JP4248220B2 - Reflective optics - Google Patents

Reflective optics Download PDF

Info

Publication number
JP4248220B2
JP4248220B2 JP2002305716A JP2002305716A JP4248220B2 JP 4248220 B2 JP4248220 B2 JP 4248220B2 JP 2002305716 A JP2002305716 A JP 2002305716A JP 2002305716 A JP2002305716 A JP 2002305716A JP 4248220 B2 JP4248220 B2 JP 4248220B2
Authority
JP
Japan
Prior art keywords
reflecting mirror
order
light beam
mirror
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002305716A
Other languages
Japanese (ja)
Other versions
JP2004138962A (en
Inventor
修 進藤
敏之 浪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Mitsubishi Electric Corp
Original Assignee
Nikon Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Mitsubishi Electric Corp filed Critical Nikon Corp
Priority to JP2002305716A priority Critical patent/JP4248220B2/en
Publication of JP2004138962A publication Critical patent/JP2004138962A/en
Application granted granted Critical
Publication of JP4248220B2 publication Critical patent/JP4248220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0626Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors
    • G02B17/0642Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/008Systems specially adapted to form image relays or chained systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror

Description

【0001】
【発明の属する技術分野】
本発明は、一次元CCDを用いたプッシュブルーム走査方式により二次元画像を取得する地球等の観測衛星に搭載され、地表面の二次元画像を複数の観測波長域で取得するために利用される高空間分解能の反射望遠鏡の反射光学系に関する。
【0002】
【従来の技術】
実用に供するのに充分な画像視野が確保でき、高空間分解能が達成できる反射望遠鏡の従来例として、米国特許第4101195号明細書や、特許第2598528号公報で開示される反射望遠鏡が挙げられる。例えば、米国特許第4101195号明細書による反射望遠鏡(ANASTIGMATIC THREE-MIRROR TELESCOPE )は、中央部に開口を有する第一位反射鏡と、この第一位反射鏡の前方に対向して配置され、第一位反射鏡により反射された光束を反射して第一位反射鏡の開口を通過させる第二位反射鏡と、第二位反射鏡により反射された光束を反射して所定平面で結像させる第三位反射鏡とを有して構成されている。また例えば、特許第2598528号公報による反射望遠鏡(連続可変焦点全反射光学装置)は、上述の反射望遠鏡と同様に3枚の反射鏡を有して構成され、第三位反射鏡を移動させることで焦点距離が変化可能(ズーム可能)となっている。
【0003】
そしてこれらの反射望遠鏡は、一次元CCDを用いたプッシュブルーム走査方式により二次元画像を取得する地球等の観測衛星に搭載され、地表面の二次元画像を複数の観測波長域で取得するために利用されている。このような衛星搭載用の反射望遠鏡の反射光学系においては、打ち上げ時の衝撃や軌道上での温度変動等により、光学部品の変位や反射面の変形等が生じる。そこで、これらが起因して生じる焦点位置移動の補正には、第二位反射鏡を移動させる方法や、くさびプリズムを各反射鏡間に挿入して光路長を変化させて調整する方法が用いられている。
【0004】
【特許文献1】
米国特許第4101195号明細書
【特許文献2】
特許第2598528号公報
【0005】
【発明が解決しようとする課題】
しかしながら、第二位反射鏡を移動させた場合、第二位反射鏡による倍率に加えてさらに第三位反射鏡の倍率を掛けた値となるため、第二位反射鏡の移動量に対し焦点移動量が大きくなることから、第二位反射鏡の移動時において微少な駆動量を制御する必要があり精密な焦点調整は困難であった。また、第二位反射鏡が第一位反射鏡に対して相対移動することにより球面収差が発生し、性能が低下する欠点があった。さらに、第二位反射鏡もしくは第三位反射鏡のいずれかを焦点調整用に移動させると、主光線の位置が一次元CCDにおける本来の位置からずれることによる観測位置の変位、いわゆる視線ずれが生じるという問題があった。この視線ずれは一次元CCDの短手方向、つまり軌道方向に生じる。
【0006】
一方、くさびプリズムのような屈折部材を用いる場合には、視線ずれは生じないものの、球面収差などと共に色収差が発生するため、補正用レンズが必要となる。そのため、部品点数が増加してコスト高になると共に総重量が増加し、また、温度変化に対する影響を受けやすくなるという問題があった。
【0007】
本発明は、このような問題に鑑みてなされたものであり、衛星搭載用の高空間分解能を有する反射望遠鏡において、観測視野のずれを生じることなく焦点調整を行うことが可能な反射光学系を提供することを目的とする。
【0008】
【課題を解決するための手段】
このような目的達成のため、請求項1に係る発明の反射光学系は、物体からの入射光束を周辺部で反射するとともに、中央部に開口を有して構成された凹面の第一位反射鏡と、第一位反射鏡の前方に配置され、第一位反射鏡により反射された光束を反射して第一位反射鏡の開口を通過させるとともに、反射した光束を開口近傍で結像させる凸面の第二位反射鏡と、第二位反射鏡により反射されて開口近傍で結像された光束を結像の前または後で反射する折り返し鏡と、折り返し鏡により反射された光束を反射するとともに、反射した光束を再結像させる凹面の第三位反射鏡と、第三位反射鏡により反射された光束を反射する第四位反射鏡と、第三位反射鏡を駆動する第一駆動装置と、第四位反射鏡を駆動する第二駆動装置とを備え、第三位反射鏡と第四位反射鏡とが、第一駆動装置と第二駆動装置とにより所定比率で同方向へ移動可能に構成されていることを特徴とする。
【0009】
請求項2に係る発明の反射光学系は、請求項1に記載の反射光学系において、第三位反射鏡と第四位反射鏡とが、視線ずれが発生しないように移動することを特徴とする。
【0010】
請求項3に係る発明の反射光学系は、請求項1もしくは請求項2に記載の反射光学系において、第n位の反射鏡の移動量が
Δ=D/a=d/b
: 第n位の反射鏡がΔ移動したときの焦点移動量、
: 第n位の反射鏡がΔ移動したときの視線ずれ量、
、b : 1次の係数
で表わされる時、対する第三位反射鏡の移動量と第四位反射鏡の移動量との比が、次式
Δ/Δ = (a×b−a×b)/(a×b−a×b
を満足するように移動することを特徴とする。
【0011】
請求項4に係る発明の反射光学系は、請求項1から請求項3のうちいずれか一項記載の反射光学系において、第四位反射鏡の移動量に対する第三位反射鏡の移動量の比率が1倍を超え且つ5倍未満となるように設定されていることを特徴とする。
【0012】
請求項5に係る発明の反射光学系は、請求項1から請求項4のうちいずれか一項記載の反射光学系において、第四位反射鏡が、第三位反射鏡により反射されて第四位反射鏡に入射する光軸と、第四位反射鏡により反射された光軸とを含む平面に対し垂直な軸を中心に第四位反射鏡の反射面を回転させるチルト機構を有していることを特徴とする。
【0013】
請求項6に係る発明の反射光学系は、請求項1から請求項5のうちいずれか一項記載の反射光学系において、第二位反射鏡により結像された中間結像に対する第三位反射鏡の結像倍率が2倍を超えることを特徴とする。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態について説明する。図1には、本発明に係る反射光学系の概略構成を示している。この反射光学系10は、物体からの入射光束を反射する第一位反射鏡11と、第一位反射鏡により反射された光束を反射する第二位反射鏡12と、第二位反射鏡により反射された光束を反射する折り返し反射鏡15と、折り返し鏡により反射された光束を反射する第三位反射鏡13と、第三位反射鏡13により反射された光束を反射する第四位反射鏡14と、第四位反射鏡14により反射された光束が入射される一次元CCD16とを備えて構成される。
【0015】
第一位反射鏡11は、反射面(図1における第1面1)が凹面形状であり、中央部に開口11aを有するとともに、観測物体(図1における左方)から入射された光束を周辺部で反射するように構成される。第一位反射鏡11で反射された光束は、第二位反射鏡12に入射する。第二位反射鏡12は、反射面(図1における第2面2)が凸面形状であり、第一位反射鏡11の前方に配置されて、第一位反射鏡11により反射された光束を反射して第一位反射鏡11の開口11aを通過させるとともに、反射した光束を開口11a近傍の中間結像点Pで結像させるように構成される。第二位反射鏡12で反射された光束は、中間結像点Pの前方、又は後方に位置する折り返し反射鏡15に入射する。
【0016】
折り返し反射鏡15は、反射面(図1における第3面3)が平面形状であり、第二位反射鏡12により反射されて第一位反射鏡11における開口11a近傍の中間結像点Pで結像された光束を反射するように構成される。折り返し反射鏡15で反射された光束は、第三位反射鏡13に入射する。第三位反射鏡13は、反射面(図1における第4面4)が凹面形状であり、折り返し反射鏡15により反射された光束を反射するとともに、反射した光束を一次元CCD16において再結像させるように構成される。第三位反射鏡13には第三位反射鏡13を駆動する第一駆動装置23が設けられており、この第一駆動装置23により、第三位反射鏡13が第三位反射鏡13の反射面と第四位反射鏡14の反射面との間の光軸OAに沿って移動するように構成される。第三位反射鏡13で反射された光束は、第四位反射鏡14に入射する。
【0017】
なお、第二位反射鏡により中間結像点Pで結像された中間結像に対する第三位反射鏡13の結像倍率(横倍率)は、2倍を超えることが好ましい。ここで倍率を掛けることにより、第一位反射鏡11と第二位反射鏡12とによって構成されるカセグレン部の焦点距離の全体焦点距離に対する比を小さくし、カセグレン部のサイズを小さくすることができる。また、第三位反射鏡13の必要な移動量を小さくし、焦点調整を容易にする効果がある。
【0018】
第四位反射鏡14は、反射面(図1における第5面5)が平面形状であり、第三位反射鏡13により反射された光束を反射するように構成される。第四位反射鏡14には第四位反射鏡14を駆動する第二駆動装置24が設けられており、この第二駆動装置24により、第四位反射鏡14が第三位反射鏡13の反射面と第四位反射鏡14の反射面との間の光軸OAに沿って移動するように構成される。第四位反射鏡14で反射された光束は、一次元CCD16に入射する。一次元CCD16には、第6および第7面6,7を有する平板状のCCDカバーガラス16aが取り付けられており、第四位反射鏡14により反射された光束が、このCCDカバーガラス16aを通過して一次元CCD16に入射するように構成される。
【0019】
そして、第四位反射鏡14で反射されて一次元CCD16に入射した光束が、第三位反射鏡13により一次元CCD16で再結像されることで、観測物体の像が一次元CCD16において結像される。これから分かるように、折り返し反射鏡15、第三位反射鏡13および第四位反射鏡14によって、一次元CCD16を所望の位置に配置することが可能となるため、反射光学系の全体の大きさを小さくすることができる。
【0020】
なおこのとき、第四位反射鏡14が、第三位反射鏡13により反射されて第四位反射鏡14に入射する光軸OAと、第四位反射鏡14により反射された光軸OAとを含む平面に対し垂直な軸を中心に第四位反射鏡14の反射面を回転させるチルト機構(図示せず)を有していることが好ましい。このようにすれば、主光線の位置が一次元CCD16における本来の位置からずれることによる観測位置の変位、いわゆる視線ずれの中で、焦点調整に付随して起きる軌道方向の視線ずれを補正することができる。
【0021】
このとき、第三位反射鏡13により反射されて第四位反射鏡14に入射する光軸OAと、第四位反射鏡14により反射された光軸OAとを含む平面垂直な平面に対し垂直な軸を中心に第四位反射鏡14の反射面を回転させるチルト機構(図示せず)を有していれば、反射鏡の移動時の光軸からのぶれによって生じる一次元CCD16の軌道方向以外の視線ずれの補正も可能であり、さらに望ましい。
【0022】
以上のようにして観測物体の像が一次元CCD16で結像される反射光学系10において、視線ずれを生じることなく焦点調整を行うため、第三位反射鏡13と第四位反射鏡14とが、第一駆動装置23と第二駆動装置24とにより所定比率で同方向へ移動可能に構成されている。これらの駆動装置は一体型とし、第三位反射鏡13と第四位反射鏡14の駆動量にカム比を持たせ、一定比率で駆動させる構成であっても良い。この場合は、動力源を一つで賄える利点がある。なお、第三位反射鏡13と第四位反射鏡14との移動方向は、第三位反射鏡13の反射面と第四位反射鏡14の反射面との間の光軸OAに沿って同方向に向けられている。このときの第四位反射鏡14の移動量Δ4に対する第三位反射鏡13の移動量Δ3の比率(すなわちΔ3/Δ4)は、5>Δ3/Δ4>1を満足している。このことにより、第三位反射鏡13の移動量Δ3に対し、第四位反射鏡14の移動量Δ4が小さくなりすぎず適切な制御が可能になる。
【0023】
ここで、上記構成の反射光学系10の設計例を表1に示す。この表1において、記号rはレンズ面の曲率半径、dはレンズ面間隔を示す。なお面番号は物体からの光の進路に沿った順序を示し、i面(i=1,2,・・・,7)の曲率半径をriとし、i面と(i+1)面との間の光軸OA上の距離をdiとしている。ここで、第1面(第一位反射鏡11の反射面)1および第2面(第二位反射鏡12の反射面)2が非球面形状に形成されるが、この非球面形状は以下の式(1)で表現される。
【0024】
【表1】

Figure 0004248220
【0025】
【数1】
Z=ch2/[1+{1−(1+κ)c221/2]+Ah4+Bh6+Ch8・・・(1)
Z; 光軸方向のサグ量
h; 光軸から軸直角方向への寸法
c; 面の頂点での曲率(1/r)
κ; 円錐係数
A,B,C; 4次、6次、8次の係数
【0026】
次に、上記構成の反射光学系10における各反射鏡が(光軸OAに沿って)移動した場合の焦点移動および視線ずれの量を図2〜図4に示す。ここで、図2は第二位反射鏡12が移動した場合の焦点移動および視線ずれの量を表す図、図3は第三位反射鏡13が移動した場合の焦点移動および視線ずれの量を表す図、そして図4は第四位反射鏡14が移動した場合の焦点移動および視線ずれの量を表す図である。なお、各反射鏡の移動方向における正負の関係を図1に示す。
【0027】
図2〜図4から分かるように、各反射鏡が(光軸OAに沿って)移動した場合の焦点移動および視線ずれの量は、どの場合においても線形の関係が見られるものの、焦点移動の方向と視線ずれの方向との組み合わせは各反射鏡によって異なる。このため、第三位反射鏡13と第四位反射鏡14とを所定比率で同方向へ移動させることにより、焦点移動補正時の視線ずれを抑えることが可能となる。そこで、第三位反射鏡13と第四位反射鏡14とを視線ずれが発生しないように移動させることにより、観測視野のずれを生じることなく焦点調整を行うことができる。
【0028】
さて、第n位反射鏡(n=2,3,4)の移動量Δnに対する焦点移動量Dnおよび視線ずれ量dnを近似式で表すと、以下の式(2)〜式(7)の通りになる。
【0029】
【数2】
2=a×Δ2 ・・・(2)
2; 1次の係数
【0030】
【数3】
2=b2×Δ2 ・・・(3)
2; 1次の係数
【0031】
【数4】
3=a3×Δ3 ・・・(4)
3; 1次の係数
【0032】
【数5】
3=b3×Δ3 ・・・(5)
3; 1次の係数
【0033】
【数6】
4=a4×Δ4 ・・・(6)
4; 1次の係数
【0034】
【数7】
4=b4×Δ4 ・・・(7)
4; 1次の係数
【0035】
ここで、例として、第二位反射鏡12が光軸OA方向に変動を起こした場合の補正について述べる。第二位反射鏡12が光軸OA方向に変動を起こした場合、すなわちΔ2(D2およびd2)が生じた場合には、第三位反射鏡13と第四位反射鏡14とを移動させて、D2とd2とが0になるように補正すればよい。すなわち、以下の式(8)および式(9)になるようにすればよい。
【0036】
【数8】
2=D3+D4 ・・・(8)
【0037】
【数9】
2=d3+d4 ・・・(9)
【0038】
式(8)および式(9)に加え、式(2)〜式(7)を連立させて解くと、以下の式(10)および式(11)が得られる。
【0039】
【数10】
Δ3={(a2×b4−a4×b2)/(a3×b4−a4×b3)}Δ2・・(10)
【0040】
【数11】
Δ4={(a2×b3−a3×b2)/(a4×b3−a3×b4)}Δ2・・(11)
【0041】
式(10)および式(11)から、Δ4に対するΔ3の比率(すなわちΔ3/Δ4)を求めると、以下の式(12)が得られる。
【0042】
【数12】
Δ3/Δ4=(a4×b2−a2×b4)/(a2×b3−a3×b2)・・・(12)
【0043】
これにより、式(12)を満足するように第三位反射鏡13と第四位反射鏡14とを移動させることによって、第二位反射鏡12が光軸OA方向に変動を起こした場合に生じる焦点移動と視線ずれとの同時補正が可能になる。
【0044】
ここで、本実施例(設計例)におけるΔ4に対するΔ3の比率を求めると、図2〜図4より、a2=−135、a3=5、a4=−2、b2=18、b3=−0.5、そしてb4=−0.33であるため、式(12)にそれぞれ代入すると、Δ3/Δ4=3.58となる。したがって、本実施例(設計例)において焦点移動と視線ずれとの同時補正を行うためには、第四位反射鏡14の移動量Δ4が第三位反射鏡13の移動量Δ3の約1/3となる。第二位反射鏡12の変動量(移動量Δ2)を±0.01mmとすると、式(10)および式(11)より、Δ3=±0.304mm、Δ4=±0.085mmとなり、第三位反射鏡13と第四位反射鏡14とをこの量だけ光軸OAに沿って移動させることにより、第二位反射鏡12が光軸OA方向に変動を起こした場合に生じる焦点移動と視線ずれとを同時に補正することができる。このときの反射光学系全体での焦点距離変動量は1%以下であり、全体性能に及ぼす影響を抑えた補正が行われている。
【0045】
この結果、第三位反射鏡13と第四位反射鏡14とが、所定比率で同方向へ移動可能に構成されているため、焦点移動と視線ずれとを同時に補正することができ、焦点移動補正時の視線ずれを抑えることが可能となることから、観測視野のずれを生じることなく焦点調整を行うことができる。
【0046】
【発明の効果】
以上説明したように、本発明によれば、第三位反射鏡と第四位反射鏡とが、所定比率で同方向へ移動可能に構成されているため、焦点移動補正時の視線ずれを抑えることが可能となることから、観測視野のずれを生じることなく焦点調整を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る反射光学系の構成を示す概略図である。
【図2】第二位反射鏡の移動量に対する反射光学系の焦点移動および視線ずれの変化を示す図である。
【図3】第三位反射鏡の移動量に対する反射光学系の焦点移動および視線ずれの変化を示す図である。
【図4】第四位反射鏡の移動量に対する反射光学系の焦点移動および視線ずれの変化を示す図である。
【符号の説明】
10 反射光学系
11 第一位反射鏡(11a 開口)
12 第二位反射鏡
13 第三位反射鏡
14 第四位反射鏡
15 折り返し反射鏡
16 一次元CCD(16a CCDカバーガラス)
23 第一駆動装置
24 第二駆動装置
OA 光軸
P 中間結像点[0001]
BACKGROUND OF THE INVENTION
The present invention is mounted on an observation satellite such as the earth that acquires a two-dimensional image by a push bloom scanning method using a one-dimensional CCD, and is used to acquire a two-dimensional image of the ground surface in a plurality of observation wavelength regions. The present invention relates to a reflection optical system for a high-resolution reflection telescope.
[0002]
[Prior art]
As a conventional example of a reflective telescope capable of ensuring a sufficient image field for practical use and achieving high spatial resolution, there are a reflective telescope disclosed in US Pat. No. 4,101,195 and Japanese Patent No. 2,598,528. For example, a reflective telescope (ANASTIGMATIC THREE-MIRROR TELESCOPE) according to US Pat. No. 4,101,195 is arranged with a first-order reflector having an opening in the center and opposed to the front of the first-order reflector. The second-order reflecting mirror that reflects the light beam reflected by the first-order reflecting mirror and passes through the opening of the first-order reflecting mirror, and the light beam reflected by the second-order reflecting mirror is reflected to form an image on a predetermined plane. And a third-order reflecting mirror. Further, for example, the reflection telescope (continuous variable focus total reflection optical device) according to Japanese Patent No. 2598528 is configured to include three reflection mirrors similarly to the above-described reflection telescope, and moves the third-order reflection mirror. The focal length can be changed (can be zoomed).
[0003]
These reflection telescopes are mounted on observation satellites such as the Earth that acquire two-dimensional images by a push bloom scanning method using a one-dimensional CCD, in order to acquire two-dimensional images of the ground surface in multiple observation wavelength regions. It's being used. In such a reflection optical system of a reflection telescope mounted on a satellite, displacement of an optical component, deformation of a reflection surface, and the like occur due to impact upon launching, temperature fluctuation in orbit, and the like. Therefore, to correct the focal position movement caused by these, a method of moving the second reflecting mirror or a method of adjusting the optical path length by inserting a wedge prism between the reflecting mirrors is used. ing.
[0004]
[Patent Document 1]
US Pat. No. 4,101,195 [Patent Document 2]
Japanese Patent No. 2598528 [0005]
[Problems to be solved by the invention]
However, when the second-order reflecting mirror is moved, it becomes a value obtained by multiplying the magnification by the third-order reflecting mirror in addition to the magnification by the second-order reflecting mirror. Since the amount of movement becomes large, it is necessary to control a minute driving amount when the second-order reflecting mirror is moved, and precise focus adjustment is difficult. Further, when the second reflecting mirror is moved relative to the first reflecting mirror, spherical aberration is generated and the performance is deteriorated. Furthermore, if either the second or third reflecting mirror is moved for focus adjustment, the displacement of the observation position, that is, the so-called line of sight displacement due to the displacement of the principal ray from the original position in the one-dimensional CCD is caused. There was a problem that occurred. This line-of-sight shift occurs in the short direction of the one-dimensional CCD, that is, the trajectory direction.
[0006]
On the other hand, when a refracting member such as a wedge prism is used, although a line-of-sight shift does not occur, chromatic aberration occurs along with spherical aberration and the like, and thus a correction lens is necessary. As a result, the number of parts increases, resulting in an increase in cost, an increase in total weight, and a problem of being easily affected by temperature changes.
[0007]
The present invention has been made in view of such problems, and in a reflective telescope having a high spatial resolution for mounting on a satellite, a reflective optical system capable of performing focus adjustment without causing a shift in observation field of view. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the reflection optical system according to the first aspect of the present invention reflects the incident light beam from the object at the peripheral portion and has a concave first-order reflection having an opening at the central portion. The mirror is disposed in front of the first reflecting mirror, reflects the light beam reflected by the first reflecting mirror, passes through the opening of the first reflecting mirror, and forms an image of the reflected light beam near the opening. A convex second reflecting mirror, a folding mirror that reflects the light beam reflected by the second reflecting mirror and imaged in the vicinity of the aperture before or after imaging, and a light beam reflected by the folding mirror is reflected. A concave third-order reflecting mirror that re-images the reflected light beam, a fourth-order reflecting mirror that reflects the light beam reflected by the third-order reflecting mirror, and a first drive that drives the third-order reflecting mirror Device and a second driving device for driving the fourth reflecting mirror, Mirror and a fourth of the reflector, characterized in that it is configured to be movable in the same direction at a predetermined ratio by a first drive and the second drive unit.
[0009]
The reflective optical system according to a second aspect of the invention is characterized in that, in the reflective optical system according to the first aspect, the third-order reflective mirror and the fourth-order reflective mirror move so as not to cause a line-of-sight shift. To do.
[0010]
The reflective optical system according to a third aspect of the present invention is the reflective optical system according to the first or second aspect, wherein the amount of movement of the nth reflecting mirror is Δ n = D n / a n = d n / b n
D n : the amount of focus movement when the n-th reflector moves Δ n ,
d n: gaze shift amount when the reflector of the n position is moved delta n,
a n , b n : When expressed by a first-order coefficient, the ratio of the amount of movement of the third-order reflecting mirror to the amount of movement of the fourth-order reflecting mirror is expressed by the following equation Δ 3 / Δ 4 = (a 4 × b 2 −a 2 × b 4 ) / (a 2 × b 3 −a 3 × b 2 )
It is characterized by moving to satisfy.
[0011]
A reflective optical system according to a fourth aspect of the present invention is the reflective optical system according to any one of the first to third aspects, wherein the amount of movement of the third-order reflecting mirror with respect to the amount of movement of the fourth-order reflecting mirror is The ratio is set so as to be more than 1 and less than 5 times.
[0012]
The reflective optical system according to a fifth aspect of the present invention is the reflective optical system according to any one of the first to fourth aspects, wherein the fourth reflecting mirror is reflected by the third reflecting mirror and is fourth. A tilt mechanism for rotating the reflecting surface of the fourth reflecting mirror about an axis perpendicular to a plane including the optical axis incident on the reflecting mirror and the optical axis reflected by the fourth reflecting mirror; It is characterized by being.
[0013]
A reflective optical system according to a sixth aspect of the present invention is the reflective optical system according to any one of the first to fifth aspects, wherein the third-order reflection with respect to the intermediate image formed by the second-order reflecting mirror is provided. The imaging magnification of the mirror is more than twice.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a reflective optical system according to the present invention. The reflection optical system 10 includes a first-order reflecting mirror 11 that reflects an incident light beam from an object, a second-order reflecting mirror 12 that reflects a light beam reflected by the first-order reflecting mirror, and a second-order reflecting mirror. A folding reflecting mirror 15 that reflects the reflected light beam, a third reflecting mirror 13 that reflects the light beam reflected by the folding mirror, and a fourth reflecting mirror that reflects the light beam reflected by the third reflecting mirror 13. 14 and a one-dimensional CCD 16 into which the light beam reflected by the fourth reflecting mirror 14 is incident.
[0015]
The first reflecting mirror 11 has a reflecting surface (first surface 1 in FIG. 1) having a concave shape, an opening 11a at the center, and a light beam incident from an observation object (left side in FIG. 1). It is comprised so that it may reflect in a part. The light beam reflected by the first reflecting mirror 11 enters the second reflecting mirror 12. The second-order reflecting mirror 12 has a reflecting surface (second surface 2 in FIG. 1) having a convex shape, is disposed in front of the first-order reflecting mirror 11, and reflects the light beam reflected by the first-order reflecting mirror 11. The light beam is reflected and passed through the opening 11a of the first reflecting mirror 11, and the reflected light beam is formed at an intermediate image point P near the opening 11a. The light beam reflected by the second reflecting mirror 12 enters the folding reflecting mirror 15 located in front of or behind the intermediate imaging point P.
[0016]
The folding reflecting mirror 15 has a reflecting surface (third surface 3 in FIG. 1) having a planar shape, is reflected by the second reflecting mirror 12, and is at an intermediate imaging point P near the opening 11a in the first reflecting mirror 11. It is comprised so that the imaged light beam may be reflected. The light beam reflected by the folding reflecting mirror 15 enters the third reflecting mirror 13. The third reflecting mirror 13 has a concave reflecting surface (fourth surface 4 in FIG. 1), reflects the light beam reflected by the folding reflecting mirror 15, and re-images the reflected light beam in the one-dimensional CCD 16. Configured to let The third reflecting mirror 13 is provided with a first driving device 23 for driving the third reflecting mirror 13, and the first driving device 23 causes the third reflecting mirror 13 to be connected to the third reflecting mirror 13. It is configured to move along the optical axis OA between the reflecting surface and the reflecting surface of the fourth reflecting mirror 14. The light beam reflected by the third reflecting mirror 13 enters the fourth reflecting mirror 14.
[0017]
The imaging magnification (lateral magnification) of the third reflecting mirror 13 with respect to the intermediate image formed at the intermediate imaging point P by the second reflecting mirror is preferably more than twice. By multiplying the magnification here, it is possible to reduce the ratio of the focal length of the cassegrain part constituted by the first reflecting mirror 11 and the second reflecting mirror 12 to the total focal length, and to reduce the size of the cassegrain part. it can. In addition, there is an effect that the required amount of movement of the third-order reflecting mirror 13 is reduced and the focus adjustment is facilitated.
[0018]
The fourth reflecting mirror 14 has a reflecting surface (fifth surface 5 in FIG. 1) having a planar shape, and is configured to reflect the light beam reflected by the third reflecting mirror 13. The fourth reflecting mirror 14 is provided with a second driving device 24 for driving the fourth reflecting mirror 14, and the second driving device 24 causes the fourth reflecting mirror 14 to be connected to the third reflecting mirror 13. It is configured to move along the optical axis OA between the reflecting surface and the reflecting surface of the fourth reflecting mirror 14. The light beam reflected by the fourth-order reflecting mirror 14 enters the one-dimensional CCD 16. A flat CCD cover glass 16a having sixth and seventh surfaces 6 and 7 is attached to the one-dimensional CCD 16, and the light beam reflected by the fourth reflecting mirror 14 passes through the CCD cover glass 16a. Thus, it is configured to enter the one-dimensional CCD 16.
[0019]
The light beam reflected by the fourth reflecting mirror 14 and incident on the one-dimensional CCD 16 is re-imaged by the third reflecting mirror 13 by the one-dimensional CCD 16, so that an image of the observation object is formed in the one-dimensional CCD 16. Imaged. As can be seen, since the one-dimensional CCD 16 can be arranged at a desired position by the folding reflecting mirror 15, the third reflecting mirror 13, and the fourth reflecting mirror 14, the entire size of the reflecting optical system can be obtained. Can be reduced.
[0020]
At this time, the fourth reflecting mirror 14 is reflected by the third reflecting mirror 13 and is incident on the fourth reflecting mirror 14, and the optical axis OA is reflected by the fourth reflecting mirror 14. It is preferable to have a tilt mechanism (not shown) that rotates the reflecting surface of the fourth reflecting mirror 14 about an axis perpendicular to the plane including the center . In this way, the gaze shift in the orbital direction that accompanies the focus adjustment is corrected in the displacement of the observation position due to the shift of the principal ray position from the original position in the one-dimensional CCD 16, that is, the so-called gaze shift. Can do.
[0021]
At this time, with respect to a plane perpendicular to the plane including the optical axis OA which enters the fourth largest reflecting mirror 14 is reflected by the third largest reflecting mirror 13, and the optical axis OA which is reflected by the fourth largest reflecting mirror 14 If a tilt mechanism (not shown) that rotates the reflecting surface of the fourth reflecting mirror 14 around a vertical axis is provided, the trajectory of the one-dimensional CCD 16 caused by a shake from the optical axis when the reflecting mirror moves. Correction of line-of-sight misalignment other than the direction is also possible, which is more desirable.
[0022]
In the reflection optical system 10 in which the image of the observation object is formed by the one-dimensional CCD 16 as described above, focus adjustment is performed without causing a line-of-sight shift. However, the first drive device 23 and the second drive device 24 are configured to be movable in the same direction at a predetermined ratio. These driving devices may be integrated, and the driving amount of the third reflecting mirror 13 and the fourth reflecting mirror 14 may have a cam ratio and be driven at a constant ratio. In this case, there is an advantage that a single power source can be provided. The moving direction of the third-order reflecting mirror 13 and the fourth-order reflecting mirror 14 is along the optical axis OA between the reflecting surface of the third-order reflecting mirror 13 and the reflecting surface of the fourth-order reflecting mirror 14. It is directed in the same direction. At this time, the ratio of the moving amount Δ 3 of the third reflecting mirror 13 to the moving amount Δ 4 of the fourth reflecting mirror 14 (that is, Δ 3 / Δ 4 ) satisfies 5> Δ 3 / Δ 4 > 1. ing. As a result, the amount of movement Δ 4 of the fourth-order reflecting mirror 14 does not become too small with respect to the amount of movement Δ 3 of the third-order reflecting mirror 13, and appropriate control becomes possible.
[0023]
Here, Table 1 shows a design example of the reflection optical system 10 having the above configuration. In Table 1, the symbol r indicates the radius of curvature of the lens surface, and d indicates the distance between the lens surfaces. Note that the surface number indicates the order along the path of light from the object, the radius of curvature of the i-plane (i = 1, 2,..., 7) is ri, and the distance between the i-plane and the (i + 1) -plane. The distance on the optical axis OA is di. Here, the first surface (the reflecting surface of the first reflecting mirror 11) 1 and the second surface (the reflecting surface of the second reflecting mirror 12) 2 are formed in an aspherical shape. (1).
[0024]
[Table 1]
Figure 0004248220
[0025]
[Expression 1]
Z = ch 2 / [1+ {1− (1 + κ) c 2 h 2 } 1/2 ] + Ah 4 + Bh 6 + Ch 8 (1)
Z: sag amount in the optical axis direction h; dimension c from the optical axis in the direction perpendicular to the axis c; curvature at the apex of the surface (1 / r)
κ; conic coefficients A, B, C; fourth-order, sixth-order, and eighth-order coefficients
Next, FIGS. 2 to 4 show the amount of focus shift and line-of-sight shift when each reflecting mirror in the reflecting optical system 10 having the above configuration moves (along the optical axis OA). Here, FIG. 2 is a diagram showing the amount of focus movement and line-of-sight deviation when the second-order reflecting mirror 12 is moved, and FIG. 3 is the amount of focus movement and line-of-sight deviation when the third-order reflecting mirror 13 is moved. FIG. 4 and FIG. 4 are views showing the amount of focus shift and line-of-sight shift when the fourth-order reflecting mirror 14 moves. In addition, the positive / negative relationship in the moving direction of each reflecting mirror is shown in FIG.
[0027]
As can be seen from FIGS. 2 to 4, the amount of focus movement and line-of-sight shift when each reflecting mirror moves (along the optical axis OA) is linear in any case, but the focus movement A combination of the direction and the direction of the line-of-sight shift differs depending on each reflecting mirror. For this reason, by moving the third-order reflecting mirror 13 and the fourth-order reflecting mirror 14 in the same direction at a predetermined ratio, it becomes possible to suppress the line-of-sight shift during the focus movement correction. Therefore, by moving the third reflecting mirror 13 and the fourth reflecting mirror 14 so as not to cause a line-of-sight shift, focus adjustment can be performed without causing a shift in the observation field of view.
[0028]
When the focal point movement amount Dn and the line-of-sight deviation amount dn with respect to the movement amount Δn of the nth reflector (n = 2, 3, 4) are expressed by approximate expressions, the following expressions (2) to (7) are obtained. become.
[0029]
[Expression 2]
D 2 = a × Δ 2 (2)
a 2 ; first-order coefficient
[Equation 3]
d 2 = b 2 × Δ 2 (3)
b 2 ; first order coefficient [0031]
[Expression 4]
D 3 = a 3 × Δ 3 (4)
a 3 ; first-order coefficient
[Equation 5]
d 3 = b 3 × Δ 3 (5)
b 3 ; first-order coefficient
[Formula 6]
D 4 = a 4 × Δ 4 (6)
a 4 ; first order coefficient
[Expression 7]
d 4 = b 4 × Δ 4 (7)
b 4 ; first order coefficient
Here, as an example, correction when the second-order reflecting mirror 12 changes in the optical axis OA direction will be described. When the second reflecting mirror 12 changes in the direction of the optical axis OA, that is, when Δ 2 (D 2 and d 2 ) occurs, the third reflecting mirror 13 and the fourth reflecting mirror 14 are connected to each other. It may be moved and corrected so that D 2 and d 2 become zero. That is, the following equations (8) and (9) may be satisfied.
[0036]
[Equation 8]
D 2 = D 3 + D 4 (8)
[0037]
[Equation 9]
d 2 = d 3 + d 4 (9)
[0038]
When equations (2) to (7) are simultaneously solved in addition to equations (8) and (9), the following equations (10) and (11) are obtained.
[0039]
[Expression 10]
Δ 3 = {(a 2 × b 4 −a 4 × b 2 ) / (a 3 × b 4 −a 4 × b 3 )} Δ 2 ... (10)
[0040]
[Expression 11]
Δ 4 = {(a 2 × b 3 −a 3 × b 2 ) / (a 4 × b 3 −a 3 × b 4 )} Δ 2 (11)
[0041]
When the ratio of Δ 3 to Δ 4 (that is, Δ 3 / Δ 4 ) is obtained from the equations (10) and (11), the following equation (12) is obtained.
[0042]
[Expression 12]
Δ 3 / Δ 4 = (a 4 × b 2 −a 2 × b 4 ) / (a 2 × b 3 −a 3 × b 2 ) (12)
[0043]
As a result, when the second-order reflecting mirror 12 changes in the direction of the optical axis OA by moving the third-order reflecting mirror 13 and the fourth-order reflecting mirror 14 so as to satisfy the expression (12). It is possible to simultaneously correct the generated focal shift and line-of-sight shift.
[0044]
Here, when the ratio of Δ 3 to Δ 4 in the present embodiment (design example) is obtained, a 2 = −135, a 3 = 5, a 4 = −2, b 2 = 18 from FIGS. , B 3 = −0.5, and b 4 = −0.33. Therefore, when substituting in equation (12), Δ 3 / Δ 4 = 3.58. Therefore, in this embodiment (design example), in order to perform simultaneous correction of the focus movement and the line-of-sight shift, the movement amount Δ 4 of the fourth reflecting mirror 14 is approximately equal to the movement amount Δ 3 of the third reflecting mirror 13. 1/3. Assuming that the fluctuation amount (movement amount Δ 2 ) of the second reflecting mirror 12 is ± 0.01 mm, Δ 3 = ± 0.304 mm and Δ 4 = ± 0.085 mm based on the equations (10) and (11). The focal point generated when the second-order reflecting mirror 12 changes in the direction of the optical axis OA by moving the third-order reflecting mirror 13 and the fourth-order reflecting mirror 14 along the optical axis OA by this amount. Movement and line-of-sight shift can be corrected simultaneously. At this time, the focal length fluctuation amount in the entire reflection optical system is 1% or less, and correction is performed while suppressing the influence on the overall performance.
[0045]
As a result, since the third-order reflecting mirror 13 and the fourth-order reflecting mirror 14 are configured to be movable in the same direction at a predetermined ratio, it is possible to simultaneously correct the focus movement and the line-of-sight shift, and the focus movement. Since the line-of-sight shift at the time of correction can be suppressed, focus adjustment can be performed without causing a shift in the observation field of view.
[0046]
【The invention's effect】
As described above, according to the present invention, the third-order reflecting mirror and the fourth-order reflecting mirror are configured to be movable in the same direction at a predetermined ratio. Therefore, focus adjustment can be performed without causing a shift in the observation field of view.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the configuration of a reflective optical system according to the present invention.
FIG. 2 is a diagram showing changes in focal point movement and line-of-sight shift of the reflecting optical system with respect to the movement amount of the second reflecting mirror.
FIG. 3 is a diagram showing changes in focus movement and line-of-sight shift of the reflecting optical system with respect to the movement amount of the third-order reflecting mirror.
FIG. 4 is a diagram showing changes in focal point movement and line-of-sight shift of the reflecting optical system with respect to the movement amount of the fourth-order reflecting mirror.
[Explanation of symbols]
10 reflective optical system 11 first-order reflective mirror (11a aperture)
12 Second-order reflecting mirror 13 Third-order reflecting mirror 14 Fourth-order reflecting mirror 15 Folding reflecting mirror 16 One-dimensional CCD (16a CCD cover glass)
23 First driving device 24 Second driving device OA Optical axis P Intermediate imaging point

Claims (6)

物体からの入射光束を周辺部で反射するとともに、中央部に開口を有して構成された凹面の第一位反射鏡と、
前記第一位反射鏡の前方に配置され、前記第一位反射鏡により反射された光束を反射して前記第一位反射鏡の前記開口を通過させるとともに、反射した光束を前記開口近傍で結像させる凸面の第二位反射鏡と、
前記第二位反射鏡により反射されて前記開口近傍で結像された光束を結像の前または後で反射する折り返し鏡と、
前記折り返し鏡により反射された光束を反射するとともに、反射した光束を再結像させる凹面の第三位反射鏡と、
前記第三位反射鏡により反射された光束を反射する第四位反射鏡と、
前記第三位反射鏡を駆動する第一駆動装置と、
前記第四位反射鏡を駆動する第二駆動装置とを備え、
前記第三位反射鏡と前記第四位反射鏡とが、前記第一駆動装置と前記第二駆動装置とにより所定比率で同方向へ移動可能に構成されていることを特徴とする反射光学系。
A concave first-order reflecting mirror configured to reflect an incident light beam from an object at a peripheral portion and have an opening at a central portion;
The light beam, which is disposed in front of the first reflecting mirror, reflects the light beam reflected by the first reflecting mirror so as to pass through the opening of the first reflecting mirror, and combines the reflected light beam in the vicinity of the opening. A convex second reflecting mirror to be imaged;
A folding mirror that reflects a light beam reflected by the second reflecting mirror and imaged in the vicinity of the aperture before or after imaging;
A concave third-order reflecting mirror that reflects the light beam reflected by the folding mirror and re-images the reflected light beam;
A fourth reflecting mirror that reflects the light beam reflected by the third reflecting mirror;
A first driving device for driving the third reflecting mirror;
A second driving device for driving the fourth reflecting mirror,
The reflection optical system, wherein the third reflection mirror and the fourth reflection mirror are configured to be movable in the same direction at a predetermined ratio by the first driving device and the second driving device. .
前記第三位反射鏡と前記第四位反射鏡とが、視線ずれが発生しないように移動することを特徴とする請求項1に記載の反射光学系。  The reflective optical system according to claim 1, wherein the third-order reflecting mirror and the fourth-order reflecting mirror move so as not to cause a line-of-sight shift. 第n位の反射鏡の移動量が
Δ=D/a=d/b
: 第n位の反射鏡がΔ移動したときの焦点移動量、
dn : 第n位の反射鏡がΔ移動したときの視線ずれ量、
、b : 1次の係数
で表わされる時、対する前記第三位反射鏡の移動量と前記第四位反射鏡の移動量との比が、次式
Δ/Δ = (a×b−a×b)/(a×b−a×b
を満足するように移動することを特徴とする請求項1もしくは請求項2に記載の反射光学系。
The amount of movement of the reflecting mirror of the n-position Δ n = D n / a n = d n / b n
D n : the amount of focus movement when the n-th reflector moves Δ n ,
dn: the amount of line-of-sight shift when the n-th reflecting mirror has moved by Δn,
a n , b n : When expressed by a first-order coefficient, the ratio of the moving amount of the third reflecting mirror to the moving amount of the fourth reflecting mirror is expressed by the following equation: Δ 3 / Δ 4 = (a 4 × b 2 −a 2 × b 4 ) / (a 2 × b 3 −a 3 × b 2 )
The reflecting optical system according to claim 1, wherein the reflecting optical system moves so as to satisfy the above.
前記第四位反射鏡の移動量に対する前記第三位反射鏡の移動量の比率が1倍を超え且つ5倍未満となるように設定されていることを特徴とする請求項1から請求項3のうちいずれか一項記載の反射光学系。  The ratio of the moving amount of the third reflecting mirror to the moving amount of the fourth reflecting mirror is set to be more than 1 time and less than 5 times. The reflective optical system as described in any one of these. 前記第四位反射鏡が、前記第三位反射鏡により反射されて前記第四位反射鏡に入射する光軸と、前記第四位反射鏡により反射された光軸とを含む平面に対し垂直な軸を中心に前記第四位反射鏡の反射面を回転させるチルト機構を有していることを特徴とする請求項1から請求項4のうちいずれか一項記載の反射光学系。The fourth reflecting mirror is perpendicular to a plane including an optical axis reflected by the third reflecting mirror and incident on the fourth reflecting mirror and an optical axis reflected by the fourth reflecting mirror. 5. The reflection optical system according to claim 1, further comprising a tilt mechanism that rotates a reflection surface of the fourth reflecting mirror around a simple axis . 前記第二位反射鏡により結像された中間結像に対する前記第三位反射鏡の結像倍率が2倍を超えることを特徴とする請求項1から請求項5のうちいずれか一項記載の反射光学系。  The imaging magnification of the third position reflecting mirror with respect to the intermediate image formed by the second position reflecting mirror exceeds 2 times, according to any one of claims 1 to 5. Reflective optical system.
JP2002305716A 2002-10-21 2002-10-21 Reflective optics Expired - Fee Related JP4248220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305716A JP4248220B2 (en) 2002-10-21 2002-10-21 Reflective optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305716A JP4248220B2 (en) 2002-10-21 2002-10-21 Reflective optics

Publications (2)

Publication Number Publication Date
JP2004138962A JP2004138962A (en) 2004-05-13
JP4248220B2 true JP4248220B2 (en) 2009-04-02

Family

ID=32452748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305716A Expired - Fee Related JP4248220B2 (en) 2002-10-21 2002-10-21 Reflective optics

Country Status (1)

Country Link
JP (1) JP4248220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584160B2 (en) * 2006-03-01 2010-11-17 Necディスプレイソリューションズ株式会社 Projection display
FR3001049B1 (en) * 2013-01-11 2015-02-06 Thales Sa DEVICE FOR OPTICALLY CONTROLLING AN IMAGING SYSTEM

Also Published As

Publication number Publication date
JP2004138962A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US6603608B2 (en) Variable focal length optical element and optical system using the same
EP1211541B1 (en) Image-forming optical system
US7961400B2 (en) Projecting optical unit and projecting type image display apparatus therewith
JP4890771B2 (en) Projection optical system and projection display device using the same
US6643062B1 (en) Finder optical system and image pickup apparatus using the same
US10690903B2 (en) Optical configurations for optical field mappings for back-scanned and line-scanned imagers
JP3929153B2 (en) Imaging optics
JPH06317755A (en) Wide-field total-reflecting multiple- field telescope
US6178048B1 (en) Image-forming optical system
US7554710B2 (en) Two-dimensional scanning apparatus, and image displaying apparatus
JPH10161019A (en) Image formation optical system
JP4248220B2 (en) Reflective optics
WO2017213058A1 (en) Image forming optical system, and imaging device and projection device provided with same
US6259564B1 (en) Finder optical system
CN111367062B (en) Medium wave infrared two-gear zooming optical lens and imaging device
JP2006078701A (en) Zoom optical system
WO2019065259A1 (en) Image projection device
US7623147B2 (en) Optical scanning device and image forming apparatus using the same
JP2017219741A (en) Image formation optical system, and imaging apparatus and projection device including the same
JP3816610B2 (en) Prism optical system
JP2006113248A (en) Eccentric reflection optical system and optical system using the same
JP2001013412A (en) Catoptric system
JPH10197797A (en) Image formation optical system
JPH10170828A (en) Image formation optical system
JP2002006234A (en) Full observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees