JP4251485B2 - Glycolipid measurement method, disease detection method and kit - Google Patents

Glycolipid measurement method, disease detection method and kit Download PDF

Info

Publication number
JP4251485B2
JP4251485B2 JP2003295918A JP2003295918A JP4251485B2 JP 4251485 B2 JP4251485 B2 JP 4251485B2 JP 2003295918 A JP2003295918 A JP 2003295918A JP 2003295918 A JP2003295918 A JP 2003295918A JP 4251485 B2 JP4251485 B2 JP 4251485B2
Authority
JP
Japan
Prior art keywords
sugar chain
glycolipid
protein
conjugate
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003295918A
Other languages
Japanese (ja)
Other versions
JP2005062114A (en
Inventor
寛 藤田
康博 倉橋
真己 飯田
浩 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP2003295918A priority Critical patent/JP4251485B2/en
Publication of JP2005062114A publication Critical patent/JP2005062114A/en
Application granted granted Critical
Publication of JP4251485B2 publication Critical patent/JP4251485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、糖脂質の測定方法、該方法を用いる測定キットに関する。更に本発明は、疾病の検出方法及び検出キットに関する。   The present invention relates to a method for measuring glycolipid and a measurement kit using the method. The present invention further relates to a disease detection method and a detection kit.

非特許文献1には、糖鎖認識性抗体が固着された固相に、検体を接触させ、検体中の糖鎖含有物質を前記糖鎖認識性抗体に結合させ、次いで、標識した糖鎖認識性抗体を接触させ、前記糖鎖含有物質に結合した前記認識性抗体を検出する工程を少なくとも含む、検体中の糖鎖抗原の測定方法が記載されている。しかしながら、上記の測定原理には、1分子あたりに抗体結合構造を1つしか含まない糖脂質等の糖鎖含有物質は理論上測定できないという問題点が存在する。   Non-Patent Document 1 discloses that a sample is brought into contact with a solid phase to which a sugar chain-recognizing antibody is fixed, a sugar chain-containing substance in the sample is bound to the sugar chain-recognizing antibody, and then labeled sugar chain recognition Describes a method for measuring a sugar chain antigen in a specimen, which comprises at least a step of detecting a recognizing antibody bound to the sugar chain-containing substance by contacting a specific antibody. However, the above measurement principle has a problem that a sugar chain-containing substance such as a glycolipid containing only one antibody binding structure per molecule cannot theoretically be measured.

非特許文献2には、糖鎖をタンパク質に化学的な方法を用いて共有結合させる技術が記載されている。しかし、糖脂質の測定や、疾病の検出に関しては記載も示唆もない。   Non-Patent Document 2 describes a technique for covalently binding a sugar chain to a protein using a chemical method. However, there is no description or suggestion regarding measurement of glycolipids or detection of diseases.

また非特許文献3には、先天性代謝異常疾患により血液中および尿中において特定の糖脂質濃度が上昇することが知られている旨記載されており、また血液中および尿中におけるそれら糖脂質を定量することはそれら先天性代謝異常疾患のスクリーニングにおいて有用である旨記載されている。さらに、非特許文献4および非特許文献5には、血液中および尿中から有機溶媒を用いてそれら糖脂質を抽出し、これを固相に固着し、これに結合する糖鎖結合性蛋白質を接触させ、前期糖脂質に結合した前記糖鎖結合性タンパク質を検出する工程を少なくとも含む、検体中のそれら糖脂質の測定方法が記載されている。   Non-Patent Document 3 describes that it is known that a specific glycolipid concentration increases in blood and urine due to an inborn error of metabolism, and those glycolipids in blood and urine. Is described as being useful in screening for these inborn errors of metabolic disorders. Furthermore, in Non-Patent Document 4 and Non-Patent Document 5, sugar chain-binding proteins that extract these glycolipids from blood and urine using an organic solvent, adhere this to a solid phase, and bind to this are described. There is described a method for measuring these glycolipids in a specimen, which comprises at least a step of detecting the sugar chain-binding protein bound to the glycolipid in advance.

一方、単糖にタンパク質を化学的に結合させる方法は、特許文献1に記載されている。
しかし、タンパク質が共有結合した糖鎖が固着された固相を用いて体液中の糖脂質を測定し、これと疾病とを関連づけることについては記載も示唆もない。
On the other hand, Patent Document 1 discloses a method for chemically binding a protein to a monosaccharide.
However, there is no description or suggestion of measuring a glycolipid in a body fluid using a solid phase to which a sugar chain to which a protein is covalently bonded is fixed, and relating this to a disease.

国際公開WO87/02777号パンフレットInternational Publication WO87 / 02777 Pamphlet Cancer Res. 46, 2619-2626, (1986)Cancer Res. 46, 2619-2626, (1986) Methods On Glycoconjugates, pp 171-176 (1995)Methods On Glycoconjugates, pp 171-176 (1995) グリコパソロジー, pp 217 (1991)Glycopathology, pp 217 (1991) Analytical Biochemistry 267, 104-113 (1999)Analytical Biochemistry 267, 104-113 (1999) 日本先天代謝異常症学会誌 17(2), 189 (2001)Japanese Journal of Inborn Errors of Metabolism 17 (2), 189 (2001)

糖脂質を、より高感度、特異的かつ正確に、再現性・定量性良く、かつ簡便に測定できる方法が提供できれば、糖脂質の測定方法として極めて実用性が高く、このような測定方法及び測定キットが望まれていた。またこのような測定方法及び測定キットが提供できれば、体液中の糖脂質の量に変化が生じる疾病の検出も極めて容易になる。   If a method capable of measuring glycolipids with higher sensitivity, specificity and accuracy, good reproducibility and quantification and a simple method can be provided, it is extremely practical as a method for measuring glycolipids. A kit was desired. If such a measurement method and measurement kit can be provided, it becomes extremely easy to detect a disease in which the amount of glycolipid in the body fluid changes.

すなわち本発明は、極めて実用的な糖脂質の測定方法及び測定キット、並びに疾病の検出方法及び検出キットを提供することを目的とする。   That is, an object of the present invention is to provide a very practical glycolipid measurement method and measurement kit, as well as a disease detection method and detection kit.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、タンパク質が結合した糖鎖が固着された固相を用いることにより、糖脂質を従来の方法よりも高感度、特異的かつ正確に、再現性・定量性良く、かつ簡便に測定できることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that glycolipids are more sensitive, specific and accurate than conventional methods by using a solid phase to which a sugar chain to which protein is bound is fixed. In addition, the inventors have found that the measurement can be easily performed with good reproducibility and quantitativeness, and the present invention has been completed.

すなわち本発明は、以下のとおりである。
(1)「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相を用いることを特徴とする検体中の糖脂質の測定方法。
(2)下記工程(A)及び(B)を少なくとも含む、検体中の糖脂質の測定方法。
工程(A):「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相に、検体及び糖鎖結合性タンパク質を接触させ、該糖鎖結合性タンパク質に対し、検体中の糖脂質と該糖鎖とを競合反応させる工程。
工程(B):固相に固着された前記糖鎖に結合した前記糖鎖結合性タンパク質を検出する工程。
(3)共有結合が、糖脂質に含まれる糖鎖とタンパク質の両方の物質に結合しうるスペーサー化合物を介した結合であることを特徴とする(1)又は(2)記載の測定方法。
(4)糖鎖結合性タンパク質が標識物質で標識されているか、又は標識されうることを特徴とする(2)又は(3)記載の測定方法。
(5)糖鎖結合性タンパク質が抗糖脂質抗体であることを特徴とする(2)〜(4)いずれか一項記載の測定方法。
(6)糖脂質がスフィンゴ糖脂質である(1)〜(5)いずれか一項記載の測定方法。
(7)糖鎖が下記式1に示す構造からなるGb3に含まれる糖鎖であることを特徴とする(1)〜(6)いずれか一項記載測定方法。
Galα1−4Galβ1−3Glc (1)
ここで、GalはD−ガラクトースを示し、GlcはD−グルコースを示し、式中−はグリコシド結合を示し、数字は前記グリコシド結合が存在する炭素番号を示し、α及びβは1位に存在する前記グリコシド結合のアノマーを示す。
(8)(1)〜(7)のいずれか一項に記載の測定方法によって、検体である体液中に含まれる糖脂質を測定し、体液中の糖脂質の測定結果と生体内における糖脂質量が変動する疾病とを関連づけることによる疾病の検出方法。
(9)疾病が、糖脂質代謝異常疾患である(8)記載の検出方法。
(10)疾病が、ファブリー病である(8)記載の検出方法。
(11)下記構成成分(A)を少なくとも含む、糖脂質の測定キット。
(A)糖脂質に含まれる糖鎖とタンパク質との結合体であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体結合体が固着された固相。
(12)共有結合が、糖脂質に含まれる糖鎖とタンパク質の両方の物質に結合しうるスペーサー化合物を介した結合であることを特徴とする請求項11記載の糖脂質の測定キット。
(13)更に下記構成成分(B)を含む、(11)又は(12)記載の糖脂質の測定キット。
(B)糖鎖結合性タンパク質。
(14)糖鎖結合性タンパク質が標識されていることを特徴とする(13)記載の測定キット。
(15)糖鎖結合性タンパク質が抗糖脂質抗体であることを特徴とする(13)又は(14)記載の測定キット。
(16)糖鎖が下記式1に示す構造からなるGb3に含まれる糖鎖であり、糖鎖結合性タンパク質が抗Gb3抗体であることを特徴とする(13)〜(15)いずれか一項記載の測定キット。
Galα1−4Galβ1−3Glc (1)
ここで、GalはD−ガラクトースを示し、GlcはD−グルコースを示し、式中−はグリコシド結合を示し、数字は前記グリコシド結合が存在する炭素番号を示し、α及びβは1位に存在する前記グリコシド結合のアノマーを示す。
(17)(11)〜(16)のいずれか一項に記載の測定キットの構成成分を少なくとも含む、生体内における糖脂質量が変動する疾病の検出キット。
(18)疾病が、糖脂質代謝異常疾患である(17)記載の検出キット。
(19)疾病が、ファブリー病である(17)記載の検出キット。
That is, the present invention is as follows.
(1) “A conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the bond between the sugar chain and the protein in the conjugate is a functional group formed at the reducing end of the sugar chain and the function of the protein. A method for measuring a glycolipid in a specimen, comprising using a solid phase to which the conjugate, which is due to a covalent bond with a group, is fixed.
(2) A method for measuring a glycolipid in a sample, comprising at least the following steps (A) and (B).
Step (A): “a conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the bond between the sugar chain and the protein in the conjugate is formed at the reducing end of the sugar chain and the protein A sample and a sugar chain-binding protein are brought into contact with a solid phase to which the conjugate, which is due to a covalent bond with a functional group of the sample, is fixed, and the glycolipid and the sugar in the sample are contacted with the sugar chain-binding protein. A step of competitive reaction with a chain.
Step (B): a step of detecting the sugar chain-binding protein bound to the sugar chain fixed to a solid phase.
(3) The measurement method according to (1) or (2), wherein the covalent bond is a bond via a spacer compound capable of binding to both a sugar chain and a protein contained in the glycolipid.
(4) The measuring method according to (2) or (3), wherein the sugar chain binding protein is labeled with a labeling substance or can be labeled.
(5) The measuring method according to any one of (2) to (4), wherein the sugar chain binding protein is an anti-glycolipid antibody.
(6) The measuring method according to any one of (1) to ( 5) , wherein the glycolipid is a glycosphingolipid.
(7) The measuring method according to any one of (1) to (6), wherein the sugar chain is a sugar chain contained in Gb3 having a structure represented by the following formula 1.
Galα1-4Galβ1-3Glc (1)
Here, Gal represents D-galactose, Glc represents D-glucose, in the formula, − represents a glycoside bond, the number represents the carbon number in which the glycoside bond is present, and α and β are in position 1 An anomer of the glycosidic bond is shown.
(8) A glycolipid contained in a body fluid as a specimen is measured by the measurement method according to any one of (1) to (7), and the measurement result of the glycolipid in the body fluid and the glycolipid in vivo A method for detecting a disease by associating a disease whose amount varies.
(9) The detection method according to (8), wherein the disease is a disease of abnormal glycolipid metabolism.
(10) The detection method according to (8), wherein the disease is Fabry disease.
(11) A glycolipid measurement kit comprising at least the following component (A).
(A) A conjugate of a sugar chain and a protein contained in a glycolipid, wherein the bond between the sugar chain and the protein in the conjugate is a functional group formed at the reducing end of the sugar chain and a functional group of the protein. solid phase conjugates conjugate is secured is by covalent bonds.
(12) The kit for measuring glycolipid according to claim 11, wherein the covalent bond is a bond via a spacer compound capable of binding to both a sugar chain and a protein contained in the glycolipid.
(13) The glycolipid measurement kit according to (11) or (12) , further comprising the following component (B).
(B) Sugar chain binding protein.
(14) The measurement kit according to ( 13 ), wherein the sugar chain binding protein is labeled.
(15) The measurement kit according to ( 13) or (14), wherein the sugar chain binding protein is an anti-glycolipid antibody.
(16) Any one of ( 13) to (15) , wherein the sugar chain is a sugar chain contained in Gb3 having a structure represented by the following formula 1, and the sugar chain-binding protein is an anti-Gb3 antibody : The measurement kit described.
Galα1-4Galβ1-3Glc (1)
Here, Gal represents D-galactose, Glc represents D-glucose, in the formula, − represents a glycoside bond, the number represents the carbon number in which the glycoside bond is present, and α and β are in position 1 An anomer of the glycosidic bond is shown.
(17) A detection kit for a disease in which the amount of glycolipid in a living body varies, comprising at least the components of the measurement kit according to any one of (11) to ( 16) .
(18) The detection kit according to ( 17), wherein the disease is a disease of abnormal glycolipid metabolism.
(19) The detection kit according to ( 17) , wherein the disease is Fabry disease.

本発明において、糖鎖結合性タンパク質は標識されていることが好ましい。また、糖鎖結合性タンパク質は抗糖脂質抗体であることが好ましく、さらには、糖脂質はGb3であり、抗糖脂質抗体は抗Gb3抗体であることが好ましい。   In the present invention, the sugar chain binding protein is preferably labeled. Further, the sugar chain binding protein is preferably an anti-glycolipid antibody, more preferably the glycolipid is Gb3, and the anti-glycolipid antibody is preferably an anti-Gb3 antibody.

本発明測定方法は、糖脂質を高感度、特異的かつ正確に、再現性・定量性良く、かつ簡便に測定できる方法であり、非常に実用性が高い方法である。また本発明検出方法は本発明測定方法を応用したものであり、種々の疾病を極めて簡便に検出できるので、非常に実用性が高い方法である。また本発明測定キット及び本発明検出キットは、本発明測定方法及び本発明検出方法を行うために利用するキットであるので、これを用いて糖脂質を高感度、特異的かつ正確に、再現性・定量性良く、かつ簡便に測定でき、また生体内における糖脂質の量が変動する種々の疾病を極めて簡便に検出できる。
また本発明測定キット及び本発明検出キットは、その構成が単純であり、安価に提供することができる。
本発明は、明細書中で説明する種々の疾病の検出のみならず、疾病の状態、進行度の把握、治療方針の決定、治療効果の確認、医薬品開発の評価等へも応用することができ、極めて有用である。
The measurement method of the present invention is a method that can measure glycolipids with high sensitivity, specificity and accuracy, good reproducibility and quantification, and simple, and is very practical. In addition, the detection method of the present invention is an application of the measurement method of the present invention, and can detect various diseases very easily, and is therefore a highly practical method. In addition, since the measurement kit and the detection kit of the present invention are kits used for carrying out the measurement method and the detection method of the present invention, glycolipids can be detected with high sensitivity, specificity and accuracy using this. -It can be easily measured with good quantitativeness, and various diseases in which the amount of glycolipids in a living body can be detected extremely easily.
The measurement kit and the detection kit of the present invention have a simple configuration and can be provided at low cost.
The present invention can be applied not only to the detection of various diseases described in the specification, but also to the determination of disease state, progress, determination of treatment policy, confirmation of treatment effect, evaluation of drug development, etc. Is extremely useful.

<1>本発明測定方法
本発明測定方法は「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相を用いることを特徴とする検体中の糖脂質の測定方法である。より具体的には、下記工程(A)及び(B)を少なくとも含む、検体中の糖脂質の測定方法。
<1> Measurement method of the present invention The measurement method of the present invention is a “conjugate of a sugar chain and a protein contained in a glycolipid” , and the bond between the sugar chain and the protein in the conjugate is at the reducing end of the sugar chain. A method for measuring glycolipids in a specimen, comprising using a solid phase to which the conjugate, which is formed by a covalent bond between a formed functional group and a functional group of a protein, is used. More specifically, a method for measuring glycolipid in a sample, comprising at least the following steps (A) and (B).

工程(A):「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相に、検体及び糖鎖結合性タンパク質を接触させ、該糖鎖結合性タンパク質に対し、検体中の糖脂質と該糖鎖とを競合反応させる工程。
工程(B):固相に固着された前記糖鎖に結合した前記糖鎖結合性タンパク質を検出する工程。
Step (A): “a conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the bond between the sugar chain and the protein in the conjugate is formed at the reducing end of the sugar chain and the protein A sample and a sugar chain-binding protein are brought into contact with a solid phase to which the conjugate, which is due to a covalent bond with a functional group of the sample, is fixed, and the glycolipid and the sugar in the sample are contacted with the sugar chain-binding protein. A step of competitive reaction with a chain.
Step (B): a step of detecting the sugar chain-binding protein bound to the sugar chain fixed to a solid phase.

本発明測定方法で用いることができる「結合体」は、タンパク質と糖鎖とが直接的又は間接的に結合している限りにおいて限定されない。かかる結合は化学的結合(共有結合、水素結合、イオン結合など)であっても物理的吸着による結合であってもよいが、化学的結合が好ましく、その中でも特に共有結合が好ましい。   The “conjugate” that can be used in the measurement method of the present invention is not limited as long as the protein and the sugar chain are bound directly or indirectly. Such a bond may be a chemical bond (covalent bond, hydrogen bond, ionic bond, etc.) or a bond by physical adsorption, but is preferably a chemical bond, and more preferably a covalent bond.

両者が直接的に共有結合している結合体には、糖鎖とタンパク質とが、両方の物質(化合物)と結合しうるスペーサー物質を介して共有結合している物質(糖鎖-スペーサー物質-タンパク質)も含まれる。両者が間接的に共有結合している結合体としては、例えばタンパク質に結合性を有する非タンパク質性の物質(例えばビオチン等)を糖鎖に共有結合させ、これとアビジン、ストレプトアビジン等のタンパク質とを結合させた物質(例:糖鎖ビオチン-アビジン)等が例示される。なお、ビオチンとアビジンの間の結合は共有結合ではないが、これら両者が結合してなる複合体(ビオチン−アビジン)は極めて安定(このような特異的な複合体を形成する対物質を「特異的結合対」とも記載する)である。なお、ここでは直接的に共有結合しているものが好ましい。   In a conjugate in which both are directly covalently bonded, a substance in which a sugar chain and a protein are covalently bonded via a spacer substance capable of binding to both substances (compounds) (sugar chain-spacer substance- Protein). As a conjugate in which both are indirectly covalently bonded, for example, a non-protein substance (for example, biotin) having a binding property to a protein is covalently bonded to a sugar chain, and this is combined with a protein such as avidin or streptavidin. And the like (eg, sugar chain biotin-avidin) and the like. The bond between biotin and avidin is not a covalent bond, but the complex (biotin-avidin) formed by combining these two is extremely stable (the specific substance that forms such a complex is defined as “specific”. It is also referred to as a “direct binding pair”). In addition, what is directly covalently bonded here is preferable.

タンパク質が共有結合する位置は、糖鎖の還元末端であることが好ましい。このような結合体は例えば実施例記載の方法により調製することが可能である。
タンパク質としては、そのタンパク質が共有結合した糖鎖を後述の固相に固着することができ、かつ前記競合反応時や後述の洗浄時の条件下においても遊離しないものである限りにおいて特に限定されないが、アミノ基を多く含有するタンパク質、又は分子量が5,000以上のタンパク質が好ましい。なお、これら2つの性質を併有するタンパク質、すなわちアミノ基を多く含有し、かつ分子量5,000以上のタンパク質が特に好ましい。かかるタンパク質として具体的には、例えば血清アルブミン(ウシ血清アルブミン(以下、BSAともいう)等)、ヒト血清アルブミン、卵白アルブミン、カゼイン、アビジン、ポリアミノ酸(ポリリジン等)等が例示されるが、血清アルブミンが好ましく、BSAがより好ましい。
The position where the protein is covalently bonded is preferably the reducing end of the sugar chain. Such a conjugate can be prepared, for example, by the method described in the Examples.
The protein is not particularly limited as long as the sugar chain to which the protein is covalently bonded can be fixed to the solid phase described later and is not released even under the conditions of the competitive reaction or the washing described later. A protein containing a lot of amino groups or a protein having a molecular weight of 5,000 or more is preferred. A protein having both of these properties, that is, a protein containing many amino groups and having a molecular weight of 5,000 or more is particularly preferred. Specific examples of such proteins include serum albumin (bovine serum albumin (hereinafter also referred to as BSA), etc.), human serum albumin, ovalbumin, casein, avidin, polyamino acid (polylysine, etc.), etc. Albumin is preferred and BSA is more preferred.

タンパク質を結合させる糖鎖は、測定対象の糖脂質の糖鎖構造と同一の糖鎖又はその一部を用いる。すなわち、本発明における糖鎖は糖脂質に含まれる糖鎖である。測定対象とする糖脂質は特に限定されないが、スフィンゴ糖脂質が好ましく、特にGb3が好ましく、よってタンパク質を共有結合させる糖鎖も「Gb3に含まれる糖鎖」が好ましい。また、タンパク質を共有結合させる糖鎖の鎖長は特に限定されない。かかる糖鎖としては好ましくは、下記式1で表されるGb3に含まれる糖鎖が具体的には挙げられる。   As the sugar chain to which the protein is bound, the same sugar chain as the sugar chain structure of the glycolipid to be measured or a part thereof is used. That is, the sugar chain in the present invention is a sugar chain contained in a glycolipid. The glycolipid to be measured is not particularly limited, but a glycosphingolipid is preferable, and Gb3 is particularly preferable. Therefore, a sugar chain for covalently binding a protein is also a “glycan included in Gb3”. Further, the chain length of the sugar chain for covalently binding the protein is not particularly limited. As such a sugar chain, a sugar chain contained in Gb3 represented by the following formula 1 is specifically mentioned.

Galα1−4Galβ1−3Glc (1)           Galα1-4Galβ1-3Glc (1)

ここで、GalはD−ガラクトースを示し、GlcはD−グルコースを示し、式中−はグリコシド結合を示し、数字は前記グリコシド結合が存在する炭素番号を示し、α及びβは1位に存在する前記グリコシド結合のアノマーを示す。   Here, Gal represents D-galactose, Glc represents D-glucose, in the formula, − represents a glycoside bond, the number represents the carbon number in which the glycoside bond is present, and α and β are in position 1 An anomer of the glycosidic bond is shown.

タンパク質と糖鎖とを共有結合させる方法(タンパク質が共有結合した糖鎖の製造方法)は、目的の共有結合をさせることができる方法である限りにおいて限定されず、公知の方法を適宜採用することができ、例えば Methods on Glycoconjugates pp 171-176 (1995) に記載の方法等を採用することもできる。   The method for covalently binding a protein and a sugar chain (a method for producing a sugar chain in which a protein is covalently bound) is not limited as long as it is a method capable of allowing a target covalent bond to be used, and a known method is appropriately adopted. For example, the method described in Methods on Glycoconjugates pp 171-176 (1995) can also be employed.

以下に、タンパク質と糖鎖とを共有結合させる方法を例示するが、これらに限定されるものではない。   Examples of methods for covalently binding a protein and a sugar chain are shown below, but are not limited thereto.

例示(1) 糖鎖の還元末端のホルミル基に適当なスペーサー化合物を介してアミノ基を導入し、SPDP(N-Succinimidyl-3-(2-pyridyldithio)propionate)と反応させ、PDP化させた後、別にタンパク質のアミノ基にPDPを導入し、還元を行った活性化タンパク質と反応させ、共有結合させる方法。これにより生じる共有結合は、ジスルフィド結合(-S-S-)である。   Example (1) After introducing an amino group into the formyl group at the reducing end of the sugar chain via a suitable spacer compound, reacting with SPDP (N-Succinimidyl-3- (2-pyridyldithio) propionate), and converting to PDP Separately, PDP is introduced into the amino group of the protein, reacted with the reduced activated protein, and covalently bound. The resulting covalent bond is a disulfide bond (—S—S—).

例示(2) 糖鎖の還元末端のホルミル基に適当なスペーサーを介してアミノ基を導入し、SMCC(Succinimidyl-trans-4(N-maleimidylmethyl)cyclohexane-1-carboxylate)またはGMBS(N-(4-Maleimidobutylryloxy)succinimide)と反応させた後、別にタンパク質のアミノ基にPDPを導入し、還元を行った活性化タンパク質と反応させ、共有結合させる方法。   Example (2) An amino group is introduced into a formyl group at the reducing end of a sugar chain via an appropriate spacer, and SMCC (Succinimidyl-trans-4 (N-maleimidylmethyl) cyclohexane-1-carboxylate) or GMBS (N- (4 -Maleimidobutylryloxy) succinimide), then PDP is separately introduced into the amino group of the protein, reacted with the reduced activated protein, and covalently bonded.

例示(3) 糖鎖の還元末端のホルミル基に適当なスペーサーを介してカルボキシル基を導入し、タンパク質のアミノ基とカルボジイミド等を用いて共有結合させる方法。これにより生じる共有結合は、アミド結合(-CO-NH-)である。   Example (3) A method in which a carboxyl group is introduced into a formyl group at the reducing end of a sugar chain via an appropriate spacer and covalently bound using a protein amino group and carbodiimide. The resulting covalent bond is an amide bond (—CO—NH—).

例示(4) ビオチンのカルボキシル基にヒドラジド基を導入したビオチンヒドラジドを用い、このアミノ基と、糖鎖の還元末端のホルミル基に適当なスペーサーを介して導入したカルボキシル基とを、EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride)等の縮合剤を用いて共有結合させ(これにより生じる共有結合はアミド結合(-CO-NH-)である)、このビオチン部分でアビジンと結合させる方法。   Example (4) Using biotin hydrazide in which a hydrazide group is introduced into the carboxyl group of biotin, this amino group and a carboxyl group introduced into the formyl group at the reducing end of the sugar chain via an appropriate spacer are converted into EDC (1- It is covalently bonded using a condensing agent such as Ethyl-3- (3-dimethylaminopropyl) carbodiimide Hydrochloride) (the resulting covalent bond is an amide bond (-CO-NH-)), and this biotin moiety is bonded to avidin. Method.

例示(5) 糖鎖の還元末端のホルミル基にp-aminophenyl基を導入し、二塩化チオカルボニル(thiophosgene)によりp-aminophenyl基をphenylisothiocyanateとし、タンパク質のアミノ基と共有結合させる方法。   Example (5) A method in which a p-aminophenyl group is introduced into the formyl group at the reducing end of a sugar chain, and the p-aminophenyl group is converted to phenylisothiocyanate by thiocarbonyl dichloride (thiophosgene) to be covalently bonded to the amino group of the protein.

以上に記載の方法の他、特許第2728757号、特許第2739232号に記載の方法を採用することも可能である。
このような方法で製造される「タンパク質が共有結合した糖鎖」は、固相に固着して用いられる。
In addition to the methods described above, the methods described in Japanese Patent No. 2728757 and Japanese Patent No. 2792332 can be employed.
The “sugar chain to which a protein is covalently bonded” produced by such a method is used while being fixed to a solid phase.

固相としては、タンパク質が共有結合した糖鎖が固着可能な水不溶性の固相である限りにおいて、その形状、材質等は限定されない。
固相の形状としては、プレート(例えばマイクロプレートのウェル等)、チューブ、ビーズ、メンブレン、ゲル、ラテックス等を例示することができる。固相の材質としては、ポリスチレン、ポリプロピレン、ナイロン、ポリアクリルアミド等が例示される。これらの中でも、ポリスチレンを材質としたプレートが好ましい。
The shape, material, etc. of the solid phase are not limited as long as it is a water-insoluble solid phase to which a sugar chain to which a protein is covalently bonded can be fixed.
Examples of the shape of the solid phase include plates (for example, microplate wells), tubes, beads, membranes, gels, latexes, and the like. Examples of the solid phase material include polystyrene, polypropylene, nylon, and polyacrylamide. Among these, a plate made of polystyrene is preferable.

これらの固相にタンパク質が共有結合した糖鎖を固着させる方法としては、物理的吸着法、共有結合法、包括法等固定化酵素の調製法として一般的な方法(固定化酵素、1975年、講談社発行、第9〜75頁参照)を応用することができる。これらの中でも、物理的吸着法が、操作が簡便かつ頻用されていることから好ましい。   As a method for fixing a sugar chain in which a protein is covalently bonded to these solid phases, a general method for preparing an immobilized enzyme such as a physical adsorption method, a covalent bond method, a comprehensive method (an immobilized enzyme, 1975, Kodansha publication, see pages 9-75) can be applied. Among these, the physical adsorption method is preferable because the operation is simple and frequently used.

物理的吸着法として具体的には、例えば次の方法が挙げられ、かつ好ましい。
タンパク質が共有結合した糖鎖を、pH7〜9程度の緩衝液(例えばリン酸緩衝液、リン酸緩衝食塩液(PBS)、炭酸緩衝液等)に溶解して固相に加え、4℃で一晩静置して固着させる方法。
Specific examples of the physical adsorption method include and are preferably the following methods.
The sugar chain to which the protein is covalently bonded is dissolved in a buffer solution having a pH of about 7 to 9 (for example, phosphate buffer, phosphate buffered saline (PBS), carbonate buffer, etc.), added to the solid phase, and then dissolved at 4 ° C. A method of allowing to stand still and fix.

なお、この後にブロッキング物質を固相に添加して、タンパク質が共有結合した糖鎖が固着していない部分を被覆しておくことが好ましい。このようなブロッキング物質としては、血清アルブミン、カゼイン、スキムミルク、ゼラチン等が挙げられ、また、ブロッキング物質として市販されているものを使用することもできる。
以上の方法で、タンパク質が共有結合した糖鎖が固着された固相を製造することができる。
In addition, it is preferable to add a blocking substance to the solid phase after this to coat a portion where the sugar chain to which the protein is covalently bonded is not fixed. Examples of such blocking substances include serum albumin, casein, skim milk, gelatin, and the like, and commercially available blocking substances can also be used.
By the above method, a solid phase to which a sugar chain to which a protein is covalently bonded can be produced.

工程(A)は、このようにして製造された固相に、検体及び糖鎖結合性タンパク質を接触させ、該糖鎖結合性タンパク質に対し、検体中の糖脂質と該糖鎖とを競合反応させる工程からなる。   In the step (A), the solid phase produced in this manner is brought into contact with the sample and the sugar chain-binding protein, and the glycolipid and the sugar chain in the sample compete with each other for the sugar chain-binding protein. Process.

検体としては、測定対象とする糖脂質が含有されているか、含有されている可能性があるものである限りにおいて限定されない。また検体は予め精製されている必要もない。すなわち検体中に、測定対象とする糖脂質以外の糖鎖構造を有する物質や、その他の各種タンパク質等が含有されていても、本発明測定方法では測定対象とする糖脂質を特異的に測定することができる。   The specimen is not limited as long as the glycolipid to be measured is contained or possibly contained. In addition, the specimen need not be purified in advance. That is, even if the sample contains a substance having a sugar chain structure other than the glycolipid to be measured, and other various proteins, the measurement method of the present invention specifically measures the glycolipid to be measured. be able to.

検体として具体的には、糖脂質含有溶液(医薬品製造工程サンプルなど)、細胞培養上清、体液等が例示される。これらの中でも体液が好ましい。体液としては、血液、血清、血漿、尿、唾液、関節液、胸水、腹水、骨髄液、脊髄液等が例示されるが、尿、血清および血漿が特に好ましい。   Specific examples of the specimen include glycolipid-containing solutions (pharmaceutical production process samples and the like), cell culture supernatants, body fluids, and the like. Of these, body fluids are preferred. Examples of the body fluid include blood, serum, plasma, urine, saliva, joint fluid, pleural effusion, ascites, bone marrow fluid, spinal fluid, and the like, and urine, serum, and plasma are particularly preferable.

本明細書において「糖鎖結合性タンパク質」とは、糖脂質の糖鎖部分に特異的に結合する性質を有するタンパク質を意味する。本発明測定方法は、特に糖脂質Gb3を測定対象とすることが好ましいことから、糖鎖結合性タンパク質としてはGb3に特異的に結合するタンパク質が好ましい。   In the present specification, the “glycan binding protein” means a protein having a property of specifically binding to a sugar chain part of a glycolipid. In the measurement method of the present invention, it is particularly preferable to use glycolipid Gb3 as a measurement target, and therefore, a protein that specifically binds to Gb3 is preferable as the sugar chain binding protein.

糖鎖結合性タンパク質として具体的には以下のものが例示されるが、糖鎖に結合する性質を有するタンパク質である限りにおいてこれらに限定されるものではない。   Specific examples of the sugar chain-binding protein include the following, but are not limited to these as long as the protein has the property of binding to a sugar chain.

(1)糖鎖認識性抗体
抗Gb3抗体、抗Lactosyl ceramide抗体等の中性糖脂質糖鎖を認識する抗体、抗GM1抗体、抗GM2抗体、抗GD1抗体、抗酸性糖脂質を認識する抗体、糖タンパク質の糖鎖を認識する抗体等。これら抗体はモノクローナル抗体であっても、ポリクローナル抗体であっても良く、抗体分子は完全な分子であっても良く、或いはFab、Fab2、F(ab')2等のフラグメントであってもよい。
(1) Sugar chain-recognizing antibodyAnti-Gb3 antibody, an antibody that recognizes a neutral glycolipid sugar chain such as an anti-Lactosyl ceramide antibody, an anti-GM1 antibody, an anti-GM2 antibody, an anti-GD1 antibody, an antibody that recognizes an acid glycolipid, An antibody that recognizes a sugar chain of a glycoprotein. These antibodies may be monoclonal antibodies or polyclonal antibodies, and the antibody molecules may be complete molecules, or fragments such as Fab, Fab2, F (ab ′) 2, and the like.

(2)植物および細菌性の糖鎖結合タンパク質
AALABAConA、LCA、PHA、PNA、RCA、WGAANA等の植物レクチン、ベロ毒素等の細菌性糖鎖結合性タンパク質等。
(2) Plant and bacterial sugar chain binding proteins
Bacterial glycan binding proteins such as plant lectins such as AALABAConA, LCA, PHA, PNA, RCA, WGAANA, and verotoxin.

(3)動物由来の糖鎖結合タンパク質
セレクチン、ガレクチン、コレクチン、MBP、糖鎖認識部位を持つ細胞レセプター、糖鎖認識性部位を持つプロテオグリカン等。これらタンパク質は完全な分子であっても良く、或いは糖鎖認識部位を含む分子断片でも良い。
(3) Animal-derived sugar chain binding proteins selectin, galectin, collectin, MBP, cell receptor having a sugar chain recognition site, proteoglycan having a sugar chain recognition site, and the like. These proteins may be complete molecules or molecular fragments containing a sugar chain recognition site.

これらの糖鎖結合性タンパク質の由来は特に限定されない。例えば天然材料から分離したタンパク質であってもよく、遺伝子工学的手法により製造した組換えタンパク質であってもよい。その中でも特に本発明測定対象が糖脂質Gb3を測定対象とすることが最も好ましいことから、糖鎖結合性タンパク質としては抗Gb3抗体が最も好ましい。なお、抗Gb3抗体については、「anti-Gb3」として生化学工業株式会社から販売されている。   The origin of these sugar chain binding proteins is not particularly limited. For example, it may be a protein separated from a natural material or a recombinant protein produced by genetic engineering techniques. Among these, since it is most preferable that the measurement object of the present invention is the glycolipid Gb3, the anti-Gb3 antibody is most preferable as the sugar chain binding protein. The anti-Gb3 antibody is sold as “anti-Gb3” by Seikagaku Corporation.

なお、本発明測定方法においては、糖鎖結合性タンパク質は標識物質で標識されていることが、工程(B)において検出が容易であることから好ましい。   In the measurement method of the present invention, it is preferable that the sugar chain-binding protein is labeled with a labeling substance because detection is easy in step (B).

糖鎖結合性タンパク質の標識に使用される標識物質としては、酵素(ペルオキシダーゼ、アルカリフォスファターゼ、β−ガラクトシダーゼ、ルシフェラーゼ、アセチルコリンエステラーゼ等)、蛍光色素(ルミノール、フルオレセインイソチオシアネート(FITC)など)、化学発光物質、ビオチン、アビジン、放射性同位元素等が挙げられるが、通常タンパク質の標識に可能なものであれば、特に限定されない。標識方法は、標識物質に適した公知の方法、例えば、グルタルアルデヒド法、過ヨウ素酸架橋法、マレイミド架橋法、カルボジイミド法、活性化エステル法等(「タンパク質の化学(下)」、東京化学同人、1987年発行参照)から適宜選択することができる。例えば標識物質としてビオチンを使用する場合は、ビオチンのヒドラジド誘導体を用いる方法(Avidin-Biotin Chemistry:A Handbook, p57-63, PIERCE CHEMICAL COMPANY, 1994年発行参照)、またフルオレセインイソチオシアネートを使用する場合は特公昭63-17843号公報記載の方法等から適宜選択できる。   Labeling substances used for labeling sugar-binding proteins include enzymes (peroxidase, alkaline phosphatase, β-galactosidase, luciferase, acetylcholinesterase, etc.), fluorescent dyes (luminol, fluorescein isothiocyanate (FITC), etc.), chemiluminescence Substances, biotin, avidin, radioisotopes and the like can be mentioned, but there are no particular limitations as long as they are usually capable of labeling proteins. The labeling method is a known method suitable for the labeling substance, for example, glutaraldehyde method, periodate crosslinking method, maleimide crosslinking method, carbodiimide method, activated ester method, etc. ("Protein Chemistry (below)", Tokyo Chemical Dojin , Published in 1987). For example, when using biotin as a labeling substance, a method using a hydrazide derivative of biotin (see Avidin-Biotin Chemistry: A Handbook, p57-63, PIERCE CHEMICAL COMPANY, 1994), or when using fluorescein isothiocyanate The method can be appropriately selected from the methods described in JP-B 63-17843.

また、糖鎖結合性タンパク質が予め標識されたものでなく、工程(B)において糖鎖結合性タンパク質を検出する際に、例えば、糖鎖結合性タンパク質を認識する標識された抗体と糖鎖結合性タンパク質とを反応させることにより最終的に標識され得る態様であってもよい。   In addition, when the glycan-binding protein is not labeled in advance and is detected in the step (B), for example, a labeled antibody that recognizes the glycan-binding protein and the glycan-binding protein are recognized. The mode which may be finally labeled by making it react with sex protein may be sufficient.

前記固相(タンパク質が共有結合した糖鎖が固着された固相)に検体及び糖鎖結合性タンパク質を接触させると、糖鎖結合性タンパク質に対して、検体中の糖脂質と固相に固着された糖鎖(タンパク質と共有結合したもの)とが競合反応して結合する。   When a sample and a sugar chain-binding protein are brought into contact with the solid phase (solid phase to which a sugar chain covalently bonded to a protein is fixed), the glycolipid in the sample and the solid phase are fixed to the sugar chain-binding protein. The resulting sugar chain (covalently bound to the protein) is bound by a competitive reaction.

タンパク質が結合した糖鎖が固着された固相への検体及び糖鎖結合性タンパク質の接触方法は、当該固相に固着された糖鎖、検体中の糖脂質及び糖鎖結合性タンパク質の3者が接触し、反応する限りにおいて特に限定されないが、本発明方法は、糖鎖の糖鎖結合性タンパク質に対する競合反応を利用し、かつ検体中の糖脂質を測定する方法であるので、糖鎖結合性タンパク質を最後に接触させるか、少なくとも検体と糖鎖結合性タンパク質とを接触させると同時又は接触させた後に前記固相に接触させることが好ましい。具体的には下記の態様が例示される。なお下記の態様はあくまで例示であり、本発明測定方法がこれらに限定されるものではない。前記3者を接触させる順序や方法は、例えば下記の態様を参考にして当業者が適宜決定することができる。   There are three methods for contacting a sample and a sugar chain-binding protein to a solid phase to which a sugar chain to which protein is bound is fixed: a sugar chain fixed to the solid phase, a glycolipid in the sample, and a sugar chain-binding protein. Is not particularly limited as long as it contacts and reacts, but the method of the present invention uses a competitive reaction of a sugar chain with a sugar chain-binding protein and measures glycolipid in a sample. It is preferable to contact the solid phase last, or at least simultaneously with or after contacting the specimen and the sugar chain binding protein. Specifically, the following embodiments are exemplified. In addition, the following aspect is an illustration to the last, and this invention measuring method is not limited to these. The order and method of bringing the three members into contact can be appropriately determined by those skilled in the art with reference to, for example, the following embodiments.

態様(1):「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相に検体を添加して接触させ、必要に応じて固液分離(洗浄を含む)を行い、次いでこれに糖鎖結合性タンパク質を添加して接触させる。
Aspect (1): “A conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the bond between the sugar chain and the protein in the conjugate is formed at the reducing end of the sugar chain and the protein A sample is added to and brought into contact with the solid phase to which the conjugate is fixed, which is due to a covalent bond with the functional group, and solid-liquid separation (including washing) is performed as necessary. Add sex protein and contact.

態様(2):検体に、「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相を添加して接触させ、必要に応じて固液分離(洗浄を含む)を行い、次いでこれに糖鎖結合性タンパク質を添加して接触させる。
Aspect (2): A specimen is a “conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the bond between the sugar chain and the protein in the conjugate is formed at the reducing end of the sugar chain. A solid phase to which the conjugate, which is due to a covalent bond between a group and a protein functional group, is added and brought into contact, and solid-liquid separation (including washing) is performed as necessary. Add binding protein and contact.

態様(3):「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相に、検体及び糖鎖結合性タンパク質を同時に添加して接触させる。
Aspect (3): “Conjugate of sugar chain and protein contained in glycolipid” , wherein the bond between the sugar chain and protein in the conjugate is formed at the reducing end of the sugar chain and the protein A sample and a sugar chain-binding protein are simultaneously added and brought into contact with a solid phase to which the conjugate, which is due to a covalent bond with the functional group, is fixed.

態様(4):検体に、糖鎖結合性タンパク質を添加して接触させてインキュベートし、次いでこれを「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相に添加して接触させる。
Aspect (4): A sugar-binding protein is added to and contacted with a specimen and incubated, and then this is a “conjugate of a sugar chain and a protein contained in a glycolipid” , and the sugar in the conjugate The bond between the chain and the protein is due to the covalent bond between the functional group formed at the reducing end of the sugar chain and the functional group of the protein, and is added to and brought into contact with the solid phase to which the conjugate has been fixed.

なおこれら3者を接触させた後、十分に競合反応させるために、0〜45℃、好ましくは32〜40℃でインキュベートすることが好ましい。インキュベートの時間は、前記3者が十分に反応できる限りにおいて特に限定されないが、30分〜1時間程度を例示することができ、かつ好ましい。3者を別々に反応させる阻害反応をさせるためには、同様の温度条件下で、各々10〜1時間程度がインキュベート時間として例示される。   In addition, it is preferable to incubate at 0 to 45 ° C., preferably 32 to 40 ° C., in order to sufficiently perform a competitive reaction after contacting these three members. The incubation time is not particularly limited as long as the above three can sufficiently react, and can be exemplified by about 30 minutes to 1 hour, and is preferable. In order to cause an inhibition reaction in which the three are reacted separately, about 10 to 1 hour is exemplified as the incubation time under the same temperature condition.

また前記三者の反応後、固液分離、特に固相の表面を洗浄液で洗浄することが好ましい。この洗浄は、固相に固着した、「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体及びこれに結合した糖鎖結合性タンパク質が遊離しない条件で行われる。洗浄液としては、例えば、トゥイーン(Tween)系界面活性剤等の非イオン性界面活性剤を添加した緩衝液(例えばリン酸緩衝液、リン酸緩衝生理的食塩水(PBS)、トリス塩酸緩衝液等)を用いることが好ましい。
After the three reactions, it is preferable to perform solid-liquid separation, in particular, to wash the surface of the solid phase with a washing liquid. This washing is a “conjugate of a sugar chain and a protein contained in a glycolipid” fixed to a solid phase, and the sugar chain and the protein in the conjugate are formed at the reducing end of the sugar chain. It is carried out under the condition that the conjugate and the sugar chain-binding protein bound thereto are free from covalent bonds between the functional group and the protein functional group . As the washing solution, for example, a buffer solution added with a nonionic surfactant such as a Tween surfactant (for example, phosphate buffer solution, phosphate buffered saline (PBS), Tris hydrochloride buffer solution, etc.) ) Is preferably used.

以上の工程(A)を経た後、工程(B)に移行する。
工程(B)は、固相に固着された「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体に結合した糖鎖結合性タンパク質を検出する工程である。
After passing through the above-mentioned process (A), the process proceeds to process (B).
Step (B) is a “conjugate of a sugar chain and a protein contained in a glycolipid” fixed to a solid phase, and the bond between the sugar chain and the protein in the conjugate is at the reducing end of the sugar chain. This is a step of detecting a sugar chain binding protein bound to the conjugate, which is due to a covalent bond between the formed functional group and the functional group of the protein.

前記した通り、本発明測定方法は糖鎖結合性タンパク質に対する、糖脂質に含まれる糖鎖とタンパク質との結合体であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体(固相に固着されている)と検体中の糖脂質との競合反応を利用しているので、固相に固着された前記糖鎖に結合した糖鎖結合性タンパク質を検出することにより、検体中の糖脂質を測定することができる。
As described above, the measurement method of the present invention is a conjugate of a sugar chain and a protein contained in a glycolipid to a sugar chain-binding protein, and the binding between the sugar chain and the protein in the conjugate is a reduction of the sugar chain. Since it utilizes the competitive reaction between the conjugate (adhered to the solid phase) and the glycolipid in the sample, which is a covalent bond between the functional group formed at the end and the functional group of the protein , The glycolipid in the sample can be measured by detecting the sugar chain-binding protein bonded to the sugar chain fixed to the phase.

すなわち、固相に固着された前記糖鎖に結合した糖鎖結合性タンパク質の検出量が多ければ、検体中の糖脂質の量が少ないと判定される。逆に、固相に固着された前記糖鎖に結合した糖鎖結合性タンパク質の検出量が少なければ、検体中の糖脂質の量が多いと判定される。   That is, it is determined that the amount of glycolipid in the sample is small if the detected amount of the sugar chain binding protein bound to the sugar chain fixed to the solid phase is large. Conversely, if the amount of sugar chain binding protein bound to the sugar chain fixed to the solid phase is small, it is determined that the amount of glycolipid in the sample is large.

固相に固着された「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体に結合した糖鎖結合性タンパク質の検出は、糖鎖結合性タンパク質を特異的に反応する抗体を用いて行ってもよく、また工程(A)において糖鎖結合性タンパク質を標識物質で標識したものを用いた場合には、用いた標識物質に応じて当業者が適宜検出方法を選択することができる。
A “conjugate of a sugar chain and a protein contained in a glycolipid” fixed to a solid phase, wherein a bond between the sugar chain and the protein in the conjugate is a functional group formed at the reducing end of the sugar chain The detection of the glycan-binding protein bound to the conjugate, which is due to a covalent bond with the functional group of the protein, may be performed using an antibody that specifically reacts with the glycan-binding protein, and the step ( In the case of using a protein obtained by labeling a sugar chain binding protein with a labeling substance in A), a person skilled in the art can appropriately select a detection method according to the labeling substance used.

例えば、標識物質にビオチンを使用した場合には、アビジン、ストレプトアビジン等を結合させた酵素(例えばペルオキシダーゼ等)を添加してビオチンとアビジン、ストレプトアビジンとを結合させ、次いでアビジン、ストレプトアビジン等に結合した酵素の基質や発色基質等を加え、酵素反応による生成物の発色の度合いを吸光度の変化で測定する方法等を挙げることができる。また、蛍光物質や化学発光物質を使用する場合には、反応後の溶液の蛍光や発光を測定する方法等が挙げられる。   For example, when biotin is used as a labeling substance, an enzyme (for example, peroxidase) to which avidin, streptavidin or the like is bound is added to bind biotin to avidin or streptavidin, and then to avidin, streptavidin or the like. Examples include a method in which a bound enzyme substrate or a chromogenic substrate is added, and the degree of color development of the product by the enzyme reaction is measured by a change in absorbance. Moreover, when using a fluorescent substance and a chemiluminescent substance, the method etc. which measure the fluorescence and light emission of the solution after reaction are mentioned.

本発明測定方法において、検体中の糖脂質の濃度は、予め既知濃度の糖脂質標準液を用いて糖脂質の濃度と標識物質の検出結果(例えば吸光度)との関係について検量線を作成しておき、未知濃度の検体についての検出結果と前記検量線とを用いることにより求めることができる。   In the measurement method of the present invention, the concentration of glycolipid in the sample is prepared in advance by using a standard solution of glycolipid of known concentration and preparing a calibration curve for the relationship between the concentration of glycolipid and the detection result (for example, absorbance) of the labeling substance. In addition, it can be obtained by using the detection result of the sample having an unknown concentration and the calibration curve.

<2>本発明検出方法
本発明検出方法は、本発明測定方法によって体液中の糖脂質を測定し、体液中の糖脂質の量と動物(ヒト、ペット、家畜など)の疾病とを関連づけることによる疾病の検出方法である。
<2> Detection method of the present invention The detection method of the present invention measures glycolipids in body fluids by the measurement method of the present invention, and relates the amount of glycolipids in body fluids to diseases of animals (humans, pets, livestock, etc.). It is the detection method of the disease by.

本発明検出方法による検出対象となる疾病は、体液中の糖脂質の量に変化が生じるような疾病である限りにおいて特に限定されない。
検出対象となる疾病に応じて、検体として用いる体液の種類、及び測定する糖脂質の種類を適宜選択することができる。
また、体液中の糖脂質の量と疾病との関連づけ、及びこれによる疾病の検出も、検出対象となる疾病に応じて適宜行うことができる。
The disease to be detected by the detection method of the present invention is not particularly limited as long as the disease causes a change in the amount of glycolipid in the body fluid.
Depending on the disease to be detected, the type of body fluid used as the specimen and the type of glycolipid to be measured can be appropriately selected.
In addition, the correlation between the amount of glycolipid in the body fluid and the disease, and the detection of the disease can be appropriately performed according to the disease to be detected.

例えば検出対象とする疾病が、体液中の糖脂質の量が増加するような疾病の場合は、体液中の糖脂質の量が健常な動物(当該疾病がない動物)の体液中の糖脂質の量に比して増加するので、本発明測定方法で測定された糖脂質の量が健常動物の体液中の量に比して多い場合には、「当該疾病を罹患している」、又は「当該疾病を罹患している可能性が高い」と関連づけられ、これにより当該疾病を検出することができる。   For example, when the disease to be detected is a disease in which the amount of glycolipid in the body fluid increases, the amount of glycolipid in the body fluid of a healthy animal (animal free of the disease) When the amount of the glycolipid measured by the measurement method of the present invention is larger than the amount in the body fluid of a healthy animal, the “is suffering from the disease” or “ It is related to “the possibility of suffering from the disease is high”, whereby the disease can be detected.

また例えば検出対象とする疾病が、体液中の糖脂質の量が減少するような疾病の場合は、体液中の糖脂質の量が健常な動物(当該疾病がない動物)の体液中の糖脂質の量に比して減少するので、本発明測定方法で測定された糖脂質の量が健常動物の体液中の量に比して少ない場合には、「当該疾病を罹患している」、又は「当該疾病を罹患している可能性が高い」と関連づけられ、これにより当該疾病を検出することができる。   For example, when the disease to be detected is a disease in which the amount of glycolipid in the body fluid decreases, the glycolipid in the body fluid of an animal with a healthy amount of glycolipid in the body fluid (an animal without the disease) Therefore, if the amount of glycolipid measured by the measurement method of the present invention is small compared to the amount in the body fluid of a healthy animal, “is suffering from the disease”, or It is associated with “high possibility of suffering from the disease”, whereby the disease can be detected.

また上記のような体液中の糖脂質の量が増加又は減少するような疾病を検出対象とする場合において、本発明測定方法で測定された糖脂質の量が健常動物の体液中の糖脂質の量と同等であれば、「当該疾病を罹患していない」、又は「当該疾病を罹患している可能性は低い」と関連づけることができる。   Further, in the case where a disease in which the amount of glycolipid in the body fluid is increased or decreased is detected, the amount of glycolipid measured by the measurement method of the present invention is the amount of glycolipid in the body fluid of a healthy animal. If it is equivalent to the amount, it can be related to “not suffering from the disease” or “not likely to suffer from the disease”.

また本発明検出方法においては、上記疾病の有無のみでなく、上記疾病の程度の検出も含まれる。例えば各個体の体液中の糖脂質の量を本発明測定方法により定期的に測定し、糖脂質の量が健常動物のレベルから離れる傾向にある場合には「上記疾病が進行している」、又は「上記疾病が進行している可能性が高い」と関連づけることができる。また本発明測定方法で測定された糖脂質の量が健常動物のレベルに近づく傾向にある場合には、「上記疾病が改善方向にある」、又は「上記疾病が改善方向にある可能性が高い」と関連づけることができる。また本発明測定方法で測定された糖脂質の量が健常動物のレベルの範囲内で変化しない場合には、「健常性に変化がない」、又は「健常性に変化がない可能性が高い」と関連づけることができ、糖脂質の量が健常動物のレベルの範囲外で変化しない場合には、「上記疾病の程度に変化がない」、又は「上記疾病の程度に変化がない可能性が高い」と関連づけることができる。   The detection method of the present invention includes not only the presence or absence of the disease but also the detection of the degree of the disease. For example, the amount of glycolipid in the body fluid of each individual is periodically measured by the measurement method of the present invention, and when the amount of glycolipid tends to deviate from the level of healthy animals, “the disease is progressing” Alternatively, it can be associated with “the possibility that the disease is progressing”. In addition, when the amount of glycolipid measured by the measurement method of the present invention tends to approach the level of a healthy animal, “the above disease is in an improvement direction” or “the above disease is in an improvement direction” Can be associated. Further, when the amount of glycolipid measured by the measurement method of the present invention does not change within the range of the level of healthy animals, “there is no change in health” or “there is a high possibility that there is no change in health” If the amount of glycolipid does not change outside the level of healthy animals, there is a high possibility that “the degree of the disease does not change” or “the degree of the disease does not change” Can be associated.

なお、上記疾病の検出基準となる糖脂質の量は、糖脂質標準品濃度と標識物質の検出結果との関係について作成した検量線を用いて求めた糖脂質の濃度であっても良く、また当該検量線を用いずに健常な動物(上記疾病がない動物)の体液中の糖脂質の量に対する比であっても良い。   The amount of glycolipid that serves as a detection criterion for the disease may be the concentration of glycolipid obtained using a calibration curve prepared for the relationship between the concentration of the standard glycolipid product and the detection result of the labeling substance. It may be a ratio to the amount of glycolipid in the body fluid of a healthy animal (an animal having no disease) without using the calibration curve.

本発明検出方法において用いることができる体液、測定対象とする糖鎖、これにより検出できる疾病、当該疾病に伴う体液中の糖脂質の量の変化の例をまとめて表1に示す。
なお表1はあくまで例示であり、本発明検出方法がこれらに限定されるものではない。
Table 1 summarizes examples of body fluids that can be used in the detection method of the present invention, sugar chains to be measured, diseases that can be detected thereby, and changes in the amount of glycolipids in body fluids associated with the diseases.
Table 1 is merely an example, and the detection method of the present invention is not limited to these.

Figure 0004251485
Figure 0004251485

例えばファブリー病の検出を行う場合、尿中のGb3を本発明測定方法により測定し、このGb3が健常な動物(ファブリー病でない動物)の尿中のGb3量に比して増加している場合には、「ファブリー病である」、又は「ファブリー病である可能性が高い」と関連づけることができる。   For example, when detecting Fabry disease, Gb3 in urine is measured by the measurement method of the present invention, and this Gb3 is increased compared to the amount of Gb3 in urine of a healthy animal (animal not Fabry disease) Can be associated with “I have Fabry disease” or “highly likely to have Fabry disease”.

なお本発明検出方法は、本発明測定方法によって尿中のGb3を測定し、尿中のGb3量とファブリー病とを関連づけることによりファブリー病を検出する方法であることが好ましい。   The detection method of the present invention is preferably a method of detecting Fabry disease by measuring Gb3 in urine by the measurement method of the present invention and associating the amount of Gb3 in urine with Fabry disease.

<3>本発明測定キット
本発明測定キットは、下記構成成分(A)及び(B)を少なくとも含む、糖脂質の測定キットである。
<3> Measurement kit of the present invention The measurement kit of the present invention is a glycolipid measurement kit containing at least the following components (A) and (B).

(A)「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相。
(B)糖鎖結合性タンパク質。
(A)の固相及び(B)のタンパク質についての説明は、<1>本発明測定方法と同様である。
(A) “A conjugate of a sugar chain contained in a glycolipid and a protein” , wherein the bond between the sugar chain and the protein in the conjugate is a functional group formed at the reducing end of the sugar chain and the function of the protein. A solid phase to which the conjugate, which is due to a covalent bond with a group, is fixed.
(B) Sugar chain binding protein.
The description of the solid phase (A) and the protein (B) is the same as in <1> the measurement method of the present invention.

本発明測定キットは、上記(A)及び(B)を少なくとも含む限りにおいて特に限定されず、さらに検量線作成のための標準となる既知濃度の糖脂質標準品、標識物質の検出試薬、糖鎖結合性タンパク質を標識する試薬、あるいは糖鎖結合性タンパク質を検出する試薬(標識された、当該タンパク質に対する抗体等)等を構成成分として加えることができる。また、これらの構成成分の他に、前記ブロッキング物質、前記洗浄液、検体希釈液、酵素反応停止液等が含まれていてもよい。   The measurement kit of the present invention is not particularly limited as long as it contains at least the above (A) and (B), and further, a glycolipid standard product having a known concentration as a standard for preparing a calibration curve, a detection reagent for a labeling substance, a sugar chain A reagent for labeling a binding protein or a reagent for detecting a sugar chain binding protein (labeled antibody against the protein, etc.) can be added as a constituent component. In addition to these components, the blocking substance, the washing solution, the sample diluent, the enzyme reaction stop solution, and the like may be included.

これらの構成成分は、それぞれ別体の容器に収容しておき、使用時に本発明測定方法に従って使えるキットとして保存しておくことができる。
本発明測定キットを用いた糖脂質の測定は、上記<1>の本発明測定方法に従って行うことができる。
These components can be stored in separate containers and stored as a kit that can be used according to the measurement method of the present invention at the time of use.
The measurement of glycolipid using the measurement kit of the present invention can be performed according to the measurement method of the present invention <1>.

<4>本発明検出キット
本発明検出キットは、本発明測定キットの構成成分を少なくとも含む、疾病の検出キットである。本発明検出キットの構成成分等の説明は、上記<3>の本発明測定キットと同じである。
本発明検出キットを用いた疾病の検出は、上記<2>の本発明検出方法に従って行うことができる。
<4> Detection kit of the present invention The detection kit of the present invention is a disease detection kit containing at least the components of the measurement kit of the present invention. The description of the components and the like of the detection kit of the present invention is the same as that of the measurement kit of the present invention <3>.
Disease detection using the detection kit of the present invention can be performed according to the detection method of the present invention <2>.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに何ら限定されるものではない。
初めに、本実施例中で使用した材料及びその入手をまとめて説明する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
First, the materials used in this example and their availability will be described together.

(材料)
イムノプレート(ナルジェヌンク社製)
糖脂質Gb3に含まれる糖鎖(前記式(1))-エタノールアミン−BSA(Gb3糖鎖-BSA結合体)
BSA(生化学工業株式会社販売)
抗Gb3抗体(マウスIgG抗体:生化学工業株式会社製)
Gb3(生化学工業株式会社製)
ホースラディッシュペルオキシダーゼ標識抗マウスIgG+IgM抗体(以下、HRP標識2次抗体という;生化学工業株式会社製)
テトラメチルベンジジン溶液(以下、TMB溶液という;Moss社製)
(material)
Immunoplate (Narugenunk)
Sugar chain contained in glycolipid Gb3 (formula (1))-ethanolamine-BSA (Gb3 sugar chain-BSA conjugate)
BSA (Seikagaku Corporation sales)
Anti-Gb3 antibody (mouse IgG antibody: manufactured by Seikagaku Corporation)
Gb3 (Seikagaku Corporation)
Horseradish peroxidase-labeled anti-mouse IgG + IgM antibody (hereinafter referred to as HRP-labeled secondary antibody; manufactured by Seikagaku Corporation)
Tetramethylbenzidine solution (hereinafter referred to as TMB solution; manufactured by Moss)

Gb3糖鎖-BSA結合体は、以下の方法で製造した。
BSA 350mg/3mL 0.1mol/L PB溶液に、SPDP 9.5mg/1mL エタノール溶液を滴下し、室温で30分攪拌した後、Sephadex G-50(商標名:ファルマシア社製)にてゲルろ過し、活性画分を得た。この活性画分に対しジチオスレイトール(DTT)を5倍量投入し、室温で60分間攪拌した後、Sephadex G-50(商標名:ファルマシア社製)にてゲルろ過した。得られた活性画分を活性画分1とした。
The Gb3 sugar chain-BSA conjugate was produced by the following method.
After adding SPDP 9.5mg / 1mL ethanol solution dropwise to BSA 350mg / 3mL 0.1mol / L PB solution and stirring at room temperature for 30 minutes, gel filtration with Sephadex G-50 (trade name: Pharmacia) A fraction was obtained. Five times the amount of dithiothreitol (DTT) was added to the active fraction, and the mixture was stirred at room temperature for 60 minutes, followed by gel filtration with Sephadex G-50 (trade name: Pharmacia). The obtained active fraction was designated as active fraction 1.

次に、Gb3糖鎖-エタノールアミンを調製した。すなわちGb3糖鎖(212.3mg, 0.421mmol)をピリジン(5ml)に溶解し、無水酢酸(5ml)を加え、室温で2時間攪拌した。その溶液をトルエンで共沸させながら留去した後、残渣をシリカゲルカラムクロマトグラフィー(Toluene:AcOEt = 2:2.5)により精製し、化合物1(407mg, qu.)を得た。   Next, Gb3 sugar chain-ethanolamine was prepared. That is, Gb3 sugar chain (212.3 mg, 0.421 mmol) was dissolved in pyridine (5 ml), acetic anhydride (5 ml) was added, and the mixture was stirred at room temperature for 2 hours. The solution was distilled off while azeotroping with toluene, and the residue was purified by silica gel column chromatography (Toluene: AcOEt = 2: 2.5) to obtain Compound 1 (407 mg, qu.).

Rf = 0.39, 0.31(Toluene:AcOEt = 1:1)
1H-NMR δ(CDCl3)
6.251(d, 0.5H, J = 3.9Hz, H-1aα), 5.690(d, 0.5H, J = 8.3Hz, H-1aβ)
2 .175, 2.135, 2.130, 2.124, 2.115, 2.098, 2.096, 2.090, 2.086, 2.072, 2.069, 2,065, 2.063, 2.059, 2.051, 2.042, 2.032, 2.012, 1.991, 1.985(20s, 33H, 11Ac)
Rf = 0.39, 0.31 (Toluene: AcOEt = 1: 1)
1 H-NMR δ (CDCl 3 )
6.251 (d, 0.5H, J = 3.9Hz, H-1aα), 5.690 (d, 0.5H, J = 8.3Hz, H-1aβ)
2.175, 2.135, 2.130, 2.124, 2.115, 2.098, 2.096, 2.090, 2.086, 2.072, 2.069, 2,065, 2.063, 2.059, 2.051, 2.042, 2.032, 2.012, 1.991, 1.985 (20s, 33H, 11Ac)

化合物1(407mg, 0.421mmol)をN,N-ジメチルホルマミド(2ml)に溶解し。ヒドラジン・酢酸(66.5mg, 1.7eq.)を加え、-2℃から5℃で1時間攪拌した。更に、ヒドラジン・酢酸(3.4eq.)を直接シリカゲルカラムクロマトグラフィー(hexane:AcOEt = 1:3)により精製し、化合物2(389mg, qu)を得た。   Compound 1 (407 mg, 0.421 mmol) was dissolved in N, N-dimethylformamide (2 ml). Hydrazine / acetic acid (66.5 mg, 1.7 eq.) Was added, and the mixture was stirred at −2 ° C. to 5 ° C. for 1 hour. Furthermore, hydrazine / acetic acid (3.4 eq.) Was directly purified by silica gel column chromatography (hexane: AcOEt = 1: 3) to obtain Compound 2 (389 mg, qu).

Rf = 0.32 (hexane:AcOEt = 1:3) Rf = 0.32 (hexane: AcOEt = 1: 3)

化合物2(389mg, 0.421mmol)をジクロロメタン(3.0ml)に溶解し、トリクロロアセトニトリル(652μl、15.0eq.)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(1,8-Diazabicyclo[5.4.0]undec-7-ene:45μl, 0.7eq.)を加え、0℃で3時間攪拌した。反応液を直接シリカゲルカラムクロマトグラフィー(Toluene:AcOEt = 2:3)により精製し、化合物3(417.5, mg, 92.8%)を得た。   Compound 2 (389 mg, 0.421 mmol) was dissolved in dichloromethane (3.0 ml) and trichloroacetonitrile (652 μl, 15.0 eq.), 1,8-diazabicyclo [5.4.0] undec-7-ene (1,8-Diazabicyclo [ 5.4.0] undec-7-ene: 45 μl, 0.7 eq.) Was added, and the mixture was stirred at 0 ° C. for 3 hours. The reaction solution was directly purified by silica gel column chromatography (Toluene: AcOEt = 2: 3) to obtain Compound 3 (417.5, mg, 92.8%).

Rf = 0.37(Toluene:AcOEt = 2:3)
1H-NMR δ(CDCl3)
8.650(s, 1H, NH), 6.483(d, 1H, J=3.9Hz, H-1a), 5.589(bd, 1H, H-1c or H-4c), 5.566(bt, 1H), 5.000(d, 1H, J=3.4Hz, H-1c or H4c), 4.540(d, 1H, J=7.8Hz, H-1b), 4.025(d, 1H, J=2.4Hz, H-4b), 2.131, 2.108, 2.096, 2.092, 2.074, 2.067, 2.062, 2.041, 2.012, 1.986(10s, 30H, 10Ac)
Rf = 0.37 (Toluene: AcOEt = 2: 3)
1 H-NMR δ (CDCl3)
8.650 (s, 1H, NH), 6.483 (d, 1H, J = 3.9Hz, H-1a), 5.589 (bd, 1H, H-1c or H-4c), 5.566 (bt, 1H), 5.000 (d , 1H, J = 3.4Hz, H-1c or H4c), 4.540 (d, 1H, J = 7.8Hz, H-1b), 4.025 (d, 1H, J = 2.4Hz, H-4b), 2.131, 2.108 , 2.096, 2.092, 2.074, 2.067, 2.062, 2.041, 2.012, 1.986 (10s, 30H, 10Ac)

化合物3(417mg, 0.390mmol)と化合物7(151.8mg, 0.778mmol)をジクロロメタン(5ml)に溶解し、アルゴンガス存在化、モレキュラシーブ4Åと共に室温で5分間攪拌した。その反応液を−10℃まで冷却し、トリメチルシリルトリフルオロメタンスルホネート(TMSOTf:21.7μl, 0.3eq.)を加え、そのまま1時間攪拌した。更に、TMSOTf(43.4μl, 0.6eq.)を加え、そのまま1時間攪拌した。反応液をセライトろ過した後、有機層を飽和重曹水、飽和食塩水で順次洗浄した。得られた有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(Toluene:AcOEt = 1:3)により精製し、化合物4(203,7mg, 47.4%)を得た。   Compound 3 (417 mg, 0.390 mmol) and compound 7 (151.8 mg, 0.778 mmol) were dissolved in dichloromethane (5 ml), and the mixture was stirred at room temperature for 5 minutes with argon gas in the presence of 4 parts of molecular sieve. The reaction solution was cooled to −10 ° C., trimethylsilyl trifluoromethanesulfonate (TMSOTf: 21.7 μl, 0.3 eq.) Was added, and the mixture was stirred as it was for 1 hour. Further, TMSOTf (43.4 μl, 0.6 eq.) Was added and stirred as it was for 1 hour. The reaction solution was filtered through celite, and the organic layer was washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine. The obtained organic layer was dried over magnesium sulfate and filtered, and then the solvent was distilled off. The residue was purified by silica gel column chromatography (Toluene: AcOEt = 1: 3) to obtain Compound 4 (203,7 mg, 47.4%).

Rf = 0.38(Toluene:AcOEt = 1:3)
1H-NMR δ(CDCl3)
7.376-7.287(m, 5H, ph), 5.583(d, 1H, 3.4Hz, H-4c), 5.392(dd, 1H, J=3.4, 10.7Hz), 4.986(d, 1H, J=3.4Hz, H-1c), 4.874(dd, 1H, J=8.3, 9.3Hz), 4.735(dd, 1H, J=3.0, 10.7Hz), 4.010(d, 1H, J=2.0Hz, H4b), 2.126-1.981(30H, 10Ac)
Rf = 0.38 (Toluene: AcOEt = 1: 3)
1 H-NMR δ (CDCl3)
7.376-7.287 (m, 5H, ph), 5.583 (d, 1H, 3.4Hz, H-4c), 5.392 (dd, 1H, J = 3.4, 10.7Hz), 4.986 (d, 1H, J = 3.4Hz, H-1c), 4.874 (dd, 1H, J = 8.3, 9.3Hz), 4.735 (dd, 1H, J = 3.0, 10.7Hz), 4.010 (d, 1H, J = 2.0Hz, H4b), 2.126-1.981 (30H, 10Ac)

化合物4(197mg, 0.178mmol)をメタノール:テトラヒドロフラン(1:1)(5ml)溶液に溶解し、1N-NaOH(1ml)を加え室温で1日間攪拌した。その溶液をアンバーリスト15E(商標名:オルガノ株式会社製)により中性とした後、溶媒を留去した。残渣をセファデックスLH-20(商標名:ファルマシア社製、CHCl3:MeOH:H2O = 1:4:2)にて精製、更に、シリカゲルカラムクロマトグラフィー(CHCl3:MeOH:H2O = 5:5:1)により精製して、化合物5(114.6mg, 94%)を得た。 Compound 4 (197 mg, 0.178 mmol) was dissolved in a methanol: tetrahydrofuran (1: 1) (5 ml) solution, 1N-NaOH (1 ml) was added, and the mixture was stirred at room temperature for 1 day. The solution was neutralized with Amberlyst 15E (trade name: manufactured by Organo Corporation), and then the solvent was distilled off. The residue was purified by Sephadex LH-20 (trade name: Pharmacia, CHCl 3 : MeOH: H 2 O = 1: 4: 2), and further silica gel column chromatography (CHCl 3 : MeOH: H 2 O = Purification by 5: 5: 1) gave compound 5 (114.6 mg, 94%).

Rf = 0.63(CHCl3:MeOH:H2O = 5:5:1)
1H-NMR δ (CD3OD)
7.436-7.409(m, 5H), 5.115(bs, 2H, 2CH2), 4.936(d, 1H, J=3.9Hz, H-1c), 4.480(d, 1H, J=7.8Hz, H-1a or h-1b), 4.446(bd, 1H, J=7.3Hz), 4.340(t, 1H, J=6.4Hz)
Rf = 0.63 (CHCl 3 : MeOH: H 2 O = 5: 5: 1)
1 H-NMR δ (CD3OD)
7.436-7.409 (m, 5H), 5.115 (bs, 2H, 2CH 2 ), 4.936 (d, 1H, J = 3.9Hz, H-1c), 4.480 (d, 1H, J = 7.8Hz, H-1a or h-1b), 4.446 (bd, 1H, J = 7.3Hz), 4.340 (t, 1H, J = 6.4Hz)

化合物5(114.6mg, 0.168mmol)をメタノール:水(2:1)(10ml)溶液に溶解し、パラジウム炭素(Pd-C:10%)(120mg)を加え、水素下、室温で5.5時間攪拌した。セライトろ過した後、Sphadex LH-20(商標名:ファルマシア社製、MeOH:H2O = 3:2)により精製を行い、化合物6(92mg, qu.)を得た。 Compound 5 (114.6 mg, 0.168 mmol) is dissolved in a methanol: water (2: 1) (10 ml) solution, palladium on carbon (Pd-C: 10%) (120 mg) is added, and the mixture is stirred at room temperature under hydrogen for 5.5 hours. did. After filtration through Celite, purification was performed with Sphadex LH-20 (trade name: Pharmacia, MeOH: H 2 O = 3: 2) to obtain Compound 6 (92 mg, qu.).

Rf = 0.38(MeOH:H2O:NH3(28%) = 1:3:1)
1H-NMR δ (CD3OD)
4.934(d, 1H, J=3.9Hz, H-1c), 4.534(d, 1H, J=8.3Hz, H-1a or H-1b), 4.497(d, 1H, J=7.8Hz, H-1a or H-1b)
Rf = 0.38 (MeOH: H2O: NH 3 (28%) = 1: 3: 1)
1 H-NMR δ (CD3OD)
4.934 (d, 1H, J = 3.9Hz, H-1c), 4.534 (d, 1H, J = 8.3Hz, H-1a or H-1b), 4.497 (d, 1H, J = 7.8Hz, H-1a or H-1b)

この様に調製したGb3糖鎖-エタノールアミンに対して3等量のSPDPを添加し、室温で30分間撹拌した後、Sephadex G-10(商標名:ファルマシア社製) にてゲルろ過して活性画分2とした。この得られた活性画分2に活性画分1を等量となるよう滴下し、4℃で16時間撹拌し、これを糖鎖-BSA結合体とした。   After adding 3 equivalents of SPDP to Gb3 sugar chain-ethanolamine prepared in this way and stirring at room temperature for 30 minutes, gel filtration was performed with Sephadex G-10 (trade name: Pharmacia) to activate. Fraction 2 was designated. The obtained active fraction 2 was added dropwise in an equal amount to the active fraction 2 and stirred at 4 ° C. for 16 hours to obtain a sugar chain-BSA conjugate.

<実施例1> Gb3の定量及び検量線の作成
イムノプレートのウェルにGb3糖鎖-BSA結合体溶液(0.5μg/mL)を100μL加え、4℃で一晩静置して固相化した。その後1%BSA溶液でブロッキングし、このプレートを洗浄液(0.05%の Tween 20(商標名)を含むPBS)で洗浄した。
このプレートに、種々の濃度(0.125-8μg/mL)のGb3水溶液を50μL加え、更に抗Gb3抗体溶液(1600ng/mL)を50μL加えて室温で1時間反応させた。
<Example 1> Quantification of Gb3 and preparation of calibration curve 100 μL of Gb3 sugar chain-BSA conjugate solution (0.5 μg / mL) was added to the well of an immunoplate and allowed to stand at 4 ° C. overnight to be solid-phased. Thereafter, the plate was blocked with a 1% BSA solution, and the plate was washed with a washing solution (PBS containing 0.05% Tween 20 (trade name)).
50 μL of a Gb3 aqueous solution having various concentrations (0.125-8 μg / mL) was added to this plate, and 50 μL of an anti-Gb3 antibody solution (1600 ng / mL) was further added, followed by reaction at room temperature for 1 hour.

その後再度洗浄し、HRP標識2次抗体溶液(1μg/mL)を100μL加えて37℃で1時間反応させた。その後再度洗浄し、TMB溶液を100μL加えて発色させた。1mol/L H2SO4を100μL添加して反応を停止させ、450nmの吸光度を測定し、検量線を作成した。結果を図1に示す。 Thereafter, the plate was washed again, 100 μL of HRP-labeled secondary antibody solution (1 μg / mL) was added, and reacted at 37 ° C. for 1 hour. Thereafter, the plate was washed again, and 100 μL of TMB solution was added to cause color development. The reaction was stopped by adding 100 μL of 1 mol / LH 2 SO 4 , the absorbance at 450 nm was measured, and a calibration curve was prepared. The results are shown in FIG.

<実施例2> Gb3の添加回収試験
イムノプレートのウェルにGb3糖鎖-BSA結合体溶液(0.5μg/mL)を100μL加え、4℃で一晩静置して固相化した。BSAでブロッキングした後、Gb3(終濃度4μg/mL)を添加した尿(以下、Gb3添加尿ともいう)の2倍希釈液を50μl加え、更に抗Gb3抗体溶液(1000ng/ml)を50μl加えて室温で1時間反応させた後、実施例1と同様に反応を行い、Gb3添加尿のGb3量を測定して添加回収率を求めた。Gb3添加尿を使用した場合の結果を表2に示す。
<Example 2> Addition / recovery test of Gb3 100 μL of a Gb3 sugar chain-BSA conjugate solution (0.5 μg / mL) was added to the well of an immunoplate and allowed to stand at 4 ° C. overnight to be solid-phased. After blocking with BSA, add 50 μl of 2-fold diluted urine (hereinafter also referred to as Gb3-added urine) to which Gb3 (final concentration 4 μg / mL) has been added, and then add 50 μl of anti-Gb3 antibody solution (1000 ng / ml). After reacting at room temperature for 1 hour, the reaction was carried out in the same manner as in Example 1, and the amount of Gb3 in the Gb3-added urine was measured to determine the addition recovery rate. Table 2 shows the results when Gb3-added urine was used.

Figure 0004251485
Figure 0004251485

表2に示すように、Gb3無添加の正常尿の測定値は、Analytical Biochemistry 267, 104-113 (1999) において報告されている正常尿での測定値 0.9±0.4μg/ml と同程度の値であった。また、上記文献で報告されている疾病尿でのGb3濃度の下限値 6μg/ml に近い濃度での添加回収試験でも95〜100%の範囲で回収率が得られ、本発明測定方法の正確性が高いことが示された。
この結果から、タンパク質が共有結合した糖鎖を用いることにより、特異的かつ正確に糖脂質を測定することができることが示された。
As shown in Table 2, the measured value of normal urine without Gb3 is similar to the measured value of normal urine 0.9 ± 0.4 μg / ml reported in Analytical Biochemistry 267, 104-113 (1999). Met. In addition, a recovery rate was obtained in the range of 95 to 100% even in an addition recovery test at a concentration close to the lower limit of 6 μg / ml of Gb3 concentration in sick urine reported in the above-mentioned literature. Was shown to be high.
From this result, it was shown that a glycolipid can be measured specifically and accurately by using a sugar chain to which a protein is covalently bonded.

<実施例3> 本発明測定キット及び本発明検出キットの作成
以下の構成からなる本発明測定キット及び本発明検出キットを作成することが考えられる。
<Example 3> Preparation of the measurement kit of the present invention and the detection kit of the present invention It is conceivable to prepare the measurement kit of the present invention and the detection kit of the present invention having the following configurations.

1.Gb3糖鎖-BSA結合体がウェルに固着されたイムノプレート(96ウェル) 1枚
2.抗Gb3抗体(マウスIgG抗体) 1本
3.HRP標識2次抗体(ウサギ抗マウスIgG抗体) 1本
4.TMB(テトラメチルベンジジン)溶液 1本
5.反応停止液(1mol/L 塩酸) 1本
6.Gb3標準液 1セット
Gb3標準液1(0.125μg/mL) 1本
Gb3標準液2(0.25μg/mL) 1本
Gb3標準液3(0.5μg/mL) 1本
Gb3標準液4(1μg/mL) 1本
Gb3標準液5(2μg/mL) 1本
Gb3標準液6(4μg/mL) 1本
Gb3標準液7(8μg/mL) 1本
1. 1. One immunoplate (96 wells) with Gb3 sugar chain-BSA conjugate attached to the wells 2. One anti-Gb3 antibody (mouse IgG antibody) One HRP-labeled secondary antibody (rabbit anti-mouse IgG antibody) 4. One TMB (tetramethylbenzidine) solution5. One stop solution (1mol / L hydrochloric acid) 1 set of Gb3 standard solution
1 Gb3 standard solution 1 (0.125μg / mL)
1 Gb3 standard solution 2 (0.25μg / mL)
1 Gb3 standard solution 3 (0.5μg / mL)
1 Gb3 standard solution 4 (1μg / mL)
1 Gb3 standard solution 5 (2μg / mL)
1 Gb3 standard solution 6 (4μg / mL)
1 Gb3 standard solution 7 (8μg / mL)

Gb3糖鎖-エタノールアミンの調製スキームを示す図である。It is a figure which shows the preparation scheme of Gb3 sugar chain- ethanolamine. Gb3糖鎖-BSA結合体を固相化したプレートを用いた場合のGb3の検量線を示す図である。It is a figure which shows the analytical curve of Gb3 at the time of using the plate which solidified the Gb3 sugar chain-BSA conjugate | bonded_body.

Claims (19)

「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相を用いることを特徴とする検体中の糖脂質の測定方法。 “A conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the binding between the sugar chain and the protein in the conjugate is between the functional group formed at the reducing end of the sugar chain and the functional group of the protein. A method for measuring a glycolipid in a specimen, which comprises using a solid phase to which the conjugate is covalently bonded . 下記工程(A)及び(B)を少なくとも含む、検体中の糖脂質の測定方法。
工程(A):「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相に、検体及び糖鎖結合性タンパク質を接触させ、該糖鎖結合性タンパク質に対し、検体中の糖脂質と該糖鎖とを競合反応させる工程。
工程(B):固相に固着された前記糖鎖に結合した前記糖鎖結合性タンパク質を検出する工程。
A method for measuring glycolipid in a sample, comprising at least the following steps (A) and (B).
Step (A): “a conjugate of a sugar chain and a protein contained in a glycolipid” , wherein the bond between the sugar chain and the protein in the conjugate is formed at the reducing end of the sugar chain and the protein A sample and a sugar chain-binding protein are brought into contact with a solid phase to which the conjugate, which is due to a covalent bond with a functional group of the sample, is fixed, and the glycolipid and the sugar in the sample are contacted with the sugar chain-binding protein. A step of competitive reaction with a chain.
Step (B): a step of detecting the sugar chain-binding protein bound to the sugar chain fixed to a solid phase.
共有結合が、糖脂質に含まれる糖鎖とタンパク質の両方の物質に結合しうるスペーサー化合物を介した結合であることを特徴とする請求項1又は2記載の測定方法。 The measurement method according to claim 1 or 2, wherein the covalent bond is a bond via a spacer compound capable of binding to both a sugar chain and a protein contained in the glycolipid. 糖鎖結合性タンパク質が標識物質で標識されているか、又は標識されうることを特徴とする請求項2又は3記載の測定方法。 4. The measuring method according to claim 2, wherein the sugar chain binding protein is labeled with a labeling substance or can be labeled. 糖鎖結合性タンパク質が抗糖脂質抗体であることを特徴とする請求項2〜4いずれか一項記載の測定方法。 The measuring method according to any one of claims 2 to 4, wherein the sugar chain binding protein is an anti-glycolipid antibody. 糖脂質がスフィンゴ糖脂質である請求項1〜いずれか一項記載の測定方法。 The measurement method according to any one of claims 1 to 5 , wherein the glycolipid is a sphingoglycolipid. 糖鎖が下記式1に示す構造からなるGb3に含まれる糖鎖であることを特徴とする請求項1〜6いずれか一項記載測定方法。
Galα1−4Galβ1−3Glc (1)
ここで、GalはD−ガラクトースを示し、GlcはD−グルコースを示し、式中−はグリコシド結合を示し、数字は前記グリコシド結合が存在する炭素番号を示し、α及びβは1位に存在する前記グリコシド結合のアノマーを示す。
The measuring method according to any one of claims 1 to 6, wherein the sugar chain is a sugar chain contained in Gb3 having a structure represented by the following formula 1.
Galα1-4Galβ1-3Glc (1)
Here, Gal represents D-galactose, Glc represents D-glucose, in the formula, − represents a glycoside bond, the number represents the carbon number in which the glycoside bond is present, and α and β are in position 1 An anomer of the glycosidic bond is shown.
請求項1〜7のいずれか一項に記載の測定方法によって、検体である体液中に含まれる糖脂質を測定し、体液中の糖脂質の測定結果と生体内における糖脂質量が変動する疾病とを関連づけることによる疾病の検出方法。 A disease in which a glycolipid contained in a body fluid as a specimen is measured by the measurement method according to any one of claims 1 to 7, and the measurement result of the glycolipid in the body fluid and the amount of glycolipid in the living body vary. A disease detection method by associating 疾病が、糖脂質代謝異常疾患である請求項8記載の検出方法。 The detection method according to claim 8, wherein the disease is a glycolipid metabolic disorder. 疾病が、ファブリー病である請求項8記載の検出方法。 The detection method according to claim 8, wherein the disease is Fabry disease. 下記構成成分(A)を少なくとも含む、糖脂質の測定キット。
(A)「糖脂質に含まれる糖鎖とタンパク質との結合体」であって、該結合体における糖鎖とタンパク質との結合が、糖鎖の還元末端に形成された官能基とタンパク質の官能基との共有結合によるものである該結合体が固着された固相。
A kit for measuring glycolipid, comprising at least the following component (A).
(A) “A conjugate of a sugar chain contained in a glycolipid and a protein” , wherein the bond between the sugar chain and the protein in the conjugate is a functional group formed at the reducing end of the sugar chain and the function of the protein. A solid phase to which the conjugate, which is due to a covalent bond with a group, is fixed.
共有結合が、糖脂質に含まれる糖鎖とタンパク質の両方の物質に結合しうるスペーサー化合物を介した結合であることを特徴とする請求項11記載の糖脂質の測定キット。 12. The glycolipid measurement kit according to claim 11, wherein the covalent bond is a bond via a spacer compound capable of binding to both a sugar chain and a protein contained in the glycolipid. 更に下記構成成分(B)を含む、請求項11又は12記載の糖脂質の測定キット。
(B)糖鎖結合性タンパク質。
The kit for measuring glycolipid according to claim 11 or 12 , further comprising the following component (B).
(B) Sugar chain binding protein.
糖鎖結合性タンパク質が標識されていることを特徴とする請求項13記載の測定キット。 The measurement kit according to claim 13, wherein the sugar chain binding protein is labeled. 糖鎖結合性タンパク質が抗糖脂質抗体であることを特徴とする請求項13又は14記載の測定キット。 The measurement kit according to claim 13 or 14, wherein the sugar chain binding protein is an anti-glycolipid antibody. 糖鎖が下記式1に示す構造からなるGb3に含まれる糖鎖であり、糖鎖結合性タンパク質が抗Gb3抗体であることを特徴とする請求項13〜15いずれか一項記載の測定キット。
Galα1−4Galβ1−3Glc (1)
ここで、GalはD−ガラクトースを示し、GlcはD−グルコースを示し、式中−はグリコシド結合を示し、数字は前記グリコシド結合が存在する炭素番号を示し、α及びβは1位に存在する前記グリコシド結合のアノマーを示す。
The measurement kit according to any one of claims 13 to 15 , wherein the sugar chain is a sugar chain contained in Gb3 having a structure represented by the following formula 1, and the sugar chain-binding protein is an anti-Gb3 antibody.
Galα1-4Galβ1-3Glc (1)
Here, Gal represents D-galactose, Glc represents D-glucose, in the formula, − represents a glycoside bond, the number represents the carbon number in which the glycoside bond is present, and α and β are in position 1 An anomer of the glycosidic bond is shown.
請求項11〜16のいずれか一項に記載の測定キットの構成成分を少なくとも含む、生体内における糖脂質量が変動する疾病の検出キット。 A kit for detecting a disease in which the amount of glycolipid in a living body varies, comprising at least the components of the measurement kit according to any one of claims 11 to 16 . 疾病が、糖脂質代謝異常疾患である請求項17記載の検出キット。 18. The detection kit according to claim 17 , wherein the disease is a glycolipid metabolic disorder. 疾病が、ファブリー病である請求項17記載の検出キット。 The detection kit according to claim 17 , wherein the disease is Fabry disease.
JP2003295918A 2003-08-20 2003-08-20 Glycolipid measurement method, disease detection method and kit Expired - Fee Related JP4251485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295918A JP4251485B2 (en) 2003-08-20 2003-08-20 Glycolipid measurement method, disease detection method and kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295918A JP4251485B2 (en) 2003-08-20 2003-08-20 Glycolipid measurement method, disease detection method and kit

Publications (2)

Publication Number Publication Date
JP2005062114A JP2005062114A (en) 2005-03-10
JP4251485B2 true JP4251485B2 (en) 2009-04-08

Family

ID=34371987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295918A Expired - Fee Related JP4251485B2 (en) 2003-08-20 2003-08-20 Glycolipid measurement method, disease detection method and kit

Country Status (1)

Country Link
JP (1) JP4251485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463410B2 (en) * 2009-04-09 2014-04-09 ベイラー リサーチ インスティテュート Use of tetrahydrobiopterin as a marker and therapeutic agent for Fabry disease

Also Published As

Publication number Publication date
JP2005062114A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US20230111088A1 (en) Anti-drug antibody assay
EP2638071A1 (en) Hydroxycholesterol immunoassay
WO2010131660A1 (en) Method for measurement of equol in biological sample by immunoassay, kit for the measurement, and method for determination of equol production ability of subject
US20240003874A1 (en) Immunoassay controls and the use thereof
JP2750003B2 (en) Photoactivatable biotin derivatives and their use to reduce interference in immunoassays
JPS6257220B2 (en)
US20040171069A1 (en) Kinetic assay
Rupprecht et al. Development of a dot-blot assay for screening monoclonal antibodies to low-molecular-mass drugs
JP4251485B2 (en) Glycolipid measurement method, disease detection method and kit
AU4465001A (en) Method of examining cancer by assaying autoantibody against mdm2 and reagent therefor
KR102437995B1 (en) Detection of anti-p53 antibodies
JP3698563B2 (en) Method and kit for measuring glycosaminoglycan
Samsonova et al. ELISA of streptomycin in buffer and milk: Effect of reagents' structure and analysis format on assay performance
JP2968910B2 (en) Antibodies against 1α, 25 (OH) 2 vitamin D3 and uses thereof
JP2005519276A (en) Assays for anti-INGAP antibodies
JP4683298B2 (en) Method for immunoassay of test substance and control method for immunobinding affinity analysis
EP2950103B1 (en) Immunoassay for synthetic cannabinoids of the 3-adamantanyl indazole/indole-3-carboxamide family
WO2000059945A1 (en) Improvements in or relating to immunoassays for anaesthetics
JP2001213899A (en) New protein complex and method for producing the protein complex
Class et al. Patent application title: IMMUNOASSAY FOR SYNTHETIC CANNABINOIDS OF THE ADAMANTYL INDAZOLE/INDOLE-3-CARBOXAMIDE FAMILY Inventors: Ivan Mcconnell (Crumlin, GB) Ivan Mcconnell (Crumlin, GB) Elouard Benchikh (Crumlin, GB) Elouard Benchikh (Crumlin, GB) Philip Lowry (Crumlin, GB) Philip Lowry (Crumlin, GB) Peter Fitzgerald (Crumlin, GB) Peter Fitzgerald (Crumlin, GB)
JPH0898682A (en) Assay reagent and determination method using the reagent
JPS6144354A (en) Quantitative analysis of inosine
JPH08114594A (en) Enzyme immunological measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

R150 Certificate of patent or registration of utility model

Ref document number: 4251485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees