JP4247191B2 - Gas supply device and operation method for gas engine - Google Patents

Gas supply device and operation method for gas engine Download PDF

Info

Publication number
JP4247191B2
JP4247191B2 JP2005064671A JP2005064671A JP4247191B2 JP 4247191 B2 JP4247191 B2 JP 4247191B2 JP 2005064671 A JP2005064671 A JP 2005064671A JP 2005064671 A JP2005064671 A JP 2005064671A JP 4247191 B2 JP4247191 B2 JP 4247191B2
Authority
JP
Japan
Prior art keywords
gas
supercharger
air
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005064671A
Other languages
Japanese (ja)
Other versions
JP2006249954A (en
Inventor
高之 山本
純之介 安藤
邦憲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Mitsubishi Heavy Industries Ltd
Original Assignee
Research Institute of Innovative Technology for Earth
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Mitsubishi Heavy Industries Ltd filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2005064671A priority Critical patent/JP4247191B2/en
Priority to CNB2006100514528A priority patent/CN100422540C/en
Publication of JP2006249954A publication Critical patent/JP2006249954A/en
Application granted granted Critical
Publication of JP4247191B2 publication Critical patent/JP4247191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、特に低カロリーガス(発熱量の低いガス)を燃料に用いるガスエンジンに好適であり、排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンのガス供給装置に関する。   The present invention is particularly suitable for a gas engine using low-calorie gas (gas having a low calorific value) as a fuel, includes an exhaust turbocharger, mixes fuel gas and air supplied through a fuel gas passage, The present invention relates to a gas supply device for a gas engine that supplies this air-fuel mixture into a cylinder to cause ignition and combustion.

希薄燃焼ガスエンジンにおいては、燃料ガスと空気とを所要の空燃比に制御して混合し、この混合ガスをスロットル弁等の混合ガス流量調整手段を備えた給気管を通して、エンジンの燃焼室に供給している。
かかる希薄燃焼ガスエンジンのうち、排気ターボ過給機(以下過給機という)を備えたガスエンジンにおいては、次のような2種類の燃料ガスの供給方法が用いられている。
(1)各シリンダの給気枝管に、ガスコンプレッサによって過給空気圧よりも高圧に加圧された燃料ガスを各シリンダの直前で噴射する。
(2)燃料ガスを過給機入口空気と混合してこの混合気を過給機に供給し、過給機にてこの混合気を圧縮してエンジンに供給する。
In a lean combustion gas engine, fuel gas and air are mixed while controlling to a required air-fuel ratio, and this mixed gas is supplied to the combustion chamber of the engine through a supply pipe equipped with a mixed gas flow rate adjusting means such as a throttle valve. is doing.
Among such lean combustion gas engines, in a gas engine equipped with an exhaust turbocharger (hereinafter referred to as a supercharger), the following two types of fuel gas supply methods are used.
(1) The fuel gas pressurized to a pressure higher than the supercharging air pressure by the gas compressor is injected into the supply branch pipe of each cylinder immediately before each cylinder.
(2) The fuel gas is mixed with the supercharger inlet air and the air-fuel mixture is supplied to the supercharger. The air-fuel mixture is compressed by the supercharger and supplied to the engine.

さらに前記(1)の手段と(2)の手段とを組み合わせた技術として、特許文献1(特開2001−132550号公報)の技術が提供されている。
かかる技術においては、ガスコンプレッサによって加圧された燃料ガスを給気通路のシリンダ入口またはシリンダ内に供給するとともに、前記ガスコンプレッサにて加圧する前の燃料ガスを過給機上流側の空気通路に供給し、前記シリンダ側への燃料ガス供給と過給機上流側への燃料ガス供給とを切換え可能に構成している。
Further, as a technique combining the means (1) and the means (2), a technique disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2001-132550) is provided.
In this technique, the fuel gas pressurized by the gas compressor is supplied to the cylinder inlet or the cylinder of the supply passage, and the fuel gas before being pressurized by the gas compressor is supplied to the air passage upstream of the supercharger. The fuel gas supply to the cylinder side and the fuel gas supply to the turbocharger upstream side can be switched.

特開2001−132550号公報JP 2001-132550 A

しかしながら、特許文献1にて提供されている従来技術あっては、次のような問題点を有している。
即ち、かかる従来技術にあっては、ガスコンプレッサによって加圧された燃料ガスを給気通路のシリンダ入口またはシリンダ内に供給する燃料ガス供給系では、燃料ガスを過給空気圧よりも高圧に圧縮する必要があるが、燃料ガスとして炭鉱メタンガス等の低カロリーガス(発熱量の低いガス)を用いる場合には、低圧で大流量のガスを圧縮するために大型で大容量のガスコンプレッサを必要とする。
一方、前記ガスコンプレッサにて加圧する前の燃料ガスを過給機上流側の空気通路に供給する燃料ガス供給系では、可燃性の燃料ガスを過給機で高温、高圧に加圧するため、過給機出口で燃料ガスが爆発する危険性を内包している。
However, the prior art provided in Patent Document 1 has the following problems.
That is, in the conventional technology, in the fuel gas supply system that supplies the fuel gas pressurized by the gas compressor to the cylinder inlet of the supply passage or into the cylinder, the fuel gas is compressed to a pressure higher than the supercharging air pressure. It is necessary, but when using low calorie gas (low calorific value gas) such as coal mine methane gas as a fuel gas, a large and large capacity gas compressor is required to compress a gas with a low pressure and a large flow rate. .
On the other hand, in the fuel gas supply system that supplies the fuel gas before being pressurized by the gas compressor to the air passage on the upstream side of the supercharger, the combustible fuel gas is pressurized to high temperature and high pressure by the supercharger. There is a risk of fuel gas explosion at the outlet of the feeder.

従って、本発明はかかる従来技術の課題に鑑み、燃料ガスを過給機入口空気と混合しこの混合気を過給機に供給する燃料ガス供給系と燃料ガスをシリンダ側の給気通路内に供給する燃料ガス供給系とを併設したガスエンジンにおいて、過給機出口での燃料ガスの爆発
の可能性を皆無とするとともに、低カロリーガス(発熱量の低いガス)燃料を用いる場合においても、シリンダ側の給気通路への燃料ガス圧縮用のガスコンプレッサの動力を低減して該ガスコンプレッサを小型小容量化し得るガスエンジンのガス供給装置を提供することを目的とする。
Therefore, in view of the problems of the prior art, the present invention mixes the fuel gas with the supercharger inlet air and supplies the air-fuel mixture to the supercharger and the fuel gas in the air supply passage on the cylinder side. In a gas engine with a fuel gas supply system to be supplied, there is no possibility of explosion of fuel gas at the supercharger outlet, and even when using low calorie gas (gas with low calorific value) fuel, An object of the present invention is to provide a gas supply device for a gas engine that can reduce the power of a gas compressor for compressing a fuel gas into a cylinder-side air supply passage to reduce the size and capacity of the gas compressor.

本発明はかかる目的を達成するもので、排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンにおいて、前記燃料ガス通路を、前記過給機の空気入口に接続される過給機側ガス供給通路と、シリンダ毎の給気通路に接続され前記燃料ガスを圧縮するガスコンプレッサが介装されたシリンダ側ガス供給通路とに分岐し、前記過給機側ガス供給通路を通流する燃料ガスを過給機入口空気と混合しこの混合気を過給機に供給するとともに、前記シリンダ側ガス供給通路を通流する燃料ガスを前記シリンダ毎の給気通路内の給気と混合しこの混合気をエンジンの各シリンダに供給するように構成し、前記過給機側ガス供給通路には該過給機側ガス供給通路のガス流量を調整する過給機側ガス量調整弁を設け、前記シリンダ側ガス供給通路には各シリンダ側ガス供給通路のガス流量を調整するシリンダ側ガス量調整弁をシリンダ毎に設け、さらに前記過給機側ガス量調整弁の開度を制御して、前記過給機側ガス供給通路への燃料ガス量を、前記過給機に供給する混合気中の燃料ガス濃度が設定された可燃下限界ガス濃度以下に保持されるように調整するガス量コントローラを設けたことを特徴とする。
そして、かかるガスエンジンの運転方法は、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンの運転方法であって、前記燃料ガスの一部を過給機の空気入口に接続される過給機側ガス供給通路を通して過給機入口空気と混合しこの混合気を過給機に供給するとともに、前記燃料ガスの残分をシリンダ毎の給気通路に接続され前記燃料ガスを圧縮するガスコンプレッサが介装されたシリンダ側ガス供給通路を通してシリンダ毎の給気通路内の給気と混合しこの混合気をエンジンの各シリンダに供給し、前記過給機側ガス供給通路に設けた過給機側ガス量調整弁の開度を制御して、前記過給機側ガス供給通路への燃料ガス量を、前記過給機に供給する混合気中の燃料ガス濃度が可燃下限界ガス濃度以下に保持されるように調整することを特徴とする。
The present invention achieves such an object, and is a gas engine that includes an exhaust turbocharger, mixes fuel gas and air supplied through a fuel gas passage, and supplies the mixture into a cylinder for ignition and combustion. And a gas compressor for compressing the fuel gas connected to the air supply passage for each cylinder is interposed between the fuel gas passage and the supercharger side gas supply passage connected to the air inlet of the supercharger. The fuel gas which branches into the cylinder side gas supply passage and flows through the supercharger side gas supply passage is mixed with the supercharger inlet air to supply this mixture to the supercharger, and the cylinder side gas supply The fuel gas flowing through the passage is mixed with the supply air in the supply passage for each cylinder, and this mixture is supplied to each cylinder of the engine. Supply side gas supply A turbocharger side gas amount adjusting valve for adjusting the gas flow rate of the passage is provided, and a cylinder side gas amount adjusting valve for adjusting the gas flow rate of each cylinder side gas supply passage is provided for each cylinder in the cylinder side gas supply passage, Further, by controlling the opening degree of the supercharger-side gas amount adjusting valve, the fuel gas concentration in the air-fuel mixture for supplying the fuel gas amount to the supercharger-side gas supply passage to the supercharger is set. In addition, a gas amount controller is provided that adjusts the gas so as to be kept below the flammable lower limit gas concentration.
The gas engine operation method is a gas engine operation method in which fuel gas and air supplied through a fuel gas passage are mixed, and the mixture is supplied into a cylinder and ignited and combusted. A part of the gas is mixed with the supercharger inlet air through a supercharger side gas supply passage connected to the air inlet of the supercharger, and this mixture is supplied to the supercharger. A cylinder-side gas supply passage connected to an air supply passage for each cylinder and provided with a gas compressor for compressing the fuel gas is mixed with the air supply in the air supply passage for each cylinder, and this mixture is supplied to each cylinder of the engine. Supply and control the opening degree of the supercharger side gas amount adjusting valve provided in the supercharger side gas supply passage, and the amount of fuel gas to the supercharger side gas supply passage is supplied to the supercharger. Fuel in the mixture Scan concentration and adjusting so as to maintain below flammable lower limit gas concentration.

かかる発明によれば、燃料ガス通路を、過給機入口空気通路に接続される過給機側ガス供給通路とシリンダ毎の給気通路に接続されるシリンダ側ガス供給通路との2つの燃料ガス供給系に分岐し、過給機側ガス供給通路を通流する燃料ガスを過給機入口空気と混合して、この混合気を過給機に供給する一方、前記シリンダ側ガス供給通路を通流する燃料ガスをシリンダ毎の給気通路内の給気と混合して、この混合気をエンジンの各シリンダに供給するように構成したので、過給機側ガス量調整弁によって過給機側ガス供給通路側の燃料ガス流量を制御するとともに、シリンダ側ガス量調整弁によってガスコンプレッサで圧縮して各シリンダに供給する燃料ガス流量を制御することにより、過給機入口空気と混合してこの混合気を過給機に供給する燃料ガス量とシリンダ毎の給気通路内の給気と混合してこの混合気をエンジンの各シリンダに供給する燃料ガス量との割合を自在に制御することができる。   According to this invention, the fuel gas passage is divided into two fuel gases, that is, the supercharger side gas supply passage connected to the supercharger inlet air passage and the cylinder side gas supply passage connected to the air supply passage for each cylinder. The fuel gas branched into the supply system and flowing through the supercharger side gas supply passage is mixed with the supercharger inlet air, and this mixture is supplied to the supercharger, while the cylinder side gas supply passage is passed through. The fuel gas that flows is mixed with the supply air in the supply passage for each cylinder, and this mixture is supplied to each cylinder of the engine. The fuel gas flow rate on the gas supply passage side is controlled, and the fuel gas flow rate supplied to each cylinder after being compressed by the gas compressor by the cylinder side gas amount adjusting valve is mixed with the supercharger inlet air. Supply air-fuel mixture to turbocharger Fuel gas amount and is mixed with supply air in the supply passage for each cylinder the air-fuel mixture can be freely controlled the ratio of the amount of the fuel gas supplied to each cylinder of the engine that.

これにより、過給機側に供給する燃料ガス量を該過給機で高温、高圧に圧縮後における爆発を回避できる限界程度の燃料ガス量に設定することにより、該過給機側に供給する燃料ガス量を爆発を回避できる最大限の燃料ガス量に設定可能となり、かかる最大限の燃料ガス量を保持して前記爆発を皆無にできる。
またガスコンプレッサで圧縮して各シリンダに供給するシリンダ側ガス供給通路側の燃料ガス流量を前記過給機側に供給する燃料ガス量相当分低減できることとなり、従ってシリンダ側への燃料ガスを圧縮するガスコンプレッサの動力を低減でき、該ガスコンプレッサを小型、小容量化できる。
殊に、炭鉱メタンガス等の低カロリーガス(発熱量の低いガス)を用いる場合には、所要のエンジン出力を得るには多量の燃料ガスを必要とするが、過給機側の燃料ガス流量を該過給機で高温、高圧に圧縮後における爆発を回避できる限界程度の最大限の燃料ガス流量に設定することにより、ガスコンプレッサで圧縮して各シリンダに供給する燃料ガス流量を前記過給機側への燃料ガス流量相当分低減できることにより、ガスコンプレッサの動力低減効果がより大きくなる。
As a result, the amount of fuel gas supplied to the supercharger is set to the limit of the amount of fuel gas that can avoid explosion after being compressed to high temperature and high pressure by the supercharger, and supplied to the supercharger. The fuel gas amount can be set to the maximum fuel gas amount that can avoid the explosion, and the explosion can be eliminated while maintaining the maximum fuel gas amount.
Further, the flow rate of the fuel gas on the cylinder side gas supply passage side that is compressed by the gas compressor and supplied to each cylinder can be reduced by an amount corresponding to the amount of fuel gas supplied to the supercharger side, so that the fuel gas to the cylinder side is compressed. The power of the gas compressor can be reduced, and the gas compressor can be reduced in size and capacity.
In particular, when using low calorie gas such as coal mine methane gas (gas with low calorific value), a large amount of fuel gas is required to obtain the required engine output. By setting the maximum fuel gas flow rate to the limit that can avoid explosion after compression to high temperature and high pressure by the supercharger, the fuel gas flow rate compressed by the gas compressor and supplied to each cylinder is set to the supercharger. By being able to reduce the fuel gas flow rate to the side, the power reduction effect of the gas compressor is further increased.

かかる発明において好ましくは、前記エンジンの給気圧力を検出する給気圧力センサと、前記エンジンの給気温度を検出する給気温度センサと、前記過給機側ガス供給通路を通流する燃料ガスの流量を検出する燃料ガス流量計とをそなえるとともに、前記ガス量コントローラは、前記給気圧力センサからの給気圧力検出値、前記給気温度センサからの給気温度検出値、及び前記燃料ガス流量計からの燃料ガス流量の検出値に基づいて前記過給機に供給する混合気中の燃料ガス濃度を算出し、該燃料ガス濃度の算出値と可燃下限界ガス濃度の設定値とを比較し、該燃料ガス濃度が前記可燃下限界ガス濃度設定値以下になるような前記過給機側ガス量調整弁の開度を算出して該過給機側ガス量調整弁を前記開度に制御する。
また、前記燃料ガスを炭鉱メタンガスにて構成する場合には、前記ガス量コントローラは、前記混合気中のメタンガス濃度を可燃下限界ガス濃度である5%以下に保持するように前記過給機側ガス量調整弁の開度を制御するように構成するのがよい。
In this invention, preferably, an air supply pressure sensor for detecting an air supply pressure of the engine, an air supply temperature sensor for detecting an air supply temperature of the engine, and a fuel gas flowing through the supercharger side gas supply passage A fuel gas flow meter for detecting the flow rate of the fuel gas, and the gas amount controller includes a supply air pressure detection value from the supply air pressure sensor, a supply air temperature detection value from the supply air temperature sensor, and the fuel gas Calculate the fuel gas concentration in the air-fuel mixture supplied to the supercharger based on the detected value of the fuel gas flow rate from the flow meter, and compare the calculated value of the fuel gas concentration with the set value of the combustible lower limit gas concentration And calculating the opening degree of the supercharger side gas amount adjustment valve so that the fuel gas concentration is not more than the set value of the lower flammability limit gas concentration, and setting the supercharger side gas amount adjustment valve to the opening degree. Control.
In the case where the fuel gas is composed of coal mine methane gas, the gas amount controller controls the supercharger side so as to maintain the methane gas concentration in the air-fuel mixture at 5% or less, which is the flammable lower limit gas concentration. It is good to comprise so that the opening degree of a gas quantity adjustment valve may be controlled.

かかる発明によれば、ガス量コントローラにおいて、エンジンの給気圧力、給気温度、及び燃料ガス流量の検出値を用いて実際の燃料ガス濃度を算出し、この実際の燃料ガス濃度と可燃下限界ガス濃度(炭鉱メタンガスでは5%以下の濃度)設定値とを比較して、過給機側ガス供給通路への燃料ガス量が前記可燃下限界ガス濃度以下を保持するように過給機側ガス量調整弁の開度を制御するので、過給機側ガス供給通路への燃料ガス量を、過給機で高温、高圧に圧縮後における爆発を回避できる限界程度の燃料ガス量に常時正確に保持できる。   According to this invention, in the gas amount controller, the actual fuel gas concentration is calculated using the detected values of the engine air supply pressure, the air supply temperature, and the fuel gas flow rate, and the actual fuel gas concentration and the combustible lower limit are calculated. Compared with the set value of gas concentration (concentration of 5% or less for coal mine methane gas), the supercharger side gas so that the amount of fuel gas to the supercharger side gas supply passage is kept below the combustible lower limit gas concentration. Since the opening of the volume control valve is controlled, the amount of fuel gas to the gas supply passage on the turbocharger is always accurately adjusted to the limit of the amount of fuel gas that can avoid explosion after being compressed to high temperature and high pressure by the turbocharger. Can hold.

また本発明は、前記燃料ガス通路を、前記過給機の空気入口への過給機入口空気通路に接続される過給機側ガス供給通路と、前記過給機の空気出口とエンジンの各シリンダとの間のシリンダ毎の給気通路に接続され前記燃料ガスを圧縮するガスコンプレッサが介装されたシリンダ側ガス供給通路とに分岐し、前記過給機側ガス供給通路を通流する燃料ガスを過給機入口空気と混合してこの混合気を過給機に供給するとともに、前記シリンダ側ガス供給通路を通流する燃料ガスをシリンダ毎に分岐しシリンダ毎の給気通路内の給気と混合してこの混合気をエンジンの各シリンダに供給するように構成し、前記過給機側ガス供給通路には該過給機側ガス供給通路のガス流量を調整する過給機側ガス量調整弁を設け、さらに前記シリンダ側ガス供給通路には各シリンダ側ガス供給通路のガス流量を調整するシリンダ側ガス量調整弁をシリンダ毎に設け、
前記過給機側ガス量調整弁の開度を制御して、前記過給機側ガス供給通路への燃料ガス量を、前記過給機に供給する混合気中の燃料ガス濃度が設定された可燃下限界ガス濃度以下に保持されるように調整するガス量コントローラを備えた前記発明に加えて、
前記排気ターボ過給機の排気タービンをバイパスして排気出口管に接続される排気バイパス通路と、該排気バイパス通路を開閉する排気バイパス弁をそなえるとともに、前記エンジンへの混合気量が目標混合気量になるように前記排気バイパス弁の開度を制御する空燃比コントローラをそなえて構成される。
Further, the present invention provides a supercharger side gas supply passage connected to the fuel gas passage to a supercharger inlet air passage to an air inlet of the supercharger, an air outlet of the supercharger, and each of the engine Fuel that is connected to a cylinder-side gas supply passage that is connected to an air supply passage for each cylinder between the cylinder and that is provided with a gas compressor that compresses the fuel gas, and flows through the supercharger-side gas supply passage The gas is mixed with the supercharger inlet air and this mixture is supplied to the supercharger, and the fuel gas flowing through the cylinder side gas supply passage is branched for each cylinder to supply the gas in the supply passage for each cylinder. The supercharger side gas is configured to be mixed with air and supplied to each cylinder of the engine, and in the supercharger side gas supply passage, a gas flow rate in the supercharger side gas supply passage is adjusted. An amount adjustment valve is provided, and the cylinder side gas supply The road provided cylinder-side gas amount adjusting valve for adjusting the gas flow rates of the cylinder-side gas supply passage for each cylinder,
The opening degree of the supercharger-side gas amount adjusting valve was controlled, and the fuel gas concentration in the air-fuel mixture for supplying the fuel gas amount to the supercharger-side gas supply passage to the supercharger was set. In addition to the above invention with a gas amount controller that adjusts to keep below the lower flammable gas concentration,
An exhaust bypass passage that bypasses the exhaust turbine of the exhaust turbocharger and is connected to an exhaust outlet pipe, an exhaust bypass valve that opens and closes the exhaust bypass passage, and an air-fuel mixture amount to the engine An air-fuel ratio controller for controlling the opening degree of the exhaust bypass valve so as to be an amount is provided.

かかる発明によれば、前記のように、過給機側ガス供給通路への燃料ガス量を、過給機で高温、高圧に圧縮後における爆発を回避できる限界程度の燃料ガス量に常時正確に保持し、かつガスコンプレッサで圧縮して各シリンダに供給する燃料ガス流量を前記過給機側への燃料ガス流量相当分低減した流量に正確に保持することにより、過給機で高温、高圧に圧縮後における爆発を回避しつつガスコンプレッサの動力を抑制し、所要のエンジン出力を得ることができ、これに加えて、
季節の変化等によって過給機の吸入空気温度が変化し、それによって過給機が吸い込む空気量が変化してエンジンへの混合気量が変化する場合でも、空燃比コントローラにより排気バイパス弁の開度を制御することによって、エンジンの各シリンダに供給される混合気の空気過剰率をほぼ一定に保持してエンジンを運転することが可能となる。
According to this invention, as described above, the amount of fuel gas to the supercharger-side gas supply passage is always accurately adjusted to the limit of the amount of fuel gas that can avoid explosion after being compressed to high temperature and high pressure by the supercharger. The fuel gas flow rate that is held and compressed by the gas compressor and supplied to each cylinder is accurately maintained at a flow rate that is reduced by an amount corresponding to the fuel gas flow rate to the turbocharger, so that the turbocharger can be heated to high temperature and high pressure. In addition to suppressing the power of the gas compressor while avoiding an explosion after compression, the required engine output can be obtained.
Even if the intake air temperature of the turbocharger changes due to seasonal changes, etc., and the amount of air sucked into the turbocharger changes and the air-fuel mixture changes, the air-fuel ratio controller opens the exhaust bypass valve. By controlling the degree, it is possible to operate the engine while maintaining the air excess ratio of the air-fuel mixture supplied to each cylinder of the engine substantially constant.

本発明によれば、燃料ガス通路を、過給機入口空気通路に接続される過給機側ガス供給通路とシリンダ毎の給気通路に接続されるシリンダ側ガス供給通路との2つの燃料ガス供給系に分岐し、過給機側ガス量調整弁によって過給機側ガス供給通路側の燃料ガス流量を制御するとともに、シリンダ側ガス量調整弁によってガスコンプレッサで圧縮して各シリンダに供給する燃料ガス流量を制御することにより、過給機入口空気と混合してこの混合気を過給機に供給する燃料ガス量とシリンダ毎の給気通路内の給気と混合してこの混合気をエンジンの各シリンダに供給する燃料ガス量との割合を自在に制御することができ、過給機側に供給する燃料ガス量を該過給機で圧縮後における爆発を回避できる最大限の燃料ガス量に設定することにより、かかる最大限の燃料ガス量を保持して前記爆発を皆無にできる。
またガスコンプレッサで圧縮して各シリンダに供給するシリンダ側ガス供給通路側の燃料ガス流量を前記過給機側に供給する燃料ガス量相当分だけ低減できることとなり、従ってシリンダ側への燃料ガスを圧縮するガスコンプレッサの動力を低減できて、該ガスコンプレッサを小型、小容量化できる。
According to the present invention, the fuel gas passage is divided into two fuel gases: a supercharger side gas supply passage connected to the supercharger inlet air passage and a cylinder side gas supply passage connected to the air supply passage for each cylinder. Branches to the supply system, controls the fuel gas flow rate on the turbocharger side gas supply passage side by the supercharger side gas amount adjustment valve, and supplies it to each cylinder after being compressed by the gas compressor by the cylinder side gas amount adjustment valve By controlling the fuel gas flow rate, the mixture is mixed with the supercharger inlet air and the mixture is mixed with the amount of fuel gas supplied to the supercharger and the supply air in the supply passage for each cylinder. The ratio of the fuel gas supplied to each cylinder of the engine can be freely controlled, and the maximum amount of fuel gas that can avoid explosion after compression of the fuel gas supplied to the supercharger by the supercharger By setting the amount Possible to completely eliminate the explosion holds mow maximum amount of the fuel gas.
In addition, the fuel gas flow rate on the cylinder side gas supply passage side that is compressed by the gas compressor and supplied to each cylinder can be reduced by the amount corresponding to the amount of fuel gas supplied to the turbocharger side, so the fuel gas to the cylinder side is compressed. The power of the gas compressor can be reduced, and the gas compressor can be reduced in size and capacity.

また本発明によれば、前記効果に加えて、季節の変化等によって排気ターボ過給機の吸入空気温度が変化し、それによって過給機が吸い込む空気量が変化してエンジンへの混合気量が変化する場合でも、空燃比コントローラにより排気バイパス弁の開度を制御することによって、エンジンの各シリンダに供給される混合気の空気過剰率をほぼ一定に保持してエンジンを運転することが可能となるという相乗効果が得られる。   Further, according to the present invention, in addition to the above-described effects, the intake air temperature of the exhaust turbocharger changes due to a change in season, etc., whereby the amount of air sucked into the turbocharger changes and the air-fuel mixture amount to the engine Even when the air-fuel ratio changes, it is possible to keep the excess air ratio of the air-fuel mixture supplied to each cylinder of the engine almost constant by operating the engine by controlling the opening of the exhaust bypass valve with the air-fuel ratio controller A synergistic effect is obtained.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は本発明の実施例に係るガスエンジンのガス供給装置の全体構成図である。図1において、1はエンジン(ガスエンジン)、4は該エンジン1のシリンダヘッド、13は該エンジン1に直結駆動される発電機、14はフライホイール、7は排気タービン7a及びコンプレッサ7bからなる過給機である。3は前記各シリンダヘッド4の給気入口に接続される給気枝管、2は前記コンプレッサ7bの給気出口と前記各給気枝管3とを接続する給気管、9は該給気管2を流れる給気を冷却する給気冷却器である。
5は前記各シリンダヘッドの排気出口に接続される排気管、6は前記各排気管5に接続される排気集合管、110は前記排気タービン3aの排気ガス出口からの排気ガスを排出するための排気出口管である。
FIG. 1 is an overall configuration diagram of a gas supply apparatus for a gas engine according to an embodiment of the present invention. In FIG. 1, 1 is an engine (gas engine), 4 is a cylinder head of the engine 1, 13 is a generator directly connected to the engine 1, 14 is a flywheel, 7 is an exhaust turbine 7a and compressor 7b. It is a feeder. 3 is an air supply branch pipe connected to the air supply inlet of each cylinder head 4, 2 is an air supply pipe connecting the air supply outlet of the compressor 7 b and each air supply branch pipe 3, and 9 is the air supply pipe 2. It is a supply air cooler which cools the supply air which flows through.
5 is an exhaust pipe connected to the exhaust outlet of each cylinder head, 6 is an exhaust collecting pipe connected to each exhaust pipe 5, and 110 is for exhausting exhaust gas from the exhaust gas outlet of the exhaust turbine 3a. An exhaust outlet pipe.

11は排気バイパス管で、前記排気集合管6の排気タービン7a入口側から分岐されて該排気タービン7aをバイパスし、該排気タービン7a出口側の排気出口管110に接続されている。12は該排気バイパス管11の通路面積を変化せしめる排気バイパス弁である。
10aは外部から空気を前記過給機7のコンプレッサ7bに導入するための過給機入口空気通路、10は該過給機入口空気通路10aに設置されたミキサーである。21は燃料ガスを収容する燃料ガスタンク(図示省略)から燃料ガスが導入されるガス供給管で、該ガス供給管21から過給機側ガス供給管211とシリンダ側ガス供給管212とが分岐されている。
前記過給機側ガス供給管211は、前記過給機入口空気通路10aに設置されたミキサー10に接続されている。また前記シリンダ側ガス供給管212は途中でシリンダ毎に分岐されガス供給枝管213となって前記各各給気枝管3に接続されている。
An exhaust bypass pipe 11 is branched from the exhaust turbine 7a inlet side of the exhaust collecting pipe 6 to bypass the exhaust turbine 7a and is connected to an exhaust outlet pipe 110 on the outlet side of the exhaust turbine 7a. An exhaust bypass valve 12 changes the passage area of the exhaust bypass pipe 11.
10a is a supercharger inlet air passage for introducing air from the outside to the compressor 7b of the supercharger 7, and 10 is a mixer installed in the supercharger inlet air passage 10a. Reference numeral 21 denotes a gas supply pipe into which fuel gas is introduced from a fuel gas tank (not shown) that contains fuel gas, and a supercharger side gas supply pipe 211 and a cylinder side gas supply pipe 212 are branched from the gas supply pipe 21. ing.
The supercharger side gas supply pipe 211 is connected to the mixer 10 installed in the supercharger inlet air passage 10a. Further, the cylinder side gas supply pipe 212 is branched for each cylinder in the middle and becomes a gas supply branch pipe 213 and is connected to each of the air supply branch pipes 3.

18は前記シリンダ側ガス供給管212に設置されて該シリンダ側ガス供給管212を流れる燃料ガスを圧縮するガスコンプレッサである。19は前記過給機側ガス供給管211に設置されて該過給機側ガス供給管211の通路面積即ち燃料ガス流量を制御する過給機側ガス量調整弁、20は前記各ガス供給枝管213に設置されて該各ガス供給枝管213の通路面積即ち燃料ガス流量を制御するシリンダ側ガス量調整弁である。   A gas compressor 18 is installed in the cylinder side gas supply pipe 212 and compresses the fuel gas flowing through the cylinder side gas supply pipe 212. 19 is a supercharger-side gas amount adjusting valve that is installed in the supercharger-side gas supply pipe 211 and controls the passage area of the supercharger-side gas supply pipe 211, that is, the fuel gas flow rate, and 20 is each gas supply branch. It is a cylinder side gas amount adjusting valve that is installed in the pipe 213 and controls the passage area of each gas supply branch pipe 213, that is, the fuel gas flow rate.

15はエンジン回転数を検出する回転数センサ、013は前記発電機13の負荷つまりエンジン負荷を検出する負荷検出器、17は前記給気管2における給気圧力を検出する給気圧力センサ、16は前記給気管2における給気温度を検出する給気温度センサである。021は前記過給機側ガス供給管211を流れる燃料ガスの流量を検出する燃料ガス流量計である。
24は回転数コントローラ、23は空燃比コントローラ、22はガス量コントローラで、前記回転数センサ15からのエンジン回転数の検出値は前記回転数コントローラ24、空燃比コントローラ23、及びガス量コントローラ22に入力され、前記負荷検出器013からのエンジン負荷の検出値は空燃比コントローラ23に入力され、前記給気圧力センサ17からの給気圧力の検出値は空燃比コントローラ23及びガス量コントローラ22に入力され、前記給気温度センサ16からの給気温度の検出値は空燃比コントローラ23及びガス量コントローラ22に入力され、前記燃料ガス流量計021からの燃料ガス流量の検出値はガス量コントローラ22に入力される。
15 is a rotation speed sensor for detecting the engine rotation speed, 013 is a load detector for detecting the load of the generator 13, that is, an engine load, 17 is a supply pressure sensor for detecting the supply pressure in the supply pipe 2, and 16 is It is a supply air temperature sensor for detecting a supply air temperature in the supply pipe 2. Reference numeral 021 denotes a fuel gas flow meter for detecting the flow rate of the fuel gas flowing through the supercharger side gas supply pipe 211.
Reference numeral 24 denotes a rotational speed controller, 23 denotes an air-fuel ratio controller, 22 denotes a gas amount controller, and the detected value of the engine rotational speed from the rotational speed sensor 15 is sent to the rotational speed controller 24, the air-fuel ratio controller 23, and the gas amount controller 22. The detected value of the engine load from the load detector 013 is input to the air-fuel ratio controller 23, and the detected value of the supply air pressure from the supply air pressure sensor 17 is input to the air-fuel ratio controller 23 and the gas amount controller 22. The detected value of the supply air temperature from the supply air temperature sensor 16 is input to the air-fuel ratio controller 23 and the gas amount controller 22, and the detected value of the fuel gas flow rate from the fuel gas flow meter 021 is input to the gas amount controller 22. Entered.

前記回転数コントローラ24は、通常の電子ガバナーで、前記回転数センサ15からのエンジン回転数の検出値に基づき設定された目標回転数となるよう前記各シリンダ側ガス量調整弁20の開度を制御する。
前記空燃比コントローラ23は、前記回転数センサ15からのエンジン回転数の検出値、負荷検出器013からのエンジン負荷の検出値、給気圧力センサ17からの給気圧力の検出値、及び給気温度センサ16からの給気温度の検出値に基づき、後述する手段で前記排気バイパス弁12の開度を制御する。前記ガス量コントローラ22は、前記回転数センサ15からのエンジン回転数の検出値、給気圧力センサ17からの給気圧力の検出値、及び給気温度センサ16からの給気温度の検出値に基づき、後述する手段で前記過給機側ガス量調整弁19の開度を制御する。
The rotational speed controller 24 is a normal electronic governor and controls the opening degree of each cylinder-side gas amount adjusting valve 20 so that the target rotational speed is set based on the detected value of the engine rotational speed from the rotational speed sensor 15. Control.
The air-fuel ratio controller 23 detects the detected value of the engine speed from the engine speed sensor 15, the detected value of the engine load from the load detector 013, the detected value of the supply air pressure from the supply air pressure sensor 17, and the supply air Based on the detected value of the supply air temperature from the temperature sensor 16, the opening degree of the exhaust bypass valve 12 is controlled by means described later. The gas amount controller 22 converts the detected value of the engine speed from the engine speed sensor 15, the detected value of the supplied air pressure from the supplied air pressure sensor 17, and the detected value of the supplied air temperature from the supplied air temperature sensor 16. Based on this, the opening degree of the supercharger side gas amount adjusting valve 19 is controlled by means to be described later.

かかるガスエンジンの運転時において、前記ガス供給管21からの燃料ガスは該ガス供給管21の途中で分岐される。そして分岐された燃料ガスの一方は前記過給機側ガス供給管211を通って前記ミキサー10に導入され、該ミキサー10において前記過給機空気入口通路10aからの空気と混合されこの混合気は過給機7のコンプレッサ7bに導入される。該コンプレッサ7bで高温、高圧に加圧された混合気は給気冷却器9で冷却されて降温し、給気管2を通って各シリンダの給気枝管3内に流入する。
また分岐された燃料ガスの他方はシリンダ側ガス供給管212に入り、ガスコンプレッサ18で圧縮されて、各シリンダの各ガス供給枝管213を通り、前記各給気枝管3に入り、該給気枝管3内の前記混合気に混入されて各シリンダ内に送り込まれる。
During operation of the gas engine, the fuel gas from the gas supply pipe 21 is branched in the middle of the gas supply pipe 21. Then, one of the branched fuel gases is introduced into the mixer 10 through the supercharger-side gas supply pipe 211, and is mixed with air from the supercharger air inlet passage 10a in the mixer 10, and this mixture is It is introduced into the compressor 7b of the supercharger 7. The air-fuel mixture pressurized to a high temperature and high pressure by the compressor 7b is cooled by the air supply cooler 9 and lowered in temperature, and flows into the air supply branch pipe 3 of each cylinder through the air supply pipe 2.
The other of the branched fuel gas enters the cylinder side gas supply pipe 212, is compressed by the gas compressor 18, passes through each gas supply branch pipe 213 of each cylinder, enters each of the supply air branch pipes 3, and then supplies the supply gas. It is mixed into the air-fuel mixture in the air branch pipe 3 and sent into each cylinder.

そして、エンジン1の各シリンダからの排気ガスは排気管5を通って排気集合管6で合流され、過給機7の排気タービン7aに供給されて該排気タービン7aを駆動した後、排気出口管110を通って外部に排出される。
また、前記空燃比コントローラ23からの後述するような制御操作信号によって排気バイパス弁12が開かれると、前記排気集合管6内の排気ガスの一部は前記排気タービン7aをバイパスして排気出口管110に排出される。
The exhaust gases from the cylinders of the engine 1 are merged in the exhaust collecting pipe 6 through the exhaust pipe 5 and supplied to the exhaust turbine 7a of the supercharger 7 to drive the exhaust turbine 7a, and then the exhaust outlet pipe It is discharged to the outside through 110.
Further, when the exhaust bypass valve 12 is opened by a control operation signal as will be described later from the air-fuel ratio controller 23, a part of the exhaust gas in the exhaust collecting pipe 6 bypasses the exhaust turbine 7a and becomes an exhaust outlet pipe. 110 is discharged.

次に、図2、図3及び図1に基づきかかるガスエンジンの燃焼制御装置の動作を説明する。
図2は前記実施例におけるガス量コントローラの制御ブロック図である。図2において、前記給気圧力センサ17からの給気圧力の検出値及び給気温度センサ16からの給気温度の検出値及び回転数センサ15からのエンジン回転数の検出値は、ガス量コントローラ22の給気量算出部221に入力される。該給気量算出部221においては、前記給気圧力の検出値、給気温度の検出値、及びエンジン回転数の検出値を用いて実空気量を算出し、ガス濃度算出部222に入力する。
ガス濃度算出部222においては、前記燃料ガス流量計021からの燃料ガス流量の検出値及び前記給気量算出部221からの実空気量の算出値に基づき、前記コンプレッサ7bを通過する混合気中における燃料ガスの濃度を算出し、ガス濃度偏差算出部224に入力する。
Next, the operation of the combustion control apparatus for the gas engine will be described with reference to FIGS.
FIG. 2 is a control block diagram of the gas amount controller in the embodiment. In FIG. 2, the detected value of the supply pressure from the supply pressure sensor 17, the detected value of the supply air temperature from the supply air temperature sensor 16, and the detected value of the engine speed from the rotation speed sensor 15 are the gas amount controller. 22 is input to the air supply amount calculation unit 221. The supply air amount calculation unit 221 calculates the actual air amount using the detection value of the supply air pressure, the detection value of the supply air temperature, and the detection value of the engine speed, and inputs the actual air amount to the gas concentration calculation unit 222. .
In the gas concentration calculation unit 222, based on the detected value of the fuel gas flow rate from the fuel gas flow meter 021 and the calculated value of the actual air amount from the supply air amount calculation unit 221, Is calculated and input to the gas concentration deviation calculator 224.

223は可燃下限界ガス濃度設定部で、可燃下限界ガス濃度が燃料ガス別に設定されている。即ち、図4に示されるように、燃料ガス毎にガスの圧力とガスの可燃下限界濃度との関係が設定されており、図4において、各下限界線よりも低濃度側つまり各下限界線の左側が図中の番号1ないし11で示されるガスの爆発が発生しないガス濃度である。この実施例で用いる炭鉱メタンガスの可燃下限界ガス濃度は混合気中のメタン濃度が5%未満となるように設定されている。
前記ガス濃度偏差算出部224においては、前記燃料ガス濃度の算出値と前記可燃下限界ガス濃度設定部223に設定された可燃下限界ガス濃度とを突きあわせて(比較して)、その濃度偏差から、過給機側ガス供給管211を通してミキサー10に供給される燃料ガス流量の補正値を算出し、さらに該補正値に基づき混合気中における燃料ガスの濃度が前記可燃下限界ガス濃度以下(炭鉱メタンガスの可燃下限界ガス濃度は5%以下)を保持するような前記過給機側ガス量調整弁19の開度を算出して、該過給機側ガス量調整弁19に出力する。
これにより、該過給機側ガス量調整弁19はミキサー10に送り込む燃料ガス流量を、前記混合気中における燃料ガスの濃度が前記可燃下限界ガス濃度以下を保持するような流量に保持せしめる。
Reference numeral 223 denotes a combustible lower limit gas concentration setting unit in which the combustible lower limit gas concentration is set for each fuel gas. That is, as shown in FIG. 4, the relationship between the gas pressure and the flammable lower limit concentration is set for each fuel gas. In FIG. 4, the lower concentration side than each lower limit line, that is, each lower limit. The left side of the line represents the gas concentration at which no gas explosion occurs as indicated by numbers 1 to 11 in the figure. The flammable lower limit gas concentration of the coal mine methane gas used in this example is set so that the methane concentration in the air-fuel mixture is less than 5%.
In the gas concentration deviation calculation unit 224, the calculated value of the fuel gas is matched with the combustible lower limit gas concentration set in the combustible lower limit gas concentration setting unit 223, and the concentration deviation is compared. From this, a correction value for the flow rate of the fuel gas supplied to the mixer 10 through the supercharger-side gas supply pipe 211 is calculated, and the concentration of the fuel gas in the mixture is less than or equal to the lower flammability limit gas concentration based on the correction value ( The degree of opening of the supercharger side gas amount adjusting valve 19 that maintains the combustible lower limit gas concentration of the coal mine methane gas is 5% or less is calculated and output to the supercharger side gas amount adjusting valve 19.
As a result, the supercharger-side gas amount adjusting valve 19 keeps the flow rate of the fuel gas fed into the mixer 10 at such a flow rate that the concentration of the fuel gas in the air-fuel mixture is kept below the flammable lower limit gas concentration.

従って、かかる実施例によれば、ガス量コントローラ22において、エンジンの給気圧力、給気温度、エンジン回転数、及び燃料ガス流量の検出値を用いて実際の燃料ガス濃度を算出し、この実際の燃料ガス濃度と可燃下限界ガス濃度(炭鉱メタンガスで5%以下の濃度)設定値とを比較して、過給機側ガス供給通路211への燃料ガス量が前記可燃下限界ガス濃度以下を保持するように過給機側ガス量調整弁19の開度を制御するので、過給機側ガス供給通路211への燃料ガス流量を、過給機7で高温、高圧に圧縮後における爆発を回避できる最大限程度の燃料ガス流量に常時正確に保持でき、かかる最大限の燃料ガス量を保持して前記爆発を皆無にできる。
また、それとともに、該ガス供給管21からシリンダ側ガス供給管212側に分岐されてガスコンプレッサ18で圧縮され、各シリンダの各ガス供給枝管213及び各給気枝管3を通って各シリンダ内に送り込まれる燃料ガス流量を、前記過給機側ガス供給管211への燃料ガス流量の相当分減少でき、ガスコンプレッサ18の動力を低減できて該ガスコンプレッサ18を小型、小容量化できる。これによって、過給機7で高温、高圧に圧縮後における燃料ガスの爆発を回避しつつ、ガスコンプレッサ18の動力を低減して、所要のエンジン出力を得ることができる。
Therefore, according to this embodiment, the gas amount controller 22 calculates the actual fuel gas concentration using the detected values of the engine supply air pressure, the supply air temperature, the engine speed, and the fuel gas flow rate. The fuel gas concentration to the supercharger side gas supply passage 211 is less than or equal to the lower flammability limit gas concentration. Since the opening degree of the supercharger-side gas amount adjusting valve 19 is controlled so as to hold the fuel gas flow rate to the supercharger-side gas supply passage 211, the explosion after compression to a high temperature and high pressure by the supercharger 7 It is possible to always accurately maintain the maximum flow rate of the fuel gas that can be avoided, and to keep the maximum amount of fuel gas and to eliminate the explosion.
At the same time, the gas supply pipe 21 branches to the cylinder side gas supply pipe 212 side and is compressed by the gas compressor 18, and passes through each gas supply branch pipe 213 and each air supply branch pipe 3 of each cylinder. The flow rate of the fuel gas fed in can be reduced by a considerable amount corresponding to the flow rate of the fuel gas to the supercharger side gas supply pipe 211, the power of the gas compressor 18 can be reduced, and the gas compressor 18 can be reduced in size and capacity. Thereby, the power of the gas compressor 18 can be reduced and the required engine output can be obtained while avoiding the explosion of the fuel gas after being compressed to a high temperature and high pressure by the supercharger 7.

殊に、この実施例で用いている炭鉱メタンガス等の低カロリーガス(発熱量の低いガス)の場合には、所要のエンジン出力を得るには多量の燃料ガスを必要とするが、過給機7側に供給する燃料ガス流量を該過給機7で高温、高圧に圧縮後における爆発を回避できる限界程度の最大限の燃料ガス流量に設定することにより、ガスコンプレッサ18で圧縮して各シリンダに供給する燃料ガス流量を前記過給機7側の燃料ガス流量相当分低減できることにより、ガスコンプレッサ18の動力低減効果がより大きくなる。   In particular, in the case of a low calorie gas (a gas having a low calorific value) such as coal mine methane gas used in this embodiment, a large amount of fuel gas is required to obtain a required engine output. By setting the fuel gas flow rate supplied to the 7 side to the maximum fuel gas flow rate that can avoid an explosion after being compressed to a high temperature and high pressure by the supercharger 7, the cylinder is compressed by the gas compressor 18 The fuel gas flow rate to be supplied to the turbocharger 7 can be reduced by an amount corresponding to the fuel gas flow rate on the supercharger 7 side, so that the power reduction effect of the gas compressor 18 becomes greater.

また、かかる実施例によれば、ガス量コントローラ22において、エンジンの給気圧力、給気温度、エンジン回転数、及び燃料ガス流量の検出値を用いて実際の燃料ガス濃度を算出し、この実際の燃料ガス濃度と前記可燃下限界ガス濃度設定値とを比較して、過給機側ガス供給管211への燃料ガス量を、混合気中のガス濃度が前記可燃下限界ガス濃度以下を保持するように過給機側ガス量調整弁19の開度を制御するので、過給機側ガス供給管211への燃料ガス量を、過給機7で高温、高圧に圧縮後における爆発を回避できる限界程度の燃料ガス流量に常時正確に保持できる。   Further, according to this embodiment, the gas amount controller 22 calculates the actual fuel gas concentration using the detected values of the engine supply air pressure, supply air temperature, engine speed, and fuel gas flow rate. The fuel gas concentration of the fuel is compared with the set value of the lower flammability limit gas concentration, and the amount of fuel gas to the supercharger side gas supply pipe 211 is maintained. Since the opening of the supercharger-side gas amount adjusting valve 19 is controlled so that the fuel gas amount to the supercharger-side gas supply pipe 211 is compressed to a high temperature and high pressure by the supercharger 7, an explosion is avoided. It is possible to maintain the fuel gas flow rate as close as possible at all times accurately.

また、本実施例では、温度センサと圧力センサから給気量を算出するようにしたが、給気量の算出方法はこれに限定されるものではなく、例えば、温度センサと流量計から給気量を算出するようにしてもよい。
また、本実施例では、回転数センサからの検出値をガス量コントローラ22に入力するように構成したが、定格回転数で常時運転されるガスエンジンにおいてはガス量コントローラ22に定格回転数設定部を設け、定格回転数設定値を予め入力するように構成しても良い。
さらに、本実施例では各センサからの入力をガス量コントローラ22中で演算する構成としたが、予め給気圧力・温度、燃料ガス流量に対応するマップを用意して、これを読み出す構成としてもよい。
In the present embodiment, the air supply amount is calculated from the temperature sensor and the pressure sensor. However, the method for calculating the air supply amount is not limited to this, and for example, the air supply amount is calculated from the temperature sensor and the flow meter. The amount may be calculated.
In this embodiment, the detection value from the rotation speed sensor is input to the gas amount controller 22. However, in a gas engine that is always operated at the rated rotation speed, the gas volume controller 22 has a rated rotation speed setting unit. And the rated rotational speed set value may be input in advance.
Further, in the present embodiment, the input from each sensor is configured to be calculated in the gas amount controller 22, but a map corresponding to the supply air pressure / temperature and the fuel gas flow rate is prepared in advance, and this may be read out. Good.

次に図3は、前記実施例における空燃比コントローラの制御ブロック図である。図3において、前記給気圧力センサ17からの給気圧力の検出値及び給気温度センサ16からの給気温度の検出値及び回転数センサ15からのエンジン回転数の検出値は、空燃比コントローラ23の給気量算出部221に入力される。該給気量算出部221においては、前記給気圧力の検出値、給気温度の検出値、及びエンジン回転数の検出値を用いて実空気量を算出し、混合気量算出部231に入力する。
また、前記負荷検出器013からのエンジン負荷の検出値は、空燃比コントローラ23の目標混合気量算出部232及び前記混合気量算出部231に入力される。該混合気量算出部231においては、前記エンジン負荷の検出値に対応する燃料ガス量と前記実空気量とにより実際の混合気量を算出して混合気量偏差算出部233に入力する。
Next, FIG. 3 is a control block diagram of the air-fuel ratio controller in the embodiment. In FIG. 3, the detected value of the supply air pressure from the supply air pressure sensor 17, the detected value of the intake air temperature from the intake air temperature sensor 16, and the detected value of the engine speed from the engine speed sensor 15 are the air-fuel ratio controller. 23 is input to the air supply amount calculation unit 221. The supply air amount calculation unit 221 calculates the actual air amount using the detection value of the supply air pressure, the detection value of the supply air temperature, and the detection value of the engine speed, and inputs the actual air amount to the mixture amount calculation unit 231. To do.
Further, the detected value of the engine load from the load detector 013 is input to the target mixture amount calculation unit 232 and the mixture amount calculation unit 231 of the air-fuel ratio controller 23. In the air-fuel mixture amount calculation unit 231, an actual air-fuel amount is calculated from the fuel gas amount corresponding to the detected value of the engine load and the actual air amount, and is input to the air-fuel mixture amount deviation calculation unit 233.

また、前記目標混合気量算出部232においては、前記エンジン負荷の検出値に対応する適正空気過剰率に基づく混合気量の目標値(目標混合気量)を算出して混合気量偏差算出部233に入力する。
そして、前記混合気量偏差算出部233においては、前記混合気量算出部231からの実際の混合気量と混合気量の目標値(目標混合気量)との混合気量偏差を算出して給気量調整量算出部234に入力する。
給気量調整量算出部234においては、前記混合気量偏差に基づき過給機出口の給気量の調整量を算出し排気バイパス弁開度算出部235に入力する。
Further, the target mixture amount calculation unit 232 calculates the target value (target mixture amount) of the mixture amount based on the appropriate excess air ratio corresponding to the detected value of the engine load, and the mixture amount deviation calculation unit. Input to 233.
The mixture amount deviation calculating unit 233 calculates the mixture amount deviation between the actual mixture amount from the mixture amount calculating unit 231 and the target value (target mixture amount) of the mixture amount. Input to the air supply amount adjustment amount calculation unit 234.
In the air supply amount adjustment amount calculation unit 234, the adjustment amount of the air supply amount at the supercharger outlet is calculated based on the mixture amount deviation and is input to the exhaust bypass valve opening degree calculation unit 235.

ここで、かかるエンジン1においては、前記排気バイパス弁12の開度を大きくし排気タービン7aをバイパスする排気ガス量を増加して排気タービン7aの出力を低下させると給気圧力が減少し、前記排気バイパス弁12の開度を小さくし排気タービン7aをバイパスする排気ガス量を減少して排気タービン7aの出力を上昇させると給気圧力が増大する。
従って、排気バイパス弁開度算出部235においては、前記のような給気圧力と排気バイパス弁12の開度との関係から、前記給気圧力の調整値に相当する排気バイパス弁126の開度の調整量を算出し、この排気バイパス弁開度調整量を該排気バイパス弁12を駆動する排気バイパス弁駆動装置(図示省略)に出力し、該排気バイパス弁12の開度を前記調整量だけ調整する。
これにより、エンジンの実空気量が前記必要空気量になるように給気圧力が変化せしめられ、実空気量は前記必要空気量と一致し、エンジン1は燃料ガス量に適応した一定の空気過剰率で以って運転される。
Here, in such an engine 1, when the opening of the exhaust bypass valve 12 is increased to increase the amount of exhaust gas bypassing the exhaust turbine 7a to reduce the output of the exhaust turbine 7a, the supply air pressure decreases, When the opening degree of the exhaust bypass valve 12 is reduced and the amount of exhaust gas bypassing the exhaust turbine 7a is decreased to increase the output of the exhaust turbine 7a, the supply air pressure increases.
Therefore, in the exhaust bypass valve opening degree calculation unit 235, the opening degree of the exhaust bypass valve 126 corresponding to the adjustment value of the supply air pressure is calculated from the relationship between the supply air pressure and the opening degree of the exhaust bypass valve 12 as described above. The exhaust bypass valve opening adjustment amount is output to an exhaust bypass valve drive device (not shown) that drives the exhaust bypass valve 12, and the opening degree of the exhaust bypass valve 12 is set to the adjustment amount. adjust.
As a result, the supply air pressure is changed so that the actual air amount of the engine becomes the required air amount, the actual air amount matches the required air amount, and the engine 1 has a constant excess air adapted to the fuel gas amount. Driven at a rate.

ガス量コントローラの場合と同様に、本実施例では、温度センサと圧力センサから給気量を算出するようにしたが、給気量の算出方法はこれに限定されるものではなく、例えば、温度センサと流量計から給気量を算出するようにしてもよい。
また、本実施例では、回転数センサからの検出値を空燃比コントローラ23に入力するように構成したが、定格回転数で常時運転されるガスエンジンにおいては空燃比コントローラ23に定格回転数設定部を設け、定格回転数設定値を予め入力するように構成しても良い。
さらに、本実施例では各センサからの入力を空燃比コントローラ23中で演算する構成としたが、予め給気圧力・温度、エンジン負荷に対応するマップを用意して、これを読み出す構成としてもよい。
As in the case of the gas amount controller, in this embodiment, the air supply amount is calculated from the temperature sensor and the pressure sensor. However, the method of calculating the air supply amount is not limited to this. The air supply amount may be calculated from a sensor and a flow meter.
In this embodiment, the detection value from the rotation speed sensor is input to the air-fuel ratio controller 23. However, in the gas engine that is always operated at the rated rotation speed, the air-fuel ratio controller 23 includes a rated rotation speed setting unit. And the rated rotational speed set value may be input in advance.
Further, in this embodiment, the input from each sensor is calculated in the air-fuel ratio controller 23, but a map corresponding to the supply air pressure / temperature and the engine load may be prepared in advance and read out. .

従ってかかる実施例によれば、前記のように、過給機側ガス供給管211への燃料ガス量を、過給機7で高温、高圧に圧縮後における爆発を回避できる限界程度の燃料ガス流量に常時正確に保持し、かつガスコンプレッサ18で圧縮して各シリンダに供給する燃料ガス流量を前記過給機側への燃料ガス流量相当分減少した流量に正確に保持することにより、過給機7で高温、高圧に圧縮後における爆発を回避しつつ、ガスコンプレッサ18の動力を抑制し、所要のエンジン出力を得ることができることに加えて、
季節の変化等によって過給機7の吸入空気温度が変化し、それによって該過給機7が吸い込む空気量が変化してエンジン1への混合気量が変化する場合でも、空燃比コントローラ23により排気バイパス弁12の開度を制御することによって、エンジン1の各シリンダに供給される混合気の空気過剰率をほぼ一定に保持して該エンジン1を運転することが可能となる。
Therefore, according to this embodiment, as described above, the amount of fuel gas to the supercharger-side gas supply pipe 211 is set to a fuel gas flow rate of a limit that can avoid an explosion after being compressed to a high temperature and high pressure by the supercharger 7. The fuel gas flow rate supplied to each cylinder after being compressed by the gas compressor 18 is accurately maintained at a flow rate reduced by an amount corresponding to the fuel gas flow rate to the supercharger. In addition to being able to suppress the power of the gas compressor 18 while avoiding an explosion after compression to a high temperature and high pressure, the required engine output can be obtained.
Even when the intake air temperature of the supercharger 7 changes due to a seasonal change or the like, and the amount of air sucked into the supercharger 7 thereby changes and the amount of air-fuel mixture into the engine 1 changes, the air-fuel ratio controller 23 By controlling the opening degree of the exhaust bypass valve 12, it is possible to operate the engine 1 while keeping the excess air ratio of the air-fuel mixture supplied to each cylinder of the engine 1 substantially constant.

本発明によれば、燃料ガスを過給機入口空気と混合しこの混合気を過給機に供給する燃料ガス供給系と燃料ガスをシリンダ毎の給気通路内に供給する燃料ガス供給系とを併設したガスエンジンにおいて、過給機出口での燃料ガスの爆発の可能性を皆無にできるとともに、低カロリーガス(発熱量の低いガス)燃料を用いる場合においてもシリンダ毎の給気通路への燃料ガス圧縮用のガスコンプレッサの動力を低減できて該ガスコンプレッサを小型小容量化したガスエンジンを提供できる。   According to the present invention, the fuel gas supply system for mixing the fuel gas with the supercharger inlet air and supplying the mixture to the supercharger, and the fuel gas supply system for supplying the fuel gas into the air supply passage for each cylinder, In a gas engine equipped with a gas engine, the possibility of explosion of fuel gas at the outlet of the turbocharger can be eliminated, and even when using low calorie gas (gas with low calorific value) fuel, The power of the gas compressor for fuel gas compression can be reduced, and a gas engine in which the gas compressor is reduced in size and capacity can be provided.

本発明の実施例に係るガスエンジンのガスエンジンのガス供給装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the gas supply apparatus of the gas engine of the gas engine which concerns on the Example of this invention. 前記実施例におけるガス量コントローラの制御ブロック図である。It is a control block diagram of the gas amount controller in the embodiment. 前記実施例における空燃比コントローラの制御ブロック図である。It is a control block diagram of the air-fuel ratio controller in the embodiment. 燃料ガスの可燃下限界ガス濃度の説明図である。It is explanatory drawing of the combustible lower limit gas concentration of fuel gas.

符号の説明Explanation of symbols

1 エンジン(ガスエンジン)
2 給気管
3 給気枝管
6 排気集合管
7 過給機
7a 排気タービン
7b コンプレッサ
11 排気バイパス管
12 排気バイパス弁
10a 過給機入口空気通路
13 発電機
013 負荷検出器
15 回転数センサ
16 給気温度センサ
17 給気圧力センサ
18 ガスコンプレッサ
19 過給機側ガス量調整弁
20 シリンダ側ガス量調整弁
21 ガス供給管
22 ガス量コントローラ
23 空燃比コントローラ
24 回転数コントローラ
021 燃料ガス流量計
211 過給機側ガス供給管
212 シリンダ側ガス供給管
1 Engine (gas engine)
DESCRIPTION OF SYMBOLS 2 Supply pipe 3 Supply air branch pipe 6 Exhaust collecting pipe 7 Supercharger 7a Exhaust turbine 7b Compressor 11 Exhaust bypass pipe 12 Exhaust bypass valve 10a Supercharger inlet air passage 13 Generator 013 Load detector 15 Rotation speed sensor 16 Supply air Temperature sensor 17 Supply air pressure sensor 18 Gas compressor 19 Supercharger side gas amount adjustment valve 20 Cylinder side gas amount adjustment valve 21 Gas supply pipe 22 Gas amount controller 23 Air-fuel ratio controller 24 Speed controller 021 Fuel gas flow meter 211 Supercharger Machine side gas supply pipe 212 Cylinder side gas supply pipe

Claims (7)

排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンのガス供給装置において、前記燃料ガス通路を、前記過給機の空気入口に接続される過給機側ガス供給通路と、過給機後流の給気通路に接続され前記燃料ガスを圧縮するガスコンプレッサが介装されたシリンダ側ガス供給通路とに分岐し、前記過給機側ガス供給通路を通流する燃料ガスを過給機入口空気と混合しこの混合気を過給機に供給するとともに、前記シリンダ側ガス供給通路を通流する燃料ガスを前記過給機後流の給気通路内の給気と混合しこの混合気をエンジンの各シリンダに供給するように構成し、前記過給機側ガス供給通路には該過給機側ガス供給通路のガス流量を調整する過給機側ガス量調整弁を設け、前記シリンダ側ガス供給通路にはシリンダ側ガス供給通路のガス流量を調整するシリンダ側ガス量調整弁を設け、さらに前記過給機側ガス量調整弁の開度を制御して、前記過給機側ガス供給通路への燃料ガス量を、前記過給機に供給する混合気中の燃料ガス濃度が可燃下限界ガス濃度以下に保持されるように調整するガス量コントローラを設けたことを特徴とするガスエンジンのガス供給装置。   In a gas supply apparatus for a gas engine, which includes an exhaust turbocharger, mixes fuel gas and air supplied through a fuel gas passage, and supplies the mixture into a cylinder for ignition and combustion. A cylinder-side gas supply that is connected to a supercharger-side gas supply passage connected to the air inlet of the supercharger and a gas compressor that is connected to a supply passage downstream of the supercharger and compresses the fuel gas. The fuel gas that branches into the passage and flows through the supercharger side gas supply passage is mixed with the supercharger inlet air, and this mixture is supplied to the supercharger and flows through the cylinder side gas supply passage. The fuel gas to be mixed is mixed with the supply air in the supply passage downstream of the supercharger, and this mixture is supplied to each cylinder of the engine. Adjusting the gas flow rate in the machine side gas supply passage A turbocharger-side gas amount adjusting valve, a cylinder-side gas amount adjusting valve for adjusting a gas flow rate in the cylinder-side gas supply passage is provided in the cylinder-side gas supply passage, and the supercharger-side gas amount adjusting valve The fuel gas concentration in the air-fuel mixture supplied to the supercharger is kept below the combustible lower limit gas concentration so that the amount of fuel gas to the supercharger side gas supply passage is controlled. A gas supply device for a gas engine, comprising a gas amount controller for adjustment. 排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンのガス供給装置において、前記燃料ガス通路を、前記過給機の空気入口に接続される過給機側ガス供給通路と、シリンダ毎の給気通路に接続され前記燃料ガスを圧縮するガスコンプレッサが介装されたシリンダ側ガス供給通路とに分岐し、前記過給機側ガス供給通路を通流する燃料ガスを過給機入口空気と混合しこの混合気を過給機に供給するとともに、前記シリンダ側ガス供給通路を通流する燃料ガスを前記シリンダ毎の給気通路内の給気と混合しこの混合気をエンジンの各シリンダに供給するように構成し、前記過給機側ガス供給通路には該過給機側ガス供給通路のガス流量を調整する過給機側ガス量調整弁を設け、前記シリンダ側ガス供給通路には各シリンダ側ガス供給通路のガス流量を調整するシリンダ側ガス量調整弁をシリンダ毎に設け、さらに前記過給機側ガス量調整弁の開度を制御して、前記過給機側ガス供給通路への燃料ガス量を、前記過給機に供給する混合気中の燃料ガス濃度が可燃下限界ガス濃度以下に保持されるように調整するガス量コントローラを設けたことを特徴とするガスエンジンのガス供給装置。   In a gas supply apparatus for a gas engine, which includes an exhaust turbocharger, mixes fuel gas and air supplied through a fuel gas passage, and supplies the mixture into a cylinder for ignition and combustion. A supercharger-side gas supply passage connected to the air inlet of the supercharger, and a cylinder-side gas supply passage connected to an air supply passage for each cylinder and provided with a gas compressor for compressing the fuel gas. The fuel gas which branches and mixes the fuel gas flowing through the supercharger side gas supply passage with the supercharger inlet air and supplies this mixture to the supercharger and also flows through the cylinder side gas supply passage Is mixed with the supply air in the supply passage for each cylinder, and this mixture is supplied to each cylinder of the engine. The supercharger side gas supply passage is connected to the supercharger side gas supply passage. Adjust gas flow A cylinder-side gas amount adjusting valve is provided for each cylinder, and a cylinder-side gas amount adjusting valve for adjusting a gas flow rate of each cylinder-side gas supply passage is provided for each cylinder. By controlling the opening of the gas amount adjustment valve, the fuel gas amount to the supercharger-side gas supply passage is maintained so that the fuel gas concentration in the mixture supplied to the supercharger is lower than the lower flammable gas concentration A gas supply device for a gas engine, characterized in that a gas amount controller for adjusting the gas amount is provided. 前記エンジンの給気圧力を検出する給気圧力センサと、前記エンジンの給気温度を検出する給気温度センサと、前記過給機側ガス供給通路を通流する燃料ガスの流量を検出する燃料ガス流量計とをそなえるとともに、前記ガス量コントローラは、前記給気圧力センサからの給気圧力検出値、前記給気温度センサからの給気温度検出値、及び燃料ガス流量計からの燃料ガス流量の検出値に基づいて前記過給機に供給する混合気中の燃料ガス濃度を算出し、該燃料ガス濃度の算出値と前記可燃下限界ガス濃度の設定値とを比較し、該燃料ガス濃度が可燃下限界ガス濃度設定値以下になるような前記過給機側ガス量調整弁の開度を算出して該過給機側ガス量調整弁を前記開度に制御するように構成されてなることを特徴とする請求項1又は2の何れかの項に記載のガスエンジンのガス供給装置。   A fuel pressure sensor that detects a charge pressure of the engine, a fuel temperature sensor that detects a charge temperature of the engine, and a fuel that detects a flow rate of fuel gas flowing through the supercharger-side gas supply passage A gas flow rate controller, and the gas amount controller includes a supply air pressure detection value from the supply air pressure sensor, a supply air temperature detection value from the supply air temperature sensor, and a fuel gas flow rate from the fuel gas flow meter. The fuel gas concentration in the air-fuel mixture supplied to the supercharger is calculated based on the detected value of the fuel gas, the calculated value of the fuel gas concentration is compared with the set value of the combustible lower limit gas concentration, and the fuel gas concentration Is configured to calculate the opening degree of the supercharger side gas amount adjusting valve so that the flammable lower limit gas concentration is less than the set value of the combustible lower limit gas, and to control the supercharger side gas amount adjusting valve to the opening degree. Either of claims 1 or 2 Gas supply device for a gas engine according to section. 前記燃料ガスは炭鉱メタンガスにて構成され、前記ガス量コントローラは、前記混合気中のメタンガス濃度を可燃下限界ガス濃度である5%以下に保持するように前記過給機側ガス量調整弁の開度を制御するように構成されたことを特徴とする請求項1又は2の何れかの項に記載のガスエンジンのガス供給装置。   The fuel gas is composed of coal mine methane gas, and the gas amount controller controls the supercharger-side gas amount adjustment valve so as to maintain the methane gas concentration in the mixture at 5% or less, which is a lower flammable limit gas concentration. The gas supply device for a gas engine according to any one of claims 1 and 2, wherein the opening is controlled. 前記排気ターボ過給機の排気タービンをバイパスして排気出口管に接続される排気バイパス通路と、該排気バイパス通路を開閉する排気バイパス弁をそなえるとともに、前記エンジンへの混合気量が目標混合気量になるように前記排気バイパス弁の開度を制御する空燃比コントローラをそなえてなることを特徴とする請求項1又は2の何れかの項に記載のガスエンジンのガス供給装置。   An exhaust bypass passage that bypasses the exhaust turbine of the exhaust turbocharger and is connected to an exhaust outlet pipe, an exhaust bypass valve that opens and closes the exhaust bypass passage, and an air-fuel mixture amount to the engine The gas supply device for a gas engine according to claim 1 or 2, further comprising an air-fuel ratio controller that controls the opening degree of the exhaust bypass valve so as to be an amount. 請求項1乃至5の何れかの項に記載のガス供給装置を備えることを特徴とするガスエンジン。   A gas engine comprising the gas supply device according to any one of claims 1 to 5. 燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンの運転方法において、前記燃料ガスの一部を過給機の空気入口に接続される過給機側ガス供給通路を通して過給機入口空気と混合しこの混合気を過給機に供給するとともに、前記燃料ガスの残分をシリンダ毎の給気通路に接続され前記燃料ガスを圧縮するガスコンプレッサが介装されたシリンダ側ガス供給通路を通してシリンダ毎の給気通路内の給気と混合しこの混合気をエンジンの各シリンダに供給し、
前記過給機側ガス供給通路に設けた過給機側ガス量調整弁の開度を制御して、前記過給機側ガス供給通路への燃料ガス量を、前記過給機に供給する混合気中の燃料ガス濃度が可燃下限界ガス濃度以下に保持されるように調整することを特徴とするガスエンジンの運転方法。
In a method for operating a gas engine in which fuel gas and air supplied through a fuel gas passage are mixed and the mixture is supplied into a cylinder and ignited and combusted, a part of the fuel gas is supplied to an air inlet of a supercharger. The fuel gas is mixed with the supercharger inlet air through the connected supercharger side gas supply passage, and this mixture is supplied to the supercharger. The fuel gas is connected to the air supply passage for each cylinder and the fuel gas is supplied to the supercharger. Through a cylinder-side gas supply passage in which a gas compressor that compresses the gas is mixed with the supply air in the supply passage for each cylinder, and this mixture is supplied to each cylinder of the engine,
Mixing for controlling the opening degree of the supercharger side gas amount adjusting valve provided in the supercharger side gas supply passage to supply the fuel gas amount to the supercharger side gas supply passage to the supercharger A method for operating a gas engine, characterized in that the fuel gas concentration in the air is adjusted so as to be kept below a flammable lower limit gas concentration.
JP2005064671A 2005-03-08 2005-03-08 Gas supply device and operation method for gas engine Expired - Fee Related JP4247191B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005064671A JP4247191B2 (en) 2005-03-08 2005-03-08 Gas supply device and operation method for gas engine
CNB2006100514528A CN100422540C (en) 2005-03-08 2006-02-28 Engine gas supply apparatus for gas engine and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064671A JP4247191B2 (en) 2005-03-08 2005-03-08 Gas supply device and operation method for gas engine

Publications (2)

Publication Number Publication Date
JP2006249954A JP2006249954A (en) 2006-09-21
JP4247191B2 true JP4247191B2 (en) 2009-04-02

Family

ID=36993787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064671A Expired - Fee Related JP4247191B2 (en) 2005-03-08 2005-03-08 Gas supply device and operation method for gas engine

Country Status (2)

Country Link
JP (1) JP4247191B2 (en)
CN (1) CN100422540C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062936A (en) * 2007-09-07 2009-03-26 Toho Gas Co Ltd Power generation system
DE102007056623B3 (en) * 2007-11-23 2009-05-20 Mtu Friedrichshafen Gmbh Method for controlling a stationary gas engine
JP4616878B2 (en) * 2007-12-14 2011-01-19 三菱重工業株式会社 Gas engine system control method and system
JP4563443B2 (en) * 2007-12-14 2010-10-13 三菱重工業株式会社 Gas engine system control method and system
DE102009023045B4 (en) * 2009-05-28 2019-09-12 Man Energy Solutions Se Method for operating an Otto internal combustion engine
ES2758794T3 (en) * 2009-12-23 2020-05-06 Fpt Motorenforschung Ag Method and apparatus for measuring and controlling the EGR rate in a combustion engine
JP5314637B2 (en) * 2010-05-31 2013-10-16 三菱重工業株式会社 Gas engine
JP5211115B2 (en) 2010-06-28 2013-06-12 三菱重工業株式会社 Drain device for gas engine charge air cooler
JP5308466B2 (en) 2011-01-31 2013-10-09 三菱重工業株式会社 Fuel gas supply method and apparatus for gas engine
JP5314719B2 (en) 2011-02-28 2013-10-16 三菱重工業株式会社 Gas engine air supply device
CN102230425A (en) * 2011-05-16 2011-11-02 胜利油田胜利动力机械集团有限公司 Air-fuel ratio rapid automatic adjusting system for gas generator set

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518256A (en) * 1991-07-15 1993-01-26 Mazda Motor Corp Control device for engine with supercharger
CN2194985Y (en) * 1994-02-26 1995-04-19 四川省绵阳市科阳低温设备公司 Automotive fuel supply device using liquefied natural gas as fuel
JP4060897B2 (en) * 1996-07-31 2008-03-12 ヤンマー株式会社 Control method of sub chamber type gas engine
JP3781403B2 (en) * 1999-03-05 2006-05-31 東京瓦斯株式会社 Power generation device and control method thereof
JP2001132550A (en) * 1999-11-01 2001-05-15 Osaka Gas Co Ltd Gas fuel engine
CN2516718Y (en) * 2001-07-23 2002-10-16 北京兰天达汽车清洁燃料技术有限公司 Vehicle compression natural gas inflation and supply device
JP3897602B2 (en) * 2002-01-28 2007-03-28 ヤンマー株式会社 Gas engine fuel supply system

Also Published As

Publication number Publication date
JP2006249954A (en) 2006-09-21
CN100422540C (en) 2008-10-01
CN1831318A (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP4247191B2 (en) Gas supply device and operation method for gas engine
JP4563443B2 (en) Gas engine system control method and system
US8347861B2 (en) Method to control a gas engine and a gas engine system thereof
KR101418226B1 (en) Fuel gas supply method and device for gas engine
US7650223B2 (en) Method and device for integrative control of gas engine
JP2003262139A (en) Method and device for controlling air-fuel ratio of gas engine
JP4865241B2 (en) Gas supply device for gas engine and gas engine provided with the gas supply device
JP4319481B2 (en) Fuel gas supply and supply system for lean combustion gas engines
JP5073039B2 (en) Gas supply device for gas engine and gas engine provided with the gas supply device
JP4452092B2 (en) Combustion control method and apparatus for gas engine
JP6226775B2 (en) Engine equipment
JP4060897B2 (en) Control method of sub chamber type gas engine
JP2015161201A (en) Engine device
JP6391253B2 (en) Engine equipment
DK201670286A1 (en) A internal combustion engine with fuel gas property measurement system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

R150 Certificate of patent or registration of utility model

Ref document number: 4247191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees