JP4243975B2 - Ion beam etching method and ion beam etching apparatus - Google Patents

Ion beam etching method and ion beam etching apparatus Download PDF

Info

Publication number
JP4243975B2
JP4243975B2 JP2003142967A JP2003142967A JP4243975B2 JP 4243975 B2 JP4243975 B2 JP 4243975B2 JP 2003142967 A JP2003142967 A JP 2003142967A JP 2003142967 A JP2003142967 A JP 2003142967A JP 4243975 B2 JP4243975 B2 JP 4243975B2
Authority
JP
Japan
Prior art keywords
ion beam
substrate
mask
mask member
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142967A
Other languages
Japanese (ja)
Other versions
JP2004349367A (en
Inventor
勉 西橋
宏之 柘植
寿浩 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003142967A priority Critical patent/JP4243975B2/en
Publication of JP2004349367A publication Critical patent/JP2004349367A/en
Application granted granted Critical
Publication of JP4243975B2 publication Critical patent/JP4243975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオンビームを用いて被エッチング膜をエッチングするイオンビームエッチング方法及びイオンビームエッチング装置に関する。
【0002】
【従来の技術】
従来より、半導体基板上に形成されるLSI等の能動素子の製造工程においては、絶縁層や配線層を所定の形状にパターニングするためにイオンビームエッチング法あるいはイオンミリング法が用いられている。これらのエッチング法によるパターン形成を行うにあたっては、一般に、半導体基板の被加工面に対して有機材料でなるレジストマスクを形成する必要があった(例えば下記特許文献1参照)。
【0003】
【特許文献1】
特開平11−297956号公報
【0004】
【発明が解決しようとする課題】
しかしながら、半導体基板上にレジストマスクを形成してエッチングを行う方法では、レジストマスクを形成するにあたり、半導体基板上へのレジストの塗布、ベーキング、露光、現像、洗浄の各工程を行い、エッチング工程の終了後はレジストマスクを基板上から除去する工程が必要となる。従来ではこれらの処理を各層毎に繰り返し行う必要があったので、製造プロセスの複雑化による生産性の悪化、プロセス管理負担の増大を免れないという問題があった。
【0005】
また、液晶パネル用のガラス基板に透明電極パターンを形成する場合や、高解像度撮像管に用いられる光導電性ターゲットの透明電極をパターニングする場合においては、従来では透明電極材料層の表面にレジストマスクを形成してパターンエッチングを行っていた。ところが、この方法ではレジストマスクの除去後、透明電極の表面性状が劣化して所望とする光透過率が得られなくなるという問題がある。このため従来のエッチング法では、光学デバイスに要求される高品質化に十分に対応することができない。
【0006】
本発明は上述の問題に鑑みてなされ、製造プロセスを簡素化して生産性の大きな向上を図ることができ、また、光学デバイスの製造に用いて好適なイオンビームエッチング方法及びイオンビームエッチング装置を提供することを課題とする。
【0007】
以上の課題は、透明基板上に形成したITO膜をイオンビームによって所定の形状にパターニングするイオンビームエッチング方法であって、前記ITO膜の加工領域を定める開口が形成された導電性のマスク部材を前記透明基板上に対向配置する工程と、前記マスク部材を接地する工程と、前記マスク部材を介して前記ITO膜、エネルギーが300eV〜2keV、ドーズ量が1×10の16乗(個/cm 2 )以上のイオンビームを照射することで、前記加工領域をエッチングする工程とを有するイオンビームエッチング方法、によって解決される。
【0008】
また、以上の課題は、表面に被エッチング膜が形成された基板を支持し、接地回路に接続されたステージと、前記ステージに支持された基板の表面に対してイオンビームを照射するイオンビーム照射源と前記基板の表面に間隙をおいて配置され、前記被エッチング膜の加工領域を定める開口が形成された導電性のマスク部材と、前記基板の表面に前記間隙を介して前記マスク部材を支持し、かつ、前記マスク部材を前記ステージへ電気的に接続するマスク支持具とを具備するイオンビームエッチング装置、によって解決される。
【0009】
本発明では、被エッチング膜の加工領域を定める開口が形成されたマスク部材を基板上に対向配置し、マスク部材を介して被エッチング膜にイオンビームを照射しエッチングするようにしている。マスク部材は従来のレジストマスクと同等の機能を有しながら、基板上へのレジスト塗布、ベーキング、露光、現像等の各処理を施す必要は一切なくなるので、エッチング工程のための基板処理工程数を大幅に削減でき、生産性の増大を図ることができる。
【0010】
更に、エッチング終了後の基板表面からのマスク除去工程が不要となるので、例えばパターニングした透明電極層の光学的特性の劣化を回避して、高品質の光学デバイスの製造にも十分に対応することが可能となる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。本実施の形態では、例えば、液晶表示装置用パネルや高解像度撮像管用光導電性ターゲット等の製造に用いられる、ガラス基板表面の透明電極膜のパターニング方法を例に挙げて説明する。
【0012】
図1は本発明の実施の形態を示している。被処理基板10は図示しない真空チャンバ内のステージ1上に載置されており、その上に本発明に係るマスク部材20が所定の間隙Gをおいて対向配置されている。マスク部材20には被処理基板10表面の被エッチング膜の加工領域を定める開口21が形成されている。
【0013】
図2Aは被処理基板10とマスク部材20とを示す拡大図である。被処理基板10は、透明なガラス基板11の表面に透明電極膜としてITO(Indium Tin Oxide)膜12が形成されてなるもので、このITO膜12がイオンビームIBによって加工される被エッチング膜に対応する。
【0014】
マスク部材20は導電性で、例えばシリコンやステンレスの板等で構成される。マスク部材20は、図示しないイオンビーム照射源から照射されるイオンビームIBの照射領域に対応して凹所22が形成されることによって、凹所22の形成領域のマスク厚が他の領域よりも薄厚化されている。この薄厚化された領域が、被処理基板10に対するイオンビームIBの照射を制限するマスク部23を構成している。凹部22は、被処理基板10の外径と同等以上の大きさに形成されている。
【0015】
マスク部23に形成される開口21は、被処理基板10のITO膜12の加工領域を定めるためのもので、開口21を通過するイオンビームによって、図2Bに示すように上記開口21に対応するITO膜12の領域のみがエッチングされるようになっている。開口21は、被処理基板10の全ての加工領域に対応して形成されており、一度のイオンビーム照射工程で被処理基板10の全ての加工領域をエッチングすることができるようになっている。。
【0016】
すなわち、マスク部材20のマスク部23は、従来のレジストマスクと同様な作用を行うものであるが、従来のレジストマスクと異なる点は、被処理基板10の表面に直接形成されないで、被処理基板10の表面の上方に対向配置されている点にある。
【0017】
マスク部23を被処理基板10の表面に対向配置させる手法として、本実施の形態では、図1に示すように、ステージ1上に被処理基板10と同等の厚さのマスク支持部材2を配置し、このマスク支持部材2の上に所定厚のテープ部材3を介してマスク部材20を支持するようにしている。
【0018】
マスク支持部材2は、被処理基板10の周囲を囲むように環状に形成されている。テープ部材3は被処理基板10とマスク部23との間の間隙Gを調整するためのもので、本実施の形態では100μm厚のアルミニウム製テープ部材3を設けている。本実施形態では、マスク支持部材2及びテープ部材3によって、マスク支持具が構成される。
【0019】
なお、テープ部材3をアルミニウム等の金属製とし、このテープ部材3の周縁部をステージ1を介して図示しない接地回路へ接続するようにすれば、イオンビームの照射によるマスク部材20の帯電を抑制することが可能となる。
【0020】
次に、以上のように構成される本実施の形態の作用について説明する。
【0021】
表面にITO膜12が形成された被処理基板10をその表面側を上方へ向けてステージ1上へ配置する。その後、マスク部材20をステージ1上のマスク支持部材2の上にテープ部材3を介して配置し、そのマスク部23と被処理基板10表面とをアライメントする。そして、図示しないイオンビーム照射源からのイオンビームIBをマスク部23を介して被処理基板10表面のITO膜12に照射しエッチングする。
【0022】
図2Aに示したように、イオンビームIBは、マスク部材20のマスク部23によって被処理基板10への照射領域が制限され、開口21の形成部位に対応するITO膜12の領域のみイオンビームIBが照射される。これにより、被処理基板10表面のITO膜12は図2Bに示したようにマスク部23の開口21に対応したパターンにエッチングされる。
【0023】
本実施の形態によれば、開口21を有するマスク部材20を被処理基板10表面に対向配置させるだけで所望のエッチングパターンを得ることができるので、従来のレジストマスクを用いるエッチング法に比べてレジストマスクの形成工程が不要となり、したがって、エッチング工程の大幅な簡素化を図ることができる。また、マスク部材20の交換のみで基板上に異なるパターンの層を容易に形成することができる。これにより、従来に比べて生産性の大幅な向上を図ることができる。
【0024】
しかも、レジストの形成及び除去工程を伴わないので、ITO膜12の表面性状が劣化するという問題も解消できる。したがって、光学的特性の優れた透明電極を形成できるので、特に高解像度の撮像管用ターゲットの製造プロセスに好適に採用することができる。
【0025】
本発明者らは、基板上にITO膜を30nmの厚さに形成し、本発明のイオンビームエッチング法によってITO膜の回路パターンを形成した。イオンビームを生成するイオンはアルゴンイオン(Ar+)とし、加速エネルギーは300eV〜5keVとした。そして、互いに開放関係にある2つのパターン上に端子を配置して基板表面の電気抵抗を測定したところ、表1に示すような実験結果を得た。
【0026】
【表1】

Figure 0004243975
【0027】
表1から明らかなように、パターンを適正に形成することができるイオンの照射量(ドーズ量)は、300eV〜2keVの加速エネルギーで1×10の16乗以上であることがわかる。
【0028】
イオンビームの種類としては、Ar、Xe等の不活性ガスの他、酸素やメタノール等アルコール系ガスも使用可能である。酸素を用いた場合は、酸化反応も期待され、より絶縁性が改善される。アルコールを用いた場合は、分子状イオンが生成されるため、より少ないドーズ量でのパターン加工が可能となる。
【0029】
なお、イオンの加速エネルギーが大きくなると、ITO膜の構成分子がガラス基板表面に埋没するノックオン現象が生じることが確認されている。この現象が生じると、パターンが完全に分断されていても基板表面を介してパターン間が短絡し配線不良を引き起こす原因となる。
したがって、イオンの加速エネルギーは2keV以下が好ましく、また、加速エネルギーがあまりにも低いとチャージアップ効果によりイオン照射量が不安定となるため300eV以上が好ましい。
【0030】
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0031】
例えば以上の実施の形態では、被処理基板10とマスク部材20との間に所定の間隙Gを形成するのに、ステージ1上に配置したマスク支持部材2でマスク部材20を支持するようにしたが、これに限らず、例えば図3に示すように、マスク部材20の上面を保持するマスクホルダ4を用いて、マスク部材20と被処理基板10との間の間隙Gを形成するようにしてもよい。
【0032】
また、以上の実施の形態では、透明電極材料のパターニング工程に本発明を適用した例について説明したが、勿論これに限らず、例えば半導体基板上に形成される絶縁層や配線層等のパターンエッチングにも、本発明は適用可能である。
【0033】
【発明の効果】
以上述べたように、本発明によれば、被エッチング膜の加工領域を定める開口が形成されたマスク部材を基板上に対向配置し、このマスク部材を介して被エッチング膜にイオンビームを照射しエッチングするようにしているので、基板上へレジストマスクを形成することなく所望のパターンエッチングを行うことが可能となり、これによりエッチングのための基板処理工程数を大幅に削減でき、生産性の増大を図ることができる。
【0034】
また、本発明によれば、被エッチング膜表面へのレジストマスクの形成及びその除去工程が不要となるので、例えばパターニングした透明電極層の光学的特性の劣化を回避して、高品質の光学デバイスの製造にも十分に対応することが可能となる
【図面の簡単な説明】
【図1】本発明の実施の形態によるイオンビームエッチング装置の要部の構成を示す側断面図である。
【図2】被処理基板とマスク部材との関係を拡大して示す側断面図である。
【図3】図1の構成の変形例を示す側断面図である。
【符号の説明】
1 ステージ
2 マスク支持部材
3 テープ部材
4 マスクホルダ
10 被処理基板
11 ガラス基板
12 ITO膜
20 マスク部材
21 開口
22 凹所
23 マスク部
G 間隙
IB イオンビーム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion beam etching method and an ion beam etching apparatus for etching a film to be etched using an ion beam.
[0002]
[Prior art]
Conventionally, in the manufacturing process of active elements such as LSI formed on a semiconductor substrate, an ion beam etching method or an ion milling method is used to pattern an insulating layer or a wiring layer into a predetermined shape. In performing pattern formation by these etching methods, it is generally necessary to form a resist mask made of an organic material on the processing surface of a semiconductor substrate (see, for example, Patent Document 1 below).
[0003]
[Patent Document 1]
[Patent Document 1] Japanese Patent Laid-Open No. 11-297956
[Problems to be solved by the invention]
However, in the method of performing etching by forming a resist mask on a semiconductor substrate, the resist coating, baking, exposure, development, and cleaning steps are performed on the semiconductor substrate to form the resist mask. After completion, a step of removing the resist mask from the substrate is required. Conventionally, it has been necessary to repeatedly perform these processes for each layer, and thus there has been a problem that it is inevitable that the productivity deteriorates due to the complexity of the manufacturing process and the process management burden increases.
[0005]
In the case of forming a transparent electrode pattern on a glass substrate for a liquid crystal panel or patterning a transparent electrode of a photoconductive target used for a high-resolution image pickup tube, a resist mask is conventionally used on the surface of the transparent electrode material layer. Pattern etching was performed. However, this method has a problem that after the resist mask is removed, the surface properties of the transparent electrode deteriorate and the desired light transmittance cannot be obtained. Therefore, the conventional etching method cannot sufficiently cope with the high quality required for the optical device.
[0006]
The present invention has been made in view of the above-mentioned problems, and can simplify the manufacturing process and greatly improve the productivity, and also provides an ion beam etching method and an ion beam etching apparatus suitable for use in manufacturing an optical device. The task is to do.
[0007]
An object of the present invention is to provide an ion beam etching method for patterning an ITO film formed on a transparent substrate into a predetermined shape using an ion beam, and comprising a conductive mask member having an opening for defining a processing region of the ITO film. The step of opposingly arranging on the transparent substrate , the step of grounding the mask member, and the ITO film through the mask member with an energy of 300 eV to 2 keV and a dose of 1 × 10 16 (pieces / cm 2 ) It is solved by an ion beam etching method including a step of etching the processing region by irradiating the above ion beam.
[0008]
In addition, the above-described problem is that an ion beam irradiation is performed to support a substrate having a film to be etched formed on the surface , and to irradiate an ion beam onto a stage connected to a ground circuit and the surface of the substrate supported on the stage. A source , a conductive mask member disposed with a gap on the surface of the substrate, and having an opening for defining a processing region of the film to be etched, and the mask member on the surface of the substrate via the gap This is solved by an ion beam etching apparatus that includes a mask support that supports and electrically connects the mask member to the stage .
[0009]
In the present invention, a mask member in which an opening for defining a processing region of the film to be etched is disposed oppositely on the substrate, and the film to be etched is irradiated with an ion beam through the mask member for etching. While the mask member has the same function as a conventional resist mask, there is no need to perform resist coating, baking, exposure, development, etc. on the substrate, so the number of substrate processing steps for the etching process can be reduced. It can be greatly reduced and productivity can be increased.
[0010]
Furthermore, since the mask removal process from the substrate surface after the etching is not required, the deterioration of the optical characteristics of the patterned transparent electrode layer, for example, can be avoided, and the high-quality optical device can be sufficiently manufactured. Is possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, for example, a method for patterning a transparent electrode film on the surface of a glass substrate, which is used for manufacturing a panel for a liquid crystal display device, a photoconductive target for a high-resolution imaging tube, and the like will be described as an example.
[0012]
FIG. 1 shows an embodiment of the present invention. A substrate 10 to be processed is placed on a stage 1 in a vacuum chamber (not shown), and a mask member 20 according to the present invention is disposed on the stage 1 with a predetermined gap G therebetween. The mask member 20 is formed with an opening 21 that defines a processing region of a film to be etched on the surface of the substrate 10 to be processed.
[0013]
FIG. 2A is an enlarged view showing the substrate 10 to be processed and the mask member 20. The substrate to be processed 10 is formed by forming an ITO (Indium Tin Oxide) film 12 as a transparent electrode film on the surface of a transparent glass substrate 11, and this ITO film 12 is an etching target film processed by the ion beam IB. Correspond.
[0014]
The mask member 20 is conductive and is made of, for example, a silicon or stainless steel plate. The mask member 20 is formed with a recess 22 corresponding to the irradiation region of the ion beam IB irradiated from an ion beam irradiation source (not shown), so that the mask thickness of the formation region of the recess 22 is larger than that of other regions. Thinned. This thinned region constitutes a mask portion 23 that restricts irradiation of the ion beam IB to the substrate 10 to be processed. The recess 22 is formed to have a size equal to or greater than the outer diameter of the substrate 10 to be processed.
[0015]
The opening 21 formed in the mask portion 23 is for defining a processing region of the ITO film 12 of the substrate 10 to be processed, and corresponds to the opening 21 as shown in FIG. 2B by an ion beam passing through the opening 21. Only the region of the ITO film 12 is etched. The openings 21 are formed corresponding to all the processing regions of the substrate 10 to be processed, and all the processing regions of the substrate 10 to be processed can be etched by one ion beam irradiation process. .
[0016]
That is, the mask portion 23 of the mask member 20 performs the same function as a conventional resist mask, but is different from the conventional resist mask in that it is not directly formed on the surface of the substrate 10 to be processed. 10 is located opposite to the upper surface of the surface.
[0017]
In the present embodiment, as shown in FIG. 1, a mask support member 2 having a thickness equivalent to that of the substrate to be processed 10 is disposed on the stage 1 as a method of disposing the mask portion 23 on the surface of the substrate 10 to be processed. The mask member 20 is supported on the mask support member 2 via a tape member 3 having a predetermined thickness.
[0018]
The mask support member 2 is formed in an annular shape so as to surround the periphery of the substrate 10 to be processed. The tape member 3 is for adjusting the gap G between the substrate 10 to be processed and the mask portion 23, and in this embodiment, the aluminum tape member 3 having a thickness of 100 μm is provided. In this embodiment, the mask support member is constituted by the mask support member 2 and the tape member 3.
[0019]
If the tape member 3 is made of a metal such as aluminum and the peripheral portion of the tape member 3 is connected to a ground circuit (not shown) via the stage 1, charging of the mask member 20 due to ion beam irradiation is suppressed. It becomes possible to do.
[0020]
Next, the operation of the present embodiment configured as described above will be described.
[0021]
The substrate 10 to be processed having the ITO film 12 formed on the surface is disposed on the stage 1 with the surface side facing upward. Thereafter, the mask member 20 is disposed on the mask support member 2 on the stage 1 via the tape member 3, and the mask portion 23 and the surface of the substrate to be processed 10 are aligned. Then, an ion beam IB from an ion beam irradiation source (not shown) is irradiated to the ITO film 12 on the surface of the substrate to be processed 10 through the mask portion 23 to be etched.
[0022]
As shown in FIG. 2A, in the ion beam IB, the irradiation region of the substrate to be processed 10 is limited by the mask portion 23 of the mask member 20, and only the region of the ITO film 12 corresponding to the formation site of the opening 21 is the ion beam IB. Is irradiated. Thereby, the ITO film 12 on the surface of the substrate to be processed 10 is etched into a pattern corresponding to the opening 21 of the mask portion 23 as shown in FIG. 2B.
[0023]
According to the present embodiment, a desired etching pattern can be obtained simply by disposing the mask member 20 having the opening 21 on the surface of the substrate to be processed 10, so that the resist can be compared with an etching method using a conventional resist mask. A mask formation process is not required, and therefore the etching process can be greatly simplified. Further, it is possible to easily form layers having different patterns on the substrate only by replacing the mask member 20. Thereby, the productivity can be significantly improved as compared with the conventional case.
[0024]
In addition, since the resist formation and removal steps are not involved, the problem that the surface properties of the ITO film 12 deteriorate can be solved. Therefore, since a transparent electrode having excellent optical characteristics can be formed, it can be suitably used for a manufacturing process of a high-resolution imaging tube target.
[0025]
The inventors of the present invention formed an ITO film with a thickness of 30 nm on a substrate, and formed a circuit pattern of the ITO film by the ion beam etching method of the present invention. The ions that generate the ion beam were argon ions (Ar + ), and the acceleration energy was 300 eV to 5 keV. Then, terminals were placed on two patterns in an open relationship with each other, and the electrical resistance on the surface of the substrate was measured. The experimental results shown in Table 1 were obtained.
[0026]
[Table 1]
Figure 0004243975
[0027]
As is apparent from Table 1, the ion irradiation amount (dose amount) capable of properly forming the pattern is 1 × 10 16 or more with acceleration energy of 300 eV to 2 keV.
[0028]
As the type of ion beam, in addition to an inert gas such as Ar or Xe, an alcohol-based gas such as oxygen or methanol can be used. When oxygen is used, an oxidation reaction is also expected, and the insulation is further improved. When alcohol is used, since molecular ions are generated, pattern processing with a smaller dose becomes possible.
[0029]
It has been confirmed that when the acceleration energy of ions increases, a knock-on phenomenon occurs in which the constituent molecules of the ITO film are buried in the glass substrate surface. When this phenomenon occurs, even if the pattern is completely divided, the pattern is short-circuited through the substrate surface, causing a wiring defect.
Therefore, the ion acceleration energy is preferably 2 keV or less, and if the acceleration energy is too low, the ion irradiation amount becomes unstable due to the charge-up effect, and therefore 300 eV or more is preferable.
[0030]
The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0031]
For example, in the above embodiment, the mask member 20 is supported by the mask support member 2 disposed on the stage 1 in order to form the predetermined gap G between the substrate 10 to be processed and the mask member 20. However, the present invention is not limited to this. For example, as shown in FIG. 3, a gap G between the mask member 20 and the substrate to be processed 10 is formed using the mask holder 4 that holds the upper surface of the mask member 20. Also good.
[0032]
In the above embodiment, the example in which the present invention is applied to the patterning process of the transparent electrode material has been described. However, the present invention is not limited to this. For example, pattern etching of an insulating layer, a wiring layer, or the like formed on a semiconductor substrate. In addition, the present invention is applicable.
[0033]
【The invention's effect】
As described above, according to the present invention, the mask member in which the opening for defining the processing region of the film to be etched is disposed oppositely on the substrate, and the film to be etched is irradiated with the ion beam through the mask member. Since etching is performed, it is possible to perform a desired pattern etching without forming a resist mask on the substrate, thereby greatly reducing the number of substrate processing steps for etching and increasing productivity. Can be planned.
[0034]
Further, according to the present invention, the formation of a resist mask on the surface of the film to be etched and the step of removing the resist mask are not required. It will be possible to fully support the manufacturing of the product. [Brief description of the drawings]
FIG. 1 is a side sectional view showing a configuration of a main part of an ion beam etching apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged side sectional view showing a relationship between a substrate to be processed and a mask member.
FIG. 3 is a side sectional view showing a modification of the configuration of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stage 2 Mask support member 3 Tape member 4 Mask holder 10 Substrate 11 Glass substrate 12 ITO film 20 Mask member 21 Opening 22 Recess 23 Mask part G Gap IB Ion beam

Claims (2)

透明基板上に形成したITO膜をイオンビームによって所定の形状にパターニングするイオンビームエッチング方法であって、
前記ITO膜の加工領域を定める開口が形成された導電性のマスク部材を前記透明基板上に対向配置する工程と、
前記マスク部材を接地する工程と、
前記マスク部材を介して前記ITO膜、エネルギーが300eV〜2keV、ドーズ量が1×10の16乗(個/cm 2 )以上のイオンビームを照射することで、前記加工領域をエッチングする工程とを有するイオンビームエッチング方法。
An ion beam etching method for patterning an ITO film formed on a transparent substrate into a predetermined shape by an ion beam,
A step of opposingly placing a conductive mask member formed with an opening for defining a processing region of the ITO film on the transparent substrate ;
Grounding the mask member;
Etching the processing region by irradiating the ITO film with an ion beam having an energy of 300 eV to 2 keV and a dose of 1 × 10 16 (pieces / cm 2 ) or more through the mask member; An ion beam etching method comprising:
表面に被エッチング膜が形成された基板を支持し、接地回路に接続されたステージと、
前記ステージに支持された基板の表面に対してイオンビームを照射するイオンビーム照射源と、
前記基板の表面に間隙をおいて配置され、前記被エッチング膜の加工領域を定める開口が形成された導電性のマスク部材と、
前記基板の表面に前記間隙を介して前記マスク部材を支持し、かつ、前記マスク部材を前記ステージへ電気的に接続するマスク支持具と
を具備するイオンビームエッチング装置。
A stage that supports a substrate with a film to be etched formed on the surface and is connected to a ground circuit;
An ion beam irradiation source for irradiating the surface of the substrate supported by the stage with an ion beam;
A conductive mask member disposed with a gap on the surface of the substrate and having an opening for defining a processing region of the film to be etched;
An ion beam etching apparatus comprising: a mask support that supports the mask member on the surface of the substrate through the gap and electrically connects the mask member to the stage.
JP2003142967A 2003-05-21 2003-05-21 Ion beam etching method and ion beam etching apparatus Expired - Fee Related JP4243975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142967A JP4243975B2 (en) 2003-05-21 2003-05-21 Ion beam etching method and ion beam etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142967A JP4243975B2 (en) 2003-05-21 2003-05-21 Ion beam etching method and ion beam etching apparatus

Publications (2)

Publication Number Publication Date
JP2004349367A JP2004349367A (en) 2004-12-09
JP4243975B2 true JP4243975B2 (en) 2009-03-25

Family

ID=33530872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142967A Expired - Fee Related JP4243975B2 (en) 2003-05-21 2003-05-21 Ion beam etching method and ion beam etching apparatus

Country Status (1)

Country Link
JP (1) JP4243975B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654811B2 (en) * 2005-07-22 2011-03-23 凸版印刷株式会社 Etching mask and dry etching method
JP5431807B2 (en) * 2008-03-14 2014-03-05 インテヴァック インコーポレイテッド Substrate processing system and method using removable mask
US8795466B2 (en) 2008-06-14 2014-08-05 Intevac, Inc. System and method for processing substrates with detachable mask
WO2016132583A1 (en) * 2015-02-18 2016-08-25 コニカミノルタ株式会社 Method for manufacturing thin film electronic device, etching apparatus, and apparatus for manufacturing thin film electronic device
US10957512B1 (en) * 2019-09-25 2021-03-23 Applied Materials, Inc. Method and device for a carrier proximity mask

Also Published As

Publication number Publication date
JP2004349367A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3863781B2 (en) Method of manufacturing a triode carbon nanotube field emission array
TW200919584A (en) Wiring fabricating method
KR20100126228A (en) Tft-lcd array substrate and manufacturing method thereof
JPH1032202A (en) Electronic device and manufacture thereof
JP3614377B2 (en) Method of manufacturing field electron emission device and field electron emission device manufactured thereby
JP4243975B2 (en) Ion beam etching method and ion beam etching apparatus
KR100416141B1 (en) Method of manufacturing for field emission display having carbon-based emitter
JPH07235502A (en) Method of manufacturing semiconductor device
JP2016017207A (en) Film deposition mask, manufacturing method of film deposition mask, and touch panel
EP2862839A1 (en) Hydrogen surface-treated graphene, formation method thereof and electronic device comprising the same
CN101192563A (en) Method for avoiding wafer border striping in metal wiring procedure
KR100590579B1 (en) Method of fabricating field emission device having cnt emitter
US20060292727A1 (en) Photomask plasma etching apparatus, etching method, and photomask forming method
JPH05190508A (en) Thin film etching method and laminated thin film etching method
JP2614983B2 (en) Method for manufacturing field emission cathode structure
KR100928965B1 (en) Emitter for electron beam projection lithography, method of operation and manufacturing method
JP5736113B2 (en) Method for manufacturing exposure mask
JP3304263B2 (en) ITO patterning method
JP3198302B2 (en) Method of forming fine structure pattern
JPS6358446A (en) Pattern forming method
CN113053741A (en) Preparation method of metal electrode, metal electrode and display panel
JPH02257635A (en) Formation of pattern
JP2002517883A (en) Conductive focus waffle
JP2009188247A (en) Soi substrate for stencil mask, stencil mask blanks, stencil mask, method of manufacturing stencil mask, and pattern exposure method using stencil mask
JP3486131B2 (en) Electron emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

R150 Certificate of patent or registration of utility model

Ref document number: 4243975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees