JP4247757B2 - Space expansion structure - Google Patents

Space expansion structure Download PDF

Info

Publication number
JP4247757B2
JP4247757B2 JP2000051780A JP2000051780A JP4247757B2 JP 4247757 B2 JP4247757 B2 JP 4247757B2 JP 2000051780 A JP2000051780 A JP 2000051780A JP 2000051780 A JP2000051780 A JP 2000051780A JP 4247757 B2 JP4247757 B2 JP 4247757B2
Authority
JP
Japan
Prior art keywords
truss
deployment
wire
drive
wire member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000051780A
Other languages
Japanese (ja)
Other versions
JP2001239999A (en
Inventor
昭夫 辻畑
明宏 宮坂
清隆 内丸
太郎 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
NEC Space Technologies Ltd
Original Assignee
Japan Aerospace Exploration Agency JAXA
NEC Space Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, NEC Space Technologies Ltd filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2000051780A priority Critical patent/JP4247757B2/en
Publication of JP2001239999A publication Critical patent/JP2001239999A/en
Application granted granted Critical
Publication of JP4247757B2 publication Critical patent/JP4247757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えば人工衛星等に搭載されてなるパラボラアンテナの支持構造物や大型宇宙構造物に用いられる宇宙展開構造物に関する。
【0002】
【従来の技術】
宇宙空間に大型の構造物を構築する場合、現在ではスペースシャトルや宇宙ステーション・ミールに於いて宇宙飛行士が作業を行う方式が採用されているが、これらの方式では人的被害を考慮する必要性があると共にコストも高くつくという欠点を有し、また作業期間の制約や構築構造物サイズの制約を受けることもあり得る。
【0003】
このため、昨今では、宇宙空間に大型構造物を構成する方式として、モータ等の駆動力によって展開構造体を折畳み状態から展開させて宇宙展開構造物を形成する構成のものが国内外で研究されている。
【0004】
このような宇宙展開構造物としては、既に特公平8−2555487号や特公平8−2567164号同じく特公平8−2567192号等が知られている。
【0005】
ところが、上記宇宙展開構造物にあっては、いずれもロケットへの搭載性を考慮して折り畳みによる収納効率の向上を目指したものや軽量化のために構成部材の数を減少させると言ったような単一性能の向上を目的として構成されたものであり、その折畳み展開動作の信頼性の要請を満足したうえで、その重量の要請を満足することが困難なものである。
【0006】
例えば、具体的には、宇宙展開構造物を構成する展開構造体の折畳み展開を行う駆動手段として、駆動モータ等を用いた駆動源によりワイヤー部材及びプーリを用いたワイヤ機構を駆動制御して展開構造体の折畳み展開を行うように構成することにより、駆動モータの小形化を図ったうえで、確実な動作制御を実現するように構成したものがある。
【0007】
しかしながら、上記ワイヤ機構を用いた宇宙展開構造物では、折畳み展開動作の信頼性の向上を図ると、駆動モータの駆動力を高めなければならないために、駆動モータが大形となり、重量の増加を招くという問題を有する。
【0008】
【発明が解決しようとする課題】
従来の宇宙展開構造物では、いずれのものも、宇宙開発の分野で要請される動作制御の信頼性を図ったうえで、小形化の要請を満足するのが困難であるという問題を有する。
【0009】
この発明は上記事情に鑑みてなされたもので、信頼性の高い高精度な折畳み展開動作を実現し得、且つ、小形・軽量化の促進を図り得るようにした宇宙展開構造物を提供することを目的とする。
【0012】
【課題を解決するための手段】
この発明は、第1から第4の四辺部材の端部を回転自在に四辺形状に結合した四辺構造を、前記第1の四辺部材を中央縦部材として共有して放射状に複数個組合わせ、この四辺構造の一方の対角線間に、中間部が回転自在に折れ曲がり自在に連接される第1及び第2の斜部材を架設し、前記中央縦部材に沿って直線駆動される駆動制御部を介して折畳み展開される展開トラスと、この展開トラスを複数個、折畳み展開自在に組み合わせ結合したトラス結合体と、ワイヤ部材の一端部が前記トラス結合体の複数の展開トラスの駆動制御部に係止されるものであって、前記ワイヤ部材の中間部がプーリに移動自在巻き掛けられ、前記ワイヤ部材の他端部が前記一端部と略直交する方向に移動自在に設けられたワイヤ機構と、このワイヤ機構のワイヤ部材の他端部を巻き取り制御して前記トラス結合体の複数の駆動制御部を直線駆動し、前記展開構造を折畳み展開する駆動手段とを備え、前記駆動手段は、前記トラス結合体のいずれか一つの展開トラスに配設され、前記ワイヤ機構を介して前記トラス結合体の他の展開トラスを駆動してなる宇宙展開構造物を構成した。
【0013】
上記構成によれば、ワイヤ機構のワイヤ部材は、駆動手段により巻き取り駆動されると、トラス結合体の複数の展開トラスの駆動制御部を直線移動させることにより、トラス結合体の複数の展開構造体の折畳み展開が行われる。これにより、駆動手段は、トラス結合体の複数の展開トラスの展開力がワイヤ機構を介して分散された状態となり、その駆動力の軽減が図れたうえで、トラス結合体の信頼性の高い折畳み展開動作が可能となる。従って、駆動手段の小形化を図ったうえで、動作制御の信頼性を向上させることが可能となる。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態について、図面を参照して詳細に説明する。
【0015】
図1は、この発明の一実施の形態の適用される宇宙展開構造物の構成を示すもので、放射状リブによる展開トラス構造を用いたアンテナ反射鏡の一例を示す。
【0016】
例えばこのアンテナ反射鏡は、ほぼ6角柱形状であるが、パラボラアンテナ鏡面などの曲面形状を形成する場合には、6角柱の上面と下面の大きさが異なり、本実施例では下面側6角形状が上面側6角形状よりも大きくなる6角錐台形状となっている。そして、このアンテナ反射鏡を構成する宇宙展開構造物は、メッシュ11を鏡面形状保持するワイヤ12と、該ワイヤ12及び上記メッシュ11を支持する6本の支に持柱13からなる反射鏡面部14と、反射鏡面部14を支持する展開トラス20で構成される。
【0017】
図2は、上記展開トラス20を示すもので、6個の四辺リンク21a,b,c,d,e,fは、中央縦部材22を共有する形で組み合わされ、6角錐台形状にトラス結合される。
【0018】
この展開トラス20をモジュール23と呼ぶ。6角錐台形状のモジュール23の外側の縦部材24a,b,c,d,e,fの外側にはモジュール結合ヒンジ25a,b,c,d,e,fと26a,b,c,d,e,fが取り付けられている。
【0019】
図3は、図2に示すモジュール23を14個結合して構成したトラス結合体30を示す。トラス結合体30は、複数のモジュール23をモジュール結合ヒンジ25a,b,c,d,e,fと26a,b,c,d,e,fにより回転自在に結合することにより構成され、ブーム110を介して図示しない宇宙航行体本体に支持される。
【0020】
上記メッシュ11を支持するケーブルは、上記のようにメッシュの形状がパラボラ面になるようにワイヤー12により保持される。
【0021】
上記展開トラス20は、例えば図4に示すように6個の四辺リンク21a,b,c,d,e,fの四辺リンク構造を有する。この四辺リンク21a,b,c,d,e,fは、中央縦部材22からメッシュ11にほぼ沿うように横部材52、横部材53がヒンジ54、55を介して回転自在に支持されている。また、横部材52、横部材53の先には、中央縦部材22と同じように、ヒンジ56、57を介して回転自在なように外側の縦部材24が支持されている。
【0022】
なお、上述の6本の支持柱13は、外側の縦部材24に接合されるよう構成される。
【0023】
上記四辺リンク21a,b,c,d,e,fは、四辺リンク21を構成する中央縦部材22のヒンジ54,55を結ぶ距離と横部材52の長さの和と、外側の縦部材24a,b,c,d,e,fのヒンジ56,57を結ぶ距離と横部材53の長さの和がほぼ等しくなるように構成されている。
【0024】
また、図4に示すように、中央縦部材22のシャフト部58の中心線とヒンジ55の回転中心の間が離れており、略同様に、側の縦部材24のシャフト部59の中心線とヒンジ56の回転中心の間が離れるように構成されている。
【0025】
上記四辺リンク21a,b,c,d,e,fの内側には、中央縦部材22にヒンジ60を介して回転自在に取り付けられた斜部材61と、横部材53にヒンジ62を介して回転自在に取り付けられた斜部材63が、互いの端部においてヒンジ64を介して互いに回転自在になるように取り付けられている。
【0026】
また、上記中央縦部材22には、駆動制御部、例えば傘機構を構成する摺動部材70が中央縦部材22に対して摺動自在に取り付けられ、摺動部材70と斜部材61には、それぞれヒンジ71、72が取り付けられる。そして、これらヒンジ71、72には、回転自在にリンク73が支持されている。リンク73には、ヒンジ71,72を結んだ直線とはずれた位置にヒンジ74が設けられ、ヒンジ74によりリンク73にはリンク75が回転自在に支持されている。
【0027】
一方、中央縦部材22には、摺動部材70とは別の摺動部材76が中央縦部材22に対して摺動自在に取り付けられており、摺動部材76にはヒンジ77が取り付けられ、ヒンジ77により上記リンク75が回転自在に支持されている。
【0028】
そして、摺動部材70と摺動部材76の間には、圧縮バネ80が係着されている。
【0029】
上記圧縮バネ80が摺動部材70と摺動部材76を押し広げるように運動することにより、斜部材61とリンク73,75により構成されたリンク群が自動開傘機構と同様に作用し、摺動部材70と摺動部材76が図4中A方向に進むとともに、ヒンジ64が図4中B方向に、中央縦部材22から離れる方向に運動する。
【0030】
このときの四辺リンク21a,b,c,d,e,fのヒンジ62の位置は、ヒンジ64の位置に対して、ヒンジ64から斜部材63を自由に回転させたときのヒンジ62の軌跡と四辺リンク21a,b,c,d,e,fを自由に運動させたときに横部材53に取り付けられたヒンジ62の軌跡の交点に定まるため、本来1自由度である四辺リンク21a,b,c,d,e,fの形状は一意に定まる。いまヒンジ64の位置が図4中B方向に移動することにより、斜部材61と斜部材63が直線に近づくため、四辺リンク21a,b,c,d,e,fの対角の位置にあるヒンジ64とヒンジ62の距離が広がるので、四辺リンク21a,b,c,d,e,fが展開運動し、展開トラス20が展開運動することになる。
【0031】
このように上記圧縮バネ80が摺動部材70と摺動部材76を押し広げるように運動することにより、展開トラス20は展開運動する。
【0032】
ここで、この発明の一実施の形態に係る展開構造物について図5〜図12を参照して説明する。但し、ここでは、図5〜図12において、前記図1〜図4と同一部分については、同一符号を付してその説明について省略する。
【0033】
即ち、この発明の特徴点は、上記圧縮バネ80と共同して動作する折畳み展開用の駆動手段にある。この駆動手段は、上記トラス結合体30を構成する14個の展開トラス20のうち例えば図5に示すように略中央部に配置されるNo.1〜No.4に例えば図6に示すように略同様に駆動モータ90が取り付けられる。この駆動モータ90には、その駆動軸にワイヤ機構を構成する駆動プーリ91が嵌着され、この駆動プーリ91には、ワイヤ部材92の基端が、例えば単段に複数重巻き掛けられる。このように構成することで、ワイヤ部材92の駆動プーリ91からの脱落が防止できる。
【0034】
また、ワイヤ部材92は、その中間部が中間プーリ93に移動自在に巻き掛けられ、先端部側が、図5中No.2、No.5、No.6、No.14(No.3、No.7、No.8)(No.4、No.9、No.10、No.11)(No.1、No.12、No.13)の各展開トラス20に設けられる動滑車94に移動自在にそれぞれ巻き掛けられる。
【0035】
この動滑車94は、例えば図6に示すように各展開トラス20の中央縦部材22に軸方向に移動自在に支持される摺動部材76の回転自在に支持される。そして、この動滑車94には、その周囲に、上記中間プーリ93により延出方向が略直交する方向に方向変換されたワイヤ部材92の先端部が巻き掛けられて支持される。
【0036】
また、ワイヤ部材92の片端は、展開トラス20の基部200に固定される。ワイヤ部材92は、図5に示すように展開トラス20のNo.3、No.7、No.8の基部200に取り付けられたものが、各のプーリ93、94を介してNo.2の展開トラス20のプーリ91に接続される。
【0037】
同様に、No.14、No.5、No.6、No.2の展開トラス20の基部200に取り付けられたワイヤ部材92は、各のプーリ93、94を介してNo.1の展開トラス20のプーリ91に接続される。また、No.4、No.11、No.10、No.9の展開トラス20の基部200に取り付けられたワイヤ部材92は、各のプーリ93、94を介してNo.3の展開トラス20のプーリ91に接続される。さらに、No.12、No.13、No.1の展開トラス20の基部200に取り付けられたワイヤ部材92は、各のプーリ93、94を介してNo.4の展開トラス20のプーリ91に接続される。
【0038】
上記構成において、ワイヤ部材は、上記圧縮バネ80が最も圧縮された展開トラス20の折畳み状態において、その基端が駆動モータの駆動プーリに巻き掛けられる。そして、上記展開トラス20が、その折畳み状態において、そのロックが解除されると、上記駆動モータが駆動制御される。すると、圧縮バネ80の付勢力が摺動部材70と摺動部材76を押し広げるように運動することにより、斜部材61とリンク73,75により構成されたリンク群が自動開傘機構と同様に作用する。
【0039】
これにより、摺動部材70と摺動部材76が図4中A方向に進むとともに、ヒンジ64が図4中B方向に、中央縦部材22から離れる方向に運動して上述したように展開トラスが20が展開される。この際、駆動モータ90、ワイヤ部材92、駆動プーリ91、中間プーリ93及び動滑車94の作用により、圧縮バネ80の付勢力が規制され安定した展開動作が行われる。
【0040】
ここで、展開トラス20を展開方向に付勢する圧縮バネ80は、該展開トラス20の折畳み状態で、蓄えたエネルギ(付勢力)で展開トラス20を展開付勢するように設定される。そして、この圧縮バネ80の付勢力のよる展開トラス20の折畳み状態から展開完了までにおいては、駆動モータ90に要求される駆動トルクが、図8に示すようにワイヤ部材92の移動量と、該ワイヤ部材92に付与される付勢力とによって決定される。
【0041】
例えば、圧縮バネ80による展開力が略一定だとすると、駆動モータ90に要求される駆動トルク(ワイヤ部材92の張力)は、
駆動トルク=展開力×(ワイヤ部材の移動量/圧縮バネの移動量)
により表される。
【0042】
従って、駆動モータ90は、その駆動トルクが、そのワイヤ機構を構成するワイヤ部材92の移動量、すなわち、ワイヤ部材92の引き回し長さ寸法を充分とることにより、展開トラス20の折畳み状態から展開が完了するまでに必要とする展開力(圧縮バネ80の付勢力)を小さく設定することなく、小さなトルクで大きな展開力に対応することが可能となる。
【0043】
この発明では、前述のように例えばNo.5の展開トラス20のワイヤ部材92は、該No.5の動滑車94、中間プーリ93を介してNo.1の展開トラス20の駆動プーリ91に接続されている。展開の初期においては、四辺リンク21a,b,c,d,e,fの動きにより、No.5の展開トラス20とNo.1の展開トラス20の基部200同士の距離D(図5参照)が大きく変化する。展開完了に近い状態では、距離Dの変化が小さくなるものの、動滑車94と、その基部200の距離E(図7参照)が大きく変化する。これにより、ワイヤ部材92の動きが平均化され、展開時にワイヤ部材92の張力を平均化させることができて、該ワイヤ部材92の張力にピークを発生させることがない。従って、張力の最大値が低減され、これによって定まる駆動トルクの低減が図れて小形・軽量化が実現される。
【0044】
このように、上記宇宙展開構造物は、圧縮バネ80、摺動部材70、76の作用により展開される折畳み展開自在な展開トラス20を14個、骨組み結合したトラス結合体30を形成して、このトラス結合体30の展開トラス20の摺動部材70、76と展開駆動用の駆動モータ90との間を、略直交する二方向に配線されるワイヤ部材92を介して連動可能に連結して、駆動モータ90の駆動に連動してワイヤ部材92が巻き取り駆動され、トラス結合体30の折畳み展開が行われるように構成した。
【0045】
これによれば、駆動モータ90及び圧縮バネ80は、トラス結合体30の14個の展開トラス20の展開力がワイヤ機構のワイヤ部材92を介して分散された状態となり、その駆動力の軽減を図ったうえで、トラス結合体30の信頼性の高い折畳み展開動作が実現される(図8参照)。従って、圧縮バネ80の付勢力を充分にとったうえで、駆動モータ90の駆動トルクの軽減が図れて小形・軽量化が図れ、しかも、動作制御の信頼性の向上を図ることができる。
【0046】
このことは、例えば図9に示す従来のように中間プーリ93の代わりに展開トラス20の中央縦部材22に駆動モータ201と、この駆動モータ201に対して同軸的にプーリ202を組み合わせ配置して、この駆動モータ201駆動力により上述した圧縮バネ80と同様の展開力で展開させるように構成した場合、図10に示すようにそのワイヤ部材92の張力が略数倍に大きくなることが実験的に確認されることからも明らかである。
【0047】
なお、上記実施の形態では、駆動手段として、圧縮バネ80、ワイヤ機構及び駆動モータ90を用いて構成した場合で説明したが、これに限ることなく、例えば駆動モータ90に変えてダッシュポットを用いて構成することも可能である。
【0048】
さらに、上記実施の形態では、ワイヤ部材92の中央縦部材22に対して動滑車94を用いてワイヤ部材92の端部を中央縦部材22の軸方向に移動させるように構成した場合で説明したが、これに限ることなく、例えば動滑車94を用いることなく中央縦部材22に移動自在に配設するように構成することも可能である。但し、動滑車を用いた場合の方が、力が略1/2となることで有効な効果が期待される。
【0049】
また、上記実施の形態では、駆動モータ90を14個の展開トラス20を折畳み展開自在に組み合わせ結合したトラス結合体30の4個の展開トラス20に配設して14個の展開トラス20の折畳み展開を行うように構成した場合で説明したが、これに限ることなく、例えば図11に示すようにワイヤ部材92の片端を、その基部200に結合することなく、該基部200にプーリ210を設けて、このプーリ210を経由させて、他の展開トルク20の基端200の中間プーリ93に接続配線するようにして、1個の駆動モータ90を用いて14個のすべての展開トラス20を折畳み展開駆動するように構成することが可能である。
【0050】
ここで、例えば図12に示すように近接するNo.2、No.7、No.8の展開トラス20のうちNo.2の基部200に駆動モータ90を設けて、他のNo.7、No.8の展開トラス20に駆動モータ90を配設しないように構成し、ワイヤ部材92の片端側を、No.2の展開トラス20の駆動モータ90の駆動プーリ91からNo.7の展開トラス20の中間プーリ93、動滑車94、上記プーリ210、No.8の展開トラス20の中間プーリ93、動滑車94、上記プーリ210、No.2の展開トラス20の中間プーリ93、動滑車94に順に巻き掛けた後、No.2の展開トラス20の基部200に取り付ける。これにより、No.2、No.7、No.8の展開トラス20は、駆動モータ90の駆動に連動して、ワイヤ部材92を介して略同時に展開制御される。この際、各展開トラス20は、その四辺リンク21a,b,c,d,e,fに付与される力の分散化の促進が図れて、さらに安定した展開動作が実現される。
【0051】
また、上記実施の形態では、複数個、例えば14の展開トラス20を組み合わせたトラス結合体30に適用した場合で説明したが、これに限ることなく、1個の展開トラスを宇宙航行体本体等の支持構体に折畳み展開自在に配設する構成においても適用可能である。
【0052】
さらに、上記実施の形態では、略6角柱形状の展開トラス構造を放射方向の4辺リンクの組合せ構成した支持構造の展開構造物の折畳み展開に適用した場合で説明したが、これに限ることなく、略8角形等の略多角柱形状あるいは略多角錐形状に組合わせ結合した支持構造の展開構造物や、各種宇宙機器を含む展開構造物においても適用可能である。
【0053】
また、上記実施の形態では、アンテナ反射鏡の支持構造として用いた場合で説明したが、これに限ることなく、その他、宇宙空間に構築するプラットホーム等の折畳み展開可能に構成される各種の宇宙展開構造物においても適用可能である。
【0054】
よって、この発明は、上述した各実施の形態に限定されるものではなく、その他、この発明の要旨を逸脱しない範囲で種々の変形を実施できることは勿論である。
【0055】
【発明の効果】
以上詳述したように、この発明によれば、信頼性の高い高精度な折畳み展開動作を実現し得、且つ、小形・軽量化の促進を図り得るようにした宇宙展開構造物を提供することができる。
【図面の簡単な説明】
【図1】この発明の適用される宇宙展開構造物の展開トラスを用いたアンテナ反射鏡を取り出して示した斜視図である。
【図2】図1の展開トラスを取出して示した斜視図である。
【図3】図1のモジュールを14個結合して構成したアンテナ反射鏡を示した斜視図である。
【図4】図1の展開トラスを構成する四辺トラス構造を取出して示した平面図である。
【図5】この発明の一実施の形態に係る宇宙展開構造物の展開駆動用の駆動モータの配置構成を示した配置図である。
【図6】図1の駆動モータを展開トラスに取り付けた状態を示した一部拡大図である。
【図7】図1の駆動モータの配置されない展開トルクのワイヤ機構を取り出して示した一部拡大図である。
【図8】図5の展開動作時におけるワイヤ部材の張力とワイヤ部材の移動量(変異)の関係を示した特性図である。
【図9】この発明の特徴を説明するために示した従来の展開機構部を取り出して示した一部拡大図である。
【図10】図8の特性図と比較するために示した従来構成による特性図である。
【図11】この発明の他の実施の形態に係る宇宙展開構造物の構成を説明するために示した一部拡大図である。
【図12】この発明の他の実施の形態に係る宇宙展開構造物の構成を説明するために示した配置図である。
【符号の説明】
11…メッシュ。
12…ワイヤー。
13…支持柱。
14…反射鏡面部。
20…展開トラス。
21a,b,c,d,e,f…四辺リンク。
22…中央縦部材。
23…モジュール。
24a,b,c,d,e,f…外側の縦部材。
25a,b,c,d,e,f…モジュール結合ヒンジ。
26a,b,c,d,e,f…モジュール結合ヒンジ。
30…トラス結合体。
52、53…横部材。
54、55…ヒンジ。
56、57…ヒンジ。
58、59…シャフト部。
60、62、64…ヒンジ。
61、63…斜部材。
70、76…摺動部材。
71、72、74…ヒンジ。
73、75…リンク。
80…圧縮バネ。
90…駆動モータ。
91…駆動プーリ。
92…ワイヤ部材。
93…中間プーリ。
94…動滑車。
110…ブーム。
200…基部。
210…プーリ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a space deployment structure used for a parabolic antenna support structure or a large space structure mounted on, for example, an artificial satellite.
[0002]
[Prior art]
When building large structures in outer space, astronauts are currently working on space shuttles and space stations and meals, but these methods need to consider human damage. In addition, there is a disadvantage that the cost is high and the cost is high, and there is a possibility that the working period and the size of the structure are restricted.
[0003]
For this reason, recently, as a method for constructing a large structure in outer space, a structure in which a deployable structure is expanded from a folded state by a driving force of a motor or the like to form a space deployable structure has been studied at home and abroad. ing.
[0004]
As such a space expansion structure, Japanese Patent Publication No. 8-255547, Japanese Patent Publication No. 8-2561674 and Japanese Patent Publication No. 8-2567192 are already known.
[0005]
However, in all of the above-mentioned space deployment structures, it is said that the number of components is reduced for the purpose of improving the storage efficiency by folding in consideration of the mountability to the rocket or for the weight reduction. It is configured for the purpose of improving the single performance, and it is difficult to satisfy the request for weight while satisfying the request for reliability of the folding and unfolding operation.
[0006]
For example, specifically, as a driving means for folding and unfolding the unfolding structure constituting the space unfolding structure, a wire mechanism using a wire member and a pulley is driven and controlled by a driving source using a driving motor or the like. There is a configuration that realizes reliable operation control after downsizing the drive motor by configuring the structure to fold and unfold.
[0007]
However, in the space deployment structure using the above wire mechanism, if the reliability of the folding and unfolding operation is improved, the driving force of the driving motor must be increased. Therefore, the driving motor becomes large and increases in weight. Have the problem of inviting.
[0008]
[Problems to be solved by the invention]
Any of the conventional space deployment structures has a problem that it is difficult to satisfy the demand for downsizing after ensuring the reliability of operation control required in the field of space development.
[0009]
The present invention has been made in view of the above circumstances, and provides a space deployment structure capable of realizing a highly reliable and highly accurate folding and unfolding operation and promoting a reduction in size and weight. With the goal.
[0012]
[Means for Solving the Problems]
In the present invention, a plurality of quadrilateral structures in which the ends of the first to fourth quadrilateral members are rotatably coupled to a quadrilateral shape are combined in a radial manner by sharing the first quadrilateral member as a central vertical member. The first and second diagonal members, in which the intermediate portion is rotatably connected to bendable between the diagonal lines of the four-sided structure, are installed, and the drive control unit is linearly driven along the central vertical member. A folding truss that is folded and unfolded, a truss combination that combines a plurality of the unfolding trusses so that they can be folded and unfolded, and one end of the wire member are locked to the drive control units of the plurality of unfolding trusses of the truss combination. a shall, said intermediate portion of the wire member is wound so as to be movable in the pulley, and a wire mechanism the other end is provided to be movable in a direction substantially perpendicular to the one end of the wire member, the Wire mechanism Controlled by the winding and the other end of the Ya member linearly driving a plurality of driving control unit of the truss conjugates example Bei and driving means for deploying folding the deployment structure, said drive means, said truss conjugate The space deployment structure which is arrange | positioned at any one of these deployment trusses and drives the other deployment truss of the said truss coupling body via the said wire mechanism was comprised .
[0013]
According to the above configuration, when the wire member of the wire mechanism is wound and driven by the driving means, the drive control units of the plurality of deployment trusses of the truss combination body are linearly moved, thereby the plurality of deployment structures of the truss combination body. The body is unfolded. As a result, the driving means is in a state in which the deploying force of the plurality of deploying trusses of the truss combined body is dispersed via the wire mechanism, and the driving force can be reduced, and the truss combined member can be folded with high reliability. Unfolding operation becomes possible. Accordingly, it is possible to improve the reliability of the operation control while reducing the size of the driving means.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 shows a configuration of a space deployment structure to which an embodiment of the present invention is applied, and shows an example of an antenna reflector using a deployment truss structure with radial ribs.
[0016]
For example, this antenna reflector has a substantially hexagonal prism shape. However, when a curved surface such as a parabolic antenna mirror surface is formed, the size of the upper surface and the lower surface of the hexagonal column is different. Has a hexagonal truncated pyramid shape that is larger than the hexagonal shape on the upper surface side. The space deployment structure constituting the antenna reflector includes a wire 12 that holds the mesh 11 in a mirror shape, and a reflecting mirror surface portion 14 that includes a supporting column 13 on six supports that support the wire 12 and the mesh 11. And a deployment truss 20 that supports the reflecting mirror surface portion 14.
[0017]
FIG. 2 shows the developed truss 20, in which six four-side links 21a, b, c, d, e, and f are combined so as to share the central longitudinal member 22, and the truss connection is made into a hexagonal truncated pyramid shape. Is done.
[0018]
This deployment truss 20 is called a module 23. On the outside of the vertical members 24a, b, c, d, e, f outside the hexagonal truncated pyramid shaped module 23, module coupling hinges 25a, b, c, d, e, f and 26a, b, c, d, e and f are attached.
[0019]
FIG. 3 shows a truss combination 30 formed by connecting 14 modules 23 shown in FIG. The truss coupling body 30 is configured by rotatably coupling a plurality of modules 23 with module coupling hinges 25a, b, c, d, e, f and 26a, b, c, d, e, f. Is supported by a spacecraft body (not shown).
[0020]
The cable supporting the mesh 11 is held by the wire 12 so that the mesh shape becomes a parabolic surface as described above.
[0021]
The deployment truss 20 has a four-sided link structure of six four-sided links 21a, b, c, d, e, and f as shown in FIG. 4, for example. The four side links 21a, b, c, d, e, and f are supported so that the horizontal member 52 and the horizontal member 53 are rotatable via hinges 54 and 55 so as to substantially follow the mesh 11 from the central vertical member 22. . Further, the outer vertical member 24 is supported at the tip of the horizontal member 52 and the horizontal member 53 so as to be rotatable via hinges 56 and 57 similarly to the central vertical member 22.
[0022]
The six support pillars 13 are configured to be joined to the outer vertical member 24.
[0023]
The four side links 21a, b, c, d, e, f are the sum of the distance connecting the hinges 54, 55 of the central vertical member 22 constituting the four side link 21, the length of the horizontal member 52, and the outer vertical member 24a. , B, c, d, e, and f are configured such that the sum of the distances connecting the hinges 56 and 57 and the length of the lateral member 53 is substantially equal.
[0024]
Further, as shown in FIG. 4, the center line of the shaft portion 58 of the central vertical member 22 and the rotation center of the hinge 55 are separated from each other, and approximately the same as the center line of the shaft portion 59 of the side vertical member 24. The rotation centers of the hinges 56 are configured to be separated from each other.
[0025]
Inside the four side links 21a, b, c, d, e, and f, an oblique member 61 is rotatably attached to the central vertical member 22 via a hinge 60, and a horizontal member 53 is rotated via a hinge 62. The oblique members 63 that are freely attached are attached so as to be rotatable with respect to each other via hinges 64 at their respective ends.
[0026]
Further, a sliding member 70 constituting a drive control unit, for example, an umbrella mechanism, is slidably attached to the central vertical member 22, and the sliding member 70 and the slant member 61 include Hinges 71 and 72 are attached, respectively. The hinges 71 and 72 support a link 73 rotatably. The link 73 is provided with a hinge 74 at a position deviating from the straight line connecting the hinges 71, 72, and the link 75 rotatably supports the link 73 by the hinge 74.
[0027]
On the other hand, a sliding member 76 different from the sliding member 70 is slidably attached to the central longitudinal member 22, and a hinge 77 is attached to the sliding member 76. The link 75 is rotatably supported by a hinge 77.
[0028]
A compression spring 80 is engaged between the sliding member 70 and the sliding member 76.
[0029]
When the compression spring 80 moves so as to spread the sliding member 70 and the sliding member 76, the link group constituted by the oblique member 61 and the links 73 and 75 acts in the same way as the automatic opening mechanism, and the sliding member As the moving member 70 and the sliding member 76 move in the direction A in FIG. 4, the hinge 64 moves in the direction B in FIG. 4 and away from the central longitudinal member 22.
[0030]
The position of the hinge 62 of the four side links 21a, b, c, d, e, and f at this time is the locus of the hinge 62 when the oblique member 63 is freely rotated from the hinge 64 with respect to the position of the hinge 64. Since the four-side links 21a, b, c, d, e, and f are freely moved, the four-side links 21a, b, The shapes of c, d, e, and f are uniquely determined. Now that the position of the hinge 64 moves in the direction B in FIG. 4, the slanting member 61 and the slanting member 63 approach a straight line, so that they are at diagonal positions of the four-side links 21a, b, c, d, e, and f. Since the distance between the hinge 64 and the hinge 62 is increased, the four-side links 21a, b, c, d, e, and f are deployed and the deployment truss 20 is deployed.
[0031]
As the compression spring 80 moves in such a manner as to push the sliding member 70 and the sliding member 76 apart, the deploying truss 20 deploys.
[0032]
Here, the expansion | deployment structure which concerns on one Embodiment of this invention is demonstrated with reference to FIGS. However, in FIG. 5 to FIG. 12, the same parts as those in FIG. 1 to FIG.
[0033]
That is, the feature of the present invention resides in the driving means for folding and unfolding that operates in cooperation with the compression spring 80. As shown in FIG. 6, for example, the driving means includes No. 1 to No. 4 arranged in the substantially central portion of the 14 deployed trusses 20 constituting the truss combined body 30 as shown in FIG. 5. A drive motor 90 is attached in substantially the same manner. A drive pulley 91 constituting a wire mechanism is fitted to the drive shaft of the drive motor 90, and the base end of the wire member 92 is wound around the drive pulley 91 in a single stage, for example. With this configuration, the wire member 92 can be prevented from falling off from the drive pulley 91.
[0034]
Further, the wire member 92 has its intermediate portion movably wound around the intermediate pulley 93, and the tip end side is No. 2, No. 5, No. 6, No. 14 (No. 3, No. 4 in FIG. 5). .7, No.8) (No.4, No.9, No.10, No.11) (No.1, No.12, No.13) Each can be wound freely.
[0035]
For example, as shown in FIG. 6, the movable pulley 94 is rotatably supported by a sliding member 76 that is supported by the central longitudinal member 22 of each deployment truss 20 so as to be movable in the axial direction. The distal end portion of the wire member 92 whose direction of extension has been changed by the intermediate pulley 93 in a direction substantially orthogonal to the moving pulley 94 is wound around and supported by the movable pulley 94.
[0036]
Further, one end of the wire member 92 is fixed to the base portion 200 of the deployment truss 20. Wire member 92, No.3 of deployable truss 20 as shown in FIG. 5, No.7, those were mounted et the base 200 of No.8, the No.2 through each of the pulleys 93 and 94 Connected to the pulley 91 of the deployment truss 20.
[0037]
Similarly, the wire member 92 attached to the base 200 of the deployment truss 20 of No. 14, No. 5, No. 6, and No. 2 is connected to the deployment truss 20 of No. 1 via the pulleys 93 and 94, respectively. Connected to the pulley 91. The wire member 92 attached to the base 200 of the deployment truss 20 of No. 4, No. 11, No. 10, No. 9 is connected to the deployment truss 20 of No. 3 via the pulleys 93 and 94, respectively. Connected to pulley 91. Furthermore, the wire member 92 attached to the base 200 of the deployment truss 20 of No. 12, No. 13, and No. 1 is connected to the pulley 91 of the deployment truss 20 of No. 4 via the respective pulleys 93 and 94. Is done.
[0038]
In the above configuration, the base end of the wire member is wound around the drive pulley of the drive motor in the folded state of the deployment truss 20 where the compression spring 80 is most compressed. When the unfolded truss 20 is unlocked in the folded state, the drive motor is driven and controlled. Then, the urging force of the compression spring 80 moves so as to push the sliding member 70 and the sliding member 76 apart so that the link group composed of the oblique member 61 and the links 73 and 75 is the same as the automatic opening mechanism. Works.
[0039]
As a result, the sliding member 70 and the sliding member 76 move in the direction A in FIG. 4, and the hinge 64 moves in the direction B in FIG. 4 in the direction away from the central longitudinal member 22. 20 is expanded. At this time, the urging force of the compression spring 80 is regulated by the action of the drive motor 90, the wire member 92, the drive pulley 91, the intermediate pulley 93, and the movable pulley 94, so that a stable deployment operation is performed.
[0040]
Here, the compression spring 80 that biases the deployment truss 20 in the deployment direction is set so as to deploy and bias the deployment truss 20 with the stored energy (biasing force) when the deployment truss 20 is folded. Then, from the folded state of the deployment truss 20 due to the biasing force of the compression spring 80 to the completion of deployment, the drive torque required for the drive motor 90 is the amount of movement of the wire member 92 as shown in FIG. It is determined by the urging force applied to the wire member 92.
[0041]
For example, if the deployment force by the compression spring 80 is substantially constant, the drive torque required for the drive motor 90 (the tension of the wire member 92) is
Driving torque = deployment force x (movement amount of wire member / movement amount of compression spring)
It is represented by
[0042]
Therefore, the drive motor 90 can be deployed from the folded state of the deployment truss 20 when the drive torque has a sufficient amount of movement of the wire member 92 that constitutes the wire mechanism, that is, the drawing length of the wire member 92. It is possible to cope with a large deployment force with a small torque without setting a small deployment force (the urging force of the compression spring 80) required until completion.
[0043]
In the present invention, as described above, for example, the wire member 92 of the No. 5 deployable truss 20 is connected to the drive pulley 91 of the No. 1 deployable truss 20 via the No. 5 movable pulley 94 and the intermediate pulley 93. Has been. In the initial stage of the deployment, the distance D between the bases 200 of the No. 5 deployment truss 20 and the No. 1 deployment truss 20 due to the movement of the four side links 21a, b, c, d, e, f (see FIG. 5). Changes significantly. In a state close to the completion of deployment, although the change in the distance D is small, the distance E (see FIG. 7) between the movable pulley 94 and its base 200 changes greatly. Thereby, the movement of the wire member 92 is averaged, and the tension of the wire member 92 can be averaged at the time of deployment, so that no peak is generated in the tension of the wire member 92. Accordingly, the maximum value of the tension is reduced, and the driving torque determined thereby can be reduced, thereby realizing a reduction in size and weight.
[0044]
In this way, the space expansion structure forms a truss combined body 30 in which 14 foldable and unfoldable expansion trusses 20 that are expanded by the action of the compression spring 80 and the sliding members 70 and 76 are framed. The sliding members 70 and 76 of the deploying truss 20 of the truss combined body 30 and the driving motor 90 for unfolding driving are coupled to each other via a wire member 92 wired in two substantially orthogonal directions. The wire member 92 is wound up in conjunction with the drive of the drive motor 90, and the truss joint 30 is folded and unfolded.
[0045]
According to this, the drive motor 90 and the compression spring 80 are in a state where the deploying force of the 14 deploying trusses 20 of the truss combined body 30 is dispersed through the wire member 92 of the wire mechanism, and the driving force is reduced. In addition, a highly reliable folding and unfolding operation of the truss combination 30 is realized (see FIG. 8). Therefore, after sufficiently applying the urging force of the compression spring 80, the drive torque of the drive motor 90 can be reduced, the size and weight can be reduced, and the reliability of the operation control can be improved.
[0046]
For example, as shown in FIG. 9, instead of the intermediate pulley 93, the drive motor 201 is arranged on the central longitudinal member 22 of the deploying truss 20 and the pulley 202 is coaxially arranged with respect to the drive motor 201. In the case where the drive motor 201 is configured to be deployed with the same deployment force as that of the compression spring 80 described above, it is experimental that the tension of the wire member 92 increases approximately several times as shown in FIG. It is clear from the fact that
[0047]
In the above-described embodiment, the case where the driving unit is configured using the compression spring 80, the wire mechanism, and the driving motor 90 has been described. However, the present invention is not limited to this. For example, a dashpot is used instead of the driving motor 90. It is also possible to configure.
[0048]
Further, in the above-described embodiment, the case has been described in which the end of the wire member 92 is moved in the axial direction of the central vertical member 22 using the movable pulley 94 with respect to the central vertical member 22 of the wire member 92. However, the present invention is not limited to this, and for example, it is also possible to configure the central longitudinal member 22 so as to be movable without using the movable pulley 94. However, when the moving pulley is used, an effective effect is expected because the force is approximately ½.
[0049]
Further, in the above embodiment, the drive motor 90 is disposed on the four deployed trusses 20 of the combined truss 30 in which the 14 deployed trusses 20 are combined and coupled so as to be foldable and unfolded, and the 14 deployed trusses 20 are folded. Although described in the case where it is configured to perform deployment, for example, as shown in FIG. 11, a pulley 210 is provided on the base 200 without connecting one end of the wire member 92 to the base 200. Then, all fourteen deployment trusses 20 are folded using one drive motor 90 so as to be connected and wired to the intermediate pulley 93 of the base end 200 of the other deployment torque 20 via the pulley 210. It can be configured to be deployed.
[0050]
Here, for example, as shown in FIG. 12, a drive motor 90 is provided at the base 200 of No. 2 among the adjacent trusses 20 of No. 2, No. 7, and No. 8, and the other No. 7, No. No. 7 deployment truss 20 is configured such that the drive motor 90 is not disposed, and one end side of the wire member 92 is connected to the No. 7 deployment truss 20 from the drive pulley 91 of the drive motor 90 of the No. 2 deployment truss 20. The intermediate pulley 93, the moving pulley 94, the pulley 210, the intermediate pulley 93 of the developing truss 20 of No. 8, the moving pulley 94, the pulley 210, the intermediate pulley 93 of the developing truss 20 of No. 2, and the moving pulley 94 in this order. After winding, it is attached to the base 200 of the deployment truss 20 of No.2. Thereby, the deployment trusses No. 2, No. 7, and No. 8 are controlled to be deployed almost simultaneously via the wire member 92 in conjunction with the drive of the drive motor 90. At this time, each deployment truss 20 can promote the dispersion of the force applied to the four-side links 21a, b, c, d, e, and f, thereby realizing a more stable deployment operation.
[0051]
In the above-described embodiment, the case where a plurality of, for example, 14 deployment trusses 20 are combined is described as being applied to a truss combination 30. However, the present invention is not limited to this, and one deployment truss is used as a spacecraft body. The present invention can also be applied to a configuration in which the support structure can be folded and unfolded.
[0052]
Furthermore, in the above-described embodiment, the explanation has been given for the case where the substantially truss-shaped unfolded truss structure is applied to the unfolding of the unfolding structure of the support structure configured by combining the four-sided links in the radial direction. However, the present invention is not limited to this. The present invention can also be applied to a deployment structure having a support structure that is combined and coupled in a substantially polygonal column shape such as a substantially octagonal shape or a substantially polygonal pyramid shape, and a deployment structure including various space devices.
[0053]
In the above-described embodiment, the case where the antenna reflector is used as a support structure has been described. However, the present invention is not limited to this, and various other space deployments configured to be foldable and deployable such as platforms built in space. It can also be applied to structures.
[0054]
Therefore, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a space deployment structure capable of realizing a highly reliable and highly accurate folding and unfolding operation and promoting the reduction in size and weight. Can do.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an extracted antenna reflector using a deployment truss of a space deployment structure to which the present invention is applied.
FIG. 2 is a perspective view showing the unfolded truss shown in FIG.
FIG. 3 is a perspective view showing an antenna reflecting mirror formed by connecting 14 modules of FIG. 1;
4 is a plan view showing a four-side truss structure constituting the deployed truss shown in FIG. 1. FIG.
FIG. 5 is a layout diagram showing a layout configuration of a drive motor for deployment driving of a space deployment structure according to an embodiment of the present invention;
6 is a partially enlarged view showing a state in which the drive motor of FIG. 1 is attached to a deployment truss.
7 is a partially enlarged view showing a developed torque wire mechanism in which the drive motor of FIG. 1 is not arranged; FIG.
8 is a characteristic diagram showing the relationship between the tension of the wire member and the movement amount (mutation) of the wire member during the unfolding operation of FIG.
FIG. 9 is a partially enlarged view showing a conventional deployment mechanism part taken out for explaining the feature of the present invention.
FIG. 10 is a characteristic diagram according to a conventional configuration shown for comparison with the characteristic diagram of FIG. 8;
FIG. 11 is a partially enlarged view for explaining the configuration of a space deployment structure according to another embodiment of the present invention.
FIG. 12 is a layout diagram shown for explaining the configuration of a space deployment structure according to another embodiment of the present invention.
[Explanation of symbols]
11 ... Mesh.
12 ... Wire.
13 ... Support pillar.
14: Reflective mirror surface portion.
20 ... Deployment truss.
21a, b, c, d, e, f ... Four-sided link.
22: Central longitudinal member.
23. Module.
24a, b, c, d, e, f...
25a, b, c, d, e, f ... Module coupling hinges.
26a, b, c, d, e, f ... module coupling hinges.
30: Truss combination.
52, 53 ... Transverse members.
54, 55 ... Hinge.
56, 57 ... Hinge.
58, 59 ... shaft portion.
60, 62, 64 ... Hinge.
61, 63 ... Diagonal members.
70, 76 ... sliding members.
71, 72, 74 ... Hinge.
73, 75 ... Links.
80: Compression spring.
90: Drive motor.
91: Drive pulley.
92: A wire member.
93: Intermediate pulley.
94 ... A moving pulley.
110 ... Boom.
200: Base.
210 ... pulley.

Claims (3)

第1から第4の四辺部材の端部を回転自在に四辺形状に結合した四辺構造を、前記第1の四辺部材である中央縦部材として放射状に複数個組合わせ、この四辺構造の一方の対角線間に、中間部が回転自在に折れ曲がり自在に連接される第1及び第2の斜部材を架設し、前記中央縦部材に沿って直線駆動される駆動制御部を介して折畳み展開される展開トラスと、
この展開トラスを複数個、折畳み展開自在に組み合わせ結合したトラス結合体と、
ワイヤ部材の一端部が前記トラス結合体の複数の展開トラスの駆動制御部に係止されるものであって、前記ワイヤ部材の中間部がプーリに移動自在巻き掛けられ、前記ワイヤ部材の他端部が前記一端部と略直交する方向に移動自在に設けられたワイヤ機構と、
このワイヤ機構のワイヤ部材の他端部を巻き取り制御して前記トラス結合体の複数の駆動制御部を直線駆動し、前記展開トラスを折畳み展開する駆動手段と
を具備し、
前記駆動手段は、前記トラス結合体のいずれか一つの展開トラスに配設され、前記ワイヤ機構を介して前記トラス結合体の他の展開トラスを駆動してなることを特徴とする宇宙展開構造物。
A plurality of quadrilateral structures in which end portions of the first to fourth quadrilateral members are rotatably coupled to each other in a quadrilateral shape are radially combined as a central longitudinal member which is the first quadrilateral member, and one diagonal line of the quadrilateral structure is formed. A deployment truss in which a first and a second slant members are connected to each other so that a middle portion is rotatably bent and is folded and unfolded via a drive control unit that is linearly driven along the central longitudinal member. When,
A truss combination that combines a plurality of these deployment trusses so that they can be folded and unfolded.
Be one end of the wire member is locked to the drive control unit of the plurality of deployable truss of the truss conjugate intermediate portion of the wire member is wound so as to be movable in the pulley, the other of the wire member A wire mechanism in which an end is movably provided in a direction substantially orthogonal to the one end;
A drive means for controlling the winding of the other end of the wire member of the wire mechanism to linearly drive the plurality of drive control units of the truss combined body, and folding and unfolding the unfolded truss ;
The space deployment structure characterized in that the driving means is disposed on any deployment truss of the truss coupling body and drives another deployment truss of the truss coupling body via the wire mechanism . .
前記駆動手段は、前記トラス結合体の複数の駆動制御部を前記展開トラスの展開方向に移動付勢する付勢手段と、前記ワイヤ部材の他端部を巻き取り駆動する前記トラス結合体の複数の展開トラス以外の展開トラスに設けられた駆動モータとを備えてなることを特徴とする請求項1記載の宇宙展開構造物。The drive means includes a biasing means for moving and biasing a plurality of drive control units of the truss combination body in a deployment direction of the deployment truss, and a plurality of the truss combination bodies winding and driving the other end portion of the wire member. The space deployment structure according to claim 1 , further comprising a drive motor provided on a deployment truss other than the deployment truss. 前記駆動制御部は、傘機構で構成してなることを特徴とする請求項1又は2記載の宇宙展開構造物。The space deployment structure according to claim 1 , wherein the drive control unit is configured by an umbrella mechanism.
JP2000051780A 2000-02-28 2000-02-28 Space expansion structure Expired - Fee Related JP4247757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051780A JP4247757B2 (en) 2000-02-28 2000-02-28 Space expansion structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051780A JP4247757B2 (en) 2000-02-28 2000-02-28 Space expansion structure

Publications (2)

Publication Number Publication Date
JP2001239999A JP2001239999A (en) 2001-09-04
JP4247757B2 true JP4247757B2 (en) 2009-04-02

Family

ID=18573391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051780A Expired - Fee Related JP4247757B2 (en) 2000-02-28 2000-02-28 Space expansion structure

Country Status (1)

Country Link
JP (1) JP4247757B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086528B2 (en) * 2005-06-07 2012-11-28 Ntn株式会社 Hub bearing grease and hub bearing
US7595769B2 (en) * 2006-02-28 2009-09-29 The Boeing Company Arbitrarily shaped deployable mesh reflectors
CN113955161B (en) * 2021-12-10 2023-06-20 北京科技大学 Capturing device and capturing method for space non-cooperative target

Also Published As

Publication number Publication date
JP2001239999A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6550209B2 (en) Modular deployable antenna
US7644721B2 (en) Synchronized four-bar linkages
WO2014127813A1 (en) Deployable support structure
JPH0742812B2 (en) Deployed structure
JP4247757B2 (en) Space expansion structure
JP4247755B2 (en) Expanded truss structure and antenna reflector
JP2001233299A (en) Space unfolding structure
JP3878973B2 (en) Expandable frame structure
JP2003095199A (en) Developable antenna
JP3195055B2 (en) Deployable truss structure
JP3168213B2 (en) Deployable truss and telescopic device
JP3859332B2 (en) Expanded structure
JP3516648B2 (en) Method and apparatus for mesh folding of deployable mesh antenna
JP2567164B2 (en) Deployable truss structure
JP2642591B2 (en) Deployable antenna reflector
JPH0659880B2 (en) Deployable frame structure
JP3641186B2 (en) Deployable truss structure and antenna device using the same
JP2567192B2 (en) Deployable truss structure
JPH05221392A (en) Unfolding truss structure
JPH04197898A (en) Truss structure
JPH05221394A (en) Unfolding truss structure
JPH05221395A (en) Unfolding truss structure
JPH05221391A (en) Unfolding truss structure
JP2555487B2 (en) Truss structure
JPH0687497A (en) Extension type truss structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees