JP4250070B2 - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
JP4250070B2
JP4250070B2 JP2003413753A JP2003413753A JP4250070B2 JP 4250070 B2 JP4250070 B2 JP 4250070B2 JP 2003413753 A JP2003413753 A JP 2003413753A JP 2003413753 A JP2003413753 A JP 2003413753A JP 4250070 B2 JP4250070 B2 JP 4250070B2
Authority
JP
Japan
Prior art keywords
optical
light
detection
interferometer
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413753A
Other languages
Japanese (ja)
Other versions
JP2005172633A (en
Inventor
耕自 佐鳥
秀一 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Toyota Motor Corp
Original Assignee
Hitachi Cable Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Toyota Motor Corp filed Critical Hitachi Cable Ltd
Priority to JP2003413753A priority Critical patent/JP4250070B2/en
Publication of JP2005172633A publication Critical patent/JP2005172633A/en
Application granted granted Critical
Publication of JP4250070B2 publication Critical patent/JP4250070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、マイケルソン干渉計又はマッハツェンダー干渉計に物理量検出媒質を組み合わせた光センサに係り、特に変調器の制御信号線が簡素化できる光センサに関する。   The present invention relates to an optical sensor in which a physical quantity detection medium is combined with a Michelson interferometer or a Mach-Zehnder interferometer, and more particularly to an optical sensor that can simplify a control signal line of a modulator.

マッハツェンダー干渉計に物理量検出媒質を組み合わせた光センサが知られている。図16に示した光センサは、 光源161と、光源161の光を2路の光経路(光経路Sという)162及び光経路(光経路Lという)163に分岐して再び合波するマッハツェンダー干渉計164と、このマッハツェンダー干渉計164の中で一方の光経路S162(又は光経路L163)に取り付けられ検出対象の物理量に応じた位相変化を光に与える物理量検出媒質165と、このマッハツェンダー干渉計164の中で少なくとも一方の変調用光経路に挿入され電気信号に基づいて光を変調する変調器166と、このマッハツェンダー干渉計164からの光を受光する受光器167とを備える。 光源161の光を導く光伝送路168にはこのマッハツェンダー干渉計164の光分波器169が接続され、マッハツェンダー干渉計164の光合波器170には受光器167まで光を導く光伝送路171が接続されている。光経路S162の光路長をLS、光経路L163の光路長をLLとする。 An optical sensor in which a physical quantity detection medium is combined with a Mach-Zehnder interferometer is known. The optical sensor shown in FIG. 16 includes a light source 161 and a Mach-Zehnder that splits the light from the light source 161 into two optical paths (referred to as an optical path S) 162 and an optical path (referred to as an optical path L) 163 and combines them again. An interferometer 164, a physical quantity detection medium 165 attached to one of the optical paths S162 (or optical path L163) in the Mach-Zehnder interferometer 164 to give a phase change corresponding to the physical quantity to be detected to the light, and the Mach-Zehnder The interferometer 164 includes a modulator 166 that is inserted into at least one of the modulation optical paths and modulates light based on an electrical signal, and a light receiver 167 that receives light from the Mach-Zehnder interferometer 164. The optical demultiplexer 169 of the Mach-Zehnder interferometer 164 is connected to the optical transmission path 168 that guides the light from the light source 161, and the optical transmission path that guides the light to the light receiver 167 in the optical multiplexer 170 of the Mach-Zehnder interferometer 164. 171 is connected. The optical path length of the optical path S162 is L S , and the optical path length of the optical path L163 is L L.

光源161から出射されたコヒーレント長LCの光は、光伝送路168を通過した後、光分波器169により光経路S162と光経路L163とに分岐される。光経路S162内には物理量検出媒質165が配置されているため、光経路S162が物理量の大きさに対応して光路長変化或いは屈折率変化する。一方、光経路S162内には変調器166が配置されているため、通過する光には電気信号に基づいて光路長変化或いは屈折率変化に相当する光変調が与えられる。両光経路162,163を通過した光が光合波器170で混合される。光路長LSと光路長をLLと他の共通する光路長とが式(1)を満たし、両光経路162,163の偏光方向が一致すると、光干渉が起きる。 The light having the coherent length L C emitted from the light source 161 passes through the optical transmission path 168, and then is branched into the optical path S162 and the optical path L163 by the optical demultiplexer 169. Since the physical quantity detection medium 165 is disposed in the optical path S162, the optical path S162 changes in optical path length or refractive index in accordance with the physical quantity. On the other hand, since the modulator 166 is disposed in the optical path S162, the light passing therethrough is subjected to optical modulation corresponding to a change in optical path length or a change in refractive index based on an electrical signal. Light passing through both optical paths 162 and 163 is mixed by the optical multiplexer 170. When the optical path length L S , the optical path length L L, and other common optical path lengths satisfy Expression (1) and the polarization directions of both the optical paths 162 and 163 coincide, optical interference occurs.

|LS−LL|≦LC (1) | L S −L L | ≦ L C (1)

変調器166を制御することで、光干渉強度のみを分離することができる。この光干渉強度から物理量検出媒質165による光路長変化或いは屈折率変化を精密に計測することができる。   By controlling the modulator 166, only the optical interference intensity can be separated. From this optical interference intensity, the optical path length change or refractive index change by the physical quantity detection medium 165 can be accurately measured.

特公平7−81888号公報Japanese Examined Patent Publication No. 7-81888 特許第2578601号公報Japanese Patent No. 2578601

図16の光センサを用いた計測システムを図17に示す。この計測システムは、図16で説明した光センサのうちマッハツェンダー干渉計164の部分からなる検出部173と、光源161・受光器167を含んだ制御部174とからなり、検出部173と制御部174との間には、光源161と光分波器169とを結ぶ光伝送路168、光合波器170と受光器167とを結ぶ光伝送路171、変調器166に制御信号を伝送する信号線175が設けられる。   A measurement system using the optical sensor of FIG. 16 is shown in FIG. This measurement system includes a detection unit 173 including the Mach-Zehnder interferometer 164 portion of the optical sensor described in FIG. 16, and a control unit 174 including a light source 161 and a light receiver 167. The detection unit 173 and the control unit 174, an optical transmission path 168 connecting the light source 161 and the optical demultiplexer 169, an optical transmission path 171 connecting the optical multiplexer 170 and the optical receiver 167, and a signal line for transmitting a control signal to the modulator 166. 175 is provided.

制御部174と検出部173との間の距離が長くなると、信号線175で伝送される制御信号に遅れが生じるため、計測精度が悪くなるという問題がある。   When the distance between the control unit 174 and the detection unit 173 is increased, there is a problem in that the measurement accuracy is deteriorated because the control signal transmitted through the signal line 175 is delayed.

図16の光センサを複数用いた多点計測システムを図18に示す。この計測システムは、図17で説明した1つの制御部174に対し複数の検出部173a,173bが設けられている。光伝送路168,171に対し、複数の検出部173a,173bは並列に接続することもできるし、直列に接続することもできる。つまり、多点計測でも2路の光伝送路168,171があればよい。   FIG. 18 shows a multipoint measurement system using a plurality of optical sensors of FIG. In this measurement system, a plurality of detection units 173a and 173b are provided for one control unit 174 described in FIG. The plurality of detectors 173a and 173b can be connected in parallel to the optical transmission lines 168 and 171 or in series. That is, it is only necessary to have two optical transmission paths 168 and 171 for multipoint measurement.

しかし、検出部173a,173bのそれぞれの変調器166a,bに制御信号を伝送するために2本の信号線175a,175bが必要である。変調器166a,bも検出部173の個数だけ必要である。これらの必要部材のため、コストが高くなるという問題がある。   However, two signal lines 175a and 175b are required to transmit control signals to the modulators 166a and 166b of the detection units 173a and 173b. The number of modulators 166a and 166b is also required as many as the number of detectors 173. Due to these necessary members, there is a problem that the cost becomes high.

検出部173にマッハツェンダー干渉計164を用いずマイケルソン干渉計を用いる場合には、分岐した一方の光経路S162(又は光経路L163)を光伝送路168(又は光伝送路171)として用い、変調器166を制御部174に配置することができ、制御信号を伝送するための信号線を短くすることができる。しかし、この構成では、マイケルソン干渉計の内部の一方の光経路が制御部174への光伝送路として用いられているため、検出部173の設置の都合で光伝送路の長さを変えると、マイケルソン干渉計の内部のもう一方の光経路の長さも変える必要が生じる。つまり、制御部と検出部とが完全に独立して分離されているというわけではない。   When a Michelson interferometer is used instead of the Mach-Zehnder interferometer 164 for the detection unit 173, one branched optical path S162 (or optical path L163) is used as the optical transmission path 168 (or optical transmission path 171). The modulator 166 can be disposed in the control unit 174, and the signal line for transmitting the control signal can be shortened. However, in this configuration, since one optical path inside the Michelson interferometer is used as an optical transmission path to the control unit 174, if the length of the optical transmission path is changed due to the installation of the detection unit 173, The length of the other optical path inside the Michelson interferometer also needs to be changed. That is, the control unit and the detection unit are not completely separated from each other.

そこで、本発明の目的は、上記課題を解決し、変調器の制御信号線が簡素化できる光センサを提供することにある。   Accordingly, an object of the present invention is to provide an optical sensor that can solve the above-described problems and can simplify a control signal line of a modulator.

上記目的を達成するために本発明は、光源と、光源の光を2路の検出用光経路に分岐して再び合波する複数の検出用光干渉計と、該検出用光干渉計各々の中で一方の検出用光経路に取り付けられ検出対象の物理量に応じた位相変化を光に与える物理量検出媒質と、前記検出用光干渉計各々からの光を合波する複数の光合波器と、該複数の光合波器によって合波された光を伝送する光伝送路と、該光伝送路からの光を2路の変調用光経路に分岐して再び合波する1つの変調用光干渉計と、該変調用光干渉計の中で変調用光経路に挿入され光を変調する変調器と、前記変調用光干渉計からの光を受光する受光器とを備え、前記光源と前記受光器と前記変調用光干渉計とが互いに近接して配置された制御部が構成され、この制御部より遠隔に前記検出用光干渉計が配置され、前記制御部から前記検出用光干渉計まで光を往復させる1路の光伝送路が布設され、この光伝送路の制御部側に、光源の光を光伝送路に導き光伝送路からの光を変調用光干渉計に導く制御部用光合分波器が設けられたものである。 In order to achieve the above object, the present invention provides a light source, a plurality of detection optical interferometers for branching the light from the light source into two detection optical paths and recombining them, and each of the detection optical interferometers. A physical quantity detection medium that is attached to one of the detection optical paths and gives the light a phase change corresponding to the physical quantity of the detection target, and a plurality of optical multiplexers that combine the light from each of the detection optical interferometers, An optical transmission path for transmitting the light combined by the plurality of optical multiplexers, and one modulation optical interferometer for branching the light from the optical transmission path into two modulation optical paths and recombining them A modulator that is inserted into a modulation optical path in the modulation optical interferometer and modulates light, and a light receiver that receives light from the modulation optical interferometer, the light source and the light receiver And a modulation optical interferometer are arranged in close proximity to each other, and the detection unit is remote from the control unit. An optical interferometer is disposed, and one optical transmission path for reciprocating light from the control unit to the detection optical interferometer is laid, and the light from the light source is transmitted to the control unit side of the optical transmission path. And a control unit optical multiplexer / demultiplexer that guides the light from the optical transmission path to the modulation optical interferometer .

前記検出用光干渉計は、光源の光を2路の検出用光経路に分岐すると共にこれら検出用光経路からの反射戻り光を合波して取り出す検出用光合分波器と、前記2路の検出用光経路のそれぞれの終端から光を反射させる2つの反射器とを備えてもよい。   The detection optical interferometer includes a detection optical multiplexer / demultiplexer for branching light from a light source into two detection optical paths and combining and extracting reflected return light from these detection optical paths, and the two paths And two reflectors for reflecting light from the respective ends of the detection optical path.

前記変調用光干渉計は、前記検出用光干渉計からの光を2路の変調用光経路に分岐すると共にこれら変調用光経路からの反射戻り光を合波して取り出す光合分波器と、これら2路の変調用光経路のそれぞれの終端から光を反射させる2つの反射器とを備えてもよい。   The modulation optical interferometer includes: an optical multiplexer / demultiplexer that branches the light from the detection optical interferometer into two modulation optical paths and combines and extracts the reflected return light from the modulation optical paths; Two reflectors that reflect light from the respective ends of the two modulation light paths may be provided.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)変調器の制御信号線が簡素化できる。   (1) The control signal line of the modulator can be simplified.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光センサは、光源1と、光源1の光を2路の検出用光経路2,3に分岐して再び合波する検出用光干渉計としての検出用マッハツェンダー干渉計4と、検出用マッハツェンダー干渉計4の中で一方の検出用光経路2に取り付けられ検出対象の物理量に応じた位相変化を光に与える物理量検出媒質5と、検出用マッハツェンダー干渉計4からの光を2路の変調用光経路6,7に分岐して再び合波する変調用マイケルソン干渉計8と、変調用マイケルソン干渉計8の中で少なくとも一方の変調用光経路6に挿入され光を変調する変調器9と、変調用マイケルソン干渉計8からの光を受光する受光器10とを備える。   As shown in FIG. 1, the optical sensor according to the present invention is a light source 1 and a detection optical interferometer that splits light from the light source 1 into two detection optical paths 2 and 3 and combines them again. A detection Mach-Zehnder interferometer 4, a physical quantity detection medium 5 attached to one of the detection optical paths 2 in the detection Mach-Zehnder interferometer 4 to give light a phase change corresponding to a physical quantity to be detected, and a detection The modulation Michelson interferometer 8 that splits the light from the Mach-Zehnder interferometer 4 into the two modulation optical paths 6 and 7 and combines them again, and at least one of the modulation Michelson interferometers 8 A modulator 9 inserted in the optical path 6 for modulating light and a light receiver 10 for receiving light from the modulating Michelson interferometer 8 are provided.

検出用マッハツェンダー干渉計4は、光源1からの光を2路の検出用光経路2,3に分岐する光分波器11と、これら2路の検出用光経路2,3からの光を合波する光合波器12とを備える。   The detection Mach-Zehnder interferometer 4 splits the light from the light source 1 into two detection optical paths 2 and 3 and the light from these two detection optical paths 2 and 3. And an optical multiplexer 12 for multiplexing.

変調用マイケルソン干渉計8は、検出用マッハツェンダー干渉計4からの光を2路の変調用光経路6,7に分岐すると共にこれら変調用光経路6,7からの反射戻り光を合波して取り出す光合分波器13と、これら2路の変調用光経路6,7のそれぞれの終端から光を反射させる2つの反射器14,15とを備える。   The modulation Michelson interferometer 8 branches the light from the detection Mach-Zehnder interferometer 4 into two modulation optical paths 6 and 7 and combines the reflected return lights from the modulation optical paths 6 and 7. And an optical multiplexer / demultiplexer 13 to be extracted, and two reflectors 14 and 15 for reflecting light from the respective ends of the two modulation optical paths 6 and 7.

光源1の光を導く光伝送路16にはマッハツェンダー干渉計4の光分波器11が接続され、マッハツェンダー干渉計4の光合波器12には変調用マイケルソン干渉計8の光合分波器13まで光を導く光伝送路17が接続され、この光合分波器13には受光器10まで光を導く光伝送路18が接続されている。   An optical demultiplexer 11 of the Mach-Zehnder interferometer 4 is connected to the optical transmission path 16 that guides light from the light source 1, and an optical multiplexer / demultiplexer of the Michelson interferometer 8 for modulation is connected to the optical multiplexer 12 of the Mach-Zehnder interferometer 4. An optical transmission path 17 that guides light to the optical receiver 13 is connected, and an optical transmission path 18 that guides light to the optical receiver 10 is connected to the optical multiplexer / demultiplexer 13.

物理量検出媒質5が設けられた検出用光経路2を光経路S2と呼び、検出用光経路3を光経路Lと呼ぶことにする。光経路S2の光路長をLS、光経路L163の光路長をLLとする。また、変調器9が設けられた変調用光経路6を光経路Mod6と呼び、変調用光経路7を光経路M7と呼ぶ。光経路Mod6の光路長をLMod、光経路M7の光路長をLMとする。 The detection optical path 2 provided with the physical quantity detection medium 5 is called an optical path S2, and the detection optical path 3 is called an optical path L. The optical path length of the optical path S2 is L S , and the optical path length of the optical path L163 is L L. The modulation optical path 6 provided with the modulator 9 is called an optical path Mod6, and the modulation optical path 7 is called an optical path M7. The optical path length of the light path MOD6 L Mod, the optical path length of the light path M7 and L M.

光源1から出射されたコヒーレント長LCの光は、光伝送路16を通過した後、光分波器11により光経路S2と光経路L3とに分岐される。光経路S2内には物理量検出媒質5が配置されているため、光経路S2が物理量の大きさに対応して光路長変化或いは屈折率変化する。両光経路2,3を通過した光が光合波器12で合波される。光路長LSと光路長をLLとが式(2)を満たし、両光経路2,3の偏光方向が一致しても、光干渉は起きない。 The light of the coherent length L C emitted from the light source 1 passes through the optical transmission path 16 and then is branched into the optical path S2 and the optical path L3 by the optical demultiplexer 11. Since the physical quantity detection medium 5 is disposed in the optical path S2, the optical path S2 changes in optical path length or refractive index in accordance with the physical quantity. The light that has passed through both optical paths 2 and 3 is multiplexed by the optical multiplexer 12. Even if the optical path length L S and the optical path length L L satisfy the expression (2) and the polarization directions of both the optical paths 2 and 3 coincide with each other, no optical interference occurs.

|LS−LL|>>LC (2) | L S −L L | >> L C (2)

この後、光は、光伝送路17を通過し、光合分波器13により光経路Mod6と光経路M7とに分岐される。分岐されたそれぞれの光は、反射器14,15で反射されて光合分波器13に戻って合波される。このとき、光路長LSと光路長をLLと光路長LModと光路長LMとが式(3)を満たすことで、初めて光干渉が起きる。 Thereafter, the light passes through the optical transmission path 17 and is branched into the optical path Mod6 and the optical path M7 by the optical multiplexer / demultiplexer 13. The branched lights are reflected by the reflectors 14 and 15 and returned to the optical multiplexer / demultiplexer 13 to be multiplexed. At this time, optical interference occurs only when the optical path length L S , the optical path length L L , the optical path length L Mod, and the optical path length L M satisfy Expression (3).

|LS+2×LMod−LL+2×LM|≦LC (3) | L S + 2 × L Mod −L L + 2 × L M | ≦ L C (3)

なお、反射器14,15での反射により光は光経路Mod6及び光経路M7を2回通過するので光路長LModおよび光路長LMは2倍されている。光伝送路16及び光伝送路17における光路長は、各光干渉計内の光経路によらず共通であるので、消去されている。 Since light passes through the optical path Mod6 and the optical path M7 twice by reflection at the reflectors 14 and 15, the optical path length L Mod and the optical path length L M are doubled. Since the optical path lengths in the optical transmission path 16 and the optical transmission path 17 are common regardless of the optical path in each optical interferometer, they are eliminated.

変調器9を制御することで、光干渉強度のみを分離することができる。この光干渉強度から物理量検出媒質5による光路長変化或いは屈折率変化を精密に計測することができる。   By controlling the modulator 9, only the optical interference intensity can be separated. From this optical interference intensity, the optical path length change or refractive index change by the physical quantity detection medium 5 can be accurately measured.

本発明は、電流に対するローレンツ力を利用した光磁気センサに応用できる。即ち、検出用光経路2を光ファイバで構成し、この光ファイバに物理量検出媒質5として金、ニッケル等の金属又は導電性プラスティックなどの導電性物質をコーティングする。この物理量検出媒質5と共に光ファイバをコイル状に巻く。このコイル状に巻かれた物理量検出媒質5に時間的に変動する電流を流すと、検出対象の物理量である磁場に応じたローレンツ力がコイル、即ち光ファイバに生じ、このローレンツ力による光ファイバの歪みにより、検出用光経路2の光路長が変化する。よって、その光路長変化により、検出用光干渉計(検出用マッハツェンダー干渉計4或いは後述する検出用マイケルソン干渉計61)における光干渉が変化する。この光干渉の変化に応じた受光器10の出力変化から磁場の大きさを検出することができる。   The present invention can be applied to a magneto-optical sensor using a Lorentz force with respect to an electric current. That is, the detection optical path 2 is constituted by an optical fiber, and the optical fiber is coated with a conductive substance such as a metal such as gold or nickel or a conductive plastic as the physical quantity detection medium 5. An optical fiber is wound in a coil shape together with the physical quantity detection medium 5. When a time-varying current is passed through the physical quantity detection medium 5 wound in a coil shape, a Lorentz force corresponding to a magnetic field that is a physical quantity to be detected is generated in the coil, that is, the optical fiber. Due to the distortion, the optical path length of the detection optical path 2 changes. Therefore, the optical interference in the detection optical interferometer (the detection Mach-Zehnder interferometer 4 or the detection Michelson interferometer 61 described later) changes due to the change in the optical path length. The magnitude of the magnetic field can be detected from the change in the output of the light receiver 10 corresponding to the change in the optical interference.

図1に示した本発明の光センサを用いた計測システムを図2に示す。この計測システムは、検出用マッハツェンダー干渉計4と、光源1・受光器10・ 変調用マイケルソン干渉計8を含んだ制御部19とからなり、検出用マッハツェンダー干渉計4と制御部19との間には、これらを往復する光伝送路、即ち光源1と光分波器11とを結ぶ光伝送路20、光合波器12と変調用マイケルソン干渉計8とを結ぶ光伝送路21が布設されている。制御部19には変調器9を制御する変調器制御装置22が設けられる。変調用マイケルソン干渉計8を構成する部材は図1と同じである。   A measurement system using the optical sensor of the present invention shown in FIG. 1 is shown in FIG. The measurement system includes a detection Mach-Zehnder interferometer 4 and a control unit 19 including a light source 1, a light receiver 10, and a modulation Michelson interferometer 8. Between these, there are an optical transmission path that reciprocates between them, that is, an optical transmission path 20 that connects the light source 1 and the optical demultiplexer 11, and an optical transmission path 21 that connects the optical multiplexer 12 and the Michelson interferometer 8 for modulation. It is laid. The control unit 19 is provided with a modulator control device 22 that controls the modulator 9. The members constituting the modulation Michelson interferometer 8 are the same as those in FIG.

本発明の光センサにおいては、物理量検出媒質5を設けている検出用マッハツェンダー干渉計4と変調器9を設けている変調用マイケルソン干渉計8とを別々に構成したので、図2の計測システムのように変調器9を光源1や受光器10と一緒に置くことができ、物理量検出対象が存在している遠隔に配置した検出用マッハツェンダー干渉計4に対しては光伝送路20,21のみを布設し、変調器9のための制御信号線は布設しなくてよい。このため検出用マッハツェンダー干渉計4と制御部19との間の距離が長くなっても、変調器9の制御信号が悪くなることがなくなり、計測精度を高く維持することができる。   In the optical sensor of the present invention, the detection Mach-Zehnder interferometer 4 provided with the physical quantity detection medium 5 and the modulation Michelson interferometer 8 provided with the modulator 9 are separately configured. The modulator 9 can be placed together with the light source 1 and the light receiver 10 as in the system, and the optical transmission path 20, the remote detection Mach-Zehnder interferometer 4 in which the physical quantity detection target exists. Only the control signal line 21 for the modulator 9 need not be installed. For this reason, even if the distance between the detection Mach-Zehnder interferometer 4 and the control unit 19 is increased, the control signal of the modulator 9 is not deteriorated, and the measurement accuracy can be maintained high.

また、図2の計測システムにおいて、往復の光伝送路20,21における光路長は、各光干渉計内の光経路によらず共通であるので、式(3)に影響を及ぼさない。従って、光伝送路20,21の長さが変わっても各光干渉計4,8内の各光経路の長さは変える必要がない。また、制御部19内の変調用マイケルソン干渉計8における光経路の長さが変わっても光路長差を維持していれば検出用マッハツェンダー干渉計4の各光経路の長さは変える必要がない。つまり、検出用マッハツェンダー干渉計4と制御部19と光伝送路20,21とが完全に独立しており、それぞれを他に影響なく個別に交換することができる。   In the measurement system of FIG. 2, the optical path lengths in the round trip optical transmission paths 20 and 21 are the same regardless of the optical path in each optical interferometer, and therefore do not affect the equation (3). Therefore, even if the lengths of the optical transmission lines 20 and 21 are changed, it is not necessary to change the lengths of the optical paths in the optical interferometers 4 and 8. If the optical path length difference is maintained even if the optical path length in the modulation Michelson interferometer 8 in the control unit 19 changes, the length of each optical path of the detection Mach-Zehnder interferometer 4 needs to be changed. There is no. That is, the detection Mach-Zehnder interferometer 4, the control unit 19, and the optical transmission lines 20 and 21 are completely independent, and can be individually replaced without affecting each other.

さらに、本発明には多点化における利点がある。即ち、往復の光伝送路20,21には複数の検出用マッハツェンダー干渉計4を並列でも直列でも接続することができる。そして、多点になっても変調器9は1つでよく、変調器9のための制御信号線を布設しなくてよいので、コストが高くならない。   Further, the present invention has an advantage in multipointing. That is, a plurality of detection Mach-Zehnder interferometers 4 can be connected to the reciprocating optical transmission lines 20 and 21 in parallel or in series. Even if the number of points is increased, only one modulator 9 is required, and a control signal line for the modulator 9 does not need to be provided, so that the cost does not increase.

図1の光センサを複数用いた多点計測システムを図3、図4に示す。   A multipoint measurement system using a plurality of the optical sensors of FIG. 1 is shown in FIGS.

図3の多点計測システムでは、図2と同じ制御部19からの往復の光伝送路20,21に対し複数の検出用マッハツェンダー干渉計4が間隔をおいて並列に接続されている。詳しく述べると、光伝送路20の途中に設けられた光分波器31aに第1の検出用マッハツェンダー干渉計4aの入射側が接続され、光伝送路21の途中に設けられた光合波器32aに第1の検出用マッハツェンダー干渉計4aの出射側が接続され、光伝送路20の終端に設けられた光分波器31bに第2及び第3の検出用マッハツェンダー干渉計4b,4cの入射側が接続され、光伝送路21の終端に設けられた光合波器32bに第2及び第3の検出用マッハツェンダー干渉計4b,4cの出射側が接続されている。勿論、接続する検出用マッハツェンダー干渉計4の個数には制限はない。   In the multipoint measurement system of FIG. 3, a plurality of detection Mach-Zehnder interferometers 4 are connected in parallel at intervals to the reciprocating optical transmission lines 20 and 21 from the same control unit 19 as in FIG. More specifically, the incident side of the first detection Mach-Zehnder interferometer 4a is connected to the optical demultiplexer 31a provided in the middle of the optical transmission path 20, and the optical multiplexer 32a provided in the middle of the optical transmission path 21. Are connected to the emission side of the first detection Mach-Zehnder interferometer 4a, and the second and third detection Mach-Zehnder interferometers 4b and 4c are incident on the optical demultiplexer 31b provided at the end of the optical transmission line 20. The output sides of the second and third detection Mach-Zehnder interferometers 4b and 4c are connected to an optical multiplexer 32b provided at the end of the optical transmission line 21. Of course, there is no limit to the number of detection Mach-Zehnder interferometers 4 to be connected.

図4の多点計測システムでは、図2と同じ制御部19からの往復の光伝送路20,21に対し複数の検出用マッハツェンダー干渉計4が間隔をおいて直列に接続されている。詳しく述べると、光伝送路20には第1の検出用マッハツェンダー干渉計4aの入射側が接続され、その検出用マッハツェンダー干渉計4aの出射側に第2の検出用マッハツェンダー干渉計4b入射側が接続されるというように、順次検出用マッハツェンダー干渉計4の入射側、出射側が接続されて、第3の検出用マッハツェンダー干渉計4cの出射側に光伝送路21が接続されている。勿論、接続する検出用マッハツェンダー干渉計4の個数には制限はない。   In the multipoint measurement system of FIG. 4, a plurality of detection Mach-Zehnder interferometers 4 are connected in series to the reciprocating optical transmission lines 20 and 21 from the same control unit 19 as in FIG. More specifically, the incident side of the first Mach-Zehnder interferometer 4a for detection is connected to the optical transmission line 20, and the incident side of the second Mach-Zehnder interferometer 4b for detection is connected to the emission side of the Mach-Zehnder interferometer 4a for detection. As described above, the incident side and the emission side of the detection Mach-Zehnder interferometer 4 are sequentially connected, and the optical transmission path 21 is connected to the emission side of the third detection Mach-Zehnder interferometer 4c. Of course, there is no limit to the number of detection Mach-Zehnder interferometers 4 to be connected.

図3、図4のような多点計測システムでは、光伝送路21から戻ってきた光を分離するために図5の構成を用いるとよい。即ち、第1、第2、第3の検出用マッハツェンダー干渉計4a,4b,4c(図3、図4参照)における2路の検出用光経路2,3の光路長差が検出用マッハツェンダー干渉計4毎に異なるようにし、その一方で、制御部19においては図5に示されるように、2路の変調用光経路6,7の光路長差を各検出用マッハツェンダー干渉計4a,4b,4cにおける2路の検出用光経路2,3の光路長差と互いに等しくするための複数の余長光経路51a,51b,51cと、その余長光経路51a,51b,51cを切り替える光スイッチ52とが設けられ、この光スイッチ52が変調器の無いほうの変調用光経路7の終端に設けられ、各余長光経路51a,51b,51cの終端にそれぞれ反射器 15a,15b,15cが設けられている。   In the multipoint measurement system as shown in FIGS. 3 and 4, the configuration shown in FIG. 5 may be used to separate the light returned from the optical transmission path 21. That is, the difference between the optical path lengths of the two detection optical paths 2 and 3 in the first, second, and third detection Mach-Zehnder interferometers 4a, 4b, and 4c (see FIGS. 3 and 4) is the detection Mach-Zehnder. On the other hand, in the control unit 19, as shown in FIG. 5, the optical path length difference between the two modulation optical paths 6 and 7 is determined by each control Mach-Zehnder interferometer 4a, A plurality of extra-length optical paths 51a, 51b, 51c for equalizing the optical path length difference between the two detection optical paths 2 and 3 in 4b, 4c, and an optical switch 52 for switching the extra-length optical paths 51a, 51b, 51c. The optical switch 52 is provided at the end of the modulation optical path 7 without the modulator, and the reflectors 15a, 15b, and 15c are provided at the ends of the extra length optical paths 51a, 51b, and 51c, respectively.

ここで、各検出用マッハツェンダー干渉計4a,4b,4cにおける2路の検出用光経路2,3の光路長差をΔa、Δb、Δcとする。また、変調用光経路6の光路長をLModとし、光スイッチ52の切り替えによる光経路である余長光経路51aと変調用光経路7とを足した光路長をLMa、余長光経路51bと変調用光経路7とを足した光路長をLMb、余長光経路51cと変調用光経路7とを足した光路長をLMcとする。 Here, the optical path length differences between the two detection optical paths 2 and 3 in each of the detection Mach-Zehnder interferometers 4a, 4b, and 4c are Δa, Δb, and Δc. Further, the optical path length of the modulation optical path 6 is L Mod , the optical path length obtained by adding the surplus optical path 51a and the modulation optical path 7 which are optical paths by switching the optical switch 52 is L Ma , and the surplus optical path 51b and the modulation optical path 51b are used for modulation. The optical path length obtained by adding the optical path 7 is L Mb , and the optical path length obtained by adding the extra length optical path 51 c and the modulation optical path 7 is L Mc .

このとき、式(4)〜(9)により、特定の検出用マッハツェンダー干渉計4について光干渉が起きるようにすることができる。   At this time, optical interference can occur in the specific detection Mach-Zehnder interferometer 4 according to the equations (4) to (9).

|Δa±2×(LMod−LMa)|≦LC ;±のいずれかを満たす (4)
|Δb±2×(LMod−LMb)|≦LC ;±のいずれかを満たす (5)
|Δc±2×(LMod−LMc)|≦LC ;±のいずれかを満たす (6)
|Δa±2×(LMod−LMb)|>>LC ;±のどちらも成立 (7)
|Δa±2×(LMod−LMc)|>>LC ;±のどちらも成立 (8)
|Δb±2×(LMod−LMc)|>>LC ;±のどちらも成立 (9)
| Δa ± 2 × (L Mod −L Ma ) | ≦ L C ; satisfying any of ± (4)
| Δb ± 2 × (L Mod −L Mb ) | ≦ L C ; satisfy any of ± (5)
| Δc ± 2 × (L Mod −L Mc ) | ≦ L C ; satisfying any of ± (6)
| Δa ± 2 × (L Mod −L Mb ) | >> L C ; both of ± are established (7)
| Δa ± 2 × (L Mod −L Mc ) | >> L C ; both of ± are established (8)
| Δb ± 2 × (L Mod −L Mc ) | >> L C ; both of ± are established (9)

任意の自然数N個の検出用マッハツェンダー干渉計4がある場合には、式(4)〜(9)は式(10)で表される。   When there is an arbitrary natural number N of detection Mach-Zehnder interferometers 4, equations (4) to (9) are expressed by equation (10).

|Δj±2×(LMod−LMk)|≦LC:j=k
|Δj±2×(LMod−LMk)|>>LC :j≠k
0<自然数j,k≦N (10)
| Δj ± 2 × (L Mod −L Mk ) | ≦ L C : j = k
| Δj ± 2 × (L Mod −L Mk ) | >> L C : j ≠ k
0 <natural number j, k ≦ N (10)

即ち、各検出用マッハツェンダー干渉計4における2路の検出用光経路2,3の光路長差と変調用マイケルソン干渉計8の各余長光経路51の光路長を上式に従って決めておけば、光スイッチ52の切り替えにより、任意の検出用マッハツェンダー干渉計4を通過した光の干渉を受光器10で計測することができる。   That is, if the optical path length difference between the two detection optical paths 2 and 3 in each detection Mach-Zehnder interferometer 4 and the optical path length of each extra-length optical path 51 in the modulation Michelson interferometer 8 are determined according to the above equation, By switching the optical switch 52, the light receiver 10 can measure the interference of the light that has passed through the arbitrary detection Mach-Zehnder interferometer 4.

光源1としてSLD(スーパルミネセントダイオード)を用いた場合、光源光のコヒーレント長LCは10μm程度である。コヒーレント長の10倍以上を基準とすると、各検出用マッハツェンダー干渉計4同士の光路長差が0.1mm以上離れていれば光干渉を起こさない。よって、検出用マッハツェンダー干渉計4の個数を10としても、式(10)を満たす余長光経路の組み合わせは多数存在する。 When an SLD (super luminescent diode) is used as the light source 1, the coherent length L C of the light source light is about 10 μm. On the basis of 10 times or more of the coherent length, if the optical path length difference between the detection Mach-Zehnder interferometers 4 is 0.1 mm or more away, optical interference does not occur. Therefore, even if the number of detection Mach-Zehnder interferometers 4 is 10, there are many combinations of extra-length optical paths that satisfy Expression (10).

ここまでの実施形態は、検出用光干渉計としてマッハツェンダー干渉計を用いたが、次の実施形態は検出用光干渉計としてマイケルソン干渉計を用いたものである。   In the embodiments described so far, a Mach-Zehnder interferometer is used as the detection optical interferometer. In the next embodiment, a Michelson interferometer is used as the detection optical interferometer.

図6に示されるように、光源1と、光源1の光を2路の検出用光経路2,3に分岐して再び合波する検出用光干渉計としての検出用マイケルソン干渉計61と、検出用マイケルソン干渉計61の中で一方の検出用光経路2に取り付けられ検出対象の物理量に応じた位相変化を光に与える物理量検出媒質5と、検出用マイケルソン干渉計61からの光を2路の変調用光経路6,7に分岐して再び合波する変調用マイケルソン干渉計8と、変調用マイケルソン干渉計8の中で少なくとも一方の変調用光経路6に挿入され光を変調する変調器9と、変調用マイケルソン干渉計8からの光を受光する受光器10とを備える。   As shown in FIG. 6, a light source 1 and a detection Michelson interferometer 61 as a detection optical interferometer that splits the light from the light source 1 into two detection optical paths 2 and 3 and combines them again. The physical quantity detection medium 5 that is attached to one of the detection optical paths 2 in the detection Michelson interferometer 61 and applies a phase change corresponding to the physical quantity to be detected to the light, and the light from the detection Michelson interferometer 61 Is modulated into at least one of the modulation optical paths 6 in the modulation Michelson interferometer 8. And a light receiver 10 that receives light from the modulation Michelson interferometer 8.

図1と図6の相違箇所である検出用マイケルソン干渉計61は、光源1からの光を2路の検出用光経路62,63に分岐すると共にこれら検出用光経路62,63からの反射戻り光を合波して取り出す検出用光合分波器64と、前記2路の検出用光経路62,63のそれぞれの終端から光を反射させる2つの反射器65,66とを備える。検出用光合分波器64には変調用マイケルソン干渉計8の光合分波器13まで光を導く光伝送路17が接続される。   A detection Michelson interferometer 61 which is a difference between FIG. 1 and FIG. 6 branches light from the light source 1 into two detection light paths 62 and 63 and reflects from the detection light paths 62 and 63. A detection optical multiplexer / demultiplexer 64 that multiplexes and extracts return light and two reflectors 65 and 66 that reflect light from the respective ends of the two detection optical paths 62 and 63 are provided. An optical transmission line 17 that guides light to the optical multiplexer / demultiplexer 13 of the modulation Michelson interferometer 8 is connected to the detection optical multiplexer / demultiplexer 64.

この光センサでは、光源1から出射されたコヒーレント長LCの光は、光伝送路16を通過した後、検出用光合分波器64により検出用光経路62,63に分岐される。検出用光経路62内には物理量検出媒質5が配置されているため、検出用光経路62が物理量の大きさに対応して光路長変化或いは屈折率変化する。検出用光経路62,63に入射した光は反射器65,66で反射されて検出用光合分波器64に戻って合波され、変調用マイケルソン干渉計8に導かれる。 In this optical sensor, the light of the coherent length L C emitted from the light source 1 passes through the optical transmission path 16 and then is branched into the detection optical paths 62 and 63 by the detection optical multiplexer / demultiplexer 64. Since the physical quantity detection medium 5 is disposed in the detection light path 62, the detection light path 62 changes in optical path length or refractive index in accordance with the physical quantity. The light incident on the detection optical paths 62 and 63 is reflected by the reflectors 65 and 66, returned to the detection optical multiplexer / demultiplexer 64, multiplexed, and guided to the modulation Michelson interferometer 8.

図6に示した本発明の光センサを用いた計測システムを図7に示す。この計測システムは、検出用マイケルソン干渉計61と、光源1・受光器10・ 変調用マイケルソン干渉計8を含んだ制御部19とからなり、検出用マイケルソン干渉計61と制御部19との間には、これらを往復する光伝送路、即ち光源1と検出用光合分波器64とを結ぶ光伝送路20、検出用光合分波器64と変調用マイケルソン干渉計8とを結ぶ光伝送路21が布設されている。   A measurement system using the optical sensor of the present invention shown in FIG. 6 is shown in FIG. This measurement system includes a detection Michelson interferometer 61 and a control unit 19 including a light source 1, a light receiver 10, and a modulation Michelson interferometer 8, and the detection Michelson interferometer 61, the control unit 19, and the like. The optical transmission path that reciprocates between them, that is, the optical transmission path 20 that connects the light source 1 and the detection optical multiplexer / demultiplexer 64, and the detection optical multiplexer / demultiplexer 64 and the modulation Michelson interferometer 8 are connected. An optical transmission line 21 is laid.

この光センサ或いは計測システムでは、光が物理量検出媒質5を2回通過するので図2のものに比べて検出感度が2倍になる。   In this optical sensor or measurement system, light passes through the physical quantity detection medium 5 twice, so that the detection sensitivity is doubled compared to that in FIG.

次の実施形態は、検出用マイケルソン干渉計61と制御部19とを結ぶ光伝送路を1路にしたものである。図8に示される光センサは、図6の光伝送路16,17を一本化するべく1路の光伝送路81を用い、光源1の光を光伝送路81に導き光伝送路81からの光を変調用マイケルソン干渉計8に導く制御部用光合分波器82を設けたものである。検出用マイケルソン干渉計61の検出用光合分波器83は、図6の検出用光合分波器64とは異なり、光伝送路81からの光を2路の検出用光経路62,63に分岐すると共にこれら検出用光経路62,63からの反射戻り光を合波して光伝送路81に戻すようになっている。   In the next embodiment, a single optical transmission line connecting the detection Michelson interferometer 61 and the control unit 19 is used. The optical sensor shown in FIG. 8 uses one optical transmission path 81 to unify the optical transmission paths 16 and 17 in FIG. 6, and guides the light from the light source 1 to the optical transmission path 81 and from the optical transmission path 81. Is provided with a control unit optical multiplexer / demultiplexer 82 that guides the light to the modulation Michelson interferometer 8. Unlike the detection optical multiplexer / demultiplexer 64 shown in FIG. 6, the detection optical multiplexer / demultiplexer 83 of the detection Michelson interferometer 61 transmits light from the optical transmission path 81 to the two detection optical paths 62 and 63. In addition to branching, the reflected return light from these detection light paths 62 and 63 is multiplexed and returned to the optical transmission path 81.

この光センサを用いた計測システムは、図9に示されるように、検出用マイケルソン干渉計61から制御部19まで光を往復させる1路の光伝送路91が布設され、光源1の光を光伝送路91に導き光伝送路91からの光を変調用マイケルソン干渉計8に導く制御部用光合分波器92が制御部19内に設けられている。また、検出用マイケルソン干渉計61の検出用光合分波器92は、光伝送路91から入射し反射して戻ってきた光を光伝送路91へ戻すようになっている。   As shown in FIG. 9, the measurement system using this optical sensor is provided with a single optical transmission path 91 for reciprocating light from the detection Michelson interferometer 61 to the control unit 19, and the light from the light source 1 is transmitted. A control unit optical multiplexer / demultiplexer 92 that guides the light from the optical transmission path 91 to the modulation Michelson interferometer 8 is provided in the control unit 19. Further, the detection optical multiplexer / demultiplexer 92 of the detection Michelson interferometer 61 is configured to return the light incident from the optical transmission path 91 and reflected and returned to the optical transmission path 91.

この光センサ或いは計測システムでは、検出用マイケルソン干渉計61と制御部19とを結ぶ光伝送路91が1路なので、2路の場合に比べて光伝送路91の布設が容易になると共に部材が節約できる。   In this optical sensor or measurement system, since the optical transmission path 91 connecting the detection Michelson interferometer 61 and the control unit 19 is one path, the optical transmission path 91 can be easily laid and a member as compared with the case of two paths. Can be saved.

ここまでの実施形態は、変調用光干渉計としてマイケルソン干渉計を用いたが、次の実施形態は変調用光干渉計としてマッハツェンダー干渉計を用いたものである。   In the embodiments described so far, a Michelson interferometer is used as the modulation optical interferometer. In the following embodiment, a Mach-Zehnder interferometer is used as the modulation optical interferometer.

図10に示されるように、本発明に係る光センサは、光源1と、光源1の光を2路の検出用光経路2,3に分岐して再び合波する検出用光干渉計としての検出用マッハツェンダー干渉計4と、検出用マッハツェンダー干渉計4の中で一方の検出用光経路2に取り付けられ検出対象の物理量に応じた位相変化を光に与える物理量検出媒質5と、検出用マッハツェンダー干渉計4からの光を2路の変調用光経路6,7に分岐して再び合波する変調用マッハツェンダー干渉計101と、変調用マッハツェンダー干渉計101の中で少なくとも一方の変調用光経路に挿入され光を変調する変調器9と、変調用マッハツェンダー干渉計101からの光を受光する受光器10とを備える。 As shown in FIG. 10, an optical sensor according to the present invention is a light source 1 and a detection optical interferometer that splits light from the light source 1 into two detection optical paths 2 and 3 and combines them again. A detection Mach-Zehnder interferometer 4, a physical quantity detection medium 5 attached to one of the detection optical paths 2 in the detection Mach-Zehnder interferometer 4 to give light a phase change corresponding to a physical quantity to be detected, and a detection A modulation Mach-Zehnder interferometer 101 that splits light from the Mach-Zehnder interferometer 4 into two modulation optical paths 6 and 7 and combines them again, and at least one of the modulation Mach-Zehnder interferometers 101 A modulator 9 that is inserted into the optical path for modulating light and a light receiver 10 that receives light from the modulation Mach-Zehnder interferometer 101.

変調用マッハツェンダー干渉計101は、光伝送路17からの光を2路の変調用光経路6,7に分岐する光分波器102と、これら変調用光経路6,7からの光を合波する光合波器103とを備える。   The modulation Mach-Zehnder interferometer 101 combines the light from the optical transmission path 17 into the two optical paths 6 and 7 for modulation and the light from these optical paths 6 and 7 for modulation. And an optical multiplexer 103 for wave generation.

図10の光センサを用いた計測システムは、図11に示されるように、検出用マッハツェンダー干渉計4と、光源1・受光器10・ 変調用マッハツェンダー干渉計101を含んだ制御部111とからなる。図2との相違は、変調用マイケルソン干渉計8が変調用マッハツェンダー干渉計101に代わっただけである。   As shown in FIG. 11, the measurement system using the optical sensor of FIG. 10 includes a detection Mach-Zehnder interferometer 4, a light source 1, a light receiver 10, and a control unit 111 including a modulation Mach-Zehnder interferometer 101. Consists of. The only difference from FIG. 2 is that the modulation Michelson interferometer 8 is replaced with the modulation Mach-Zehnder interferometer 101.

この計測システムでは、光路長LSと光路長をLLと光路長LModと光路長LMとが式(3´)を満たすことで、初めて光干渉が起きる。 In this measurement system, optical interference occurs only when the optical path length L S , the optical path length L L , the optical path length L Mod, and the optical path length L M satisfy Expression (3 ′).

|LS+LMod−LL+LM|≦LC (3´) | L S + L Mod −L L + L M | ≦ L C (3 ′)

式(3)と比べると、係数2が入っていないことがわかる。また、多点化した場合も、各検出用光干渉計としてマッハツェンダー干渉計を用いるときには、式(4)〜(9)に係数2が入っていない式(4´)〜(9´)、
|Δa±(LMod−LMa)|≦LC ;±のいずれかを満たす (4´)
|Δb±(LMod−LMb)|≦LC ;±のいずれかを満たす (5´)
|Δc±(LMod−LMc)|≦LC ;±のいずれかを満たす (6´)
|Δa±(LMod−LMb)|>>LC ;±のどちらも成立 (7´)
|Δa±(LMod−LMc)|>>LC ;±のどちらも成立 (8´)
|Δb±(LMod−LMc)|>>LC ;±のどちらも成立 (9´)
を用いることになる。
Compared with equation (3), it can be seen that coefficient 2 is not included. Further, even when the number of points is increased, when a Mach-Zehnder interferometer is used as each detection optical interferometer, the equations (4 ′) to (9 ′) in which the coefficient 2 is not included in the equations (4) to (9),
| Δa ± (L Mod −L Ma ) | ≦ L C ; satisfying any of ± (4 ′)
| Δb ± (L Mod −L Mb ) | ≦ L C ; satisfying any of ± (5 ′)
| Δc ± (L Mod −L Mc ) | ≦ L C ; satisfying any of ± (6 ′)
| Δa ± (L Mod −L Mb ) | >> L C ; both of ± are established (7 ′)
| Δa ± (L Mod −L Mc ) | >> L C ; both of ± are established (8 ′)
| Δb ± (L Mod −L Mc ) | >> L C ; both of ± are established (9 ′)
Will be used.

任意の自然数N個の検出用マッハツェンダー干渉計4がある場合には、式(10)の代わりに、式(10`)を用いることになる。   When there is an arbitrary natural number N of Mach-Zehnder interferometers 4 for detection, equation (10 `) is used instead of equation (10).

|Δj±(LMod−LMk)|≦LC:j=k
|Δj±(LMod−LMk)|>>LC :j≠k
0<自然数j,k≦N (10`)
| Δj ± (L Mod −L Mk ) | ≦ L C : j = k
| Δj ± (L Mod −L Mk ) | >> L C : j ≠ k
0 <natural number j, k ≦ N (10 `)

検出用光干渉計としてマイケルソン干渉計を用い、変調用光干渉計としてマッハツェンダー干渉計を用いた光センサ及び計測システムを図12、図13に示す。この形態は、既に説明した検出用マイケルソン干渉計61と変調用マッハツェンダー干渉計101を用いており、動作は自明であるから説明を省略する。   An optical sensor and a measurement system using a Michelson interferometer as a detection optical interferometer and a Mach-Zehnder interferometer as a modulation optical interferometer are shown in FIGS. In this embodiment, the detection Michelson interferometer 61 and the modulation Mach-Zehnder interferometer 101 described above are used, and the operation is obvious.

さらに、図12、図13の光伝送路16,17(20,21)を1路にした光センサ及び計測システムを図14、図15に示す。この形態は、図8、図9と同様の光伝送路81,91を用いており、動作は自明であるから説明を省略する。   Further, an optical sensor and a measurement system in which the optical transmission paths 16 and 17 (20, 21) in FIGS. 12 and 13 are one path are shown in FIGS. In this embodiment, optical transmission lines 81 and 91 similar to those shown in FIGS. 8 and 9 are used, and the operation is obvious.

本発明は、眼底画像計測などに用いられる低コヒーレンス光を用いた反射断層画像計測にも応用できる。また、本発明は、光ファイバジャイロ、光ヘテロダイン計測を用いた屈折率計測にも応用できる。   The present invention can also be applied to reflection tomographic image measurement using low coherence light used for fundus image measurement and the like. The present invention can also be applied to refractive index measurement using optical fiber gyroscope and optical heterodyne measurement.

さらに、本発明は、物理量検出媒質5として光位相変調器等を用いることで、1対多の通信装置として応用できる。   Furthermore, the present invention can be applied as a one-to-many communication device by using an optical phase modulator or the like as the physical quantity detection medium 5.

本発明の一実施形態を示す光センサの構成図である。It is a block diagram of the optical sensor which shows one Embodiment of this invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 図3、図4の計測システムの制御部の内部構成図である。It is an internal block diagram of the control part of the measurement system of FIG. 3, FIG. 本発明の一実施形態を示す光センサの構成図である。It is a block diagram of the optical sensor which shows one Embodiment of this invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 本発明の一実施形態を示す光センサの構成図である。It is a block diagram of the optical sensor which shows one Embodiment of this invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 本発明の一実施形態を示す光センサの構成図である。It is a block diagram of the optical sensor which shows one Embodiment of this invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 本発明の一実施形態を示す光センサの構成図である。It is a block diagram of the optical sensor which shows one Embodiment of this invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 本発明の一実施形態を示す光センサの構成図である。It is a block diagram of the optical sensor which shows one Embodiment of this invention. 本発明の一実施形態を示す計測システムの構成図である。It is a lineblock diagram of a measurement system showing one embodiment of the present invention. 背景技術の光センサの構成図である。It is a block diagram of the optical sensor of background art. 背景技術の計測システムの構成図である。It is a block diagram of the measurement system of background art. 背景技術の計測システムの構成図である。It is a block diagram of the measurement system of background art.

符号の説明Explanation of symbols

1 光源
2,3 検出用光経路
4 検出用光干渉計
5 物理量検出媒質
6,7 変調用光経路
8 変調用光干渉計
9 変調器
10 受光器
DESCRIPTION OF SYMBOLS 1 Light source 2,3 Optical path for detection 4 Optical interferometer for detection 5 Physical quantity detection medium 6,7 Optical path for modulation 8 Optical interferometer for modulation 9 Modulator 10 Light receiver

Claims (3)

光源と、光源の光を2路の検出用光経路に分岐して再び合波する複数の検出用光干渉計と、該検出用光干渉計各々の中で一方の検出用光経路に取り付けられ検出対象の物理量に応じた位相変化を光に与える物理量検出媒質と、前記検出用光干渉計各々からの光を合波する複数の光合波器と、該複数の光合波器によって合波された光を伝送する光伝送路と、該光伝送路からの光を2路の変調用光経路に分岐して再び合波する1つの変調用光干渉計と、該変調用光干渉計の中で変調用光経路に挿入され光を変調する変調器と、前記変調用光干渉計からの光を受光する受光器とを備え
前記光源と前記受光器と前記変調用光干渉計とが互いに近接して配置された制御部が構成され、この制御部より遠隔に前記検出用光干渉計が配置され、前記制御部から前記検出用光干渉計まで光を往復させる1路の光伝送路が布設され、この光伝送路の制御部側に、光源の光を光伝送路に導き光伝送路からの光を変調用光干渉計に導く制御部用光合分波器が設けられたことを特徴とする光センサ。
A light source, a plurality of detection optical interferometers for splitting the light from the light source into two detection optical paths and recombining them, and one of the detection optical interferometers attached to one of the detection optical paths A physical quantity detection medium that gives the light a phase change corresponding to the physical quantity to be detected, a plurality of optical multiplexers that combine the light from each of the detection optical interferometers, and a plurality of optical multiplexers An optical transmission path for transmitting light, one modulation optical interferometer for splitting the light from the optical transmission path into two modulation optical paths and recombining, and the modulation optical interferometer A modulator that is inserted into the modulation optical path and modulates the light; and a light receiver that receives light from the modulation optical interferometer ,
A control unit is configured in which the light source, the light receiver, and the modulation optical interferometer are arranged close to each other, and the detection optical interferometer is arranged remotely from the control unit, and the detection from the control unit One optical transmission path for reciprocating light to the optical interferometer is laid, and the light from the light source is guided to the optical transmission path on the control unit side of the optical transmission path, and the light from the optical transmission path is modulated. An optical sensor characterized in that an optical multiplexer / demultiplexer for a control unit that leads to is provided .
前記検出用光干渉計は、光源の光を2路の検出用光経路に分岐すると共にこれら検出用光経路からの反射戻り光を合波して取り出す検出用光合分波器と、前記2路の検出用光経路のそれぞれの終端から光を反射させる2つの反射器とを備えることを特徴とする請求項1記載の光センサ。   The detection optical interferometer includes a detection optical multiplexer / demultiplexer for branching light from a light source into two detection optical paths and combining and extracting reflected return light from these detection optical paths, and the two paths The optical sensor according to claim 1, further comprising: two reflectors that reflect light from respective ends of the detection optical path. 前記変調用光干渉計は、前記検出用光干渉計からの光を2路の変調用光経路に分岐すると共にこれら変調用光経路からの反射戻り光を合波して取り出す光合分波器と、これら2路の変調用光経路のそれぞれの終端から光を反射させる2つの反射器とを備えたことを特徴とする請求項1又は2記載の光センサ。   The modulation optical interferometer includes: an optical multiplexer / demultiplexer that branches the light from the detection optical interferometer into two modulation optical paths and combines and extracts the reflected return light from the modulation optical paths; The optical sensor according to claim 1, further comprising two reflectors that reflect light from respective ends of the two paths of the modulation light paths.
JP2003413753A 2003-12-11 2003-12-11 Optical sensor Expired - Fee Related JP4250070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413753A JP4250070B2 (en) 2003-12-11 2003-12-11 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413753A JP4250070B2 (en) 2003-12-11 2003-12-11 Optical sensor

Publications (2)

Publication Number Publication Date
JP2005172633A JP2005172633A (en) 2005-06-30
JP4250070B2 true JP4250070B2 (en) 2009-04-08

Family

ID=34733793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413753A Expired - Fee Related JP4250070B2 (en) 2003-12-11 2003-12-11 Optical sensor

Country Status (1)

Country Link
JP (1) JP4250070B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958278B2 (en) * 2007-03-13 2012-06-20 キヤノン株式会社 Inspection device

Also Published As

Publication number Publication date
JP2005172633A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US4367040A (en) Multi-channel optical sensing system
JP2531940B2 (en) Method for fiber optic transmission of spectrally coded values of variable physical measurands and apparatus for implementing the method
US6570659B2 (en) Broadband light source system and method and light source combiner
US6680472B1 (en) Device for measuring of optical wavelengths
US10727938B2 (en) Overcoming Rayleigh backscatter in wavelength division multiplexed fiber optic sensor systems and fault detection in optical networks
US9948058B2 (en) Method and apparatus for determining optical fibre characteristics
WO2021004315A1 (en) Method and apparatus for detecting operational conditions of an optical link in an optical network
JP2002527731A (en) Fiber type optical sensor
JP3492346B2 (en) Method and apparatus for measuring strain and temperature distribution
EP1188092B1 (en) Elimination of polarization fading in unbalanced optical measuring interferometers
JP2013072701A (en) Temperature and strain distribution measurement system
JP4250070B2 (en) Optical sensor
Montero et al. Self-referenced optical networks for remote interrogation of quasi-distributed fiber-optic intensity sensors
JP4840869B2 (en) Optical fiber current sensor device
CN101226281B (en) Compact optical delay devices
JP2006197378A (en) Optical time division multiplex transmission equipment
JP2013032968A (en) Optical fiber type voltage sensor
JP5907907B2 (en) Optical line characteristic analyzer and analysis method thereof
JPH11110673A (en) Pressure measuring device using non acoustic optical pressure sensor, or tdm(time division multiple transmission) array of non acoustic optical pressure sensor and method therefor
JP4694959B2 (en) Optical line test method and test system
JP3384322B2 (en) Chromatic dispersion measuring method and chromatic dispersion measuring device
Sánchez Montero et al. Self-referenced optical networks for remote interrogation of quasi-distributed fiber-optic intensity sensors
KR102647245B1 (en) Optical Fiber Sensor System For Measuring Temperature And Vibration
CN212340410U (en) Optical fiber distributed disturbance sensing system based on double Michelson interferometers
CN220982299U (en) Environment state monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees