JP4250762B2 - Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine - Google Patents

Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine Download PDF

Info

Publication number
JP4250762B2
JP4250762B2 JP2004081628A JP2004081628A JP4250762B2 JP 4250762 B2 JP4250762 B2 JP 4250762B2 JP 2004081628 A JP2004081628 A JP 2004081628A JP 2004081628 A JP2004081628 A JP 2004081628A JP 4250762 B2 JP4250762 B2 JP 4250762B2
Authority
JP
Japan
Prior art keywords
protein
hydroxyaminopurine
present
amino acid
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004081628A
Other languages
Japanese (ja)
Other versions
JP2004298190A (en
Inventor
成紀 倉光
良治 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2004081628A priority Critical patent/JP4250762B2/en
Publication of JP2004298190A publication Critical patent/JP2004298190A/en
Application granted granted Critical
Publication of JP4250762B2 publication Critical patent/JP4250762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、6−N−ヒドロキシアミノプリン代謝活性を有する新規耐熱性タンパク質に関する。本出願は、国の委託に係る成果である。   The present invention relates to a novel thermostable protein having 6-N-hydroxyaminopurine metabolic activity. This application is a result of a national commission.

核酸代謝関連酵素は、例えば、ヌクレオチド、DNA、RNAの合成あるいは分解に関与していることが知られている。さらに、突然変異を誘発する変異原物質を代謝する活性を有する酵素は、古細菌、真性細菌および真核生物に広く存在することが知られている。突然変異を誘発する変異原物質を代謝する活性を有する酵素として、例えば、NTPase活性とともに、6−N−ヒドロキシアミノプリン代謝機能を有する酵素が知られており、酵母の変異株の6−N−ヒドロキシアミノプリン感受性が知られている(非特許文献1参照)。しかしながら、耐熱性菌からは、その遺伝子の存在は予知されているが、未だタンパクとして採取されていない。耐熱性核酸代謝関連酵素は、その活用範囲は広がるものと考えられる。6−N−ヒドロキシアミノプリン代謝酵素で、耐熱性のものは、知られていない。耐熱性の6−N−ヒドロキシアミノプリン代謝酵素は、工業的用途など幅広い用途で利用できると期待される。   Nucleic acid metabolism-related enzymes are known to be involved in, for example, the synthesis or degradation of nucleotides, DNA, and RNA. Furthermore, enzymes having the activity of metabolizing mutagens that induce mutations are known to exist widely in archaea, eubacteria and eukaryotes. As an enzyme having an activity of metabolizing a mutagen that induces a mutation, for example, an enzyme having a 6-N-hydroxyaminopurine metabolism function together with an NTPase activity is known. Hydroxyaminopurine sensitivity is known (see Non-Patent Document 1). However, from thermostable bacteria, the presence of the gene is predicted, but it has not yet been collected as a protein. The range of utilization of thermostable nucleic acid metabolism-related enzymes is thought to expand. No heat-resistant 6-N-hydroxyaminopurine metabolizing enzyme is known. The thermostable 6-N-hydroxyaminopurine metabolizing enzyme is expected to be usable in a wide range of applications such as industrial applications.

他方、超好熱性古細菌(非特許文献2参照)についての研究があり、スルホロブス属細菌の1種であるスルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)(非特許文献3参照)は、その遺伝子が既に解析されている(非特許文献4参照)。したがって、この超好熱古細菌が、6−N−ヒドロキシアミノプリン代謝酵素を産生するとすれば、それは優れた耐熱性を有すると予想される。
Genetica 1997 May;33(5):591-8 Advances in Protetin Chemistry, Volume 48, Enzymes and Proteins from Hyperthermophilic Microorganisms (M.Adams ed.), Academic Press (1996) Suzuki, T. et al., Extremophiles, 2002 Feb;6(1):39-44 Kawarabayashi,Y. et al., “Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7”, DNA Res. 8 (4), 123-140 (2001)
On the other hand, there has been research on hyperthermophilic archaea (see Non-Patent Document 2). Sulfolobus tokodaii (JCM10545) (see Non-Patent Document 3), which is one of the genus Sulfolobus , has its gene It has already been analyzed (see Non-Patent Document 4). Therefore, if this hyperthermophilic archaea produces 6-N-hydroxyaminopurine metabolizing enzyme, it is expected to have excellent heat resistance.
Genetica 1997 May; 33 (5): 591-8 Advances in Protetin Chemistry, Volume 48, Enzymes and Proteins from Hyperthermophilic Microorganisms (M. Adams ed.), Academic Press (1996) Suzuki, T. et al., Extremophiles, 2002 Feb; 6 (1): 39-44 Kawarabayashi, Y. et al., “Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7”, DNA Res. 8 (4), 123-140 (2001)

本発明は、このような事情に鑑みなされたものであり、6−N−ヒドロキシアミノプリン代謝活性を持つ新規耐熱性タンパク質の提供を、その目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a novel heat-resistant protein having 6-N-hydroxyaminopurine metabolic activity.

前記目的を達成するために、超好熱性古細菌であるスルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)のゲノム情報について調べたところ、この細菌が、6−N−ヒドロキシアミノプリン代謝酵素を産生する可能性があることを突き止めた。この知見に基づき、さらに研究を重ねたところ、この細菌の遺伝子から、6−N−ヒドロキシアミノプリン代謝活性を持つ新規耐熱性タンパク質を発現させることに成功し、本発明に到達した。なお、スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)は、理化学研究所生物基盤研究部微生物系統保存施設に保存されており、第三者の要求により分譲可能である。スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)の生育温度は80℃であり、生育限界温度が87℃であるから、本発明のタンパク質は、80〜87℃の高温であっても活性がある。 In order to achieve the above-mentioned object, the genome information of Sulfolobus tokodaii (JCM10545), a hyperthermophilic archaeon, was examined. This bacterium could produce 6-N-hydroxyaminopurine metabolizing enzyme. I found out that there is sex. As a result of further research based on this finding, the inventors succeeded in expressing a novel thermostable protein having 6-N-hydroxyaminopurine metabolic activity from the bacterial gene, and reached the present invention. In addition, Sulfolobus tokodaii (JCM10545) is preserve | saved in the microorganisms preservation | save facility of RIKEN Biological Infrastructure Research Department, and can be distributed according to the request of a third party. Since the growth temperature of Sulfolobus tokodaii (JCM10545) is 80 ° C. and the growth limit temperature is 87 ° C., the protein of the present invention is active even at a high temperature of 80 to 87 ° C.

すなわち、本発明のタンパク質は、下記の(a)または(b)のタンパク質である。
(a) 配列番号2のアミノ酸配列からなる耐熱性タンパク質。
(b) 配列番号2のアミノ酸配列において、1つ以上のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、6−N−ヒドロキシアミノプリン代謝活性およびNTPase活性を有する耐熱性タンパク質。
That is, the protein of the present invention is the following protein (a) or (b).
(A) A heat-resistant protein consisting of the amino acid sequence of SEQ ID NO: 2.
(B) a heat-resistant amino acid sequence having the 6-N-hydroxyaminopurine metabolic activity and NTPase activity, comprising an amino acid sequence in which one or more amino acid residues are deleted, substituted, added or inserted in the amino acid sequence of SEQ ID NO: 2 Sex protein.

本発明により、6−N−ヒドロキシアミノプリン代謝活性を有する新規耐熱性タンパク質が提供できる。
本発明のタンパク質は、xanthosine triphosphate(XTP)を、xanthosine monophosphate(XMP)に変換する反応を触媒する機能を有するが、この機能については、従来知られておらず、通常の検索では推定不可能であり、本発明者等が初めて発見した機能である。前記反応の至適温度は95℃である。
According to the present invention, a novel thermostable protein having 6-N-hydroxyaminopurine metabolic activity can be provided.
The protein of the present invention has a function of catalyzing a reaction for converting xanthosine triphosphate (XTP) into xanthosine monophosphate (XMP). However, this function has not been known so far and cannot be estimated by ordinary search. Yes, this is the first function discovered by the present inventors. The optimum temperature for the reaction is 95 ° C.

前述のように、本発明の新規耐熱性タンパク質は、超好熱性古細菌由来であり、具体的には、スルホロブス・トコダイイ(Sulfolobus tokodaii) (JCM10545)由来である。但し、本発明のタンパク質は、この菌が産生するものに限定されず、遺伝子工学的手法により、他の生物が産生するものであってもよい。 As described above, the novel thermostable protein of the present invention is derived from a hyperthermophilic archaea, specifically from Sulfolobus tokodaii (JCM10545). However, the protein of the present invention is not limited to those produced by this bacterium, and may be produced by other organisms by genetic engineering techniques.

つぎに、本発明の発現ベクターは、前記本発明のタンパク質をコードするDNAまたは配列番号1に記載のDNAを含むベクターである。   Next, the expression vector of the present invention is a vector comprising the DNA encoding the protein of the present invention or the DNA described in SEQ ID NO: 1.

つぎに、本発明の形質転換体は、前記本発明のベクターにより形質転換された形質転換体である。なお、宿主は特に制限されず、例えば、大腸菌等がある。   Next, the transformant of the present invention is a transformant transformed with the vector of the present invention. The host is not particularly limited, and examples thereof include E. coli.

つぎに、本発明のタンパク質の製造方法は、前記本発明の形質転換体を培養する工程と、前記培養工程において発現した前記タンパク質を回収する工程とを含む製造方法である。   Next, the method for producing a protein of the present invention is a production method including a step of culturing the transformant of the present invention and a step of recovering the protein expressed in the culturing step.

つぎに、本発明の酵素により6−N−ヒドロキシアミノプリンを代謝分解させる方法は、前記酵素として、前記本発明のタンパク質を用い、温度95℃の条件で前記酵素反応を行う方法である。   Next, the method for metabolically degrading 6-N-hydroxyaminopurine by the enzyme of the present invention is a method in which the enzyme reaction is performed at a temperature of 95 ° C. using the protein of the present invention as the enzyme.

また、本発明の製造方法は、酵素により、xanthosine triphosphate(XTP)から、xanthosine monophosphate(XMP)を製造する方法であって、前記酵素として前記本発明のタンパク質を用い、温度95℃の条件で前記酵素反応を行う方法である。   Further, the production method of the present invention is a method for producing xanthosine monophosphate (XMP) from xanthosine triphosphate (XTP) by an enzyme, wherein the protein of the present invention is used as the enzyme and the temperature is 95 ° C. This is a method of performing an enzyme reaction.

このように、前記本発明のタンパク質を用いれば、温度95℃の高温領域で酵素反応を実施でき、工業的な条件であっても6−N−ヒドロキシアミノプリンを代謝分解したり、前記製造方法を実施したりすることができる。なお、これらの方法において、前記酵素反応のpHは、pH7以上の範囲が好ましい。   As described above, when the protein of the present invention is used, an enzyme reaction can be carried out in a high temperature range of 95 ° C., and 6-N-hydroxyaminopurine can be metabolized or decomposed even under industrial conditions. Can be implemented. In these methods, the enzyme reaction preferably has a pH of 7 or more.

以下、本発明について、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明者らは、海洋底から採取された超好熱性古細菌であって、好気性thermoacidophilic crenarchaeonの1種であるスルホロブス・トコダイイ(Sulfolobus tokodaii)種7(JCM10545)の遺伝子配列から6−N−ヒドロキシアミノプリン代謝活性を示すと推定される遺伝子(配列番号1)をクローニングし、これを大腸菌を用いて発現させることにより、本発明の新規耐熱性タンパク質を得るに至った。遺伝子のクローニング方法は、後記した実施例1に記載した通り実施した。クローニングされた遺伝子の塩基配列は配列番号1に示す通りであり、また、その推定アミノ酸配列は配列番号2に示す通りである。なお、本発明の耐熱性タンパク質は、6−N−ヒドロキシアミノプリン代謝活性およびNTPase活性を有していれば、配列番号2のアミノ酸配列において、一つ以上若しくは数個のアミノ酸残基が、欠質、置換、付加若しくは挿入されていてもよい。このアミノ酸配列における「アミノ酸の欠失、置換、付加若しくは挿入」は、当業者に公知の方法(例えば、突然変異誘発法)に従って実施することができる。 The present inventors have obtained a 6-N- from the gene sequence of Sulfolobus tokodaii species 7 (JCM10545), which is a hyperthermophilic archaea collected from the ocean floor and is a kind of aerobic thermoacidophilic crenarchaeon. By cloning a gene (SEQ ID NO: 1) presumed to exhibit hydroxyaminopurine metabolic activity and expressing it using E. coli, the novel thermostable protein of the present invention was obtained. The gene cloning method was performed as described in Example 1 described later. The nucleotide sequence of the cloned gene is as shown in SEQ ID NO: 1, and its deduced amino acid sequence is as shown in SEQ ID NO: 2. Note that the heat-resistant protein of the present invention lacks one or more or several amino acid residues in the amino acid sequence of SEQ ID NO: 2 as long as it has 6-N-hydroxyaminopurine metabolic activity and NTPase activity. Quality, substitution, addition or insertion. The “amino acid deletion, substitution, addition or insertion” in this amino acid sequence can be performed according to a method known to those skilled in the art (for example, mutagenesis).

本発明のタンパク質は、前述の本発明のタンパク質の製造方法により製造可能であるが、これに限定されず、他の製造方法で製造されてもよい。例えば配列番号2に示すように、そのアミノ酸配列が決定されているタンパク質については、その配列を元に当業者に公知の手法、例えば、個々のアミノ酸を化学的に重合してタンパク質を合成する方法に従って調製することができる。   The protein of the present invention can be produced by the above-described method for producing the protein of the present invention, but is not limited thereto, and may be produced by other production methods. For example, as shown in SEQ ID NO: 2, for a protein whose amino acid sequence has been determined, a method known to those skilled in the art based on the sequence, for example, a method of chemically polymerizing individual amino acids to synthesize a protein Can be prepared according to

本発明のタンパク質をコードする遺伝子の一例としては、配列番号1に示す遺伝子がある。前記遺伝子は、例えば、後記する実施例2に示すように超好熱性古細菌スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)のゲノムから、例えば配列番号1で示される塩基配列の一部をプライマーとして用いるPCR法あるいは該DNA断片をプローブとして用いるハイブリダイゼーション法により調製することができる。また、その塩基配列をもとに、当業者に公知である核酸化学合成法等に従って前記遺伝子を得ることもできるが、これらに限定されない。 An example of a gene encoding the protein of the present invention is the gene shown in SEQ ID NO: 1. For example, a part of the base sequence represented by SEQ ID NO: 1 is used as a primer from the genome of the hyperthermophilic archaeon Sulfolobus tokodaii (JCM10545) as shown in Example 2 described later. It can be prepared by a PCR method or a hybridization method using the DNA fragment as a probe. Further, based on the base sequence, the gene can be obtained according to a nucleic acid chemical synthesis method known to those skilled in the art, but is not limited thereto.

本発明の発現ベクターは、前記遺伝子もしくは配列番号1のDNAを適当なベクターに挿入することによって得ることができる。本発明の遺伝子を挿入するためのベクターは、宿主中で複製可能なものであれば、特に制限されるものではなく、例えば、プラスミドDNA、ファージDNA、AcMNPVなどのバキュロウイルスなどが挙げられる。プラスミドDNAは、大腸菌やアグロバクテリウムからアルカリ抽出法またはその変法などにより調製することができる。また、市販プラスミドとして、例えばpET−11a(Novagen社製)あるいはバチルス属の宿主を用いて分泌型のプラスミドなどを用いてもよい。これらのプラスミドは、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子などが含まれていてもよい。   The expression vector of the present invention can be obtained by inserting the gene or DNA of SEQ ID NO: 1 into an appropriate vector. The vector for inserting the gene of the present invention is not particularly limited as long as it can replicate in the host, and examples thereof include plasmid DNA, phage DNA, and baculoviruses such as AcMNPV. Plasmid DNA can be prepared from Escherichia coli or Agrobacterium by an alkali extraction method or a modified method thereof. Moreover, as a commercially available plasmid, for example, a pET-11a (manufactured by Novagen) or a Bacillus host may be used. These plasmids may contain an ampicillin resistance gene, a kanamycin resistance gene, a chloramphenicol resistance gene, and the like.

ベクターへの遺伝子等の挿入は、例えば、精製された遺伝子の塩基配列を適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位またはマルチクローニングサイトに挿入してベクターに連結する方法などを用いることができるが、これらに限定されない。また、本発明の遺伝子の機能が発揮されるように、本発明の発現ベクターには本発明の遺伝子のほか、プロモーター、ターミネーター、リボソーム結合配列などを組み込んでいてもよい。さらに、本発明の遺伝子も他のタンパク質のコードする配列を融合したものを挿入してもよい。   The insertion of a gene or the like into a vector includes, for example, a method in which the base sequence of the purified gene is cleaved with a suitable restriction enzyme, inserted into a restriction enzyme site or a multicloning site of a suitable vector DNA, and linked to the vector. Although it can be used, it is not limited to these. In addition to the gene of the present invention, a promoter, terminator, ribosome binding sequence and the like may be incorporated in the expression vector of the present invention so that the function of the gene of the present invention is exhibited. Furthermore, the gene of the present invention may be inserted by fusing sequences encoded by other proteins.

前記発現ベクターで宿主生物を形質転換すれば、本発明の形質転換体が得られる。宿主生物としては、本発明の遺伝子を発現できるものであれば、特に制限されるものではなく、例えば、大腸菌などの原核生物細胞などが挙げられるが、これらに限定されない。形質転換法としては、既に公知である塩化カルシウム法などを使用することができるが、これらの方法に限定されない。   If a host organism is transformed with the expression vector, the transformant of the present invention can be obtained. The host organism is not particularly limited as long as it can express the gene of the present invention, and examples thereof include, but are not limited to, prokaryotic cells such as Escherichia coli. As the transformation method, a known calcium chloride method or the like can be used, but it is not limited to these methods.

本発明のタンパク質の製造方法は、前記形質転換体を培養する工程と、前記培養工程において発現した前記タンパク質を回収する工程とを含む製造方法である。前記培養する方法は、宿主細胞の培養に用いられる通常の方法に従って行われる。大腸菌等の微生物を宿主とした形質転換体を培養する培地としては、微生物が資化し得る炭素源、窒素源、無機塩類などを含有し、形質転換体の培養を効率的に行えるものであれば、天然培地、合成培地などのいずれを用いてもよい。本発明のタンパク質の回収は、特に制限されない。前記タンパク質が菌体内または細胞内に生産される場合には、菌体または細胞を破砕することによって前記タンパク質を回収する。また、本発明の前記タンパク質が菌体外または細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離などにより菌体または細胞を除去した後、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば、硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどを単独でまたは適宜組み合わせて用いることにより、培養物中から本発明のタンパク質を単離精製することができる。なお、培養液をそのまま使用する場合、熱処理をすることにより、本発明のタンパク質以外のタンパク質が失活するので、実質上、本発明のタンパク質のみの液として使用できる。   The protein production method of the present invention is a production method comprising a step of culturing the transformant and a step of recovering the protein expressed in the culture step. The culturing method is performed according to a usual method used for culturing host cells. As a medium for culturing a transformant using a microorganism such as Escherichia coli as a host, any medium that contains a carbon source, a nitrogen source, an inorganic salt, etc. that can be assimilated by the microorganism can be used. Any of natural media, synthetic media and the like may be used. The recovery of the protein of the present invention is not particularly limited. When the protein is produced in cells or cells, the protein is recovered by crushing the cells or cells. When the protein of the present invention is produced outside the cells or cells, the culture solution is used as it is, or after removing the cells or cells by centrifugation or the like, it is used for protein isolation and purification. The protein of the present invention is isolated and purified from the culture by using general biochemical methods such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc. alone or in appropriate combination. can do. In addition, when using a culture solution as it is, proteins other than the protein of the present invention are inactivated by heat treatment, so that it can be used substantially as a solution containing only the protein of the present invention.

以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらにより限定されない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

染色体DNAの調製
スルフォロブス・トコダイイ(Sulfolobus tokodaii(JCM10545))をL培地中で37℃にて一晩培養して集菌したものに、SSC溶液 (0.15M NaCl, 0.015M クエン酸ナトリウム)10mL、0.5M EDTA、100mg/ml ニワトリ卵白リゾチーム 0.1mLおよび10%非イオン性界面活性剤Brij-58を0.5mL加え、0℃で30分間放置した後、プロテイナーゼK(Merck社製)5mgを10%SDS 0.2mLに溶かした溶液を加え、37℃で2、3日間放置した。この溶液に水飽和フェノール、クロロホルム、イソアミルアルコールの混合溶液を加えて、37℃で1時間放置した後、水層を分取し、そこへエタノールを加えてDNAを沈殿濃縮した。このDNAの沈殿をTE溶液(10mM Tris-HCl(pH7.5)、1mM EDTA(pH8.0))10mLに溶解し、リボヌクレアーゼ0.25mL(最終濃度0.25mg/mL)を加えて、37℃で一晩放置した後、エタノールで沈殿させた。次いで、DNAをTE溶液5mLに解した後、260nmの吸光度より、DNA濃度を決定した(Clarke,L.& Carbon,J.(1979) Methods Enzymol.68,396-408)。
Preparation of chromosomal DNA Sulfolobus tokodaii (JCM10545) was cultured overnight in L medium at 37 ° C. and collected into an SSC solution (0.15 M NaCl, 0.015 M sodium citrate) 10 mL , 0.5 M EDTA, 100 mg / ml Chicken egg white lysozyme 0.1 mL and 10% nonionic surfactant Brij-58 0.5 mL were added and allowed to stand at 0 ° C. for 30 minutes, and then proteinase K (manufactured by Merck) 5 mg Was dissolved in 0.2 mL of 10% SDS and allowed to stand at 37 ° C. for a few days. A mixed solution of water-saturated phenol, chloroform and isoamyl alcohol was added to this solution, and the mixture was allowed to stand at 37 ° C. for 1 hour. The aqueous layer was separated, ethanol was added thereto, and DNA was precipitated and concentrated. This DNA precipitate was dissolved in 10 mL of a TE solution (10 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 8.0)), and 0.25 mL of ribonuclease (final concentration: 0.25 mg / mL) was added. And allowed to stand overnight, and then precipitated with ethanol. Next, after dissolving the DNA in 5 mL of TE solution, the DNA concentration was determined from the absorbance at 260 nm (Clarke, L. & Carbon, J. (1979) Methods Enzymol. 68, 396-408).

発現プラスミドの構築と遺伝子発現
1.発現プラスミドの構築
耐熱性6−N−ヒドロキシアミノプリン代謝酵素遺伝子の翻訳領域の前後に制限酵素NdeIおよびBamHI、 NotIサイトを含むDNAを構築する目的で下記のDNAプライマーを合成し、このプライマーを用いたPCRで耐熱性6−N−ヒドロキシアミノプリン代謝酵素遺伝子の翻訳領域の前後に制限酵素サイトを導入した。用いたDNAポリメラーゼはKOD Dash(東洋紡社製)であった。
Forward primer(配列番号3):5'-ATATCATATGTTGAAAAGCGTAGAAGTAAACGTAATAACG-3'
Reverse primer(配列番号4):5'-ATATGGATCCGCGGCCGCTTATTAAGAGATATAAGTAAGAAA-3'
PCR反応後、Ex Taq(宝酒造社製)を用いて増幅断片の3’末端側にデオキシアデノシンを付加した後、pGEM-T Easy Vector(Promega社製)と、T4リガーゼで15℃、30分間反応させ連結した。連結したDNAを大腸菌DH5αのコンピテントセルに導入し,形質転換体のコロニーを得た。得られた形質転換体をアンピシリンを含むLB培地(18mL)で24時間培養し、その培養液からプラスミドを改変アルカリSDS法で精製した。プラスミド中に期待される大きさのインサートが存在することを、図1に示すように、アガロース電気泳動で確認した。精製プラスミドのインサートの塩基配列は,BigDye Terminator kit(登録商標:Applied Biosystems社製)とABI PRISM 3700 DNA Analyzer(登録商標:Applied Biosystems社製)を用いて決定し、インサートの塩基配列が、耐熱性6−N−ヒドロキシアミノプリン代謝酵素遺伝子の正しい配列であることを確認した。正しい配列を有するプラスミドの一部を制限酵素NdeIとBamHIで完全分解(37℃で2時間)した後、アガロース電気泳動により、耐熱性6−N−ヒドロキシアミノプリン代謝酵素構造遺伝子を精製した。pET−11a(Novagen社製)を制限酵素NdeIとBamHIで切断・精製した後、上記の構造遺伝子とT4リガーゼで反応させ連結した。連結したDNAの一部を大腸菌DH5αのコンピテントセルに導入し、アンピシリンを含むLB寒天プレートに適量まき、37℃で一晩培養し、形質転換体のコロニーを得た。得られた形質転換体をアンピシリンを含むLB培地(18mL)で24時間培養し、その培養液から発現プラスミドを改変アルカリSDS法で精製した。
Construction of expression plasmid and gene expression Construction of expression plasmids The following DNA primers were synthesized for the purpose of constructing DNA containing restriction enzymes NdeI, BamHI, and NotI sites before and after the translation region of the thermostable 6-N-hydroxyaminopurine metabolizing enzyme gene. The restriction enzyme sites were introduced before and after the translation region of the thermostable 6-N-hydroxyaminopurine metabolizing enzyme gene by PCR. The DNA polymerase used was KOD Dash (manufactured by Toyobo).
Forward primer (SEQ ID NO: 3): 5'-ATATCATATGTTGAAAAGCGTAGAAGTAAACGTAATAACG-3 '
Reverse primer (SEQ ID NO: 4): 5'-ATATGGATCCGCGGCCGCTTATTAAGAGATATAAGTAAGAAA-3 '
After the PCR reaction, deoxyadenosine was added to the 3 ′ end of the amplified fragment using Ex Taq (Takara Shuzo), and then reacted with pGEM-T Easy Vector (Promega) and T4 ligase at 15 ° C. for 30 minutes. Connected. The ligated DNA was introduced into a competent cell of E. coli DH5α to obtain a transformant colony. The obtained transformant was cultured in an LB medium (18 mL) containing ampicillin for 24 hours, and the plasmid was purified from the culture solution by a modified alkaline SDS method. The presence of an insert of the expected size in the plasmid was confirmed by agarose electrophoresis as shown in FIG. The base sequence of the insert of the purified plasmid was determined using BigDye Terminator kit (registered trademark: Applied Biosystems) and ABI PRISM 3700 DNA Analyzer (registered trademark: Applied Biosystems). The correct sequence of the 6-N-hydroxyaminopurine metabolizing enzyme gene was confirmed. A part of the plasmid having the correct sequence was completely digested with restriction enzymes NdeI and BamHI (2 hours at 37 ° C.), and then the thermostable 6-N-hydroxyaminopurine metabolizing enzyme structural gene was purified by agarose electrophoresis. pET-11a (manufactured by Novagen) was cleaved and purified with restriction enzymes NdeI and BamHI, and then ligated by reacting with the above structural gene and T4 ligase. A part of the ligated DNA was introduced into competent cells of Escherichia coli DH5α, and an appropriate amount was spread on an LB agar plate containing ampicillin and cultured at 37 ° C. overnight to obtain transformant colonies. The obtained transformant was cultured in an LB medium (18 mL) containing ampicillin for 24 hours, and the expression plasmid was purified from the culture solution by a modified alkaline SDS method.

2.組換え遺伝子の発現
大腸菌 Rosetta-gami(DE3)(Novagen社製)のコンピテントセルを融解して、ファルコンチューブに0.1mL移した。その中に上記1.の精製発現プラスミドの溶液0.002mLを加え氷中に20分間放置した後、42℃でヒートショックを90秒間行い、氷中に1分間放置した後、クロラムフェニコールとアンピシリンを含むLB寒天プレートに適量まき、37℃で一晩培養し、形質転換体を得た。得られた形質転換体をアンピシリンを含むLB培地(5mL)で18時間培養し、耐熱性6−N−ヒドロキシアミノプリン代謝酵素遺伝子を発現した。培養後、遠心分離(13,000G、10分)で集菌した。
2. Recombinant Gene Expression Competent cells of Escherichia coli Rosetta-gami (DE3) (Novagen) were thawed and transferred to 0.1 mL of a falcon tube. Among them, the above 1. After adding 0.002 mL of the purified expression plasmid solution and leaving it on ice for 20 minutes, heat shocking at 42 ° C. for 90 seconds, leaving it on ice for 1 minute, and then an LB agar plate containing chloramphenicol and ampicillin An appropriate amount was spread and cultured overnight at 37 ° C. to obtain a transformant. The obtained transformant was cultured in an LB medium (5 mL) containing ampicillin for 18 hours to express a thermostable 6-N-hydroxyaminopurine metabolizing enzyme gene. After incubation, the cells were collected by centrifugation (13,000 G, 10 minutes).

集菌した菌体に,破砕液(20mM Tris-HCl、100mM KCl、pH7.5)を0.2mL加え,超音波発生器で細胞を破砕し,その懸濁液を0.1mLずつ2本のサンプルチューブに分けた。一方のサンプルチューブは遠心分離(13,000G、10分)して上清と沈殿に分け,沈殿は破砕液 0.1mLで懸濁した。もう一方のサンプルチューブは,熱処理(70℃,10分)を施した後,遠心分離(13,000G、10分)して上清と沈殿に分け,沈殿は破砕液0.1mLで懸濁した。これらの試料の一部をSDS−ポリアクリルアミドゲル電気泳動(PAGE)で分析し,発現を確認できた。この結果を図2のSDS−PAGE写真に示す。   To the collected cells, 0.2 mL of a disruption solution (20 mM Tris-HCl, 100 mM KCl, pH 7.5) is added, and the cells are disrupted with an ultrasonic generator. Divided into sample tubes. One sample tube was centrifuged (13,000 G, 10 minutes) to separate into a supernatant and a precipitate, and the precipitate was suspended in 0.1 mL of a disrupted solution. The other sample tube was heat-treated (70 ° C., 10 minutes) and then centrifuged (13,000 G, 10 minutes) to separate the supernatant and the precipitate. The precipitate was suspended in 0.1 mL of the disrupted solution. . A part of these samples was analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), and the expression could be confirmed. The results are shown in the SDS-PAGE photograph of FIG.

耐熱性6−N−ヒドロキシアミノプリン代謝酵素の発現が見られた試料についてSDSポリアクリルアミドゲル電気泳動を行った後,エレクトロブロッティングによってPVDF膜に転写し,染色によって可視化された目的組換えタンパク質である耐熱性6−N−ヒドロキシアミノプリン代謝酵素のバンドを切り出し,プロテインシーケンサーModel492Procise(Applied Biosystems社製)を用いて,アミノ末端配列を解析した結果、配列番号5に示すように10残基のアミノ末端配列が決定できた。この配列により,発現タンパク質が耐熱性6−N−ヒドロキシアミノプリン代謝酵素であることを確認できた。この発現タンパク質は、189アミノ酸残基より構成されており、その推定分子量は21.7kDであり、図2に示すSDS−PAGEにおける分子量とほぼ一致する。   This is a target recombinant protein visualized by staining after SDS polyacrylamide gel electrophoresis for a sample with thermostable 6-N-hydroxyaminopurine metabolizing enzyme expression, electrophoretic blotting to a PVDF membrane A band of thermostable 6-N-hydroxyaminopurine metabolizing enzyme was cut out and analyzed for amino terminal sequence using protein sequencer Model 492Procise (manufactured by Applied Biosystems). The sequence was determined. This sequence confirmed that the expressed protein was a thermostable 6-N-hydroxyaminopurine metabolizing enzyme. This expressed protein is composed of 189 amino acid residues, and its estimated molecular weight is 21.7 kD, which almost coincides with the molecular weight in SDS-PAGE shown in FIG.

組換え大腸菌の大量培養
実施例2と同様にして調製したプラスミドDNA(pET−11aベクター) を用いて、大腸菌DH5α株を常法に従い形質転換した。形質転換された大腸菌DH5αからアルカリSDS法を用いてプラスミドDNAを抽出した。このプラスミドDNAを用いて、大腸菌ロゼッタ・ガミ(Rosetta-Gami)(DE3)株を形質転換した。プレート上に生えてきたコロニーを3白金耳量とり、5mLのLBL培地(1%ペプトン、0.5%酵母抽出液、0.5%NaCl、0.1%ラクトース、50μg/mLアンピシリン、40μg/mLクロラムフェニコール)に植菌して、培養開始直前まで約6時間、37℃で前培養した。この前培養液を全量、3Lの4×LBL培地(4%ペプトン、2%酵母抽出液、 2%NaCl、50μg/mLアンピシリン)に加え、高密度培養槽(ABLE社製)にて37℃、pH7.2、圧力0.02Paでコンピュータプログラム制御し、培養した。pHは、オートクレーブ済みの2M HCl(和光純薬社製)および2M NaOH(和光純薬社製)で調整した。集菌約18時間前にオートクレーブ済みの300mL発現誘導液(10%ラクトース、20%グリセロール)を加えた。大腸菌の生育度が定常期に入ったところ(培養開始45時間後)で大型遠心分離機(Beckman社製AvantiHP-30I)を用い集菌した。回収した菌体は、−30℃で保存した。この時、菌体を少量、別に取り、150mM NaCl、20mM Tris−HCl(pH8)、5mM β-メルカプトエタノール(和光純薬社製)に溶解・懸濁し、超音波破砕装置(TOMY社製UD-201)で破砕した。この溶液を2等分し、一方を9100G 、4℃で10分間、遠心分離し、上清と沈殿に分け、他方を75℃に設定した恒温槽(TAITEC社製DryThermounit DTU-1C)で10分間、加熱した後、9100G 、4℃で10分間、遠心分離し、上清と沈殿に分けた。これら4種の上清および沈殿(沈殿は、菌体破砕液にて再縣濁)に変性剤(62.5mM Tris−HCl(pH6.8)、10%グリセロール、2%SDS、2.4%β−メルカプトエタノール、0.005% ブロムフェノールブルー(和光純薬社製))を加え、95℃で5分間加熱し、変性させた。これらの変性させたタンパク質溶液を12.5%または15%(発現させるタンパク質の分子量により異なる)ポリアクリルアミドゲルに加え、SDS−PAGEにて電気泳動を行った。染色液(Quick-CBB、和光純薬社製)を用い、電気泳動後のゲルを染色・脱色し、目的タンパク質の発現を確認した。
Mass culture of recombinant Escherichia coli Escherichia coli DH5α strain was transformed according to a conventional method using plasmid DNA (pET-11a vector) prepared in the same manner as in Example 2. Plasmid DNA was extracted from the transformed E. coli DH5α using the alkaline SDS method. This plasmid DNA was used to transform Escherichia coli Rosetta-Gami (DE3) strain. Take 3 platinum loops of the colonies that grew on the plate, 5 mL of LBL medium (1% peptone, 0.5% yeast extract, 0.5% NaCl, 0.1% lactose, 50 μg / mL ampicillin, 40 μg / mL chloramphenicol) and precultured at 37 ° C. for about 6 hours until just before the start of the culture. The total amount of this preculture was added to 3 L of 4 × LBL medium (4% peptone, 2% yeast extract, 2% NaCl, 50 μg / mL ampicillin), and 37 ° C. in a high-density culture tank (manufactured by ABLE). The computer program was controlled at pH 7.2, pressure 0.02 Pa, and cultured. The pH was adjusted with autoclaved 2M HCl (manufactured by Wako Pure Chemical Industries, Ltd.) and 2M NaOH (manufactured by Wako Pure Chemical Industries, Ltd.). Approximately 18 hours before the collection, an autoclaved 300 mL expression induction solution (10% lactose, 20% glycerol) was added. The cells were collected using a large centrifuge (AvantiHP-30I manufactured by Beckman) when the growth of E. coli entered the stationary phase (45 hours after the start of culture). The collected cells were stored at -30 ° C. At this time, a small amount of bacterial cells are taken separately, dissolved and suspended in 150 mM NaCl, 20 mM Tris-HCl (pH 8), 5 mM β-mercaptoethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and an ultrasonic crusher (UDY, manufactured by TOMY). 201). This solution is divided into two equal parts, one is centrifuged at 9100G for 10 minutes at 4 ° C, separated into supernatant and precipitate, and the other is kept at 75 ° C for 10 minutes in a thermostatic bath (DryThermounit DTU-1C manufactured by TAITEC) After heating, the mixture was centrifuged at 9100 G at 4 ° C. for 10 minutes, and separated into a supernatant and a precipitate. These four types of supernatant and precipitate (precipitate is resuspended in the cell disruption solution) and denaturant (62.5 mM Tris-HCl (pH 6.8), 10% glycerol, 2% SDS, 2.4% β-mercaptoethanol, 0.005% bromophenol blue (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was denatured by heating at 95 ° C. for 5 minutes. These denatured protein solutions were added to 12.5% or 15% (depending on the molecular weight of the protein to be expressed) polyacrylamide gel, and subjected to electrophoresis by SDS-PAGE. Using a staining solution (Quick-CBB, manufactured by Wako Pure Chemical Industries, Ltd.), the gel after electrophoresis was stained and decolored to confirm the expression of the target protein.

組換えタンパク質の精製
実施例3において、−30℃で保存してあった菌体を、150mM NaCl、20mM Tris−HCl(pH8)、5mM β−メルカプトエタノールに溶解・懸濁し、超音波破砕装置(TOMY社製UD-201)で破砕し、75℃に設定した恒温槽(TAITEC社製、DryThermoUnit DTU−1C)で、10分間、加熱した後、すばやく冷却した。次に、この破砕菌体液を大型遠心分離機(Beckman社製Avanti HP-30I)を用いて、100,000Gで1時間、遠心分離し、上清を回収した。
Purification of recombinant protein In Example 3, the bacterial cells stored at -30 ° C were dissolved and suspended in 150 mM NaCl, 20 mM Tris-HCl (pH 8), 5 mM β-mercaptoethanol, and an ultrasonic crusher ( The mixture was crushed with TOMY UD-201), heated in a thermostat set at 75 ° C. (TAITEC, DryThermoUnit DTU-1C) for 10 minutes, and then quickly cooled. Next, this crushed cell fluid was centrifuged at 100,000 G for 1 hour using a large centrifuge (Avanti HP-30I manufactured by Beckman), and the supernatant was collected.

次に、この上清をタンパク質精製装置(Amersham Biosciences社製、AKTA explorer)を用いて、20mM MES(2-Morpholinoethanesulfonic acid)pH6.0、5mM β−メルカプトエタノールの緩衝溶液に置換した後、陽イオン交換カラム(Amersham Biosciences社製RESOURCETM S)に通した。塩化ナトリウムで溶出を行い、溶出してきた各画分をSDS−PAGE電気泳動にて確認し、目的タンパク質の画分を回収した。 Next, the supernatant was replaced with a buffer solution of 20 mM MES (2-Morpholinoethanesulfonic acid) pH 6.0, 5 mM β-mercaptoethanol using a protein purification apparatus (AKTA explorer manufactured by Amersham Biosciences), and then a cation. The sample was passed through an exchange column (RESOURCE S manufactured by Amersham Biosciences). Elution was performed with sodium chloride, and each eluted fraction was confirmed by SDS-PAGE electrophoresis, and the fraction of the target protein was collected.

次に、回収した画分を10mM リン酸緩衝溶液に置換した後、ヒドロキシアパタイトカラム(Bioscale社製Ceramic Hydroxyapatite, Type I Column, CHT-101)に通した。高濃度リン酸緩衝溶液で溶出を行い、溶出してきた各画分をSDS−PAGE電気泳動にて確認し、目的タンパク質の画分を回収した。   Next, the collected fraction was replaced with a 10 mM phosphate buffer solution and then passed through a hydroxyapatite column (Ceramic Hydroxyapatite, Type I Column, CHT-101 manufactured by Bioscale). Elution was performed with a high-concentration phosphate buffer solution, and each eluted fraction was confirmed by SDS-PAGE electrophoresis, and the fraction of the target protein was collected.

次に、回収した画分を10mM Tris-HCl、pH8.0、5mMβ−メルカプトエタノールの緩衝溶液に置換した後、遠心濃縮チューブ(ミリポア社製VIVASPIN10000)を用いて遠心分離して濃縮し、活性測定に供した。   Next, the collected fraction was replaced with a buffer solution of 10 mM Tris-HCl, pH 8.0, 5 mM β-mercaptoethanol, and then concentrated by centrifuging using a centrifugal concentration tube (VIVASPIN10000 manufactured by Millipore) to measure the activity. It was used for.

活性測定
1.測定方法
実施例4で精製したタンパク質は、6−N−ヒドロキシアミノプリンによる変異性を低下させる働きを持ち、その一次配列ホモログは、xanthosine triphosphate(XTP)、deoxyinosine triphosphate(dITP)などをデオキシリボヌクレオチドとピロリン酸に分解する活性を持つ。この活性評価では、下記の種々の条件下、最も特異性の高い基質であるとされているXTPに対しての活性を測定した。その測定方法は、つぎのとおりである。すなわち、10mMのMgCl(ナカライテスク社製)と、1mMのXTP(JENA BIOSCIENCE社製)と、4nMの実施例4の精製タンパク質とを含む50mMの緩衝溶液(後述のとおり、測定によって種類が異なる)100μLを10分間反応させた後、100mMのPiを100μL加えることにより反応を停止した。定量には、陰イオン交換カラム(東ソー社製、TSK−GEL DEAE−2SW)によるHPLC(Amersham Biosciences社製、AKTA purifier)を用い、反応物と生成物のピークの積分値の相対値(生成物の積分値/(生成物の積分値+反応物の積分値)と基質濃度との積を生成物濃度とすることにより、反応の進行度を定量した。
Activity measurement Measurement Method The protein purified in Example 4 has a function of reducing the variability due to 6-N-hydroxyaminopurine, and its primary sequence homolog is xanthosine triphosphate (XTP), deoxyinosine triphosphate (dITP) and the like as deoxyribonucleotides. Has activity to decompose into pyrophosphate. In this activity evaluation, the activity against XTP, which is considered to be the most specific substrate, was measured under the following various conditions. The measuring method is as follows. That is, a 50 mM buffer solution containing 10 mM MgCl 2 (manufactured by Nacalai Tesque), 1 mM XTP (manufactured by JENA BIOSCIENCE), and 4 nM of the purified protein of Example 4 (varies depending on the measurement, as described later). ) After reacting 100 μL for 10 minutes, the reaction was stopped by adding 100 μL of 100 mM Pi. For quantification, HPLC (Amersham Biosciences, AKTA purifier) using an anion exchange column (manufactured by Tosoh Corporation, TSK-GEL DEAE-2SW) was used, and the relative value of the integrated value of the peak of the reaction product and the product (product) The product of (integral value of product) / (integral value of product + integral value of reactant) and the substrate concentration was used as the product concentration to quantify the progress of the reaction.

2.至適温度
45、60、80、95℃の各温度において、前記測定を行い、kappを求めた。緩衝溶液には、Tris(ナカライテスク社製)−HCl(各温度においてpH7.3)を用いた。測定結果を、図3のグラフに示す。図示のとおり、95℃で最も高い活性を示した。
2. The above measurements were performed at optimum temperatures of 45, 60, 80, and 95 ° C., and k app was determined. As a buffer solution, Tris (manufactured by Nacalai Tesque) -HCl (pH 7.3 at each temperature) was used. The measurement results are shown in the graph of FIG. As shown in the figure, the highest activity was shown at 95 ° C.

3.熱安定性
前記測定に先立ち、実施例4において精製したタンパク質を、80℃および95℃で、0.5、1、1.5、2、2.5、3時間前処理した。前記前処理物を用いて、前記測定を行い、kappを求めた。緩衝溶液には、前処理温度80℃ではTris(ナカライテスク社製)−HCl(80℃においてpH7.2)を、前処理温度95℃ではGlycine(ナカライテスク社製)−NaOH(95℃においてpH7.3)を用い、反応温度は、80℃とした。なお、前処理時間0時間は、前処理を行っていないものである。測定結果を、図4のグラフに示す。図示のとおり、前処理を行うことで、若干の活性の低下は見られるものの、高温で処理後もその活性は保たれることが分かった。
3. Prior to the thermal stability the measurement, the protein purified in Example 4, at 80 ° C. and 95 ° C., were pretreated 0.5,1,1.5,2,2.5,3 hours. Using the pre-treated product, the measurement was performed to obtain k app . The buffer solution includes Tris (Nacalai Tesque) -HCl (pH 7.2 at 80 ° C.) at a pretreatment temperature of 80 ° C., and Glycine (Nacalai Tesque) at a pretreatment temperature of 95 ° C.—NaOH (pH 7 at 95 ° C.). .3) and the reaction temperature was 80 ° C. Note that the pre-processing time of 0 hour is the time when no pre-processing is performed. The measurement results are shown in the graph of FIG. As shown in the figure, it was found that by performing the pretreatment, a slight decrease in the activity was observed, but the activity was maintained after the treatment at a high temperature.

4.至適pH
pH5.84、6.0、6.4、6.84、7.25、7.49、8.03、8.34、8.93、9.48、10.0、10.5の各条件で、前記測定を行い、kappを求めた。緩衝溶液には、pH5.89ではMES(同仁化学研究所社製)を、pH6.0、6.4、6.84、7.25ではTris(ナカライテスク社製)−HClを、pH7.49、8.03、8.34ではグリシン(ナカライテスク社製)−NaOHを、pH8.93、9.48、10.0、10.5ではCAPS(同仁化学研究所社製)を用い、反応温度は、80℃とした。測定結果を、図5のグラフに示す。図示のとおり、pH8〜9付近で活性の低下が見られるが、これは等電点近傍であるために、等電点沈殿の影響を受けたものと思われる。この点を除外して考えると、高いpH領域(pH7以上)において強い活性を示していることが分かる。
4). PH optimum
Each condition of pH 5.84, 6.0, 6.4, 6.84, 7.25, 7.49, 8.03, 8.34, 8.93, 9.48, 10.0, 10.5 Then, the measurement was performed to obtain k app . The buffer solution was MES (manufactured by Dojindo Laboratories) at pH 5.89, Tris (manufactured by Nacalai Tesque) -HCl at pH 6.0, 6.4, 6.84, and 7.25, pH 7.49. , 8.03, 8.34 using glycine (Nacalai Tesque) -NaOH, and pH 8.93, 9.48, 10.0, 10.5 using CAPS (Dojindo Laboratories). Was 80 ° C. The measurement results are shown in the graph of FIG. As shown in the figure, a decrease in activity is observed around pH 8-9, which is considered to be affected by isoelectric point precipitation because it is near the isoelectric point. Excluding this point, it can be seen that strong activity is exhibited in a high pH region (pH 7 or more).

本発明により、6−N−ヒドロキシアミノプリン代謝活性を有する新規耐熱性タンパク質が提供できる。本発明のタンパク質は、高温下で使用することが可能であり、工業的用途が広がると共に、基質濃度の増加、反応効率の向上、混入微生物の除去、保存期間および耐用期間の延長などの多くの利点がもたらされる。   According to the present invention, a novel thermostable protein having 6-N-hydroxyaminopurine metabolic activity can be provided. The protein of the present invention can be used at high temperatures, and has a wide range of industrial applications, as well as many substrate concentrations, increased reaction efficiency, removal of contaminating microorganisms, extended shelf life and longevity, etc. Benefits are provided.

図1は、本発明の一実施例における精製プラスミドのインサートDNAのアガロース電気泳動写真である。FIG. 1 is an agarose electrophoresis photograph of purified plasmid insert DNA in one example of the present invention. 図2は、本発明の一実施例における組換えタンパク質のSDS-PAGE写真である。FIG. 2 is an SDS-PAGE photograph of the recombinant protein in one example of the present invention. 図3は、本発明の一実施例における温度−kappの関係を示すグラフである。FIG. 3 is a graph showing the relationship of temperature-k app in one embodiment of the present invention. 図4は、本発明の一実施例における80℃および95℃における前処理時間−kappの関係を示すグラフである。FIG. 4 is a graph showing the relationship of pretreatment time-k app at 80 ° C. and 95 ° C. in one example of the present invention. 図5は、本発明の一実施例におけるpH−kappの関係を示すグラフである。FIG. 5 is a graph showing the relationship of pH-k app in one example of the present invention.

配列番号1:6−N−ヒドロキシアミノプリン代謝活性酵素の塩基配列
配列番号2:6−N−ヒドロキシアミノプリン代謝活性酵素のアミノ酸配列
配列番号3:6−N−ヒドロキシアミノプリン代謝活性酵素の構造遺伝子の末端に制限酵素部位NdeIおよびBamHI、NotIを導入するための順方向プライマーを示す。
配列番号4:6−N−ヒドロキシアミノプリン代謝活性酵素の構造遺伝子の末端に制限酵素部位NdeIおよびBamHI、NotIを導入するための逆方向プライマーを示す。
配列番号5:N末端アミノ酸配列
SEQ ID NO: 1: Base sequence of 6-N-hydroxyaminopurine metabolic active enzyme SEQ ID NO: 2: Amino acid sequence of 6-N-hydroxyaminopurine metabolic active enzyme SEQ ID NO: 3: Structure of 6-N-hydroxyaminopurine metabolic active enzyme The forward primers for introducing restriction enzyme sites NdeI, BamHI and NotI at the end of the gene are shown.
SEQ ID NO: 4 shows a reverse primer for introducing restriction enzyme sites NdeI, BamHI and NotI at the ends of the structural gene of 6-N-hydroxyaminopurine metabolizing enzyme.
SEQ ID NO: 5: N-terminal amino acid sequence

Claims (1)

酵素により、xanthosine triphosphate(XTP)から、xanthosine monophosphate(XMP)を製造する方法であって、超好熱性古細菌スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)由来の下記(a)又は(b)の耐熱性タンパク質を用い、温度80〜95℃、pH7〜10.5の条件で前記酵素反応を行うことを含む、製造方法。A method for producing xanthosine monophosphate (XMP) from xanthoseine triphosphate (XTP) by an enzyme, wherein heat resistance of the following (a) or (b) derived from the hyperthermophilic archaeon Sulfolobus tokodaii (JCM10545) The manufacturing method including performing the said enzyme reaction on the conditions of temperature 80-95 degreeC and pH 7-10.5 using sex protein.
(a)配列番号1のアミノ酸配列からなる耐熱性タンパク質。(A) A heat-resistant protein consisting of the amino acid sequence of SEQ ID NO: 1.
(b)配列番号1のアミノ酸配列において、1又は数個のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、XTPをXMPに変換する反応を触媒する活性を有する耐熱性タンパク質。(B) A heat-resisting activity comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, added or inserted in the amino acid sequence of SEQ ID NO: 1, and catalyzing a reaction of converting XTP to XMP. Sex protein.
JP2004081628A 2003-03-20 2004-03-19 Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine Expired - Lifetime JP4250762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081628A JP4250762B2 (en) 2003-03-20 2004-03-19 Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003078610 2003-03-20
JP2004081628A JP4250762B2 (en) 2003-03-20 2004-03-19 Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine

Publications (2)

Publication Number Publication Date
JP2004298190A JP2004298190A (en) 2004-10-28
JP4250762B2 true JP4250762B2 (en) 2009-04-08

Family

ID=33421973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081628A Expired - Lifetime JP4250762B2 (en) 2003-03-20 2004-03-19 Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine

Country Status (1)

Country Link
JP (1) JP4250762B2 (en)

Also Published As

Publication number Publication date
JP2004298190A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Kaya et al. A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archaea, and eukarya
JP2002247991A (en) Method for improving heat resistance of protein, protein having heat resistance improved by the method and nucleic acid encoding the protein
JP4250762B2 (en) Novel thermostable protein having metabolic activity of 6-N-hydroxyaminopurine
JP4280827B2 (en) A novel thermostable protein with acetylglutamate kinase activity
JP2008245604A (en) Highly efficient heat resistant dna ligase
JP2005296010A (en) New heat-resistant protein having 2-isopropylmalate synthase activity
JP2004298185A (en) New thermostable protein having phosphoglyceric acid dehydrogenase activity
JP4292294B2 (en) Novel thermostable protein having pyrroline-5-carboxylate reductase activity
JP4280826B2 (en) Novel thermostable protein having cystathionine-γ-synthase activity
JP2005296008A (en) New heat-resistant protein having mercury reductase activity
JP2005296012A (en) New heat-resistant protein having phosphoenolpyruvate synthase activity
CN114480345B (en) MazF mutant, recombinant vector, recombinant engineering bacterium and application thereof
JP2005296011A (en) New heat-resistant protein having adenylosuccinate lyase activity
JP2006288390A (en) New heat-resistant protein having gmp-mannose pyrophosphorylase activity
JP2000069971A (en) New thermostable formate dehydrogenase
JP2004298188A (en) New thermostable protein having cell division control activity
CN113151213B (en) High-fidelity DNA polymerase, preparation method and PCR application thereof
JP2004298184A (en) New thermostable protein having phosphoglyceric acid kinase activity
JP2005296009A (en) New heat-resistant protein having citrate synthase activity
JP2006254869A (en) NEW HEAT-RESISTANT PROTEIN HAVING AMILO-alpha-1,6-GLUCOSIDASE ACTIVITY
JP2004298186A (en) New thermostable protein having dna homologous recombination repair activity
JP2005261346A (en) New heat-resistant protein having fructokinase activity
JP2005261345A (en) New heat-resistant protein having glyceraldehyde-3-phosphate dehydrogenase activity
JP2006288389A (en) New heat-resistant protein having gmp synthase activity
JP2006288391A (en) New heat-resistant protein having enolase activity

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

R150 Certificate of patent or registration of utility model

Ref document number: 4250762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term