.

前回非点灯セルにおける壁電圧の推移は図7と同様になる。前回点灯セルにおいては、パルスPrx1,Pry1,Pra1の最大値の選定によって、放電が起こる場合と起こらない場合とが生じる。図では放電の起こる場合の壁電圧の推移を破線で示し、起こらない場合の壁電圧の推移を実線で示してある。   The transition of the wall voltage in the previous non-lighting cell is the same as in FIG. In the previously lit cell, depending on the selection of the maximum values of the pulses Prx1, Pry1, and Pra1, there are cases where discharge occurs and does not occur. In the figure, the transition of the wall voltage when a discharge occurs is indicated by a broken line, and the transition of the wall voltage when no discharge occurs is indicated by a solid line.

電極間隙XY,AYで放電の起こる条件は(13)(14)式で表される。   Conditions under which discharge occurs in the electrode gaps XY and AY are expressed by equations (13) and (14).

VprXY−VwsXY>VfXY …(13)
VprAY−VwsAY>VfAY …(14)
パルスPrx1,Pry1,Pra1の印加終了時点での壁電圧VwprXY,VwprAYは、パルスPrx1,Pry1,Pra1の印加で放電の起こる場合と起こらない場合とで異なり、(15)(15’)(16)(16’)式で表される。
Vpr XY -Vws XY > Vf XY (13)
Vpr AY -Vws AY > Vf AY (14)
The wall voltages Vwpr XY and Vwpr AY at the end of the application of the pulses Prx1, Pry1, and Pra1 are different depending on whether the discharge is caused or not caused by the application of the pulses Prx1, Pry1, and Pra1, (15) (15 ′) ( 16) It is expressed by the equation (16 ′).

VwprXY=VprXY−VfXY 〔放電の起こる場合〕 …(15)
VwprXY=VwsXY 〔放電の起こらない場合〕…(15’)
VwprAY=VprAY−VfAY 〔放電の起こる場合〕 …(16)
VwprAY=VwsAY 〔放電の起こらない場合〕…(16’)
しかし、パルスPrx1,Pry1,Pra1の印加による放電の有無に係わらず、(17)(18)式が成り立つ。
Vwpr XY = Vpr XY −Vf XY [When discharge occurs] (15)
Vwpr XY = Vws XY [When no discharge occurs] (15 ′)
Vwpr AY = Vpr AY -Vf AY [When discharge occurs] (16)
Vwpr AY = Vws AY [When no discharge occurs] (16 ')
However, Expressions (17) and (18) hold regardless of whether or not there is discharge due to application of the pulses Prx1, Pry1, and Pra1.

VwprXY≧VprXY−VfXY …(17)
VwprAY≧VprAY−VfAY …(18)
したがって、(5)〜(8)式を考慮すると、パルスPrx2,Pry2,Pra2の印加によって必ず放電の起こることが判る。
Vwpr XY ≧ Vpr XY −Vf XY (17)
Vwpr AY ≧ Vpr AY −Vf AY (18)
Therefore, considering the equations (5) to (8), it can be seen that discharge is always caused by application of the pulses Prx2, Pry2, and Pra2.

図11は駆動シーケンスの第3例を示す電圧波形図である。上述の第1例及び第2例は、今回点灯セルでアドレス放電を起こさせる書込みアドレス形式の駆動例であったが、今回非点灯セルでアドレス放電を起こさせる消去アドレス形式にも本発明を適用することができる。   FIG. 11 is a voltage waveform diagram showing a third example of the drive sequence. The first example and the second example described above are driving examples of an address address format that causes an address discharge in a currently lit cell, but the present invention is also applied to an erase address format that causes an address discharge in a non-lighted cell this time. can do.

図7及び図9の駆動シーケンスとの差異は、サステイン期間TSにおける最初のサステインパルスPsの印加対象である。消去アドレス形式では、アドレッシング期間TAの終了時点で、主電極Y1〜Ynには負の壁電荷、主電極X1〜Xnには正の壁電荷が溜まっているので、最初にサステインパルスPsを主電極1〜Xnに印加する。サステインパルスPsを負極性とする場合は逆に主電極Y1〜Ynに印加する。例示は最終のサステインパルスPsを主電極1〜Xnに印加するものであるが、主電極Y1〜Ynに印加してもよい。消去アドレス形式でもサブフィールド毎にサステインパルスPaの個数を1個単位で設定可能である。   The difference from the drive sequences of FIGS. 7 and 9 is the application target of the first sustain pulse Ps in the sustain period TS. In the erase address format, since the negative charges are accumulated in the main electrodes Y1 to Yn and the positive wall charges are accumulated in the main electrodes X1 to Xn at the end of the addressing period TA, the sustain pulse Ps is first applied to the main electrode. 1 to Xn. Conversely, when the sustain pulse Ps has a negative polarity, it is applied to the main electrodes Y1 to Yn. In the illustrated example, the final sustain pulse Ps is applied to the main electrodes 1 to Xn, but may be applied to the main electrodes Y1 to Yn. Even in the erase address format, the number of sustain pulses Pa can be set in units of one for each subfield.

アドレッシング準備期間TRでの壁電圧の変化は第1例及び第2例と同様である。ただし、アドレッシング準備期間TRの終了時点における電極間隙XYの壁電圧VwrXYが、点灯維持に十分な値でなければならない。壁電荷の極性は主電極Yが負側である。壁電圧VwrXYに合わせて壁電圧VwprXYも大きくする。 The change in the wall voltage during the addressing preparation period TR is the same as in the first and second examples. However, the electrode gap XY wall voltage Vwr XY at the end of the address preparation period TR is, must be of sufficient value to the lighting maintained. The polarity of the wall charge is negative on the main electrode Y. The wall voltage Vwpr XY is also increased in accordance with the wall voltage Vwr XY .

図12は駆動シーケンスの第4例を示す電圧波形図である。   FIG. 12 is a voltage waveform diagram showing a fourth example of the drive sequence.

アドレッシング準備期間TRにおいて、パルスPrx2,Pry2,Pra2による電荷調整に先立って、全ての主電極Y1〜Ynに矩形波形のパルスPry1’を印加することによって、全てのセルに所定の壁電圧を生じさせる。パルスPry1’の波高値は、放電開始電圧VfXY,VfAYを超えるように設定する。 In the addressing preparation period TR, a rectangular wall-shaped pulse Pry1 ′ is applied to all the main electrodes Y1 to Yn prior to charge adjustment by the pulses Prx2, Pry2, and Pra2, thereby generating a predetermined wall voltage in all the cells. . The peak value of the pulse Pry1 ′ is set so as to exceed the discharge start voltages Vf XY and Vf AY .

図13は図12に対応した印加電圧と壁電圧の波形図である。   FIG. 13 is a waveform diagram of applied voltage and wall voltage corresponding to FIG.

前回非点灯セルではパルスPry1’の印加によって1回の放電が起こる。この放電は壁電圧VwprXY,VwprAYを生じさせる。パルスPrx2,Pry2,Pra2の印加以降の壁電圧の変化は第1例と同様である。ただし、消去アドレス形式の場合は、パルスPrx2,Pry2,Pra2の印加終了時点の壁電圧VwrXYが十分に大きくなるようにパルスPry1’の波高値を設定しなければならない。 In the previous non-lighting cell, one discharge occurs by the application of the pulse Pry1 ′. This discharge generates wall voltages Vwpr XY and Vwpr AY . Changes in the wall voltage after application of the pulses Prx2, Pry2, and Pra2 are the same as in the first example. However, in the case of erasing address format, pulse Prx2, Pry2, the wall voltage Vwr XY applied at the end of Pra2 must set the peak value of sufficiently large so as to pulse Pry1 '.

前回点灯セルでは、パルスPry1’の印加によっては放電が起きない。印加時点の壁電圧VwsXYの極性がパルスPry1’と反対になるからである。したがって、第2例におけるパルスPrx1,Pry1,Pra1で放電の起きない場合と同様であり、(19)(20)式が成り立つ。 In the previously lit cell, no discharge occurs due to the application of the pulse Pry1 ′. This is because the polarity of the wall voltage Vws XY at the time of application is opposite to that of the pulse Pry1 ′. Therefore, this is the same as the case where no discharge occurs in the pulses Prx1, Pry1, and Pra1 in the second example, and the equations (19) and (20) are established.

VwprXY=VwsXY …(19)
VwprAY=VwsAY …(20)
図14は図12の変形例の印加電圧と壁電圧の波形図である。
Vwpr XY = Vws XY (19)
Vwpr AY = Vws AY (20)
FIG. 14 is a waveform diagram of the applied voltage and wall voltage of the modification of FIG.

VwsXYは点灯維持に十分な大きさであるので、消去アドレス形式を採用しても問題はない。すなわち、図14のようにサステイン期間TSの終了時点の壁電圧の極性が図13の例と反対であっても、適正なアドレッシング準備は可能である。ただし、パルスPry1’の印加によって前回点灯セルでも放電が起こる。前回非点灯セルの壁電圧の変化は、サステイン期間TSの終了時点の壁電圧の極性に依存しない。 Since Vws XY is large enough to maintain lighting, there is no problem even if the erase address format is adopted. That is, as shown in FIG. 14, even when the polarity of the wall voltage at the end of the sustain period TS is opposite to the example of FIG. 13, appropriate addressing preparation is possible. However, discharge occurs in the previously lighted cell by applying the pulse Pry1 ′. The change in the wall voltage of the previously unlit cell does not depend on the polarity of the wall voltage at the end of the sustain period TS.

図15は駆動波形の第1変形例を示す図である。   FIG. 15 is a diagram showing a first modification of the drive waveform.

微小放電を起こさせるために印加する電圧は、必ずしも零から一定の変化率で上昇させる必要はない。印加電圧が放電開始電圧Vfに達するまでは放電が起こらないので、壁電圧を考慮してセル電圧が放電開始電圧を越えない範囲内の設定値Vqまで急激に立ち上がり、その後に設定値Vrまで緩やかに上昇する電圧を印加してもよい。例示のように例えば主電極Xに矩形波形の電圧を印加し、他方の主電極Yにランプ波形の電圧を印加すれば、電極間隙XYの合成印加電圧は台形波形となる。   It is not always necessary to increase the voltage applied to cause a minute discharge from zero at a constant rate of change. Since the discharge does not occur until the applied voltage reaches the discharge start voltage Vf, the cell voltage rapidly rises to the set value Vq within a range not exceeding the discharge start voltage in consideration of the wall voltage, and then gradually decreases to the set value Vr. A rising voltage may be applied. As illustrated, for example, when a voltage having a rectangular waveform is applied to the main electrode X and a voltage having a ramp waveform is applied to the other main electrode Y, the combined applied voltage of the electrode gap XY becomes a trapezoidal waveform.

図16は駆動波形の第2変形例を示す図である。   FIG. 16 is a diagram showing a second modification of the drive waveform.

ランプ電圧の代わりに鈍波波形の電圧を印加して微小放電を起こさせることができる。ただし、電圧の上昇が緩やかになる以前にセル電圧が放電開始電圧に達してはならない。   A minute discharge can be caused by applying a voltage having an obtuse waveform instead of the lamp voltage. However, the cell voltage must not reach the discharge start voltage before the voltage rise becomes slow.

図17は駆動波形の第3変形例を示す図である。   FIG. 17 is a diagram showing a third modification of the drive waveform.

ランプ電圧の代わりに微小なステップをもつ階段波形の電圧を印加して微小放電を起こさせることができる。ステップの設定により微小放電の大きさを制御することができる。   Instead of the lamp voltage, a voltage having a staircase waveform having a minute step can be applied to cause a minute discharge. The magnitude of the minute discharge can be controlled by setting the step.

以上の実施形態は主電極X,Y及びアドレス電極Aが誘電体で被覆された構造のPDP1を駆動対象としてものであった。しかし、対をなす電極の片方のみが誘電体で被覆された構造にも本発明を適用することができる。例えばアドレス電極Aを覆う誘電体がない構造、又は主電極X,Yの一方が放電空間30に露出した構造であっても電極間隙XY,AYに適当な壁電圧を生じさせることができる。印加電圧の極性、値、印加時間、上昇の変化率は例示に限定されない。また、本発明は、PDP,PALCを含む表示デバイスだけでなく、壁電荷が放電に係わる構造の他のガス放電デバイスに適用可能である。ガス放電を表示のために起こさせる必要はない。   In the above embodiment, the PDP 1 having a structure in which the main electrodes X and Y and the address electrode A are covered with a dielectric is used as a driving target. However, the present invention can also be applied to a structure in which only one of the paired electrodes is covered with a dielectric. For example, an appropriate wall voltage can be generated in the electrode gaps XY and AY even if there is no dielectric covering the address electrode A or a structure in which one of the main electrodes X and Y is exposed to the discharge space 30. The polarity, the value, the application time, and the rate of change of the applied voltage are not limited to the examples. The present invention is applicable not only to display devices including PDP and PALC, but also to other gas discharge devices having a structure in which wall charges are related to discharge. There is no need to cause a gas discharge for display.

以上の実施形態によれば、放電開始電圧のバラツキによる電圧マージンの縮小を解消し、駆動の信頼性を高めることができる。画像の表示を行う場合において背景輝度を低減し、表示のコントラストを高めることができる。さらに、印加電圧の極性の制限を緩和し、駆動シーケンスの自由度を高めることができる。   According to the above embodiment, the reduction of the voltage margin due to the variation in the discharge start voltage can be eliminated, and the driving reliability can be improved. In the case of displaying an image, the background luminance can be reduced and the display contrast can be increased. Furthermore, the restriction on the polarity of the applied voltage can be relaxed and the degree of freedom of the drive sequence can be increased.

本発明の原理図である。It is a principle diagram of the present invention. 本発明の原理図である。It is a principle diagram of the present invention. 本発明に係る微小放電の電流−電圧特性を示す波形図である。It is a wave form diagram which shows the electric current-voltage characteristic of the micro discharge based on this invention. 本発明に係るプラズマ表示装置の構成図である。It is a block diagram of the plasma display apparatus which concerns on this invention. PDPの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of PDP. フィールド構成を示す図である。It is a figure which shows a field structure. 駆動シーケンスの第1例を示す電圧波形図である。It is a voltage waveform diagram which shows the 1st example of a drive sequence. 図7に対応した印加電圧と壁電圧の波形図である。FIG. 8 is a waveform diagram of an applied voltage and a wall voltage corresponding to FIG. 7. 駆動シーケンスの第2例を示す電圧波形図である。It is a voltage waveform diagram which shows the 2nd example of a drive sequence. 図9に対応した印加電圧と壁電圧の波形図である。FIG. 10 is a waveform diagram of applied voltage and wall voltage corresponding to FIG. 9. 駆動シーケンスの第3例を示す電圧波形図である。It is a voltage waveform diagram which shows the 3rd example of a drive sequence. 駆動シーケンスの第4例を示す電圧波形図である。It is a voltage waveform diagram which shows the 4th example of a drive sequence. 図12に対応した印加電圧と壁電圧の波形図である。FIG. 13 is a waveform diagram of applied voltage and wall voltage corresponding to FIG. 12. 図12の変形例の印加電圧と壁電圧の波形図である。It is a wave form diagram of the applied voltage and wall voltage of the modification of FIG. 駆動波形の第1変形例を示す図である。It is a figure which shows the 1st modification of a drive waveform. 駆動波形の第2変形例を示す図である。It is a figure which shows the 2nd modification of a drive waveform. 駆動波形の第3変形例を示す図である。It is a figure which shows the 3rd modification of a drive waveform.

符号の説明Explanation of symbols

1 PDP(ガス放電デバイス)
X 主電極(電極)
Y 主電極(スキャン電極)
A アドレス電極(データ電極)
Vq 電圧値(第1設定値)
Vr 電圧値(第2設定値)
C セル
Vw 壁電圧
ES 表示画面
Pra2,Prx2,Pry2 パルス(電荷調整において印加する電圧)
Pra1,Prx1,Pry1 パルス(ランプ波形の電圧パルス)
Pry1’ パルス(矩形波形の電圧パルス)
f フィールド
sf1〜8 サブフィールド
1 PDP (gas discharge device)
X Main electrode (electrode)
Y Main electrode (scan electrode)
A Address electrode (data electrode)
Vq Voltage value (first set value)
Vr voltage value (second set value)
C cell Vw wall voltage ES display screen Pra2, Prx2, Pry2 pulse (voltage applied in charge adjustment)
Pra1, Prx1, Pry1 pulse (ramp waveform voltage pulse)
Play1 'pulse (rectangular waveform voltage pulse)
f field sf1-8 subfield

Claims (5)

各セルが電極対を形成して面放電を生じさせる第1および第2の主電極と、前記第1および第2の主電極と対向するアドレス電極とをもつ複数のセルを有するガス放電デバイスの駆動方法であって、
少なくとも2つのサブフィールドの繰り返しによって階調をもつフレームを表示し、各サブフィールドはアドレス準備期間とアドレス期間とサステイン期間とを含み、さらに
前記フレームは、サステイン期間の最後のサステインパルスが前記第1の主電極に印加される少なくとも1つのサブフィールドと、サステイン期間の最後のサステインパルスが前記第2の主電極に印加される少なくとも1つのサブフィールドとを含んでなり、
少なくとも前記2つのサブフィールドの各アドレス準備期間には、前記複数のセルの前記第1の主電極と前記第2の主電極との間及び前記第2の主電極と前記アドレス電極との間に、当該第2の主電極側が正極となり第1の主電極及びアドレス電極側が負極となる第1の電圧パルスと前記第2の主電極側が負極となり第1の主電極及びアドレス電極側が正極となる第2の電圧パルスとをそれぞれ印加することによって、前記第1の主電極と前記第2の主電極との間及び前記第2の主電極と前記アドレス電極との間にそれぞれ放電を生じさせて前記複数のセルに対する電荷の形成及び形成した電荷の調整を行う
ことを特徴とするガス放電デバイスの駆動方法。
A gas discharge device having a plurality of cells each having a first and second main electrode in which each cell forms an electrode pair to generate a surface discharge and an address electrode facing the first and second main electrodes A driving method comprising:
A frame having a gray level is displayed by repeating at least two subfields, and each subfield includes an address preparation period, an address period, and a sustain period, and the frame includes a first sustain pulse in a sustain period. Comprising at least one subfield applied to the main electrode of the second and at least one subfield in which the last sustain pulse of the sustain period is applied to the second main electrode;
At least in each address preparation period of the two subfields, between the first main electrode and the second main electrode of the plurality of cells and between the second main electrode and the address electrode. The first voltage pulse in which the second main electrode side is a positive electrode and the first main electrode and address electrode side is a negative electrode, and the second main electrode side is a negative electrode and the first main electrode and address electrode side are a positive electrode . 2 voltage pulses, respectively, to generate a discharge between the first main electrode and the second main electrode and between the second main electrode and the address electrode, respectively. A method for driving a gas discharge device, comprising: forming charges for a plurality of cells and adjusting the formed charges.
少なくとも前記2つのサブフィールドの各サステイン期間におけるサステインパルスの個数を、1個単位で設定する
請求項1に記載のガス放電デバイスの駆動方法。
The method of driving a gas discharge device according to claim 1, wherein the number of sustain pulses in each sustain period of at least the two subfields is set in units of one.
前記アドレス準備期間において第1の主電極と第2の主電極との間及び第2の主電極とアドレス電極との間に印加される第2の電圧パルスは、それぞれの印加される電極間の電位差が時間とともに単調に増大するランプ波形の電圧パルスである
請求項1または2に記載のガス放電デバイスの駆動方法。
In the address preparation period, the second voltage pulse applied between the first main electrode and the second main electrode and between the second main electrode and the address electrode is between the applied electrodes. The method for driving a gas discharge device according to claim 1, wherein the potential difference is a voltage pulse having a ramp waveform that monotonously increases with time.
前記アドレス準備期間において第1の主電極と第2の主電極との間及び第2の主電極とアドレス電極との間に印加される第2の電圧パルスは、それぞれの印加される電極間の電位差が時間とともに段階的に増大する階段波形の電圧パルスである
請求項1または2に記載のガス放電デバイスの駆動方法。
In the address preparation period, the second voltage pulse applied between the first main electrode and the second main electrode and between the second main electrode and the address electrode is between the applied electrodes. The method of driving a gas discharge device according to claim 1, wherein the potential difference is a stepped waveform voltage pulse that gradually increases with time.
前記アドレス準備期間において第1の主電極と第2の主電極との間及び第2の主電極とアドレス電極との間に印加される第2の電圧パルスは、それぞれの印加される電極間の電位差が時間とともに単調に増大する鈍波波形の電圧パルスである
請求項1または2に記載のガス放電デバイスの駆動方法。
In the address preparation period, the second voltage pulse applied between the first main electrode and the second main electrode and between the second main electrode and the address electrode is between the applied electrodes. The method for driving a gas discharge device according to claim 1, wherein the potential difference is a voltage pulse having an obtuse waveform that monotonously increases with time.
JP2007007678A 2007-01-17 2007-01-17 Driving method of gas discharge device Expired - Fee Related JP4252092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007678A JP4252092B2 (en) 2007-01-17 2007-01-17 Driving method of gas discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007678A JP4252092B2 (en) 2007-01-17 2007-01-17 Driving method of gas discharge device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15710798A Division JP4210805B2 (en) 1998-06-05 1998-06-05 Driving method of gas discharge device

Publications (2)

Publication Number Publication Date
JP2007164209A JP2007164209A (en) 2007-06-28
JP4252092B2 true JP4252092B2 (en) 2009-04-08

Family

ID=38247066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007678A Expired - Fee Related JP4252092B2 (en) 2007-01-17 2007-01-17 Driving method of gas discharge device

Country Status (1)

Country Link
JP (1) JP4252092B2 (en)

Also Published As

Publication number Publication date
JP2007164209A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4210805B2 (en) Driving method of gas discharge device
KR100281019B1 (en) Driving Method of Plasma Display Panel
JP3423865B2 (en) Driving method of AC type PDP and plasma display device
KR100803255B1 (en) Method for driving a gas discharge panel
JP4089759B2 (en) Driving method of AC type PDP
JP3511457B2 (en) Driving method of PDP
KR20000003392A (en) Method for dirving of plasma display panel and apparatus
JP4252092B2 (en) Driving method of gas discharge device
JP5116574B2 (en) Driving method of gas discharge device
JP4223059B2 (en) Driving method of surface discharge display device
JP3606861B2 (en) Driving method of AC type PDP

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees