JP4251683B2 - Electromagnet drive device - Google Patents

Electromagnet drive device Download PDF

Info

Publication number
JP4251683B2
JP4251683B2 JP08280598A JP8280598A JP4251683B2 JP 4251683 B2 JP4251683 B2 JP 4251683B2 JP 08280598 A JP08280598 A JP 08280598A JP 8280598 A JP8280598 A JP 8280598A JP 4251683 B2 JP4251683 B2 JP 4251683B2
Authority
JP
Japan
Prior art keywords
current
current power
power source
drive coil
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08280598A
Other languages
Japanese (ja)
Other versions
JPH11260640A (en
Inventor
秀喜 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP08280598A priority Critical patent/JP4251683B2/en
Publication of JPH11260640A publication Critical patent/JPH11260640A/en
Application granted granted Critical
Publication of JP4251683B2 publication Critical patent/JP4251683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は2個の電磁石により対象物の位置制御を行う装置の電磁石駆動装置に関するもので、高速回転体の磁気軸受や各種搬送装置の磁気浮上に使用して効果がある。
【0002】
【従来の技術】
図4は磁気軸受等の用途に従来用いられている装置の構成を示すものである。同図において1は第1の鉄心61と共に第1の電磁石を構成する第1の駆動コイル、2は第2の鉄心62と共に第2の電磁石を構成する第2の駆動コイル、31、41はそれぞれ第1、第2の駆動コイル1、2を駆動する第1、第2の可変電流電源、7は制御の対象物となる回転軸、81は第1の駆動コイルバイアス電流Ib1と制御電流iを加算し、その出力にて第1の可変電流電源31出力電流を(Ib1+i)に制御する加算器、82は第2の駆動コイルバイアス電流Ib2から制御電流iを減算し、その出力にて第2の可変電流電源41出力電流を(Ib2−i)に制御する減算器である。
【0003】
2個の電磁石により対象物を制御する場合、このように片方の吸引力を+iにより増加させ、もう一方の吸引力を−iにより減少させるプッシュプル的な駆動にするのが一般的である。バイアス電流Ib1、Ib2は回転軸7の自重などによる荷重を支えるために必要となる。9は制御電流iを出力する制御増幅器で各種構成のものが使用されるが、例えばその入力91は回転軸7と第1の鉄心61とのギャップを検出するギャップセンサ出力を受け、ギャップ長が一定になるようPID制御(図示せず)を行うなどの構成がとられる。
【0004】
図5は図4の従来装置コイル1、2を駆動する回路を示すもので、それぞれのコイル1、2に可変電流電源31、41を並列に接続し、それぞれの出力電流を(Ib1+i)、(Ib2−i)にセットする。
【0005】
【発明が解決しようとする課題】
以上で説明したように2個のコイル1、2に個別に可変電流電源31、41が使用される。バイアス電流Ib1、Ib2は一定の直流値であるが、制御電流iはギャップ長が回転軸7の振動などの外乱を受けて変動するため、かなりの高周波成分を含み、可変電流電源31、41としてはかなり高速の応答が要求される。また、一般にコイル1、2の駆動には低圧でよいが大電流が必要である。従って高精度、高速特性の制御を実現するためには、可変電流電源31、41として電流容量が大きく応答の速いものが要求されるが、このような装置は市販されているものも少なく、あったとしても、または製作するとしても大変高価なものとなってしまう。
【0006】
【課題を解決するための手段】
本発明はこのような点に鑑み、可変電流電源を1台とし、かつ電流容量も減らし、安価な装置にて同様の効果を得んとするものである。具体的には、2個の電磁石にて対象物の位置制御を行う制御系において、2個の電磁石の駆動コイルと可変電流電源を全て直列に接続して閉回路を構成し、それぞれの電磁石の駆動コイルと並列に定電流電源を接続して構成する。
【0007】
【発明の実施の形態】
以下、本発明の詳細を図によって説明する。図1は本発明による第1の駆動コイル1と第2の駆動コイル2の駆動回路を示すもので、3は第1の駆動コイル1を駆動する定電流電源で、バイアス電流Ib1を出力する。4は第2の駆動コイル2を駆動する定電流電源で、バイアス電流Ib2を出力する。5が制御電流iを出力する可変電流電源で、第1の駆動コイル1を正方向に、第2の駆動コイル2を負方向に駆動する。可変電流電源5は図4の制御増幅器9と同様の装置によりその出力電流をコントロールされる。このような構成にてもコイル1、2は図4、5の従来装置と同様にそれぞれ電流(Ib1+i)、(Ib2−i)にて駆動されることは明らかである。
【0008】
【作用】
図5に示す従来の電磁石駆動装置と、図1の本発明による電磁石駆動装置とを比べると、可変電流電源は31、41の2台から5の1台となり、また5はバイアス電流Ib1やIb2を供給せずに制御電流iのみを出力すればよいためごく小容量のものでよく、従来の装置に比べて大変安価な装置となる。
【0009】
【実施例】
図2は第1の駆動コイル1にバイアス電流Ib1を供給する定電流電源の実施例であり、5は制御電流iを供給する可変電流電源である。第2の駆動コイルについても同様であるが、ここでは省略する。32は定電圧電源、33、34、35は抵抗器、36は演算増幅器、37はpnp型トランジスタである。衆知の如く、飽和しておらずに活性状態にある演算増幅器36の正負入力電圧はほぼ等しくなる。よって定電圧電源32の電圧をE、演算増幅器36の正側入力端子の電圧をE+、トランジスタ37のエミッタ電流をIe、抵抗器35の抵抗値をRとすると、
E+=E−R×Ie (1)
が成立する。トランジスタ37のコレクタ電流Icはほぼエミッタ電流Ieに等しいから、駆動コイル1は(1)式のIeにより定電流駆動される。電流値は抵抗器33、34により演算増幅器36の正側入力端子電圧E+を変えることにより調整することができ、Ieがバイアス電流Ib1となるようにセットする。駆動コイル1にはIb1に加え、可変電流電源5より制御電流iが重畳されることは明らかである。
【0010】
図3は制御電流iを供給する可変電流電源の実施例であり、51〜57は抵抗器、58、59は演算増幅器、101はnpn型トランジスタ、102はpnp型トランジスタである。抵抗器51には図4の制御増幅器9出力である制御電流iに相当した電圧Eiが入力される。トランジスタ101、102は演算増幅器58の出力インピーダンスを下げて負荷である駆動コイル1、2に十分な電流を供給するためのもので、それぞれのコレクタ端子は正電源、負電源に接続される。抵抗器55、56は出力短絡などの過電流からトランジスタ101、102を保護するためのものである。演算増幅器59は出力電圧のバッファ装置として動作する。抵抗器57の抵抗値をRo、抵抗器57を通して出力される電流値をIoとすると、図5の場合とほぼ同様の解析によりIo=Ei/Roとなり、Eiにより出力電流を調整することができる。
【0011】
抵抗器55と56の接続点電圧をEoとすると、演算増幅器59の正側入力端子電圧は(Eo−Io×Ro)となり、演算増幅器59はバッファ装置として動作する故この電圧はそのまま演算増幅器59の出力電圧となる。抵抗器51と52の抵抗値は等しく選定されており、演算増幅器58の正側入力端子電圧は(Ei+Eo−Io×Ro)/2となる。抵抗器53と54の抵抗値も等しく選ばれているため、演算増幅器58の負側入力電圧はEo/2となり、これが正側入力電圧と等しくなることからIo=Ei/Roが導かれ、制御電流iに比例した電流Ioが取り出される。
【0012】
図2、図3の実施例はいずれも日本電気(株)のオペアンプに関する技術資料IEB554、IEA519を参考にした。
【0013】
【発明の効果】
本発明によれば、安価な電流電源により磁気軸受や磁気浮上に使用される2個の電磁石を駆動することが可能となり、産業上の効果は大きい。
【図面の簡単な説明】
【図1】本発明の回路構成を示す図である。
【図2】本発明による定電流電源の実施例を示す図である。
【図3】本発明による可変電流電源の実施例を示す図である。
【図4】本発明が適用される磁気軸受け装置の構成を示す図である。
【図5】従来装置の回路構成を示す図である。
【符号の説明】
1、2 駆動コイル
3、4 定電流電源
5 可変電流電源
7 回転軸
9 制御増幅器
31、41 可変電流電源
32 定電圧電源
33、34、35、51〜57 抵抗器
36、58、59 演算増幅器
37、102 pnp型トランジスタ
61、62 鉄心
81 加算器
82 減算器
91 制御増幅器入力端子
101 npn型トランジスタ
[0001]
[Industrial application fields]
The present invention relates to an electromagnet driving device for a device that controls the position of an object with two electromagnets, and is effective when used for magnetic levitation of a magnetic bearing of a high-speed rotating body and various conveying devices.
[0002]
[Prior art]
FIG. 4 shows the structure of an apparatus conventionally used for applications such as magnetic bearings. In the figure, 1 is a first drive coil that constitutes a first electromagnet together with a first iron core 61, 2 is a second drive coil that constitutes a second electromagnet together with a second iron core 62, and 31 and 41 are respectively First and second variable current power sources for driving the first and second drive coils 1 and 2, 7 is a rotating shaft to be controlled, 81 is a first drive coil bias current Ib 1 and a control current i An adder for adding and controlling the output current of the first variable current power supply 31 to (Ib1 + i) by the output, 82 subtracts the control current i from the second drive coil bias current Ib2, and the second by the output This subtractor controls the output current of the variable current power supply 41 to (Ib2-i).
[0003]
When an object is controlled by two electromagnets, it is common to use push-pull driving in which the suction force on one side is increased by + i and the other suction force is reduced by -i. The bias currents Ib1 and Ib2 are necessary to support a load due to the weight of the rotating shaft 7 or the like. 9 is a control amplifier that outputs a control current i and has various configurations. For example, its input 91 receives a gap sensor output for detecting a gap between the rotating shaft 7 and the first iron core 61, and the gap length is A configuration such as PID control (not shown) is performed so as to be constant.
[0004]
FIG. 5 shows a circuit for driving the conventional apparatus coils 1 and 2 of FIG. 4. The variable current power sources 31 and 41 are connected in parallel to the coils 1 and 2, respectively, and the respective output currents are (Ib1 + i), ( Set to Ib2-i).
[0005]
[Problems to be solved by the invention]
As described above, the variable current power sources 31 and 41 are individually used for the two coils 1 and 2. Although the bias currents Ib1 and Ib2 are constant DC values, the control current i includes a considerable high-frequency component because the gap length fluctuates due to disturbance such as vibration of the rotating shaft 7, and the variable current power sources 31 and 41 Requires a fairly fast response. In general, the coils 1 and 2 may be driven at a low pressure, but a large current is required. Therefore, in order to realize high-precision and high-speed characteristic control, the variable current power sources 31 and 41 are required to have large current capacity and quick response. However, there are few such devices on the market, and Even if it is made or manufactured, it becomes very expensive.
[0006]
[Means for Solving the Problems]
In view of such a point, the present invention uses a single variable current power source, reduces the current capacity, and achieves the same effect with an inexpensive apparatus. Specifically, in a control system that controls the position of an object with two electromagnets, the drive coils of the two electromagnets and the variable current power supply are all connected in series to form a closed circuit. A constant current power supply is connected in parallel with the drive coil.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described with reference to the drawings. FIG. 1 shows a drive circuit for a first drive coil 1 and a second drive coil 2 according to the present invention. Reference numeral 3 denotes a constant current power source for driving the first drive coil 1, which outputs a bias current Ib1. A constant current power source 4 drives the second drive coil 2 and outputs a bias current Ib2. Reference numeral 5 denotes a variable current power source that outputs a control current i, which drives the first drive coil 1 in the positive direction and the second drive coil 2 in the negative direction. The output current of the variable current power source 5 is controlled by a device similar to the control amplifier 9 of FIG. It is obvious that the coils 1 and 2 are driven by currents (Ib1 + i) and (Ib2-i) as in the conventional apparatus shown in FIGS.
[0008]
[Action]
When the conventional electromagnet driving device shown in FIG. 5 is compared with the electromagnet driving device according to the present invention shown in FIG. 1, the variable current power source is changed from two units 31 and 41 to one unit, and 5 is a bias current Ib1 or Ib2. Since it is sufficient to output only the control current i without supplying the power, a very small capacity is required, and the apparatus is much cheaper than the conventional apparatus.
[0009]
【Example】
FIG. 2 shows an embodiment of a constant current power source that supplies a bias current Ib1 to the first drive coil 1, and 5 is a variable current power source that supplies a control current i. The same applies to the second drive coil, but is omitted here. 32 is a constant voltage power source, 33, 34 and 35 are resistors, 36 is an operational amplifier, and 37 is a pnp transistor. As is well known, the positive and negative input voltages of the operational amplifier 36 that is active without being saturated are substantially equal. Therefore, when the voltage of the constant voltage power supply 32 is E, the voltage at the positive input terminal of the operational amplifier 36 is E +, the emitter current of the transistor 37 is Ie, and the resistance value of the resistor 35 is R.
E + = E−R × Ie (1)
Is established. Since the collector current Ic of the transistor 37 is substantially equal to the emitter current Ie, the drive coil 1 is driven at a constant current by Ie in the equation (1). The current value can be adjusted by changing the positive side input terminal voltage E + of the operational amplifier 36 by the resistors 33 and 34, and Ie is set to be the bias current Ib1. It is apparent that the control current i is superimposed on the drive coil 1 from the variable current power source 5 in addition to Ib1.
[0010]
FIG. 3 shows an embodiment of a variable current power source for supplying a control current i. Reference numerals 51 to 57 denote resistors, 58 and 59 denote operational amplifiers, 101 denotes an npn transistor, and 102 denotes a pnp transistor. A voltage Ei corresponding to the control current i, which is the output of the control amplifier 9 in FIG. The transistors 101 and 102 are for lowering the output impedance of the operational amplifier 58 and supplying a sufficient current to the drive coils 1 and 2 that are loads, and their collector terminals are connected to a positive power source and a negative power source. Resistors 55 and 56 are for protecting the transistors 101 and 102 from an overcurrent such as an output short circuit. The operational amplifier 59 operates as an output voltage buffer device. Assuming that the resistance value of the resistor 57 is Ro and the current value output through the resistor 57 is Io, Io = Ei / Ro is obtained by almost the same analysis as in FIG. 5, and the output current can be adjusted by Ei. .
[0011]
Assuming that the connection voltage of the resistors 55 and 56 is Eo, the positive side input terminal voltage of the operational amplifier 59 is (Eo−Io × Ro), and the operational amplifier 59 operates as a buffer device. Output voltage. The resistance values of the resistors 51 and 52 are selected to be equal, and the positive input terminal voltage of the operational amplifier 58 is (Ei + Eo−Io × Ro) / 2. Since the resistance values of the resistors 53 and 54 are also selected to be equal, the negative input voltage of the operational amplifier 58 is Eo / 2, which is equal to the positive input voltage, leading to Io = Ei / Ro A current Io proportional to the current i is taken out.
[0012]
2 and 3 are based on technical documents IEB554 and IEA519 concerning operational amplifiers of NEC Corporation.
[0013]
【The invention's effect】
According to the present invention, it is possible to drive two electromagnets used for magnetic bearings and magnetic levitation by an inexpensive current power source, and the industrial effect is great.
[Brief description of the drawings]
FIG. 1 is a diagram showing a circuit configuration of the present invention.
FIG. 2 is a diagram showing an embodiment of a constant current power source according to the present invention.
FIG. 3 is a diagram showing an embodiment of a variable current power supply according to the present invention.
FIG. 4 is a diagram showing a configuration of a magnetic bearing device to which the present invention is applied.
FIG. 5 is a diagram showing a circuit configuration of a conventional device.
[Explanation of symbols]
1, 2 Driving coil 3, 4 Constant current power source 5 Variable current power source 7 Rotating shaft 9 Control amplifier 31, 41 Variable current power source 32 Constant voltage power source 33, 34, 35, 51-57 Resistor 36, 58, 59 Operational amplifier 37 , 102 pnp transistors 61, 62 Iron core 81 Adder 82 Subtractor 91 Control amplifier input terminal 101 npn transistor

Claims (1)

2個の電磁石にて対象物の位置制御を行う制御系において、2個の電磁石の駆動コイルと可変電流電源を全て直列に接続して閉回路を構成し、それぞれの電磁石の駆動コイルと並列に定電流電源を接続したことを特徴とする電磁石駆動装置。In a control system that controls the position of an object with two electromagnets, the two electromagnet drive coils and the variable current power supply are all connected in series to form a closed circuit, and in parallel with each electromagnet drive coil. An electromagnet drive device characterized by connecting a constant current power source.
JP08280598A 1998-03-13 1998-03-13 Electromagnet drive device Expired - Fee Related JP4251683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08280598A JP4251683B2 (en) 1998-03-13 1998-03-13 Electromagnet drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08280598A JP4251683B2 (en) 1998-03-13 1998-03-13 Electromagnet drive device

Publications (2)

Publication Number Publication Date
JPH11260640A JPH11260640A (en) 1999-09-24
JP4251683B2 true JP4251683B2 (en) 2009-04-08

Family

ID=13784636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08280598A Expired - Fee Related JP4251683B2 (en) 1998-03-13 1998-03-13 Electromagnet drive device

Country Status (1)

Country Link
JP (1) JP4251683B2 (en)

Also Published As

Publication number Publication date
JPH11260640A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
US10619669B2 (en) Magnetic bearing control device and vacuum pump
JP4746619B2 (en) Magnetic bearing device and magnetic bearing method
US8018106B2 (en) Magnetic bearing device with simplified wiring
EP0669709A1 (en) Output stage especially for integrated amplifiers with externally connected output power devices
JPS6159077B2 (en)
JP4251683B2 (en) Electromagnet drive device
JP2020527685A (en) Compensation for magnetic flux in magnetic bearing equipment
US5754066A (en) Output stage for buffering an electrical signal and method for performing the same
JP3306893B2 (en) Magnetic bearing device
JP4218386B2 (en) Class D amplifier output circuit and magnetic bearing control device
KR100232242B1 (en) Switching bridge amplifier
US20070080594A1 (en) Power amplification device and magnetic bearing
JP3187982B2 (en) Magnetic levitation device
JPH09257035A (en) Control device for magnetic bearing
JP2002039178A (en) Magnetic bearing device
JPH0712128B2 (en) amplifier
WO2020189367A1 (en) Control device, and vacuum pump provided with said control device
JPS59117915A (en) Magnetic bearing device
JP3600261B2 (en) Magnetic bearing device
JPH0783221B2 (en) Power amplifier for generating magnetic attraction
JP2533083Y2 (en) Magnetic bearing control device
JPH08296643A (en) Control device of magnetic bearing
JP4144046B2 (en) Magnetic levitation device
JP3110204B2 (en) Magnetic bearing control device
JP2570426Y2 (en) Motor drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees