JP4243515B2 - Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body - Google Patents
Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body Download PDFInfo
- Publication number
- JP4243515B2 JP4243515B2 JP2003165156A JP2003165156A JP4243515B2 JP 4243515 B2 JP4243515 B2 JP 4243515B2 JP 2003165156 A JP2003165156 A JP 2003165156A JP 2003165156 A JP2003165156 A JP 2003165156A JP 4243515 B2 JP4243515 B2 JP 4243515B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- zirconate titanate
- lead zirconate
- surface area
- specific surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims description 102
- 229910052451 lead zirconate titanate Inorganic materials 0.000 title claims description 53
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 title claims description 49
- 239000002994 raw material Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 239000007858 starting material Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 32
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 32
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 32
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 27
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 27
- 239000010936 titanium Substances 0.000 claims description 24
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 claims description 23
- 238000010304 firing Methods 0.000 claims description 18
- 238000001354 calcination Methods 0.000 claims description 12
- 238000010298 pulverizing process Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 25
- 239000002904 solvent Substances 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 229910000464 lead oxide Inorganic materials 0.000 description 15
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 15
- 230000018044 dehydration Effects 0.000 description 14
- 238000006297 dehydration reaction Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000003746 solid phase reaction Methods 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 11
- 239000011812 mixed powder Substances 0.000 description 11
- 239000008188 pellet Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 238000000498 ball milling Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000013329 compounding Methods 0.000 description 10
- 229910000484 niobium oxide Inorganic materials 0.000 description 10
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 229910020684 PbZr Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、低温での焼結性に優れたチタン酸ジルコン酸鉛系粉末とその粉末を用いた焼結体の製造方法に係り、具体的には、出発原料として微細な水酸化ジルコニウム及び/又は酸化ジルコニウムと、微細な酸化チタニウムとを用い、且つ、前記出発原料比表面積径の最適な組み合わせで混合処理する製造方法に関する。さらに詳しくは、本発明は、圧電着火素子、ピックアップ、圧電送話・受話器、圧電ブザー、圧電スピーカー、空気中又は水中超音波送受話器、圧電発振子、圧電フィルターなどに有用な、低温での焼結性に優れたチタン酸ジルコン酸鉛系粉末及びその粉末を用いた焼結体の製造方法に関する。
【0002】
【従来の技術】
昨今の電子機器は、小型・高性能化は勿論、品質のバラツキの低減・更なる安価であることが大きく望まれている。これに伴い、圧電磁器電子部品においても、品質のバラツキの低減と更なる安価な製造方法が大きく望まれている。
【0003】
圧電セラミックスの中で、一般式Pb(ZrX・Ti1-X)O3で表される組成を主成分とするチタン酸ジルコン酸鉛系セラミックスは、極めて優れた圧電セラミックスとして知られており、実用的に広く使用されている。ただ、このチタン酸ジルコン酸鉛系は、組成比(PbZr0.52Ti0.48O3)、いわゆるMPBと呼ばれる組成相転移境界付近における組成比において、圧電定数、誘電率などの物性値が極大となる。従って、この組成比若しくはその近傍の組成比を得るために、組成比の精密な制御を必要とし、安定して特性を得ることが難しい。このため、一般的には第3成分添加による若干の変成を利用し、安定した機能性セラミックス材料として利用している。
【0004】
チタン酸ジルコン酸鉛セラミックス(焼結体)は、その構成酸化物粉末である鉛、ジルコニウム、チタニウムの「酸化物粉末」を「混合」「仮焼」「粉砕」してチタン酸ジルコン酸鉛系粉末を得、このようにして得られたチタン酸ジルコン酸鉛系粉末を「成形」「焼結」することで製造される。すなわち原料粉末の固相反応を利用して合成粉末を得て、その後焼結操作を行い、理論密度(8Mg/m3)に近いセラミックスを得る手法が一般的に用いられている。この固相反応を利用した手法は、比較的単純な装置で多種の製品製造が可能で、且つ粉末の配合により組成比の調節が容易に行えるため、最も工業に適した手法であると言える。しかし、この手法では合成に800℃程度の仮焼が必要である。この際、出発原料の一つである酸化鉛は約800℃以上に加熱されると蒸散してしまうため、鉛成分が不足して組成ズレが生じやすくなる。また、この手法で得られたチタン酸ジルコン酸鉛系粉末は、その後の焼結操作においても1200℃以上の温度が必要で、それに伴い内部電極に高価なPt等の高融点貴金属を用いなければならず、また、高い焼成温度のため更に鉛成分の蒸発が発生し、組成ズレによる品質劣化やバラツキが促進され、歩留まりが悪くなる等の問題がある。
【0005】
これまでに固相反応を利用した製造法の改良案、例えば出発原料の酸化物粉末の粒子径を微細化することで原料の反応性を向上し、焼成温度の低温化を目論んだ研究が行われた。これは、チタン酸ジルコン酸鉛の出発原料の中で最も遅く反応し、合成温度を支配する酸化ジルコニウム粉末に着目した研究が主である。しかし、微細な粉末を用いても大きな効果は得られず、この理由として酸化ジルコニウムは極めて凝集しやすい故にサイズ効果が発揮されない為と推測されている。このように、一般的な見解としては、酸化物粉末原料から固相反応を用いて製造するプロセスは、本質的に低温化には向いていないと後述する特許等で指摘されている。
【0006】
そこで、固相反応以外でチタン酸ジルコン酸鉛系粉末を作製し、仮焼時・焼結時の低温化を目論む種々の製造方法が検討され、いわゆる湿式反応プロセスでの製造を特徴とする特許が多数出願されている。例えばアルコキシドやイソプロパノール等特殊な原料を用いる製造法(特許文献1等)、又は出発原料を共沈させ、チタン酸ジルコン酸鉛系粉末を製造する方法(特許文献2等)である。また、少なからず湿式反応を特徴とする製造法以外でも検討はされており、合成したチタン酸ジルコン酸鉛を高度な粉砕により微粒化させ、低温での焼成を可能にする製造方法(特許文献3等)や、他の組成物の添加による製造法(特許文献4)がある。また、他の組成物添加+アルコキシド若しくは共沈法等、製法を融合させた特許も公開されている(特許文献5、特許文献6等)。
【0007】
【特許文献1】
特開2000−272964(JP,A)、(請求項)
【0008】
【特許文献2】
特開昭61−122125(JP,A)、(請求項)
【0009】
【特許文献3】
特開平3−33046(JP,A)、(請求項)
【0010】
【特許文献4】
特開平10−316467(JP,A)、(請求項)
【0011】
【特許文献5】
特開昭63−270320(JP,A)、(請求項)
【0012】
【特許文献6】
特開平8−239268(JP,A)、(請求項)
【0013】
【特許文献7】
特開昭63−63511(JP,A)、(請求項)
【0014】
【特許文献8】
特開平8−277113(JP,A)、(請求項)
【0015】
【発明が解決しようとする課題】
しかしながら、特殊原料は高価で経済性に欠け、共沈法では複雑な前駆体を精密な制御で生成しなければならない。また、湿式反応全般に該当するが、原料が液体であるため各原料組成の純分把握が難しく、反応での組成合わせが困難であり、不純物の混入が懸念される。その上、一つのプラントでの作り分けが出来ない為に他品種への対応が不可能である。また、高度な粉砕処理や添加物の投入では、それに伴う特殊な設備・技術が必要となる。これら製法の欠点に対して改良が施された特許も出願されているが(特許文献7や特許文献8等)、いずれの製法も工業ベースでの製造には向いていない。
【0016】
以上のことを踏まえると、簡素な改善により仮焼温度の低温化、焼結温度の低温化が可能であれば、「混合」「仮焼」「粉砕」してチタン酸ジルコン酸鉛系粉末を得た後、「成形」「焼結」する手法、すなわち原料粉末の固相反応を利用する方法が、最も組成調整がしやすく、経済性に優れ、品質のバラツキが少なく、工業に適した製造法といえる。
【0017】
そこで本発明は、固相反応を利用し、特殊な原料を用いず、複雑な前駆体の生成が不要で、高度な粉砕処理を用いることなく、低温での焼結性に優れたチタン酸ジルコン酸鉛系粉末と、その製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
この目的を達成するために、本発明者は固相反応を利用した製造法を鋭意検討した結果、出発原料として微細な水酸化ジルコニウム及び/又は酸化ジルコニウムと、微細な酸化チタニウムとを用いて、500℃〜750℃の仮焼すると、チタン酸ジルコン酸鉛系粉末が、低温(900℃〜1100℃)での焼結性に優れていることを見いだした。
【0019】
更に詳述すると、本発明に係るチタン酸ジルコン酸鉛系粉末の製造方法は、出発原料として比表面積径20nm以下の微細な水酸化ジルコニウム及び/又は酸化ジルコニウムと、比表面積径70nm以下の微細な酸化チタニウムとを用いた固相反応を利用した製造方法で、下式A値が6〜55となる原料物性の組み合わせで配合混合され、500℃〜750℃の仮焼温度で製造することにより、一般式Pb(ZrX・Ti1-X)O3(X=0.1〜0.9)で示されるチタン酸ジルコン酸鉛系粉末を得る。
【0020】
A=((水酸化ジルコニウム及び/又は酸化ジルコニウム径nm)/(酸化チタニウム径nm))×100
【0021】
【発明の実施の形態】
以下各工程の詳細について説明する。
(出発原料)
本発明におけるチタン酸ジルコン酸鉛系粉末は、まず出発原料として、比表面積径で20nm以下、好ましくは10nm以下の水酸化ジルコニウム若しくは酸化ジルコニウム(若しくは両粉末の混合物)と、比表面積径で70nm以下、好ましくは50nm以下の酸化チタニウムとを準備する。
【0022】
水酸化ジルコニウム及び/又は酸化ジルコニウムの比表面積径を20nm以下とし、また、酸化チタニウムの比表面積径を70nm以下とするのは次の理由による。
【0023】
チタン酸ジルコン酸鉛系セラミックス(以下、PZTと略称する)の合成において、もっとも遅く反応し、合成温度を支配するのが酸化ジルコニウムであると前述した。すなわち、PZTの合成は混合原料が温度に対して段階的に合成が進み、最も高い温度域で酸化ジルコニウムは反応する。このような固相反応には表面の活性エネルギーが大きく関係しており、比表面積が大きい、すなわち、径の小さいほうが低温域で、より高い反応性を示す。酸化ジルコニウムの比表面積径が20nmより大きい、また、酸化チタニウムの比表面積径が70nmより大きいと、500〜750℃の範囲では十分な合成が行えず、未反応の酸化ジルコニウムが残存する。従って、本発明では水酸化ジルコニウム及び/又は酸化ジルコニウムの比表面積径を20nm以下とし、酸化チタニウムの比表面積径を70nm以下とする。
【0024】
なお、これら水酸化ジルコニウム、酸化ジルコニウムの製造方法に制限は無く、形態についても、例えば含水水酸化ジルコニウムケーク、酸化ジルコニウムスラリー、水酸化ジルコニウムスラリー等、工業的に通常使用される形態を使用でき、必要に応じて、通常工業的に用いられる装置、手法、条件にてこれら原料を前処理(例えば水酸化ジルコニウムケークを乾燥して粉末化、酸化ジルコニウムをスラリー化する等)しても良い。酸化チタニウムは市販されており、容易に入手可能である。
【0025】
前記出発原料の比表面積径は、各原料の密度と各原料のBET測定法により得られた比表面積の値を用いて導かれた値とする。なお、比表面積測定の際、脱水・乾燥処理が必要な場合は、処理後の比表面積値を用いる。また、水酸化ジルコニウムの密度は酸化ジルコニウムの密度×0.90として換算した値とする。ここで比表面積径の値は、
D=6/(ρ×S)
D:比表面積径(m)、ρ:密度(g/m3)、S:BET測定法により得られた比表面積(g/m2)
で算出される。
【0026】
次に各出発原料の比表面積径を以下に示す式Aに代入し、出発原料物性を把握して試算することにより出発原料の中からAの値が6〜55好ましくは10〜27となる組み合わせが可能な水酸化ジルコニウム及び/又は酸化ジルコニウムと酸化チタニウム原料を選出する。
A=((水酸化ジルコニウム及び/又は酸化ジルコニウム径nm)/(酸化チタニウム径nm))×100
【0027】
A値が本発明の範囲から外れると、前記出発原料を使用した場合はPZTの合成が進まずにジルコン酸鉛とチタン酸鉛の混晶となってしまい、PZTが合成できない。
【0028】
これは前述したように、PZTの合成時のような固相反応には「原料の比表面積=径の大きさ」が関係しており、また、混合原料が段階的に反応して合成が進む。酸化チタニウムの反応温度域と、酸化ジルコニウムの反応温度域が逆転すると、反応段階、すなわち合成の過程が異なってくるためである。
【0029】
(チタン酸ジルコン酸鉛系粉末の製造)
次に選出した前記出発原料と鉛原料(一般的には、工業ベースで市販されている酸化鉛粉末)を秤量し、Pb(ZrX・Ti1−X)O3(X=0.1〜0.9)となるように配合する。好ましくはPb(ZrX・Ti1−X)O3(X=0.4〜0.6)に配合する。Xの範囲を規定した理由は、上記のXの範囲で所望の物性値が得られるためである(なお、Xが0.52の組成比の組成比において圧電定数、誘電率などの物性値が極大となる)。なお、実際には、配合時と最終製品とは同じ値となる。
【0030】
この際、各出発原料の純分を把握しないと組成ズレが発生し、圧電特性が著しく低下する。配合の際、微量のニオブ、アンチモン、マンガン、マグネシウム等の化合物、すなわち変性を促す添加物を本発明の目的を阻害しない範囲で加えても良く、その種類、添加方法に制限は無い。
【0031】
前記の配合原料に混合処理を行う。好ましくは湿式混合を行い、更に好ましくは溶媒にアルコール類を用いる、若しくはスラリーの固体濃度に対して0.5〜3wt%の通常工業的に使用される分散剤を添加して行う。混合処理は、通常工業的に用いられる装置、手法、条件が使用できる。
【0032】
次に混合処理した原料を必要に応じて脱水、及び熱処理を行うことで粉末状にする。この際、脱水過程及び熱処理過程では通常工業的に用いられる装置、手法、条件が使用できる。
【0033】
次に粉末状に処理された混合粉末を仮焼する。必要に応じて各種成形手法で成形してから500℃〜750℃で仮焼し、固相での合成反応を行う。
【0034】
750℃を越えると低温での焼結性に優れたチタン酸ジルコン酸鉛系粉末を作ることができない。また、500℃未満では、チタン酸ジルコン酸鉛系粉末を作ることができない。好ましくはペレット状に成形し、仮焼温度500℃〜700℃以下で行う。成形・仮焼の際、通常工業的に用いられる装置、手法が使用できる。合成されてチタン酸ジルコン酸鉛となった仮焼粉末は必要に応じて粉砕処理を行い、粒度の調整を行う。粉砕には通常工業的に用いられる装置、手法、条件が使用できる。
【0035】
本発明で得られるチタン酸ジルコン酸鉛系粉末は、低温での焼結性に優れてあるので、その後の所定形状に圧粉成形した後の焼結操作においても1200℃以上の温度が不要となり、900℃〜1100℃の低温で焼成することができる。それに伴い内部電極に高価なPt等の高融点貴金属を用いる必要がない。しかも、低い焼成温度で焼成できるため鉛成分の蒸発を防止し、組成ズレによる品質劣化やバラツキを抑制し、歩留まりもよい。なお、本発明で得られるチタン酸ジルコン酸鉛系粉末を1100℃を越えて焼成すると、前述したように鉛成分の蒸散が進み組成ズレが促進する。また、内部電極に高価な貴金属が必要となる等の不都合があり、900℃未満での焼成では、焼成体を得ることができない。
【0036】
以下に実施例と比較例を示す。
【0037】
【実施例】
実施例1:比表面積径が10nmの水酸化ジルコニウム粉末と比表面積径が54nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると18.5であった。この出発原料と工業ベースで市販されている酸化鉛粉末が(PbZr0.52Ti0.48O3)となるように配合し、かつこの配合物に対して酸化ニオブが0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であり、X−ray回折を行うと各配合原料のピークは確認されず、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認した。粉砕後の仮焼粉を用いて圧電セラミックスを作製したところ、950℃焼成で密度7.42Mg/m3,1050℃焼成で密度7.72Mg/m3の圧電セラミックスが得られ、その圧電特性(Kp)は0.53,0.63であった。得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0038】
ここで、圧電特性(Kp)とは、電気機械結合係数を示し、
1/Kp2=0.395 fp/△f+0.574
から算出した。ここにおいて、
△f=fa−fp
fa:径方向基本振動の反共振周波数(Hz)
fp:径方向基本振動の共振周波数(Hz)で示される。
【0039】
反共振周波数及び共振周波数の測定は、例えば日置電機製LCR計で測定できる。
【0040】
実施例2:乾燥後の比表面積径が6nmの水酸化ジルコニウムケークと比表面積径が54nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると11.1であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、650℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であり、X−ray回折を行うと各配合原料のピークは確認されず、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認した。粉砕後の仮焼粉を用いて圧電磁器を作製したところ、950℃焼成で密度7.45Mg/m3,1050℃焼成で密度7.74Mg/m3の圧電磁器が得られ、その圧電特性(Kp)は0.55,0.64であった。
得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0041】
実施例3:脱水・乾燥後の比表面積径が10nmの酸化ジルコニウムスラリーと比表面積径が50nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると20.0であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であり、X−ray回折を行うと各配合原料のピークは確認されず、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認した。粉砕後の仮焼粉を用いて圧電磁器を作製したところ、950℃焼成で密度7.42Mg/m3,1050℃焼成で密度7.74Mg/m3の圧電磁器が得られ、その圧電特性(Kp)は0.54,0.65であった。
得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0042】
実施例4:比表面積径が15nmの酸化ジルコニウム粉末と比表面積径が52nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると28.8であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であり、X−ray回折を行うと各配合原料のピークは確認されず、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認した。粉砕後の仮焼粉を用いて圧電磁器を作製したところ、950℃焼成で密度7.39Mg/m3,1050℃焼成で密度7.71Mg/m3の圧電磁器が得られ、その圧電特性(Kp)は0.50,0.61であった。
得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0043】
実施例5:比表面積径が4nmの水酸化ジルコニウム粉末と比表面積径が60mmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると6.7であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であり、X−ray回折を行うと各配合原料のピークは確認されず、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認した。粉砕後の仮焼粉を用いて圧電磁器を作製したところ、950℃焼成で密度7.38Mg/m3,1050℃焼成で密度7.70Mg/m3の圧電磁器が得られ、その圧電特性(Kp)は0.49,0.61であった。
得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0044】
実施例6:比表面積径が20nmの酸化ジルコニウム粉末と比表面積径が40nmの酸化チタニウム粉末を出発原料として準備したこの比表面積径を式に代入しAを求めると50.0であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であり、X−ray回折を行うと各配合原料のピークは確認されず、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認した。粉砕後の仮焼粉を用いて圧電磁器を作製したところ、950℃焼成で密度7.40Mg/m3,1050℃焼成で密度7.71Mg/m3の圧電磁器が得られ、その圧電特性(Kp)は0.50,0.62であった。
得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0045】
比較例1:比表面積径が32nmの酸化ジルコニウム粉末と比表面積径が620nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると5.2であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は薄く赤みを帯びた色の粉末であり、X−ray回折を行うと酸化ジルコニウム、酸化鉛の原料ピーク及び、チタン酸鉛等の中間生成物のピークが確認できるが、擬立方晶のチタン酸ジルコン酸鉛ピークは確認できなかった。仮焼温度を750℃にするとほぼ乳白色の粉末で、X−ray回折による各配合原料のピークはほとんどなく、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認できた。しかし、この仮焼粉を用いて圧電磁器を作製したところ、l100℃未満の焼成では、その圧電特性(Kp)は0.24と低く、十分な焼結体、圧電磁器は得られなかった。得られた圧電セラミックス焼結体の化学組成はPbZr0.52Ti0.48O3であった。
【0046】
比較例2:比表面積径が32nmの酸化ジルコニウム粉末と比表面積径が54nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると59.2であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は薄く赤みを帯びた色の粉末であり、X−ray回折を行うと酸化ジルコニウム、酸化鉛の原料ピーク及び、チタン酸鉛等の中間生成物のピークが確認できるが、擬立方晶のチタン酸ジルコン酸鉛ピークは確認できなかった。仮焼温度を750℃にするとほぼ乳白色の粉末で、X−ray回折による各配合原料のピークはほとんどなく、擬立方晶のチタン酸ジルコン酸鉛が合成されていることを確認できた。しかし、この仮焼粉を用いて圧電磁器を作製したところ、l100℃未満の焼成では、その圧電特性(Kp)は0.21と低く、十分な焼結体、圧電磁器は得られなかった。
【0047】
比較例3:比表面積径が15nmの水酸化ジルコニウム粉末と比表面積径が800nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると1.8であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であるが、X−ray回折を行うと各配合原料のピークは確認されないが、擬立方晶のチタン酸ジルコン酸鉛は確認できず、斜方晶と立方晶の2相に分離していた。仮焼温度を変更しても、2相に分離したままで、擬立方晶のチタン酸ジルコン酸鉛のピークは確認できなかった。
【0048】
比較例4:比表面積径が4nmの水酸化ジルコニウムケークと比表面積径が82nmの酸化チタニウム粉末を出発原料として準備した。この比表面積径を式に代入しAを求めると4.8であった。この出発原料と工業ベースで市販されている酸化鉛粉末と酸化ニオブを(PbZr0.52Ti0.48O3)+0.003Nb2O5となるように配合し、溶媒としてイオン交換水、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。その後に脱水・乾燥処理して得られた混合粉末を60mmφのペレット状に一軸成形し、700℃で仮焼し、その後、溶媒としてエタノール、メディアとして5mmYSZボールを用い、湿式ボールミル処理を行った。仮焼粉は乳白色の粉末であるが、X−ray回折を行うと各配合原料のピークは確認されないが、擬立方晶のチタン酸ジルコン酸鉛は確認できず、斜方晶と立方晶の2相に分離していた。仮焼温度を変更しても2相に分離したままで、擬立方晶のチタン酸ジルコン酸鉛のピークは確認できなかった。
表1に出発原料、製造条件及び結果をまとめて示す。
【0049】
【表1】
【0050】
表からも分かるように、出発原料として、比表面積径20nm以下の微細な水酸化ジルコニウム及び酸化ジルコニウムと、比表面積径70nm以下の微細な酸化チタニウムを用い、且つ、前記出発原料が次の式A:
A=((水酸化ジルコニウム及び/又は酸化ジルコニウム径nm)/(酸化チタニウム径nm))×100
により導かれるA値が6〜55となる原料物性の組み合わせで混合・仮焼することにより作製される、一般式Pb(ZrX・Ti1-X)O3(X=0.1〜0.9)で示される組成を主成分とする、低温での焼結性に優れたチタン酸ジルコン酸鉛系粉末を得るのに有効である。
【0051】
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
【0052】
【発明の効果】
本発明は、固相反応を利用し、特殊な原料を用いず、複雑な前駆体の生成が不要で、高度な粉砕処理を用いない為、組成調整がしやすく、経済性に優れ、品質のバラツキが少なく、工業に適した製造法であり、且つ低温での焼結性に優れたチタン酸ジルコン酸鉛系粉末を提供することに有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead zirconate titanate powder excellent in sinterability at a low temperature and a method for producing a sintered body using the powder. Specifically, fine zirconium hydroxide as a starting material and / or Alternatively, the present invention relates to a production method in which zirconium oxide and fine titanium oxide are used and mixed with an optimum combination of the starting material specific surface area diameters. More specifically, the present invention relates to a low-temperature firing useful for piezoelectric ignition elements, pickups, piezoelectric transmitter / receivers, piezoelectric buzzers, piezoelectric speakers, in-air or underwater ultrasonic transmitters / receivers, piezoelectric oscillators, piezoelectric filters, and the like. The present invention relates to a lead zirconate titanate-based powder having excellent caking properties and a method for producing a sintered body using the powder.
[0002]
[Prior art]
In recent years, electronic devices are greatly desired to be smaller and have higher performance, as well as reduced quality variation and lower cost. Along with this, a reduction in quality variation and a further inexpensive manufacturing method are greatly desired for piezoelectric ceramic electronic components.
[0003]
Among piezoelectric ceramics, the general formula Pb (ZrX・ Ti1-X) OThreeThe lead zirconate titanate ceramics whose main component is the composition represented by the formula are known as extremely excellent piezoelectric ceramics and are widely used practically. However, this lead zirconate titanate system has a composition ratio (PbZr0.52Ti0.48OThree), The physical property values such as piezoelectric constant and dielectric constant are maximized in the composition ratio in the vicinity of the so-called composition phase transition boundary called MPB. Therefore, in order to obtain this composition ratio or a composition ratio in the vicinity thereof, precise control of the composition ratio is required, and it is difficult to stably obtain characteristics. For this reason, it is generally used as a stable functional ceramic material by utilizing a slight modification due to the addition of the third component.
[0004]
Lead zirconate titanate ceramics (sintered) is composed of lead oxide, zirconium oxide, and titanium oxide powders that are mixed, calcined, and pulverized to lead zirconate titanate. It is manufactured by obtaining powder and “molding” and “sintering” the lead zirconate titanate powder thus obtained. That is, a synthetic powder is obtained by using a solid phase reaction of raw material powder, and thereafter a sintering operation is performed to obtain a theoretical density (8 Mg / mThreeA method for obtaining ceramics close to) is generally used. This method using a solid phase reaction can be said to be the most suitable method for industry because various products can be produced with a relatively simple apparatus and the composition ratio can be easily adjusted by blending of powders. However, this method requires calcining at about 800 ° C. for synthesis. At this time, lead oxide, which is one of the starting materials, evaporates when heated to about 800 ° C. or higher, so that the lead component is insufficient and composition deviation tends to occur. Further, the lead zirconate titanate powder obtained by this method requires a temperature of 1200 ° C. or higher in the subsequent sintering operation, and accordingly, an expensive high melting point noble metal such as Pt must be used for the internal electrode. In addition, there is a problem that the lead component is further evaporated due to the high firing temperature, quality deterioration and variation due to composition deviation are promoted, and yield is deteriorated.
[0005]
To date, research has been conducted to improve the manufacturing method using solid phase reaction, for example, to improve the reactivity of the raw material by reducing the particle diameter of the starting oxide powder and to lower the firing temperature. It was broken. This is mainly research that focuses on zirconium oxide powder that reacts the latest among the starting materials of lead zirconate titanate and controls the synthesis temperature. However, even if a fine powder is used, a great effect cannot be obtained. It is presumed that the size effect is not exhibited because zirconium oxide is very easy to aggregate. Thus, as a general view, it is pointed out in the patents and the like described later that the process for producing from an oxide powder raw material using a solid phase reaction is not essentially suitable for lowering the temperature.
[0006]
Therefore, various production methods for producing lead zirconate titanate-based powders other than solid-phase reactions and for lowering the temperature during calcination / sintering have been studied, and patents characterized by production in so-called wet reaction processes Many have been filed. For example, a production method using a special raw material such as alkoxide or isopropanol (Patent Document 1 or the like), or a method of co-precipitating a starting material to produce a lead zirconate titanate powder (Patent Document 2 or the like). In addition, a production method other than a production method characterized by a wet reaction is being studied, and a production method that enables fine pulverization of synthesized lead zirconate titanate by high pulverization and enables firing at a low temperature (Patent Document 3). Etc.) and a production method by adding other compositions (Patent Document 4). In addition, patents in which production methods such as addition of other composition + alkoxide or coprecipitation method are fused are disclosed (Patent Document 5, Patent Document 6 and the like).
[0007]
[Patent Document 1]
JP 2000-272964 (JP, A), (Claims)
[0008]
[Patent Document 2]
JP 61-122125 (JP, A), (Claims)
[0009]
[Patent Document 3]
JP-A-3-33046 (JP, A), (Claims)
[0010]
[Patent Document 4]
JP-A-10-316467 (JP, A), (Claims)
[0011]
[Patent Document 5]
JP-A 63-270320 (JP, A), (Claims)
[0012]
[Patent Document 6]
JP-A-8-239268 (JP, A), (Claims)
[0013]
[Patent Document 7]
JP 63-63511 (JP, A), (Claims)
[0014]
[Patent Document 8]
JP-A-8-277113 (JP, A), (Claims)
[0015]
[Problems to be solved by the invention]
However, special raw materials are expensive and lacking in economic efficiency, and the coprecipitation method must generate a complex precursor with precise control. Moreover, although it corresponds to the wet reaction in general, since the raw material is liquid, it is difficult to grasp the pure content of each raw material composition, it is difficult to match the composition in the reaction, and there is a concern that impurities are mixed. In addition, since it cannot be made separately in one plant, it is impossible to handle other varieties. In addition, advanced equipment and technology are required for advanced crushing and addition of additives. Patents have been filed for improvements to the drawbacks of these production methods (Patent Document 7 and Patent Document 8, etc.), but none of the production methods are suitable for manufacturing on an industrial basis.
[0016]
Based on the above, if it is possible to lower the calcining temperature and sintering temperature by simple improvements, the lead zirconate titanate powder can be mixed with, calcinated, and crushed. After obtaining, the method of “molding” and “sintering”, that is, the method utilizing the solid phase reaction of the raw material powder is the most easy to adjust the composition, excellent in economic efficiency, little variation in quality, and suitable for industry It's a law.
[0017]
Therefore, the present invention utilizes a solid-phase reaction, does not use a special raw material, does not require the generation of a complicated precursor, and does not use an advanced pulverization process, and has excellent sinterability at low temperatures. An object is to provide a lead-acid-based powder and a method for producing the same.
[0018]
[Means for Solving the Problems]
In order to achieve this object, the present inventors diligently studied a production method using a solid phase reaction, and as a result, using fine zirconium hydroxide and / or zirconium oxide as a starting material and fine titanium oxide, It was found that when calcined at 500 ° C. to 750 ° C., the lead zirconate titanate powder is excellent in sinterability at low temperatures (900 ° C. to 1100 ° C.).
[0019]
More specifically, the method for producing a lead zirconate titanate powder according to the present invention includes a fine zirconium hydroxide and / or zirconium oxide having a specific surface area diameter of 20 nm or less as a starting material and a fine surface area diameter of 70 nm or less. In a production method using a solid phase reaction using titanium oxide, the following formula A value is blended and mixed with a combination of raw material properties of 6 to 55, and produced at a calcining temperature of 500 ° C. to 750 ° C. Formula Pb (ZrX・ Ti1-X) OThreeA lead zirconate titanate-based powder represented by (X = 0.1 to 0.9) is obtained.
[0020]
A = ((zirconium hydroxide and / or zirconium oxide diameter nm) / (titanium oxide diameter nm)) × 100
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Details of each step will be described below.
(Starting material)
The lead zirconate titanate powder in the present invention is a starting material having a specific surface area of 20 nm or less, preferably 10 nm or less of zirconium hydroxide or zirconium oxide (or a mixture of both powders) and a specific surface area of 70 nm or less. Preferably, titanium oxide having a thickness of 50 nm or less is prepared.
[0022]
The specific surface area diameter of zirconium hydroxide and / or zirconium oxide is 20 nm or less, and the specific surface area diameter of titanium oxide is 70 nm or less for the following reason.
[0023]
In the synthesis of lead zirconate titanate-based ceramics (hereinafter abbreviated as PZT), it has been described above that zirconium oxide reacts most slowly and dominates the synthesis temperature. That is, the synthesis of PZT proceeds stepwise with respect to the temperature of the mixed raw material, and zirconium oxide reacts at the highest temperature range. Such a solid-phase reaction is largely related to the active energy of the surface, and a larger specific surface area, that is, a smaller diameter indicates higher reactivity in a low temperature region. When the specific surface area diameter of zirconium oxide is larger than 20 nm and the specific surface area diameter of titanium oxide is larger than 70 nm, sufficient synthesis cannot be performed in the range of 500 to 750 ° C., and unreacted zirconium oxide remains. Therefore, in the present invention, the specific surface area diameter of zirconium hydroxide and / or zirconium oxide is 20 nm or less, and the specific surface area diameter of titanium oxide is 70 nm or less.
[0024]
In addition, there is no restriction | limiting in the manufacturing method of these zirconium hydroxide and a zirconium oxide, For example, the form normally used industrially, such as a hydrous zirconium hydroxide cake, a zirconium oxide slurry, a zirconium hydroxide slurry, can be used, If necessary, these raw materials may be pretreated (for example, by drying a zirconium hydroxide cake into a powder, slurrying zirconium oxide, etc.) using an apparatus, technique, and conditions that are usually used industrially. Titanium oxide is commercially available and is readily available.
[0025]
The specific surface area diameter of the starting material is a value derived from the density of each material and the value of the specific surface area obtained by the BET measurement method of each material. In the measurement of the specific surface area, if a dehydration / drying process is required, the specific surface area value after the process is used. The density of zirconium hydroxide is a value converted as the density of zirconium oxide × 0.90. Here, the value of the specific surface area diameter is
D = 6 / (ρ × S)
D: specific surface area diameter (m),ρ: Density (g / m3), S: Specific surface area obtained by BET measurement method (g / m2)
Is calculated by
[0026]
Next, by substituting the specific surface area diameter of each starting material into the following formula A, and grasping the starting material physical properties and making a trial calculation, the value of A is 6 to 55, preferably 10 to 27 among starting materials. Zirconium hydroxide and / or Zirconium oxide and Titanium oxide raw materials are selected.
A = ((zirconium hydroxide and / or zirconium oxide diameter nm) / (titanium oxide diameter nm)) × 100
[0027]
If the A value is out of the range of the present invention, when the starting material is used, the synthesis of PZT does not proceed and a mixed crystal of lead zirconate and lead titanate is formed, and PZT cannot be synthesized.
[0028]
As described above, this is related to the solid phase reaction as in the synthesis of PZT, that is, “the specific surface area of the raw material = the size of the diameter”, and the mixed raw material reacts stepwise to advance the synthesis. . This is because if the reaction temperature range of titanium oxide and the reaction temperature range of zirconium oxide are reversed, the reaction stage, that is, the synthesis process will be different.
[0029]
(Production of lead zirconate titanate powder)
Next, the selected starting material and lead material (generally lead oxide powder commercially available on an industrial basis) are weighed, and Pb (ZrX・ Ti1-X) O3It mix | blends so that it may become (X = 0.1-0.9). Preferably Pb (ZrX・ Ti1-X) O3(X = 0.4 to 0.6). Reasons for defining the range of XOnThis is because a desired physical property value can be obtained in the range of X described above (note that the physical property values such as piezoelectric constant and dielectric constant are maximized at a composition ratio where X is 0.52). Actually, the value at the time of blending and the final product is the same value.
[0030]
At this time, composition deviation occurs if the pure content of each starting material is not grasped, and the piezoelectric characteristics are remarkably deteriorated. At the time of blending, a small amount of a compound such as niobium, antimony, manganese, magnesium, or the like, that is, an additive that promotes modification may be added within a range that does not impair the purpose of the present invention, and there is no limitation on the type and addition method.
[0031]
A mixing process is performed on the blended raw materials. Preferably, wet mixing is performed, and more preferably, alcohols are used as a solvent, or 0.5 to 3 wt% of a commonly used dispersant is added to the solid concentration of the slurry. For the mixing treatment, apparatuses, methods and conditions that are usually used industrially can be used.
[0032]
Next, the mixed raw material is powdered by performing dehydration and heat treatment as necessary. At this time, in the dehydration process and the heat treatment process, apparatuses, methods, and conditions that are usually used industrially can be used.
[0033]
Next, the mixed powder processed into powder is calcined. If necessary, it is molded by various molding methods and then calcined at 500 ° C. to 750 ° C. to carry out a synthesis reaction in a solid phase.
[0034]
If it exceeds 750 ° C., a lead zirconate titanate powder excellent in sinterability at low temperatures cannot be produced. Moreover, if it is less than 500 degreeC, a lead zirconate titanate type powder cannot be made. Preferably, it is formed into pellets and calcined at a temperature of 500 ° C to 700 ° C. At the time of molding and calcining, apparatuses and methods that are usually used industrially can be used. The calcined powder that is synthesized into lead zirconate titanate is pulverized as necessary to adjust the particle size. For pulverization, industrially used apparatuses, methods and conditions can be used.
[0035]
Since the lead zirconate titanate powder obtained in the present invention is excellent in sinterability at a low temperature, a temperature of 1200 ° C. or higher is unnecessary even in a sintering operation after compacting into a predetermined shape thereafter. And firing at a low temperature of 900 ° C. to 1100 ° C. Accordingly, it is not necessary to use an expensive high melting point noble metal such as Pt for the internal electrode. Moreover, since it can be fired at a low firing temperature, the evaporation of the lead component is prevented, quality deterioration and variation due to composition deviation are suppressed, and the yield is also good. When the lead zirconate titanate powder obtained in the present invention is baked at a temperature exceeding 1100 ° C., the lead component evaporates and the composition deviation is promoted as described above. In addition, there is a disadvantage that an expensive noble metal is required for the internal electrode, and a fired body cannot be obtained by firing at less than 900 ° C.
[0036]
Examples and comparative examples are shown below.
[0037]
【Example】
Example 1 A zirconium hydroxide powder having a specific surface area diameter of 10 nm and a titanium oxide powder having a specific surface area diameter of 54 nm were prepared as starting materials. When this specific surface area diameter was substituted into the formula and A was determined, it was 18.5. This starting material and the lead oxide powder commercially available on an industrial basis are (PbZr0.52Ti0.48O3) And niobium oxide is 0.003 Nb for this formulation.2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a milky white powder, and when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoIt was confirmed that cubic lead zirconate titanate was synthesized. Piezoelectric ceramics were produced using the calcined powder after pulverization, and the density was 7.42 Mg / m by firing at 950 ° C.3, Density of 7.72 Mg / m when fired at 1050 ° C3Piezoelectric ceramics were obtained, and their piezoelectric properties (Kp) were 0.53 and 0.63. The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0038]
Here, the piezoelectric characteristic (Kp) indicates an electromechanical coupling coefficient,
1 / Kp2= 0.395 fp / Δf + 0.574
Calculated from put it here,
Δf = fa−fp
fa: Anti-resonance frequency (Hz) of radial fundamental vibration
fp: indicated by the resonance frequency (Hz) of the fundamental vibration in the radial direction.
[0039]
The anti-resonance frequency and the resonance frequency can be measured, for example, with an LCR meter manufactured by Hioki Electric.
[0040]
Example 2: Zirconium hydroxide cake having a specific surface area diameter of 6 nm after drying and titanium oxide powder having a specific surface area diameter of 54 nm were prepared as starting materials. This specific surface area diameter was substituted into the equation and A was found to be 11.1. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet, calcined at 650 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a milky white powder, and when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoIt was confirmed that cubic lead zirconate titanate was synthesized. When a piezoelectric ceramic was produced using the calcined powder after pulverization, the density was 7.45 Mg / m by firing at 950 ° C.3, Density 7.74Mg / m at 1050 ° C3And a piezoelectric characteristic (Kp) of 0.55 and 0.64.
The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0041]
Example 3 A zirconium oxide slurry having a specific surface area diameter of 10 nm after dehydration and drying and titanium oxide powder having a specific surface area diameter of 50 nm were prepared as starting materials. It was 20.0 when this specific surface area diameter was substituted for a formula and A was calculated | required. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a milky white powder, and when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoIt was confirmed that cubic lead zirconate titanate was synthesized. When a piezoelectric ceramic was produced using the calcined powder after pulverization, the density was 7.42 Mg / m by firing at 950 ° C.3, Density 7.74Mg / m at 1050 ° C3And a piezoelectric characteristic (Kp) of 0.54 and 0.65.
The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0042]
Example 4: A zirconium oxide powder having a specific surface area diameter of 15 nm and a titanium oxide powder having a specific surface area diameter of 52 nm were prepared as starting materials. This specific surface area diameter was substituted into the formula and A was found to be 28.8. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a milky white powder, and when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoIt was confirmed that cubic lead zirconate titanate was synthesized. When a piezoelectric ceramic was produced using the calcined powder after pulverization, the density was 7.39 Mg / m by firing at 950 ° C.3, Density of 7.71 Mg / m when fired at 1050 ° C3And a piezoelectric characteristic (Kp) of 0.50 and 0.61.
The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0043]
Example 5: A zirconium hydroxide powder having a specific surface area diameter of 4 nm and a titanium oxide powder having a specific surface area diameter of 60 mm were prepared as starting materials. When this specific surface area diameter was substituted into the equation and A was determined, it was 6.7. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a milky white powder, and when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoIt was confirmed that cubic lead zirconate titanate was synthesized. A piezoelectric ceramic was produced using the calcined powder after pulverization, and the density was 7.38 Mg / m by firing at 950 ° C.3, Density 7.70Mg / m after firing at 1050 ℃3And a piezoelectric characteristic (Kp) of 0.49, 0.61.
The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0044]
Example 6: When the specific surface area diameter prepared by using a zirconium oxide powder having a specific surface area diameter of 20 nm and a titanium oxide powder having a specific surface area diameter of 40 nm as starting materials was substituted into the formula, A was found to be 50.0. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a milky white powder, and when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoIt was confirmed that cubic lead zirconate titanate was synthesized. When a piezoelectric ceramic was produced using the calcined powder after pulverization, the density was 7.40 Mg / m by firing at 950 ° C.3, Density of 7.71 Mg / m when fired at 1050 ° C3And a piezoelectric characteristic (Kp) of 0.50 and 0.62.
The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0045]
Comparative Example 1: A zirconium oxide powder having a specific surface area diameter of 32 nm and a titanium oxide powder having a specific surface area diameter of 620 nm were prepared as starting materials. When this specific surface area diameter was substituted into the equation and A was determined, it was 5.2. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5, ion-exchanged water as a solvent, and 5 mm YSZ ball as a medium, and wet ball milling was performed. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a thin reddish powder, and when X-ray diffraction is performed, the peak of zirconium oxide, lead oxide raw materials, and intermediate products such as lead titanate can be confirmed.PseudoA cubic lead zirconate titanate peak could not be confirmed. When the calcining temperature is set to 750 ° C., it is almost milky white powder, and there is almost no peak of each compounding material by X-ray diffractionPseudoIt was confirmed that cubic lead zirconate titanate was synthesized. However, a piezoelectric ceramic was produced using this calcined powder. As a result of firing at less than 1100 ° C., the piezoelectric property (Kp) was as low as 0.24, and a sufficient sintered body and piezoelectric ceramic could not be obtained. The chemical composition of the obtained piezoelectric ceramic sintered body is PbZr.0.52Ti0.48O3Met.
[0046]
Comparative Example 2: A zirconium oxide powder having a specific surface area diameter of 32 nm and a titanium oxide powder having a specific surface area diameter of 54 nm were prepared as starting materials. This specific surface area diameter was substituted into the equation to obtain A of 59.2. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is a thin reddish powder, and when X-ray diffraction is performed, the peak of raw materials of zirconium oxide and lead oxide and the peak of intermediate products such as lead titanate can be confirmed.PseudoA cubic lead zirconate titanate peak could not be confirmed. When the calcining temperature is set to 750 ° C., it is almost milky white powder, and there is almost no peak of each compounding material by X-ray diffractionPseudoIt was confirmed that cubic lead zirconate titanate was synthesized. However, a piezoelectric ceramic was produced using this calcined powder. As a result of firing at less than 1100 ° C., the piezoelectric property (Kp) was as low as 0.21, and a sufficient sintered body and piezoelectric ceramic could not be obtained.
[0047]
Comparative Example 3: A zirconium hydroxide powder having a specific surface area diameter of 15 nm and a titanium oxide powder having a specific surface area diameter of 800 nm were prepared as starting materials. This specific surface area diameter was substituted into the formula and A was found to be 1.8. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is milky white powder, but when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoCubic lead zirconate titanate could not be confirmed and was separated into two phases of orthorhombic and cubic. Even if the calcining temperature is changed, it remains separated into two phases.PseudoA peak of cubic lead zirconate titanate could not be confirmed.
[0048]
Comparative Example 4: Zirconium hydroxide cake having a specific surface area diameter of 4 nm and titanium oxide powder having a specific surface area diameter of 82 nm were prepared as starting materials. This specific surface area diameter was substituted into the equation and A was found to be 4.8. This starting material and lead oxide powder and niobium oxide commercially available on an industrial basis (PbZr0.52Ti0.48O3) + 0.003Nb2O5Then, wet ball milling was performed using ion-exchanged water as the solvent and 5 mm YSZ balls as the media. Thereafter, the mixed powder obtained by dehydration and drying was uniaxially formed into a 60 mmφ pellet and calcined at 700 ° C., and then wet ball milled using ethanol as a solvent and 5 mm YSZ balls as media. The calcined powder is milky white powder, but when X-ray diffraction is performed, the peak of each compounding raw material is not confirmed,PseudoCubic lead zirconate titanate could not be confirmed and was separated into two phases of orthorhombic and cubic. Even if the calcining temperature is changed, it remains separated into two phases.PseudoA peak of cubic lead zirconate titanate could not be confirmed.
Table 1 summarizes the starting materials, production conditions and results.
[0049]
[Table 1]
[0050]
As can be seen from the table, fine zirconium hydroxide and zirconium oxide having a specific surface area diameter of 20 nm or less and fine titanium oxide having a specific surface area diameter of 70 nm or less are used as the starting material. :
A = ((zirconium hydroxide and / or zirconium oxide diameter nm) / (titanium oxide diameter nm)) × 100
The general formula Pb (Zr) produced by mixing and calcining with a combination of raw material properties with an A value of 6 to 55 derived fromX・ Ti1-X) OThreeIt is effective to obtain a lead zirconate titanate powder having a composition represented by (X = 0.1 to 0.9) and having excellent sintering properties at low temperatures.
[0051]
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
[0052]
【The invention's effect】
The present invention utilizes a solid-phase reaction, does not use special raw materials, does not require the generation of complicated precursors, and does not use a high-grade pulverization process. It is useful for providing a lead zirconate titanate-based powder which is a manufacturing method suitable for industry with little variation and excellent in sinterability at low temperatures.
Claims (3)
下記A値が6〜55であることを特徴とするチタン酸ジルコン酸鉛系粉末製造用原料粉末の製造方法。
A=((水酸化ジルコニウム及び/又は酸化ジルコニウム径nm)/(酸化チタニウム径nm))×100 A step of preparing zirconium hydroxide and / or zirconium oxide having a specific surface area diameter of 20 nm or less and titanium oxide having a specific surface area diameter of 70 nm or less as a starting material, the starting material and the lead material are weighed, and a general formula Pb (Zr and a step of Blend so that X · Ti 1-X) O 3 (X = 0.1~0.9),
The following A value is 6-55, The manufacturing method of the raw material powder for lead zirconate titanate type powder manufacturing characterized by the above-mentioned.
A = ((zirconium hydroxide and / or zirconium oxide diameter nm) / (titanium oxide diameter nm)) × 100
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165156A JP4243515B2 (en) | 2003-06-10 | 2003-06-10 | Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165156A JP4243515B2 (en) | 2003-06-10 | 2003-06-10 | Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005001914A JP2005001914A (en) | 2005-01-06 |
JP4243515B2 true JP4243515B2 (en) | 2009-03-25 |
Family
ID=34091730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003165156A Expired - Fee Related JP4243515B2 (en) | 2003-06-10 | 2003-06-10 | Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4243515B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116082027B (en) * | 2023-01-17 | 2024-05-28 | 华中科技大学 | PZT-based multiferroic semiconductor ceramic material, preparation method and application thereof |
-
2003
- 2003-06-10 JP JP2003165156A patent/JP4243515B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005001914A (en) | 2005-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4926389B2 (en) | Crystal-oriented ceramics and method for producing the same | |
Xue et al. | Mechanochemical synthesis of lead zirconate titanate from mixed oxides | |
JP5012528B2 (en) | Crystal-oriented ceramics and method for producing the same | |
Wang et al. | Synthesizing nanocrystalline Pb (Zn1/3Nb2/3) O3 powders from mixed oxides | |
JP2003012373A (en) | Crystal oriented ceramic and its manufacturing method and anisotropic shape powder and its manufacturing method | |
JP2008522946A (en) | Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same | |
US20090121374A1 (en) | Method of manufacturing crystal oriented ceramics | |
KR20090023180A (en) | Complex oxide powder, method for preparing the same, ceramic composition using the complex oxide powder and ceramic electronic parts using the ceramic composition | |
JP2004300019A (en) | Crystal-oriented ceramic and its manufacturing method | |
JP2009114037A (en) | Method of manufacturing crystal oriented ceramic | |
JP2012062229A (en) | Method for producing complex oxide powder | |
JP2007284281A (en) | Method for manufacturing crystal-oriented ceramic | |
Xu et al. | Preparation of PZT powders and ceramics via a hybrid method of sol–gel and ultrasonic atomization | |
JP4534531B2 (en) | Method for producing anisotropic shaped powder | |
Ge et al. | Facile synthesis and high d 33 of single-crystalline KNbO 3 nanocubes | |
JPH062584B2 (en) | Lead titanate microcrystal and method for producing the same | |
Nandini et al. | Effect of calcination kinetics and microwave sintering parameters on dielectric and pieizo-electric properties of (K0. 5Na0. 5) NbO3 ceramics | |
JP4243515B2 (en) | Method for producing raw material powder for producing lead zirconate titanate powder, method for producing lead zirconate titanate powder, and method for producing lead zirconate titanate-based sintered body | |
Kornphom et al. | The effect of firing temperatures on phase evolution, microstructure, and electrical properties of Ba (Zr0. 05Ti0. 95) O3 ceramics prepared via combustion technique | |
JP5423708B2 (en) | Method for producing anisotropic shaped powder | |
JP2006124251A (en) | Method for producing crystal-oriented ceramic | |
Da Costa et al. | Synthesis and thermochemistry of relaxor ferroelectrics in the lead magnesium niobate–lead titanate (PMN–PT) solid solutions series | |
JP2009256147A (en) | Anisotropically formed powder and method for manufacturing crystal oriented ceramic | |
Kundu et al. | Ba-Zr codoped sodium bismuth titanate by novel alkoxyless wet chemical route: processing and electromechanical behavior | |
Ri et al. | Influence of Sb2O3 doping on the sintering and polarization characteristics of PbTiO3 ceramic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4243515 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |