JP4243882B2 - Graft polymerization processed product of hydrophobic polymer molded product and method for producing the same - Google Patents
Graft polymerization processed product of hydrophobic polymer molded product and method for producing the same Download PDFInfo
- Publication number
- JP4243882B2 JP4243882B2 JP02380399A JP2380399A JP4243882B2 JP 4243882 B2 JP4243882 B2 JP 4243882B2 JP 02380399 A JP02380399 A JP 02380399A JP 2380399 A JP2380399 A JP 2380399A JP 4243882 B2 JP4243882 B2 JP 4243882B2
- Authority
- JP
- Japan
- Prior art keywords
- graft polymerization
- product
- graft
- hydrophobic polymer
- polymer molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Graft Or Block Polymers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、疎水性高分子成形品のグラフト重合加工品に関し、エチレン性不飽和有機酸を均一かつ効率よくグラフト重合し、しかも副生重合体の膠着が生じないグラフト重合加工方法に関する。
【0002】
【従来の技術】
疎水性高分子成形品は多くの優れた機械的性質を有している為に、極めて広い用途を有しているが、その反面帯電し易い、油汚れが落ちにくい、溶融して孔があき易い、また繊維成形物とし特に衣料として用いる場合、吸水性、吸湿性がないためにべとつき、蒸し暑いと言った欠点を有している。従来これらの欠点を改良するために、疎水性合成重合体に親水性不飽和重合体をグラフト重合する方法が提案されている。しかしながら、一般に疎水性高分子成形品にアクリル酸、メタクリル酸のような親水性不飽和単量体をグラフト重合する場合、グラフト重合効率が著しく低く、また不均一になりやすい欠点を有している。
【0003】
従来、グラフト重合方法としては、疎水性ラジカル開始剤、開始剤の溶液、疎水性重合体の膨潤剤及び乳化剤を配合した水系乳化分散液を疎水性重合体に付着させ加熱、水洗して該重合体に重合活性中心を導入した後、ラジカル重合によって重合し得る二重結合を有する単量体を作用させる二浴法(特公昭45−502号公報)、芳香族ポリエステル成型物を、疎水性有機溶剤、疎水性ラジカル開始剤、ラジカル重合によって重合し得る二重結合を有する親水性単量体及び、乳化剤からなる水性分散液で処理する一浴法(特公昭48−27743号公報)等が提案されている。しかし、前者の方法は活性化処理工程とグラフト重合工程との二工程からなり、操作が煩雑で時間を必要とするばかりか、グラフト率の変動、グラフト重合の不均一化を生じて常に安定した均一グラフト重合を得ることが困難である。また、後者の方法は単一工程という利点はあるが、グラフト重合の均一性に欠けること、重合効率が低い等の欠点を有している。
【0004】
また、グラフト重合加工の際に、グラフト効率を高めるために、疎水性重合体の膨潤剤としてキャリヤーを用いることが知られているが、用いられるキャリヤーの臭気が非常に特徴的でなおかつ強く、最終製品にまで臭気が残り、問題である。
【0005】
【発明が解決しようとする課題】
本発明者らは上記問題を解決して、疎水性高分子成形品にエチレン性不飽和酸を均一かつ高い効率で、しかも副生成物の膠着を生じず、最終製品として臭気が残らないようにグラフト重合する方法につき鋭意研究の結果、本発明に到達した。
【0006】
【課題を解決するための手段】
すなわち本発明は、疎水性ラジカル開始剤、フタルイミド系化合物及びエチレン性不飽和有機酸を含む水性乳化液でグラフト重合加工されてエチレン性不飽和有機酸がグラフト重合した疎水性高分子成形品であり、かつグラフト重合後の沸騰水30分間の洗浄で副生成重合体の膠着が防止され、かつフタルイミド系化合物の残存量を2400ppm以下にすることができることを特徴とする疎水性高分子成形品のグラフト重合加工品であり、さらに疎水性ラジカル開始剤、フタルイミド系の化合物及びエチレン性不飽和有機酸を含む水性乳化液中に疎水性高分子成形品を浸漬、加熱処理するグラフト重合方法において、エチレン性不飽和有機酸濃度が0.5重量%以上10重量%であり、かつアルカリ金属化合物により室温でのpHが2.5以上3.5以下になるように調整された水性乳化液を用いることを特徴とするグラフト重合加工品の製造方法である。
【0007】
本発明によると、副生成重合体の膠着も無く、均一性が優れ、高反応率でグラフト重合された疎水性高分分子成形品が得られるばかりでなく、これらにより作られた製品からの臭気は非常に少ない。更に、グラフト重合率の再現性も高く、副生成重合体の除去も容易であり、抽出処理工程を削減しても、実用上問題ない等の工業化における大きな利点を有する。
【0008】
【発明の実施の形態】
本発明における、疎水性高分子とはポリエステル系、ポリアミド系、ポリアクリル系、ポリオレフィン系などであり、その成形品の形態はわた、トウ、糸、織編物、フィルム、合成紙、不織布、敷物などいずれでもよい。
【0009】
また、疎水性ラジカル開始剤としては、ベンゾイルパーオキサイド、トルイルパーオキサイド、芳香族アルキルパーオキサイド系化合物、ジクロルベンゾイルパーオキサイド、ジクミルパーオキサイド、アゾビスイソブチロニトリル、キュメンハイドロパーオキサイド、過安息香酸、過安息香酸エステル等があげられる。その使用量は一般にグラフト重合浴に対し0.01重量%以上5重量%以下である。
【0010】
また、フタルイミド系化合物とはフタルイミド基を有する化合物であり、フタルイミドのN基に脂肪族もしくは芳香族のアルキル基を有するN置換フタルイミド化合物が好ましく、加工処理後の製品への残存量、臭気、安全性、取り扱い性から、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル等の低分子量脂肪族アルキル基を有するN−アルキルフタルイミド系化合物がより好ましい。また、これらの化合物は単独で用いても、数種類混合して用いても良い。
【0011】
このフタルイミド系化合物の使用量は、グラフト重合浴に対し、0.01重量%以上2.0重量%以下が望ましい。これより少ないと、均一にグラフト重合が行われず、重合率も上がらない。また、これ以上使用量を増やしても、反応効率は良くならず、最終製品に残存するフタルイミド化合物の量も多くなり、臭気が残り、消費特性上好ましくない。また、安全性、処理液コスト、反応性の点から、より好ましくは0.1重量%以上1.0重量%以下である。
【0012】
これらにより作られた最終製品中に残存するフタルイミド系化合物の量は2000ppm以下である事が望ましい。これ以上残存量が多くなると臭気が残るだけでなく、消費特性上も好ましくない。これらは、最終製品5gを充てん管に入れ、180℃で15分間熱処理し、発生したガスをクロロホルムで抽出し、ガスクロマトグラフィーを用いて測定することができる。また、最終製品におけるフタルイミド系化合物の量を2000ppmにするためには、フルタルイミド系化合物の使用量にもよるが、反応後の製品乾燥もしくは成形工程にて、140℃以上の温度で処理してやればよい。
【0013】
本発明で重合浴の安定化のために使用できる界面活性剤としては、非イオン型界面活性剤、アニオン型界面活性剤、カチオン型界面活性剤、両性界面活性剤、非イオンアニオン型界面活性剤、非イオンカチオン型界面活性剤などが用いられ、これらは単独又は場合によっては2種以上の併用で用いられるが、乳化系の安定性及びグラフト重合の効率の面からは、非イオン系界面活性剤、非イオンアニオン型界面活性剤又は非イオン型界面活性剤とアニオン型活性剤の混合物が好ましい。
【0014】
本発明におけるエチレン性不飽和有機酸としてはアクリル酸、メタクリル酸、マレイン酸、イタコン酸、スチレンスルホン酸、クロトン酸、ブテントリカルボン酸等が例示され、各各単独または混合物としてグラフト重合に用いられるが、特にアクリル酸及び/又はメタクリル酸が好ましい。また、不飽和有機酸以外のエチレン性不飽和単量体を共存させても良い。これらの不飽和単量体の例としては、不飽和有機酸エステル類、これらのフッ素や臭素の置換体、リンや硫黄含有化合物など各種の機能性を付与できる化合物が挙げられる。
【0015】
グラフト重合浴中における、エチレン性不飽和有機酸の濃度は0.5重量%以上10重量%が好ましく、0.5〜5重量%がより好ましい。これらのモノマー濃度が10重量%を超えると、非グラフト重合体である副生成重合体が多くなる傾向があるが通常2〜100%のグラフト率を得ることが可能である。
本発明におけるグラフト重合率は、好ましくは10%以上、より好ましくは12%以上、さらに好ましくは15%以上である。吸湿性を高める上ではグラフト率が高い方がよいが、高すぎると繊維の強度低下が大きくなるため、グラフト率は30%程度までが実用性の点で好ましい。
【0016】
本発明においては、上記組成からなるグラフト重合浴の室温におけるpHが2.5以上3.5以下となるようにアルカリ金属化合物によりpH調整することが重要である。pHが2.5未満ではグラフト率が低下し、非グラフト重合体の副生成物が増加し、高分子成形品の表面に膠着する上、機械的特性の低下も見られる。pHが3.5をこえると、副生成重合体の膠着は生じないがグラフト率が低下する。
グラフト率が10%未満では膠着は比較的生じにくいが、グラフト率が10%以上では膠着し易く、本発明におけるpH調整が重要である。
【0017】
pH調整剤として用いられるアルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸カリウムのようなアルカリ金属炭酸塩等の他、リン酸−2−ナトリウム、リン酸−3−ナトリウム、ピロリン酸ナトリウム、トリリン酸ナトリウム、リン酸ー3−カリウムのような無機弱酸のアルカリ金属塩、酢酸ナトリウム、プロピオン酸ナトリウム、アクリル酸ナトリウム、メタクリル酸ナトリウムのような、有機酸のアルカリ金属塩等の水に溶解してアルカリ性を示す広範囲の化合物がしようできるが、特に無機弱酸のアルカリ金属塩が使用しやすい。
【0018】
本発明においては調整されたグラフト重合浴中に疎水性高分子成型品を浸漬して加熱処理するが、処理条件は通常50℃から150℃で5分から3時間であり、好ましくは70℃から130℃で30から120分間である。雰囲気としては窒素ガス雰囲気が好ましい。
【0019】
得られた成形品は吸水吸湿性、吸湿発熱性、帯電防止性、耐熱性、接着性、アンモニア消臭性、アルカリガス吸着性、pHバランス性、染色性等の他、他の化合物との反応性、金属蒸着性、メッキ性等の多くの改善された性質を有する。
【0020】
【実施例】
以下、実施例により本発明を説明する。
(実施例1、3、比較例1〜4)
疎水性ラジカル開始剤としてベンゾイルパーオキサイドを0.1重量%を使用し、表1に示したようにN−ブチルフタルイミドを添加し、さらにポリエチレングリコールとアニオン系の界面活性剤を加えて乳化水性液とし、さらにアクリル酸とメタクリル酸の等量混合モノマーを3重量%になるように加え、さらに炭酸ナトリウムを加えてグラフト重合浴のpHを表1のように調整し、このグラフト重合浴の1/15重量のポリエチレンテレフタレートフィラメント加工糸編物(75d/36f)をグラフト重合浴に浸漬して、窒素ガス雰囲気下、100℃で1時間グラフト重合を行った。その後、沸騰水で30分洗浄し、乾燥機を用いて乾燥させ(150℃×5分)最終製品を得た。
【0021】
(実施例2)
疎水性高分子重合体として、ナイロン6フィラメント加工糸編物(75d/36f)を用いた以外は、実施例1と同様の方法で最終製品を得た。
【0022】
上記実施例および比較例で得られた繊維製品について、グラフト重合後の副生成ポリカルボン酸の膠着状態とグラフト率(初期重量に対する重量増加率)、N−アルキルフタルイミド残存量、および最終製品の臭気を調べた。この結果を表1に示す。
【0023】
【表1】
【0024】
【発明の効果】
本発明の方法を用いれば、副生成重合体の膠着が無く、均一性に優れ、高反応率でグラフト重合された疎水性高分子成形品が得られる。また、これらにより作られた製品からの臭気は非常に少なく、消費特性上好ましい。更に、グラフト重合率の再現性も高く、副生成重合体の除去も容易であり、抽出処理工程を削減しても、実用上問題ない等の工業化における大きな利点を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graft polymerized product of a hydrophobic polymer molded article, and relates to a graft polymerization processing method in which an ethylenically unsaturated organic acid is uniformly and efficiently graft-polymerized and no by-product polymer sticking occurs.
[0002]
[Prior art]
Hydrophobic polymer molded products have many excellent mechanical properties, so they have a very wide range of applications. However, they are easily charged, oil stains are difficult to remove, and they are melted and perforated. When used as a fiber molded product, especially as a garment, it has a drawback that it is sticky and sultry because it does not absorb water or absorb moisture. Conventionally, in order to improve these drawbacks, a method of graft polymerization of a hydrophilic unsaturated polymer to a hydrophobic synthetic polymer has been proposed. However, generally, when a hydrophilic unsaturated monomer such as acrylic acid or methacrylic acid is graft-polymerized on a hydrophobic polymer molded product, the graft polymerization efficiency is remarkably low, and there is a drawback that it tends to be non-uniform. .
[0003]
Conventionally, as a graft polymerization method, an aqueous emulsion dispersion containing a hydrophobic radical initiator, a solution of an initiator, a swelling agent of a hydrophobic polymer and an emulsifier is attached to the hydrophobic polymer, heated, washed with water, and then the heavy polymer is dispersed. A two-bath method (Japanese Patent Publication No. 45-502) in which a monomer having a double bond that can be polymerized by radical polymerization is introduced after introducing a polymerization active center into the polymer, and an aromatic polyester molded product is made into a hydrophobic organic Proposed is a one-bath method (Japanese Patent Publication No. 48-27743) which is treated with an aqueous dispersion comprising a solvent, a hydrophobic radical initiator, a hydrophilic monomer having a double bond that can be polymerized by radical polymerization, and an emulsifier. Has been. However, the former method consists of two steps, an activation treatment step and a graft polymerization step, which not only requires complicated operations and requires time, but also results in fluctuations in the graft rate and non-uniform graft polymerization, which is always stable. It is difficult to obtain uniform graft polymerization. The latter method has an advantage of a single step, but has disadvantages such as lack of uniformity of graft polymerization and low polymerization efficiency.
[0004]
In addition, it is known that a carrier is used as a swelling agent for a hydrophobic polymer in order to increase the grafting efficiency during the graft polymerization process, but the odor of the carrier used is very characteristic and strong, Odor remains in the product, which is a problem.
[0005]
[Problems to be solved by the invention]
The present inventors have solved the above problems so that an ethylenically unsaturated acid is uniformly and highly efficient in a hydrophobic polymer molded product, and no by-product sticking occurs, so that no odor remains as a final product. As a result of intensive studies on the graft polymerization method, the present invention has been achieved.
[0006]
[Means for Solving the Problems]
That is, the present invention is a hydrophobic polymer molded article obtained by graft polymerization with an aqueous emulsion containing a hydrophobic radical initiator, a phthalimide compound and an ethylenically unsaturated organic acid, and graft-polymerizing the ethylenically unsaturated organic acid. In addition, the grafting of the hydrophobic polymer molded product is characterized in that the by- product polymer is prevented from sticking by washing with boiling water for 30 minutes after the graft polymerization, and the residual amount of the phthalimide compound can be reduced to 2400 ppm or less. In the graft polymerization method, which is a polymerized product and is further immersed in an aqueous emulsion containing a hydrophobic radical initiator, a phthalimide compound and an ethylenically unsaturated organic acid, and heat-treated, the ethylenic polymer The unsaturated organic acid concentration is 0.5 wt% or more and 10 wt%, and the pH at room temperature is 2.5 due to the alkali metal compound. Is a manufacturing method of the graft polymerization processed products, which comprises using an aqueous emulsion above 3.5 is adjusted to be less than.
[0007]
According to the present invention, there is no sticking of a by-product polymer, excellent uniformity, and a high molecular weight graft polymerized product with a high reaction rate is obtained. Are very few. Furthermore, the reproducibility of the graft polymerization rate is high, the removal of the by-product polymer is easy, and even if the extraction process is reduced, there are significant advantages in industrialization such as no problem in practical use.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the hydrophobic polymer includes polyester, polyamide, polyacryl, polyolefin, and the like, and the form of the molded product is cotton, tow, yarn, woven / knitted fabric, film, synthetic paper, nonwoven fabric, rug, etc. Either is acceptable.
[0009]
Hydrophobic radical initiators include benzoyl peroxide, toluyl peroxide, aromatic alkyl peroxide compounds, dichlorobenzoyl peroxide, dicumyl peroxide, azobisisobutyronitrile, cumene hydroperoxide, peroxide. Examples thereof include benzoic acid and perbenzoic acid esters. The amount used is generally 0.01% by weight or more and 5% by weight or less based on the graft polymerization bath.
[0010]
The phthalimide compound is a compound having a phthalimide group, and an N-substituted phthalimide compound having an aliphatic or aromatic alkyl group in the N group of the phthalimide is preferable, and the remaining amount in the processed product, odor, safety N-alkylphthalimide compounds having a low molecular weight aliphatic alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl and the like are more preferable from the viewpoint of properties and handling properties. These compounds may be used alone or in combination.
[0011]
The amount of the phthalimide compound used is desirably 0.01% by weight or more and 2.0% by weight or less based on the graft polymerization bath. If it is less than this, the graft polymerization will not be carried out uniformly, and the polymerization rate will not increase. Further, even if the amount used is increased further, the reaction efficiency is not improved, the amount of the phthalimide compound remaining in the final product is increased, and an odor remains, which is not preferable in terms of consumption characteristics. Moreover, from the point of safety | security, process liquid cost, and reactivity, More preferably, it is 0.1 to 1.0 weight%.
[0012]
The amount of the phthalimide compound remaining in the final product made by these is desirably 2000 ppm or less. If the remaining amount is more than this, not only the odor remains but also the consumption characteristics are not preferable. These can be measured using gas chromatography by putting 5 g of the final product into a packed tube, heat treating at 180 ° C. for 15 minutes, extracting the generated gas with chloroform. Moreover, in order to make the amount of the phthalimide compound in the final product 2000 ppm, depending on the amount of the furtalimide compound used, it may be processed at a temperature of 140 ° C. or higher in the product drying or molding step after the reaction. .
[0013]
Examples of the surfactant that can be used for stabilizing the polymerization bath in the present invention include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic anionic surfactants. , Nonionic cation type surfactants and the like are used, and these may be used alone or in combination of two or more in some cases. From the viewpoint of the stability of the emulsion system and the efficiency of graft polymerization, the nonionic surfactant is used. An agent, a nonionic anionic surfactant, or a mixture of a nonionic surfactant and an anionic surfactant is preferred.
[0014]
Examples of the ethylenically unsaturated organic acid in the present invention include acrylic acid, methacrylic acid, maleic acid, itaconic acid, styrenesulfonic acid, crotonic acid, butenetricarboxylic acid and the like, and each of them is used alone or as a mixture for graft polymerization. In particular, acrylic acid and / or methacrylic acid are preferred. Further, an ethylenically unsaturated monomer other than the unsaturated organic acid may coexist. Examples of these unsaturated monomers include unsaturated organic acid esters, fluorine and bromine substitutes, and compounds capable of imparting various functionalities such as phosphorus and sulfur-containing compounds.
[0015]
The concentration of the ethylenically unsaturated organic acid in the graft polymerization bath is preferably 0.5% by weight or more and 10% by weight, and more preferably 0.5 to 5% by weight. When these monomer concentrations exceed 10% by weight, the by-product polymer that is a non-graft polymer tends to increase, but it is usually possible to obtain a graft ratio of 2 to 100%.
The graft polymerization rate in the present invention is preferably 10% or more, more preferably 12% or more, and further preferably 15% or more. In order to increase the hygroscopicity, a higher graft ratio is preferred. However, if the graft ratio is too high, the strength of the fiber is greatly reduced. Therefore, the graft ratio is preferably up to about 30% from the viewpoint of practicality.
[0016]
In the present invention, it is important to adjust the pH with an alkali metal compound so that the pH at room temperature of the graft polymerization bath having the above composition is 2.5 or more and 3.5 or less. When the pH is less than 2.5, the graft ratio is decreased, the amount of non-grafted polymer by-products is increased, and it is adhered to the surface of the polymer molded product, and the mechanical properties are also decreased. When the pH exceeds 3.5, the by-product polymer does not stick, but the graft ratio decreases.
Adhesion is relatively unlikely to occur when the graft ratio is less than 10%, but it tends to cause adhesion when the graft ratio is 10% or more, and pH adjustment in the present invention is important.
[0017]
Examples of the alkali metal compound used as a pH adjuster include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal carbonates such as potassium carbonate, etc., as well as phosphate-2-sodium phosphate and phosphate-3-sodium phosphate. Alkali metal salts of inorganic weak acids such as sodium pyrophosphate, sodium triphosphate, -3-potassium phosphate, alkali metal salts of organic acids such as sodium acetate, sodium propionate, sodium acrylate, sodium methacrylate, etc. Although a wide range of compounds that exhibit alkalinity when dissolved in water can be used, alkali metal salts of inorganic weak acids are particularly easy to use.
[0018]
In the present invention, the hydrophobic polymer molded article is immersed in the adjusted graft polymerization bath and heat-treated. The treatment conditions are usually 50 ° C. to 150 ° C. for 5 minutes to 3 hours, preferably 70 ° C. to 130 ° C. 30 to 120 minutes at ° C. The atmosphere is preferably a nitrogen gas atmosphere.
[0019]
The obtained molded product has water absorption, moisture absorption exothermicity, antistatic property, heat resistance, adhesiveness, ammonia deodorizing property, alkali gas adsorption property, pH balance property, dyeability, etc., and reaction with other compounds. It has many improved properties such as properties, metal deposition properties and plating properties.
[0020]
【Example】
Hereinafter, the present invention will be described by way of examples.
(Example 1 and 3, the ratio Comparative Examples 1-4)
Using 0.1% by weight of benzoyl peroxide as a hydrophobic radical initiator, adding N-butylphthalimide as shown in Table 1, and further adding polyethylene glycol and an anionic surfactant to emulsify aqueous liquid Further, an equal amount of mixed monomers of acrylic acid and methacrylic acid was added to 3% by weight, and sodium carbonate was further added to adjust the pH of the graft polymerization bath as shown in Table 1. 15 weight polyethylene terephthalate filament processed yarn knitted fabric (75d / 36f) was immersed in a graft polymerization bath, and graft polymerization was performed at 100 ° C. for 1 hour in a nitrogen gas atmosphere. Then, it was washed with boiling water for 30 minutes and dried using a dryer (150 ° C. × 5 minutes) to obtain a final product.
[0021]
(Example 2)
A final product was obtained in the same manner as in Example 1 except that nylon 6 filament processed yarn knitted fabric (75d / 36f) was used as the hydrophobic polymer.
[0022]
Regarding the fiber products obtained in the above Examples and Comparative Examples, the by-product polycarboxylic acid after graft polymerization was adhered and grafted (weight increase rate with respect to the initial weight), the remaining amount of N-alkylphthalimide, and the odor of the final product. I investigated. The results are shown in Table 1.
[0023]
[Table 1]
[0024]
【The invention's effect】
By using the method of the present invention, there can be obtained a hydrophobic polymer molded article which is free from sticking of a by-product polymer, is excellent in uniformity, and is graft-polymerized at a high reaction rate. Moreover, the odor from the product made by these is very few, and it is preferable on consumption characteristics. Furthermore, the reproducibility of the graft polymerization rate is high, the removal of the by-product polymer is easy, and even if the extraction process is reduced, there are significant advantages in industrialization such as no problem in practical use.
Claims (1)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02380399A JP4243882B2 (en) | 1999-02-01 | 1999-02-01 | Graft polymerization processed product of hydrophobic polymer molded product and method for producing the same |
US09/358,725 US6214461B1 (en) | 1998-07-23 | 1999-07-22 | Modified hydrophobic textile product |
TW088112446A TW490515B (en) | 1998-07-23 | 1999-07-22 | Modified hydrophobic textile product |
DE69923502T DE69923502T2 (en) | 1998-07-23 | 1999-07-23 | Modified hydrophobic textile products |
EP99114459A EP0974695B1 (en) | 1998-07-23 | 1999-07-23 | Modified hydrophobic textile product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02380399A JP4243882B2 (en) | 1999-02-01 | 1999-02-01 | Graft polymerization processed product of hydrophobic polymer molded product and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000219758A JP2000219758A (en) | 2000-08-08 |
JP4243882B2 true JP4243882B2 (en) | 2009-03-25 |
Family
ID=12120498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02380399A Expired - Fee Related JP4243882B2 (en) | 1998-07-23 | 1999-02-01 | Graft polymerization processed product of hydrophobic polymer molded product and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4243882B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002069844A (en) * | 2000-08-21 | 2002-03-08 | Nippon Sanmou Senshoku Kk | Modified polyester fiber and method for producing the same |
-
1999
- 1999-02-01 JP JP02380399A patent/JP4243882B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000219758A (en) | 2000-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5652309A (en) | Method of preparing water-absorbing resin | |
US4065598A (en) | Process for polymeric modification of a fiber | |
US5154727A (en) | Process for improving polymer fiber properties and fibers produced thereby | |
FR2781821A1 (en) | METHOD FOR APPROVING TEXTILE AND PRIMING BATHS | |
JPS63268721A (en) | Method of ensuring water resistance of polymer by grafting polymer with fluorinated monomer and substance thereby | |
CA1248709A (en) | Process for improving polymer fiber properties and fibers produced thereby | |
JP4243882B2 (en) | Graft polymerization processed product of hydrophobic polymer molded product and method for producing the same | |
JPH021795A (en) | Water and oil repellent | |
JP4314501B2 (en) | Hygroscopic polyester fiber molded product | |
US4410588A (en) | Process for sizing textile yarns | |
US3340326A (en) | Graft copolymers of thioated polyamides and ethylenically unsaturated monomers | |
JPS6034579B2 (en) | Graft polymerization method | |
JPH0347296B2 (en) | ||
JP4228251B2 (en) | Highly hygroscopic, ammonia deodorant polyester fiber molded article and its production method | |
Hebeish et al. | Graft copolymerization of vinyl monomers on modified cottons. XVIII. Grafting of methyl methacrylate and acrylonitrile on cotton treated with N‐methylol crosslinking agents using tetravalent cerium as initiator | |
EP0052156B1 (en) | Method of modifying a synthetic or natural polyamide product | |
EP0066078B1 (en) | Process for sizing textile materials | |
JPS61282476A (en) | Modification of synthetic fiber | |
JPS595126B2 (en) | Graft polymerization method for hydrophobic synthetic polymers | |
US3394985A (en) | Graft polymerization reaction of polyamide filaments and acrylic acid promoted by hydrogen peroxide-formaldehyde sulfoxylate salt catalyst combination | |
JP2987442B1 (en) | Method for producing modified silk | |
JP3167555B2 (en) | Modified protein fibers or fiber products thereof and methods for producing them | |
JPH06128877A (en) | Antimicrobial deodorizing synthetic yarn | |
JPH06313270A (en) | Graft polymerization on fiber | |
JPH0790774A (en) | Water-absorption treatment of synthetic fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081211 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081224 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4243882 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |