JP4247374B2 - Control method of fuel injection amount for marine engine - Google Patents

Control method of fuel injection amount for marine engine Download PDF

Info

Publication number
JP4247374B2
JP4247374B2 JP28103098A JP28103098A JP4247374B2 JP 4247374 B2 JP4247374 B2 JP 4247374B2 JP 28103098 A JP28103098 A JP 28103098A JP 28103098 A JP28103098 A JP 28103098A JP 4247374 B2 JP4247374 B2 JP 4247374B2
Authority
JP
Japan
Prior art keywords
engine speed
control
speed
engine
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28103098A
Other languages
Japanese (ja)
Other versions
JP2000110635A (en
Inventor
正 中島
貴志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP28103098A priority Critical patent/JP4247374B2/en
Publication of JP2000110635A publication Critical patent/JP2000110635A/en
Application granted granted Critical
Publication of JP4247374B2 publication Critical patent/JP4247374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、舶用機関の燃料噴射量の制御方法に関するものである。
【0002】
【従来の技術】
ガバナコントローラは、現在の機関回転数やアクセル位置、及び燃料噴射量を調整するラック位置の情報を得て適切な機関回転数になるように機関を制御する。ここで、燃料噴射量を調整するのに従来からドループ制御とアイソクロナス制御が用いられている。
【0003】
ドループ制御は、機関に負荷がかかるとその負荷の大きさに応じて機関回転数を減少させながら燃料の噴射量を増加させる制御方法であり、ドループ制御を用いた場合は、船体の慣性が小さい無負荷領域(図2の二点鎖線Aより下側)では燃料噴射量に対する機関回転数の減少量を多くしてハンチングを防止し、又、船体の慣性が大きい負荷領域(図2の二点鎖線Aより上側)では燃料噴射量に対する機関回転数の減少量を少なくすることによりアクセルの入れ込み量に対する船速の応答性を向上させていた。
【0004】
アイソクロナス制御は、機関に負荷がかかり機関回転数が減少すると、減少した分だけ回転数を戻して元の機関回転数に補正し、一定の機関回転数を維持する制御方法である。
【0005】
アイソクロナス制御を実施すると、機関にかかる負荷の大きさによらず機関回転数を一定に保つことができるが、逆に操船者が今、機関に負荷がかかっているのかどうかを認識することができず、例えば、漁船で魚群が網にかかると負荷が増大するが、アイソクロナス制御により機関回転数が一定に保たれると、操船者は魚群が網にかかったことを機関回転数計で目視確認することができない。
【0006】
また、基本ガバナ制御(ドループ制御)自体の勾配を大きくする、つまり図2の直線a、b、dの勾配を破線eの勾配にすると、機関回転数の減少は緩和されるが、今度は逆に負荷変動に対して機関回転数が収束せずにハンチングを起こしてしまう。
【0007】
この場合、基本ガバナ制御(ドループ制御)の制御周期(例えば5ms)を回転数補正制御(アイソクロナス制御)の制御周期(例えば20ms)並に変更すると、ハンチングは防止できるが機関の加速、減速の応答性が悪化する。経験上、ドループ制御の制御周期は5ms程度にしておくことが、操船者がストレスを感じない応答性を発揮することができるため、ドループ制御の制御周期を大きく設定するのは好ましくない。
【0008】
【発明が解決しようとする課題】
これらの課題を解決するため、本発明は、機関に負荷がかかると、機関回転数の減少量をドループ制御のみを実施している場合よりも緩和し、かつハンチングを起こさないアイソクロナス制御に似た制御方法(以下、擬似アイソクロナス制御と呼ぶ)を提供することを目的とする。
【0009】
【課題を解決するための手段】
負荷増加に伴って、無負荷時の機関回転数から機関回転数が減少する、ドループ制御を行う舶用機関の燃料噴射量の制御方法において、無負荷時に設定された目標機関回転数から、負荷がかかったときに前記負荷に応じた回転数減少量を減じた、負荷時の目標機関回転数を算出し、負荷状態で、無負荷時の目標機関回転数から、ドループ特性に従って減少する実機関回転数を、前記負荷時の目標機関回転数となるよう、回転数を補正する回転数補正制御(アイソクロナス制御)を、前記ドループ制御に割り込ませる制御を行うことを特徴とする。
【0010】
【発明の実施の形態】
図1は、舶用機関で使用する電子ガバナコントローラ1の信号伝達経路を示している。図1において、電子ガバナコントローラ1は、CPU11、アナログ入力回路12、設定入力回路13、回転数入力回路14及びトランジスタ出力回路15で構成されている。
【0011】
アクセルセンサ3は、アクセルの入れ込み量を検出し、アクセル位置検出信号をアナログ入力回路12を介してCPU11に入力する。ラック位置検出装置2は、燃料噴射量を調整するラックの位置を検出し、ラック位置検出信号をアナログ入力回路12を介してCPU11に入力する。機関回転数検出装置4は、機関回転数を検出し、機関回転数検出信号を回転数入力回路14を介してCPU11に入力する。
【0012】
CPU11は、アクセル位置検出信号から負荷時の目標機関回転数(例えば図2の破線e上の点Gにおける機関回転数N)を算出し、現在の機関回転数(機関回転数検出信号で把握する。例えば図2の実線a上の点Fの機関回転数N)との差分を補正するようにトランジスタ出力回路15を介してラックアクチュエータ5へ出力し、ラックアクチュエータ5を操作して燃料噴射量を調整する。
【0013】
図2は、本発明の舶用機関の燃料噴射量の制御方法を適用した燃料噴射量(ラック位置)と機関回転数の関係をグラフで示したものである。右上がりの破線は、無負荷時(アイドル状態)における機関回転数と燃料噴射量(ラック位置)をプロットしたものである。以下において、無負荷時の機関回転数をアイドル回転数と呼ぶことにする。
【0014】
今、アイドル回転数がNのときに機関に負荷がかかった場合を図2を参照しながら考える。機関回転数N時のアイドル状態においては、点Eがただ一つ定まる。CPU11(図1)にインプットされている予め作成された燃焼噴射量に対する機関回転数の減少の割合を設定したマップ(図示せず)を元に、この点Eを起点として、機関にかかった負荷の大きさにより実線aがただ一つだけ選定される。
【0015】
アイドル回転数(例えばN)は、アクセルセンサ3(図1)で検出されるアクセル位置検出信号により算出される。また、この右上りの破線上から左上がりの実線a、bが描かれているが、この実線a、bは、アイドル回転数がそれぞれN、Nで機関に負荷がかかった際の機関回転数とラック位置の関係をプロットしたものである。実線aは機関回転数Nで規定され、また実線bは機関回転数Nで規定されるドループ制御を示すグラフである。
【0016】
ドループ制御ではアイドル回転数Nの時に負荷がかかると、機関回転数はNになる。つまり(N−N)分だけ機関回転数が減少する。これに対して機関に負荷がかかった際に、機関回転数を最初のNに自動的に補正する制御方法としてアイソクロナス制御がある。ドループ制御がアイドル回転数Nで決まる実線a上を点Eから点Fへ推移するのに対して、アイソクロナス制御では、実線a上から機関回転数Nで決まる実線d上のH点にシフトさせる。
【0017】
図2では実線aに平行なグラフは実線b及びdしか示していないが、実線a−d間には、実線aと平行でアイドル回転数で決まるラック位置−機関回転数グラフが無数に存在し、これら無数のグラフにおいて、上方(右方)のグラフにシフトしながら、負荷がかかった状態で、点H(機関回転数:N)に到達するのである。勿論、実線aに平行なラック位置−機関回転数グラフは、実線a−d間以外にも存在する。
【0018】
アイソクロナス制御では、機関回転数の減少量をラック位置補正量の算出基準としているので、算出された燃料補正量ではタイムラグが生じた分だけ不足し、補正された燃料の噴射量では機関回転数の減少を矯正することはできない。その為、負荷が大きいとその分機関回転数の減少量が大きくなるが、機関回転数が目標回転数に収束するまでラック位置の調整操作は繰り返され、機関回転数をNに補正することができる。
【0019】
以上のように従来のアイソクロナス制御では、機関回転数がN(点E)だったところ、負荷が大きくなり実線aに沿って点Fまで移動し、燃料噴射量を増加させながら機関回転数がNに下がると、グラフ上の点FからH点に移動させる。点Hは機関回転数Nであり、従来のアイソクロナス制御では設定した機関回転数Nが維持される。しかし本発明の舶用機関の燃料噴射量の制御方法では、点Eから左上がりの破線e上の点G(負荷時の目標機関回転数:N)まで戻し(戻す行程は後述する)、当初の機関回転数Nよりも(N−N)分だけ回転数を故意に減少させる。
【0020】
つまり、ドループ制御を示す実線a、b及びdとは別に、アイドル回転数によって決定する負荷に対応した機関回転数マップ(破線e)を予め設定しておき、CPU11(図1)に記憶させておく。ここで、図2に示す破線eは、機関回転数Nの点Eに対してのみならず、図2のアイドル状態を示す破線上の全域(例えば点Q)に渡って存在する。
【0021】
実線aに沿ってドループ制御により点Eから点Fへ推移した後、点Fにおいて機関回転数Nが安定しているうちに燃料噴射量のみを増加させると、図2の点Pに達する。点Pは、アイドル回転数Nで規定されるドループ線上の点であり、点Pに推移して目標機関回転数をRにすると、当初、点Eのアイドル回転数N時にかかった負荷の大きさが、Rの量の燃料噴射量を必要としないので、点Pから実線bに沿って点Gまで推移し、機関回転数はNとなる。
【0022】
通常のアイソクロナス制御では、燃料の噴射量の増加に対して機関回転数は一定(繰り返し補正されながら一定を保つ)であり、図2の縦軸に平行な線上(機関回転数がN)を推移していたが、本発明では、これを負の傾きをもつ破線e上を推移するように機関回転数が例えば図2のΔnだけ減少するように制御する。つまり、図2に複数の細線の矢印で示すように、点F、点Iを経て点G、点Jのように破線e上に存在するように制御する。
【0023】
図3は、基本ガバナ制御(ドループ制御)と回転数補正制御(擬似アイソクロナス制御)を破線で区切りながら、両制御の相対関係を示した流れ図である。基本的には制御周期5msでドループ制御を行い、制御周期20msで擬似アイソクロナス制御を行う。
【0024】
まず、図3の右側の基本ガバナ制御(ドループ制御)から説明する。ラック位置検出センサ2(図1)により実際のラック位置Rを検出してCPU11(図1)に入力し、アクセルセンサ3により入力されたアクセルの入れ込み量からCPU11(図1)が目標機関回転数Nを算出し、かつ機関回転数検出装置4から現時点の機関回転数NがCPU11(図1)に入力され、これらラック位置R、目標機関回転数N、及び機関回転数Nから、CPU11(図1)は目標ラック位置Rを次式で算出する。
=(N−N+ΔN)・D+R
【0025】
ここで、Dは直線a、b及びdの傾きの絶対値(以下ドループ係数と呼ぶ)、ΔNはアイソクロナス補正回転数である。この計算式で算出された目標ラック位置にラックアクチュエータ5(図1)でラックを移動させ、燃料噴射量を制御する。この制御は5ms毎に行う(制御周期5ms)。
【0026】
次に、図3の左側の回転数補正制御(擬似アイソクロナス制御)について説明する。つまりΔNの算出方法について説明する。まず、ラック位置検出センサ2(図1)により検出されたラック位置RをCPU11に入力し、次式により回転数減少量Δnを算出する。
Δn=(R−R)/K
ここでRは点Eにおけるラック位置(アイドル回転数)を、また、Kは破線eの傾きの絶対値であり、機関回転数減少量ゲインである。
【0027】
アクセルセンサ3から検出された検出信号から算出された目標機関回転数Nから上記回転数減少量Δnを差し引いたものを負荷時の目標機関回転数(図2の破線e上の点)とし、実回転数との間に差が生じた場合には、その偏差を積分して回転数補正量ΔNを算出する。
【0028】
回転数補正量ΔNは、擬似アイソクロナス積分値(回転数補正量)をN(n)とし、擬似アイソクロナスゲインをKとすると、次式で算出することができる。
ΔN={(N−Δn−N)+N(n−1)}・K
【0029】
機関にかかる負荷の大きさが変化し、実回転数が変化すれば、上記制御を行い、負荷の大きさに応じた回転減少量に調整する。以上の制御は、制御周期を変更することで負荷変動時の応答性を変えることができる。また、機関回転数減少量ゲインKを変更することにより、任意に機関回転数減少量が設定できるので、回転域等により機関回転数減少量ゲインを変更することにより、自由に機関の負荷特性を設定することができる。
【0030】
【発明の効果】
本発明の燃料噴射量の制御方法を適用すると、ドループ制御のみを実行している時よりも機関回転数の減少を緩和し、かつハンチングを防止することが出来て、負荷領域において船体に負荷がかかったことを機関回転数計の針が振れることで操船者が目視確認することができ、操船性が向上する。
【0031】
本発明は、図2のドループ制御を示す実線a、bに沿って下がった機関回転数を、所定分だけ向上させて所定の負の傾きをもつ破線e上に載せたことに特徴があり、アイソクロナス制御を実施しながら機関回転数を減少させることで、波浪の影響を受けたり、漁船で魚群が網にかかったことを機関回転数計で視覚的に確認することができ、適切な操船を行うことができる。
【図面の簡単な説明】
【図1】舶用機関の電子ガバナコントローラの構成図である。
【図2】燃料噴射量と機関回転数の関係を示すグラフである。
【図3】本発明による舶用機関の燃料噴射量の制御方法の流れ図である。
【符号の説明】
4 機関回転数検出装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the fuel injection amount of a marine engine.
[0002]
[Prior art]
The governor controller obtains information on the current engine speed, accelerator position, and rack position for adjusting the fuel injection amount, and controls the engine so as to obtain an appropriate engine speed. Here, droop control and isochronous control are conventionally used to adjust the fuel injection amount.
[0003]
Droop control is a control method in which when the engine is loaded, the fuel injection amount is increased while the engine speed is decreased according to the magnitude of the load. When droop control is used, the inertia of the hull is small. In the no-load region (below the two-dot chain line A in FIG. 2), the reduction amount of the engine speed with respect to the fuel injection amount is increased to prevent hunting, and the load region (the two points in FIG. On the upper side of the chain line A), the responsiveness of the boat speed to the accelerator insertion amount is improved by reducing the decrease amount of the engine speed with respect to the fuel injection amount.
[0004]
Isochronous control is a control method in which when a load is applied to the engine and the engine speed decreases, the engine speed is restored by the reduced amount and corrected to the original engine speed to maintain a constant engine speed.
[0005]
When isochronous control is implemented, the engine speed can be kept constant regardless of the load on the engine, but conversely, the operator can recognize whether the engine is currently loaded. For example, the load increases when a fish school hits the net on a fishing boat, but if the engine speed is kept constant by isochronous control, the ship operator visually confirms that the fish school has hit the net with an engine speed meter. Can not do it.
[0006]
Further, if the basic governor control (droop control) itself has a large gradient, that is, the gradients of the straight lines a, b, and d in FIG. In contrast, the engine speed does not converge with respect to load fluctuations, causing hunting.
[0007]
In this case, if the control cycle (for example, 5 ms) of basic governor control (droop control) is changed to the same as the control cycle (for example, 20 ms) of rotation speed correction control (isochronous control), hunting can be prevented, but engine acceleration and deceleration responses Sex worsens. From experience, it is not preferable to set the control period of droop control to a large value, because setting the control period of droop control to about 5 ms can exhibit responsiveness that the operator does not feel stress.
[0008]
[Problems to be solved by the invention]
In order to solve these problems, the present invention is similar to isochronous control in which when the engine is loaded, the amount of decrease in the engine speed is reduced more than when only droop control is performed, and hunting does not occur. An object is to provide a control method (hereinafter referred to as pseudo-isochronous control).
[0009]
[Means for Solving the Problems]
In the method for controlling the fuel injection amount of a marine engine that performs droop control in which the engine speed decreases from the engine speed at no load as the load increases, the load is reduced from the target engine speed set at no load. Calculates the target engine speed at load when the engine speed is reduced according to the load when applied, and the actual engine speed decreases according to the droop characteristic from the target engine speed at no load in the loaded state. Control is performed such that rotation speed correction control (isochronous control) for correcting the rotation speed is interrupted in the droop control so that the number becomes the target engine rotation speed at the time of load.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a signal transmission path of an electronic governor controller 1 used in a marine engine. In FIG. 1, the electronic governor controller 1 includes a CPU 11, an analog input circuit 12, a setting input circuit 13, a rotation speed input circuit 14, and a transistor output circuit 15.
[0011]
The accelerator sensor 3 detects the amount of accelerator insertion, and inputs an accelerator position detection signal to the CPU 11 via the analog input circuit 12. The rack position detection device 2 detects the position of the rack for adjusting the fuel injection amount, and inputs a rack position detection signal to the CPU 11 via the analog input circuit 12. The engine speed detection device 4 detects the engine speed and inputs an engine speed detection signal to the CPU 11 via the speed input circuit 14.
[0012]
The CPU 11 calculates the target engine speed at the time of load (for example, the engine speed N 4 at the point G on the broken line e in FIG. 2) from the accelerator position detection signal, and grasps it with the current engine speed (engine speed detection signal). For example, output is made to the rack actuator 5 via the transistor output circuit 15 so as to correct the difference from the engine speed N 2 at the point F on the solid line a in FIG. Adjust the amount.
[0013]
FIG. 2 is a graph showing the relationship between the fuel injection amount (rack position) to which the marine engine fuel injection amount control method of the present invention is applied and the engine speed. The broken line rising to the right is a plot of the engine speed and fuel injection amount (rack position) at no load (idle state). Hereinafter, the engine speed at no load will be referred to as idle speed.
[0014]
Now, a case where the engine is loaded when the idling speed is N 1 will be considered with reference to FIG. In the idle state at the engine speed N 1 o'clock, only one point E is determined. Based on a map (not shown) in which the ratio of reduction in engine speed with respect to a previously created combustion injection amount input to the CPU 11 (FIG. 1) is set, the load applied to the engine starting from this point E Only one solid line a is selected depending on the size of.
[0015]
The idle rotation speed (for example, N 1 ) is calculated from an accelerator position detection signal detected by the accelerator sensor 3 (FIG. 1). Also, solid lines a and b that are drawn from the upper right broken line to the left are drawn. These solid lines a and b indicate the engine when the engine is loaded at idle speeds N 1 and N 6 , respectively. This is a plot of the relationship between the rotational speed and the rack position. A solid line a is defined by the engine speed N 1 and a solid line b is a graph showing the droop control defined by the engine speed N 6 .
[0016]
When the load at the time of idling speed N 1 in loop control is applied, the engine speed becomes N 2. That is, the engine speed is reduced by (N 1 −N 2 ). When the load on the engine with respect to the this applied, there is isochronous control as a control method for automatically correcting the engine speed to the first N 1. The droop control shifts from the point E to the point F on the solid line a determined by the idle speed N 1 , whereas the isochronous control shifts from the solid line a to the H point on the solid line d determined by the engine speed N 5. Let
[0017]
In FIG. 2, the graph parallel to the solid line a shows only the solid lines b and d, but there are innumerable rack position-engine speed graphs parallel to the solid line a and determined by the idle speed between the solid lines a and d. In these myriad graphs, the point H (engine speed: N 1 ) is reached in a loaded state while shifting to the upper (right) graph. Of course, the rack position-engine speed graph parallel to the solid line a also exists other than between the solid lines a-d.
[0018]
In isochronous control, the amount of decrease in engine speed is used as the reference for calculating the rack position correction amount. Therefore, the calculated fuel correction amount is insufficient by the amount of time lag, and the corrected fuel injection amount The decrease cannot be corrected. Therefore, the load although the reduction of that amount engine speed is increased larger, the adjusting operation of the rack position to the engine speed converges to the target rotational speed is repeated, correcting the engine speed to N 1 Can do.
[0019]
As described above, in the conventional isochronous control, when the engine speed is N 1 (point E), the load increases and moves to point F along the solid line a, and the engine speed increases while increasing the fuel injection amount. When drops N 2, it is moved to the point H from point F on the graph. Point H is the engine speed N 1, the conventional isochronous control is maintained the engine speed N 1 is set. However, in the marine engine fuel injection amount control method of the present invention, it returns to the point G ( the target engine speed at the time of load : N 4 ) on the broken line e rising from the point E (the return process will be described later). The engine speed is intentionally reduced by (N 1 −N 4 ) than the engine speed N 1 of the engine.
[0020]
That is, apart from the solid lines a, b and d indicating the droop control, an engine speed map (broken line e) corresponding to the load determined by the idle speed is set in advance and stored in the CPU 11 (FIG. 1). deep. Here, the broken line e shown in FIG. 2 exists not only for the point E of the engine speed N 1 but also over the entire area (for example, the point Q) on the broken line showing the idle state in FIG.
[0021]
After transition from point E to point F by the loop control along the solid line a, increasing only the fuel injection amount while you are the engine speed N 2 stable at point F, it reaches the point P in FIG. Point P is a point on the droop line defined by the idle speed N 6 , and when the target engine speed is changed to R 1 after moving to the point P, the load applied at the time of the idle speed N 1 at point E at the beginning Therefore, the amount of fuel injection does not require the amount of fuel injection R 1 , so that the engine speed changes from point P to point G along the solid line b, and the engine speed is N 4 .
[0022]
In normal isochronous control, the engine speed is constant (maintains constant while being repeatedly corrected) with an increase in the fuel injection amount, and is on a line parallel to the vertical axis of FIG. 2 (engine speed is N 1 ). In the present invention, the engine speed is controlled so as to decrease, for example, by Δn in FIG. 2 so as to shift on the broken line e having a negative slope. That is, as shown by a plurality of thin line arrows in FIG. 2, control is performed so as to exist on the broken line e like the point G and the point J through the point F and the point I.
[0023]
FIG. 3 is a flowchart showing the relative relationship between the two controls while separating basic governor control (droop control) and rotational speed correction control (pseudoisochronous control) with a broken line. Basically, droop control is performed at a control cycle of 5 ms, and pseudo-isochronous control is performed at a control cycle of 20 ms.
[0024]
First, the basic governor control (droop control) on the right side of FIG. 3 will be described. The actual rack position R 3 is detected by the rack position detection sensor 2 (FIG. 1) and is input to the CPU 11 (FIG. 1). The CPU 11 (FIG. 1) determines the target engine speed based on the accelerator insertion amount input by the accelerator sensor 3. The number N 1 is calculated, and the current engine speed N 2 is input from the engine speed detector 4 to the CPU 11 (FIG. 1). These rack position R 3 , target engine speed N 1 , and engine speed N 2 , the CPU 11 (FIG. 1) calculates the target rack position R 1 by the following equation.
R 1 = (N 1 −N 2 + ΔN) · D + R 2
[0025]
Here, D is the absolute value of the slopes of the straight lines a, b and d (hereinafter referred to as the droop coefficient), and ΔN is the isochronous correction rotational speed. The rack is moved by the rack actuator 5 (FIG. 1) to the target rack position calculated by this calculation formula, and the fuel injection amount is controlled. This control is performed every 5 ms (control cycle 5 ms).
[0026]
Next, the rotation speed correction control (pseudo isochronous control) on the left side of FIG. 3 will be described. That is, a method for calculating ΔN will be described. First, the rack position R 3 detected by the position detecting sensor 2 (FIG. 1) is input to the CPU 11, to calculate the rotational speed decrease amount Δn by the following equation.
Δn = (R 3 −R 2 ) / K n
Wherein the R 2 is rack position at point E (idle speed), and the K n is the absolute value of the slope of the dashed line e, which is the engine rotational speed decrease amount gain.
[0027]
A value obtained by subtracting the rotation speed reduction amount Δn from the target engine speed N 1 calculated from the detection signal detected from the accelerator sensor 3 is a target engine speed at the time of loading (a point on the broken line e in FIG. 2). If there is a difference from the actual rotational speed, the rotational speed correction amount ΔN is calculated by integrating the deviation.
[0028]
The rotational speed correction amount ΔN can be calculated by the following equation where the pseudo isochronous integral value (rotational speed correction amount) is N (n) and the pseudo isochronous gain is K s .
ΔN = {(N 1 −Δn−N 2 ) + N (n−1)} · K s
[0029]
If the magnitude of the load on the engine changes and the actual rotational speed changes, the above control is performed to adjust the rotation reduction amount according to the magnitude of the load. The above control can change the responsiveness at the time of load change by changing the control cycle. Further, by changing the engine speed decrease amount gain K n, it can be set the engine speed decrease amount arbitrarily by changing a decrease amount gain engine speed by speed range or the like, freely engine load characteristic Can be set.
[0030]
【The invention's effect】
When the fuel injection amount control method of the present invention is applied, the decrease in engine speed can be reduced and hunting can be prevented as compared with the case where only droop control is performed, and the load on the hull is reduced in the load region. The ship operator can visually confirm that this has occurred by swinging the needle of the engine speed meter, which improves the maneuverability.
[0031]
The present invention is characterized in that the engine speed lowered along the solid lines a and b showing the droop control in FIG. 2 is improved by a predetermined amount and placed on a broken line e having a predetermined negative slope, By reducing the engine speed while carrying out isochronous control, it is possible to visually check with the engine speed meter that it is affected by waves and that a fish school has caught the net on a fishing boat. It can be carried out.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electronic governor controller of a marine engine.
FIG. 2 is a graph showing the relationship between the fuel injection amount and the engine speed.
FIG. 3 is a flowchart of a method for controlling the fuel injection amount of a marine engine according to the present invention.
[Explanation of symbols]
4 Engine speed detector

Claims (1)

負荷増加に伴って、無負荷時の機関回転数から機関回転数が減少する、ドループ制御を行う舶用機関の燃料噴射量の制御方法において、In the method for controlling the fuel injection amount of a marine engine that performs droop control in which the engine speed decreases from the engine speed at no load as the load increases,
無負荷時に設定された目標機関回転数(NTarget engine speed (N 1 )から、負荷(R) To load (R 3 −R-R 2 )がかかったときに前記負荷に応じた回転数減少量(Δn=N) Is applied, the rotational speed reduction amount (Δn = N 1 −N-N 4 )を減じた、負荷時の目標機関回転数(N), The target engine speed at load (N 4 )を算出し、)
負荷状態で、無負荷時の目標機関回転数(NThe target engine speed (N 1 )から、ドループ特性に従って減少する実機関回転数(N) From the actual engine speed (N 2 )を、前記負荷時の目標機関回転数(N) For the target engine speed (N 4 )となるよう、回転数を補正(ΔN=N) So that the rotational speed is corrected (ΔN = N 4 −N-N 2 )する回転数補正制御(アイソクロナス制御)を、前記ドループ制御に割り込ませる制御を行うことを特徴とする、舶用機関の燃料噴射量の制御方法。A control method for controlling the fuel injection amount of the marine engine, wherein control for interrupting the rotational speed correction control (isochronous control) to be performed in the droop control is performed.
JP28103098A 1998-10-02 1998-10-02 Control method of fuel injection amount for marine engine Expired - Lifetime JP4247374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28103098A JP4247374B2 (en) 1998-10-02 1998-10-02 Control method of fuel injection amount for marine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28103098A JP4247374B2 (en) 1998-10-02 1998-10-02 Control method of fuel injection amount for marine engine

Publications (2)

Publication Number Publication Date
JP2000110635A JP2000110635A (en) 2000-04-18
JP4247374B2 true JP4247374B2 (en) 2009-04-02

Family

ID=17633321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28103098A Expired - Lifetime JP4247374B2 (en) 1998-10-02 1998-10-02 Control method of fuel injection amount for marine engine

Country Status (1)

Country Link
JP (1) JP4247374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8843297B2 (en) 2012-04-18 2014-09-23 Mitsubishi Electric Corporation Rpm control device and rpm control method for a general-purpose engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036179A (en) * 2007-08-03 2009-02-19 Yanmar Co Ltd Engine control device
JP4966784B2 (en) * 2007-08-03 2012-07-04 ヤンマー株式会社 engine
JP5780669B2 (en) * 2011-06-10 2015-09-16 ボッシュ株式会社 Engine rotation control mode switching method and engine rotation control device
JP5921464B2 (en) * 2013-03-05 2016-05-24 ヤンマー株式会社 Engine generator
JP5646020B1 (en) 2013-08-28 2014-12-24 三菱電機株式会社 ENGINE CONTROL DEVICE AND ENGINE CONTROL METHOD
WO2015186352A1 (en) * 2014-06-06 2015-12-10 ヤンマー株式会社 Engine control device and engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8843297B2 (en) 2012-04-18 2014-09-23 Mitsubishi Electric Corporation Rpm control device and rpm control method for a general-purpose engine

Also Published As

Publication number Publication date
JP2000110635A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
KR900004546A (en) Vehicle speed control device
KR970010314B1 (en) Electronic governor of fuel supplying device for an engine
JP4247374B2 (en) Control method of fuel injection amount for marine engine
JP2847142B2 (en) Engine idle speed control device
JPH05106488A (en) Idling revolution controller for internal combustion engine
KR920006921B1 (en) Engine control method
US4727836A (en) Fuel injection apparatus for internal combustion engine
EP0206790B1 (en) Method of controlling idling rotational speed in internal combustion engines
JPH0459463B2 (en)
JP3131333B2 (en) Engine electronically controlled fuel injection system
KR101106479B1 (en) Method and device for controlling output of internal combustion engine
KR0176721B1 (en) Fuel supply control apparatus for internal combustion engine
KR100354005B1 (en) Controlling method for engine of vehicle
JP2803364B2 (en) Digital controller
KR100305791B1 (en) Fuel injection method when idle driving of vehicle
JP2935556B2 (en) Electronic fuel control device
JPH0219559Y2 (en)
JP2586417B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPS6334305B2 (en)
JP2807557B2 (en) Fuel control method after engine start
JPS639647A (en) Electronic control fuel injection equipment for internal combustion engine
JPS6361744A (en) Correction device for fuel injection control device
JPH0745845B2 (en) Correction device for fuel injection control device
JPH0663462B2 (en) Gasoline engine fuel controller
JPH05321730A (en) Engine speed control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150123

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term