JP4242671B2 - Beverage composition - Google Patents

Beverage composition Download PDF

Info

Publication number
JP4242671B2
JP4242671B2 JP2003058146A JP2003058146A JP4242671B2 JP 4242671 B2 JP4242671 B2 JP 4242671B2 JP 2003058146 A JP2003058146 A JP 2003058146A JP 2003058146 A JP2003058146 A JP 2003058146A JP 4242671 B2 JP4242671 B2 JP 4242671B2
Authority
JP
Japan
Prior art keywords
beverage
milk
beverage composition
beverages
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003058146A
Other languages
Japanese (ja)
Other versions
JP2004267013A (en
Inventor
祥貴 前田
和久 岩田
祐一 佐藤
秀哉 足立
友治 加藤
長宏 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP2003058146A priority Critical patent/JP4242671B2/en
Publication of JP2004267013A publication Critical patent/JP2004267013A/en
Application granted granted Critical
Publication of JP4242671B2 publication Critical patent/JP4242671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は飲料用組成物に関するものである。詳しくはフレッシュチーズを原料とする乳化安定性に優れた飲料用組成物及びそれを用いた飲料の製造方法に関する。
【0002】
【従来の技術】
フレッシュチーズはナチュラルチーズの1種であり、詳しくは乳、部分脱脂乳、クリーム等を原料として凝固作用を含む製造技術を用いて製造された非熟成型チーズである。一見ヨーグルトに似ているものもあるが、フレッシュチーズはここより更に水分を排出させたものである。そのままクッキーやパンに塗布して食されたり、チーズケーキなどの原料として使用されるのが主な用途である。
フレッシュチーズは硬さや乳脂肪分含量の違いにより様々な種類があるが、いずれも滑らかさと程良い酸味が特徴である。フレッシュチーズの種類の中には乳脂肪分が高いものもあり、乳風味を付与する目的で様々な食品への配合が考えられるが、滑らかとはいえ固体状であるため食品に配合するには分散性が悪く使用しやすいとは言えない。また飲料のごとき液状食品への配合を考えた場合、フレッシュチーズ自身の乳化状態が良くないため分離、沈殿が発生し使用には耐えない。
これらフレッシュチーズの物性を改良する技術として、少なくともチーズ類と水と塩類を含み、これらが均質化され殺菌処理された水中油型エマルジョンからなる流動性クリームの技術が提案されている。(例えば、特許文献1参照。)しかしながら本発明者らが検証を行ったところ、提案されている塩類の添加だけでは乳化力が不足しており、十分な乳化がなされているとは言い難い。
生クリームに乳化剤を添加配合する工程と、生クリームと乳化剤とを含む組成物を高圧均質化処理する工程とを含むことを特徴とする、平均粒子径が1μm以下の粒子径からなる加熱安定性に優れた生クリーム乳化物の製造方法の技術が提案されている。(例えば、特許文献2参照。)乳化剤を加え高圧均質化処理を行うことにより、なるほど乳化安定性に優れたクリーム乳化物の調製は可能である。しかしながら、この技術では原料が生クリーム限定で、併用する乳成分もバターオイルのみとなっており、本発明者らが提案しているフレッシュチーズには触れられていない。生クリームはフレッシュチーズと異なり比較的安定な乳化物であり、含有する乳蛋白質も少量で且つ未変性のものが多い。蛋白質が繊維状に変性しているフレッシュチーズの乳化は生クリームに比べ遙かにハードルが高く、提案されている技術を用いて本願発明の提案する飲料用組成物を調製することは困難である。
チーズを含有する乳飲料の製造法の技術が提案されている。(例えば、特許文献3参照。)チーズを低粘度化する目的に塩類を添加する手法は古くから知られており、この技術でもクエン酸ナトリウムを添加し高圧均質化処理を行い乳飲料を調製している。しかしながらクエン酸ナトリウムの添加量がチーズ蛋白質あたり15〜45%と非常に多く、実際このような調製方法にて処理された乳飲料は風味が悪く商業的価値は低い。
【0003】
【特許文献1】
特開平5−15308号公報(第2−3頁)
【特許文献2】
特許第3258634号公報(第1−3頁)
【特許文献3】
特公昭47−7939号公報(第1−2頁)
【0004】
【発明が解決しようとする課題】
したがって本発明は、従来困難と思われていたフレッシュチーズを用いて、風味が良い飲料用組成物を長期保存可能な乳化安定な状態で提供することを目的とする。加えては調製した飲料用組成物を添加した後レトルト殺菌や超高温短時間殺菌などの過酷な殺菌条件処理を施しても乳化安定であり、更には高温保存(いわゆる55℃以上で保存するホットベンダー)しても脂肪分離や沈殿などの品質劣化をおこさない安定な飲料を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、前述の現状に鑑み、フレッシュチーズを用いた飲料用組成物を調製すること、更に調製した飲料用組成物を用い、安定な飲料を提供することを目的として、鋭意研究の結果本発明に至った。
本発明はフレッシュチーズに乳化剤及びカゼインナトリウムを添加することにより安定な飲料用組成物を調製することができる技術に関する。更には調製した飲料用組成物を用い、安定性に優れた飲料を製造することができる技術に関するものである。
【0006】
【発明の実施の形態】
本発明では原料としてフレッシュチーズを用いるが、使用しうるフレッシュチーズについてはとくに制限は無く、従来より公知とされているものであればどのようなものでも良い。ただし、安定なクリーム状態を保ち、且つ良好な乳風味を付与するためには乳脂肪含量が高いフレッシュチーズの方が良好であるためクリームチーズの使用が好ましい。乳脂肪含量は10%以上含有されていることが好ましい。更には30%以上であればより好ましく、最も好ましくは50%以上含まれていることである。
本発明の飲料用組成物における乳脂肪含量については特に制限を受けるものではない。しかし、乳脂肪含量が低すぎると乳風味が弱くなり、乳脂肪含量が高すぎると安定性が低くなる傾向にある。よって、飲料用組成物における乳脂肪含量は5〜50%の範囲が好ましく、更には10〜40%の範囲がより好ましい。
【0007】
本発明において乳化物を得るため使用される乳化剤は食品分野で通常使用されている乳化剤であれば何ら制限を受けるものではない。例示するならば、グリセリン脂肪酸エステル(モノグリセリド、有機酸モノグリセリド、ポリグリセリン脂肪酸エステル)、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、レシチン、酵素分解レシチン、サポニン、ポリソルベート等があげられるが、好ましくは有機酸モノグリセリドとHLB11以上の親水性乳化剤の組み合わせが良い。有機酸モノグリセリドの種類としては、乳酸モノグリセリド、コハク酸モノグリセリド、クエン酸モノグリセリド、ジアセチル酒石酸モノグリセリドがあげられるが、好ましくはクエン酸モノグリセリドとコハク酸モノグリセリドが良い。また親水性乳化剤はHLBが高い程好ましく、HLB12以上であればより良い。更にはHLB14以上が最も好ましい。ここで言うHLBとはHydrophile Lipophile Balanceの略で乳化剤中の親水基と親油基のバランスを示す数値である。HLB値が高いほど親水性の乳化剤であることを示している。
乳化剤を構成する脂肪酸の種類はとくに限定されるものではないが、好ましくは炭素数10〜22が良い。更に好ましくは炭素数12〜18のものが良い。構成脂肪酸の炭素数が10より小さい乳化剤は風味的に劣る傾向があり、また炭素数が22より大きな乳化剤は融点が高くなり取り扱いが困難になる傾向にある。
【0008】
乳化剤の添加量は特に限定されるものではないが、風味及び効果の点より最終製品に対して0.01〜6重量%、好ましくは0.1〜3重量%、更に好ましくは0.2〜2重量%の範囲内で添加することが望ましい。
本発明におけるカゼインナトリウムの添加量は特に限定を受けるものではないが、風味及び効果の点から最終製品に対し0.1〜15重量%、好ましくは0.5〜10重量%、更に好ましくは1〜6重量%が良い。
さて、前述のように本発明はフレッシュチーズに乳化剤及びカゼインナトリウムを添加する技術であるが、さらに乳化を安定にする等の目的でその他食品用添加物を併用することに何ら制限を受けるものではない。食品用添加物としては増粘安定剤、塩類、糖類等があげられる。具体例をあげると増粘安定剤としてカラギナン(κタイプ、ιタイプ、λタイプ)、キサンタンガム、ジェランガム、プルラン、カードラン、ガラクトマンナン類(ローカストビーンガム、タラガム、グァーガム)、ペクチン、タマリンドガム、グルコマンナン、アラビアガム、寒天、大豆多糖類、カルボキシメチルセルロース及びその塩類、結晶セルロース、カラヤガム、アルギン酸ナトリウム、澱粉類、可溶性澱粉に代表される化工澱粉類、蛋白質であるゼラチン等があげられるが、中でもιカラギナン、キサンタンガム、結晶セルロースが乳化安定を高める目的には好ましい。添加量は全量に対し0.001〜1重量%、好ましくは0.01〜0.5重量%が良い。塩類としてはリン酸類(リン酸、ピロリン酸、ポリリン酸、メタリン酸)、クエン酸、コハク酸、酒石酸などのアルカリ金属塩(カリウム、ナトリウムなど)等があげられるが、中でもリン酸、ヘキサメタリン酸、クエン酸のアルカリ金属塩(カリウム、ナトリウム)が乳化安定を高める目的には好ましい。添加量としては0.01〜1重量%、好ましくは0.1〜0.5重量%が良い。糖類としては単糖類、二糖類、オリゴ糖類、還元糖類などがあげられるが、メイラード反応を防止するためにも還元末端を持たない糖類が好ましく、その意味ではトレハロースや還元糖類(ソルビトール、マルチトール、還元水飴等)が好ましい。これら食品用添加物又は糖類は乳化剤及びカゼインナトリウムと単独で併用しても良いし、二種類以上の組み合わせで併用しても良い。中でも特に好ましい併用物質としてιカラギナン、リン酸、ヘキサメタリン酸、クエン酸のアルカリ金属塩(カリウム、ナトリウム)があげられる。
【0009】
本発明では乳化粒子を細かくし、乳化安定性を向上させる目的で高圧均質化処理を行っているが、ここで言う高圧均質化処理とはマントンゴーリン、マイクロナノマイザー等市販の乳化装置を用い、通常行われている圧力以上で処理されることを意味する。具体的には15MPa以上の高圧力にて処理を行うが、より高い圧力で処理を行う方が乳化粒径は細かくなりやすく、好ましくは20MPa以上、更には30MPa以上で処理することがより好ましい。均質化圧が低い場合、具体的には10MPa以下の場合は飲料用組成物の平均乳化粒径が1μm以下にならず好ましくない。
本発明では前述の様に高圧均質化処理等の適当な手段を用い乳化粒径の調整を行っているが、調製される飲料用組成物の平均乳化粒径は1μm以下にすることが望ましい。好ましくは平均粒子径が0.8μm以下、更に好ましくは平均粒子径が0.6μm以下で且つ最大粒子径が1μm以下であることが良い。乳化粒径は乳化物の物性に与える影響が大きく、平均乳化粒径が1μmを超えると保存中の分離が発生する傾向にある。更に調整された飲料用組成物を使用し飲料を製造する際にも粒子径の影響は大きく、平均乳化粒子径が1μmを超えると飲料独特の保存時のリング発生、沈殿発生、加熱殺菌時や高温保存時の乳化破壊等の問題が発生しやすくなる。
【0010】
本発明における粒子径の測定方法については特に限定を受けるものではないが、例えばレーザー回折散乱法粒度分布測定装置であるベックマン・コールター(株)製LS230型によって測定することが可能である。
本発明によって調製された飲料用組成物は様々な飲料に使用することができる。本発明によって調製された飲料用組成物は乳化粒径をコントロールすることにより前述したような飲料の諸問題は解決可能であり、またフレッシュチーズ由来の乳成分を多く含むため、風味が良く且つ安定な飲料の提供が可能である。ここで言う飲料とは、コーヒー、紅茶、ココア、緑茶、抹茶、果汁、豆乳、卵、野菜、チーズ等嗜好品に香料、甘味料等の副原料を適時加え、乳固形分を併せて味を調製したものを指す。この際、本発明の飲料用組成物以外に生乳、濃縮乳、脱脂濃縮乳、生クリーム、脱脂粉乳、全脂粉乳等の牛乳を原料とした乳製品を併用することには何ら制限を受けるものではない。飲料の具体例としてコーヒー飲料、紅茶飲料、ココア飲料、果汁飲料、抹茶飲料、豆乳飲料、プリン、ミルクセーキ等の卵飲料、野菜飲料、ポタージュ等のスープ飲料、サプリメント飲料、しるこ飲料、甘酒、キャラメル飲料、ごま飲料等があげられる。これ以外にも乳固形分を含有する飲料であればあらゆる飲料に応用可能であるが、好ましいものとして高温販売、いわゆるホットベンダー販売される飲料は品質劣化が激しいため求められる安定性基準が高くあり、その意味ではコーヒー飲料、紅茶飲料、スープ類に使用されることが望ましい。
【0011】
飲料の形態としては、缶、瓶、ペット容器、ボトル缶、紙パック、プラスチック容器、チアパック等があげられるが、密封された容器であれば、容器形態には何ら制限を受けない。ただし、本発明の飲料用組成物は前述の様にホットベンダー販売される飲料に適しており、ホットベンダー販売可能な容器である缶、瓶、ペット容器が好ましい。なお、本発明の飲料用組成物の飲料への使用に関しては必ずしも液状である必要はなく、ゼリー飲料のような半固体状への使用も可能である。
以下に本発明の実施例を示すが、本発明はこれら実施例のみに限定されるものではない。
【0012】
【実施例】
実施例
飲料用組成物調製方法
フレッシュチーズと水を混合の上70℃まで加熱し、攪拌しながらカゼインナトリウムと各種乳化剤を添加して分散溶解した。溶解後ホモミキサーにて混合液を予備乳化し均質化した。この予備均質化液を70℃にて高圧ホモジナイザー(イズミフードマシナリー製)にて15〜50MPaの高圧均質化処理をした。次に高圧均質化処理液をUHT(超高温瞬間滅菌装置 日阪製作所製)により140℃、5秒間滅菌処理をし飲料用組成物のサンプルとした。保存試験は5℃及び25℃にて3ヶ月間行った。飲料用組成物の調製実施例及び評価を表1に示す。
【0013】
【表1】

Figure 0004242671
【0014】
(*1)ショ糖ステアリン酸エステル HLB11 (三菱化学フーズ(株))
(*2)モノラウリン酸デカグリセリン HLB15.5 (太陽化学(株))
(*3)モノステアリン酸デカグリセリン HLB12 (太陽化学(株))
(*4)酵素分解大豆レシチン HLB12 (太陽化学(株))
(*5)クエン酸モノステアリン酸グリセリン (太陽化学(株))
(*6)コハク酸モノステアリン酸グリセリン (太陽化学(株))
保存評価 ◎ 分離、沈殿、凝集が発生しない
保存評価 ○ 分離、沈殿、凝集がほぼ発生しない
保存評価 △ 分離、沈殿は無いが凝集が発生
保存評価 × 分離、凝集、沈殿が発生
なおここで言う分離とは乳化層と非乳化層が分かれること、沈殿とは蛋白等の固形物が底部に沈降すること、凝集とは溶液中に目視観察可能な不連続層が発生することを示す。
【0015】
表1より明らかなように、実施例1〜6のいずれの試験区も高圧均質化後の平均乳化粒径は1μm以下であり良好な均質化状態であった。UHT後の平均乳化粒径についても1μm以下でありかつUHT前(高圧均質化後)に比べ大きく変化していないことより、UHT処理を行っても良好な均質化状態であることがわかった。さらに、調製された飲料用組成物のサンプルを10℃及び25℃の温度帯によって保存試験を行ったところ、3ヶ月間の保存においても分離、沈殿、凝集の発生などは観察されず、かつ平均乳化粒径は1μm以下であり良好な均質化状態であった。
【0016】
乳飲料試作方法I
コーヒー抽出液(Bx3.0)400g、脱脂粉乳10g、グラニュー糖60g、リョートーP−1670(三菱化学フーズ(株))5g、本発明の飲料用組成物は最終脂肪含量が0.5%となるように量を調整して添加、水を加え混合溶解し、重曹にてpH6.7に調整後、さらに水を加え全量を1000gとした。調合されたコーヒーミックスを65〜70℃に昇温し、高圧ホモジナイザーにて15MPaの圧力で均質化し缶容器に充填した。充填された缶容器は121℃、30分間レトルト殺菌を行い、飲料サンプルとした。保存試験は、5℃、25℃及び55℃にて4週間行った。
【0017】
乳飲料試作方法II
紅茶抽出液(Bx1.5)200g、脱脂粉乳20g、グラニュー糖60g、リョートーP−1670(三菱化学フーズ(株))5g、本発明の飲料用組成物は最終脂肪含量が1.0%となるように量を調整して添加、水を加え混合溶解し、重曹にてpH6.8に調整後、さらに水を加え全量を1000gとした。調合された紅茶ミックスを65〜70℃に昇温し、高圧ホモジナイザーにて15MPaの圧力で均質化し、次いでUHT(超高温瞬間滅菌装置)にて145℃、30秒間の殺菌処理を行い、ペットボトル容器に充填した。保存試験は、5℃、25℃及び55℃にて4週間行った。本発明品を使用した飲料の実施例及び評価を表2に示す。
【0018】
【表2】
Figure 0004242671
【0019】
評点7以上を良、4〜6を並、3以下を不良と評価した。
なお、クリーム1〜6とは実施例1〜6で示した飲料用組成物の1〜6に対応する。また、ここで言うリングの発生とは飲料保存時に気−液界面に発生する白色クリーム状物質のこと、乳化破壊とは保存時に乳化が壊れ油脂が分離すること、沈殿の発生とは保存中に蛋白等の固形物が底部に沈降すること、白色浮遊物の発生とは液中に分散しない白色の固形物が発生することを示す。
【0020】
表2より明らかなように本発明品である飲料用組成物を使用した飲料はいずれの温度帯でもリングの発生、乳化破壊、沈殿の発生等の品質劣化が無い又は少ない結果となった。
【0021】
比較例
飲料用組成物調製方法
フレッシュチーズと水を混合の上70℃まで加熱し、攪拌しながらカゼインナトリウム又は各種乳化剤を添加して分散溶解した。溶解後ホモミキサーにて混合液を予備乳化し均質化した。この予備均質化液を70℃にて高圧ホモジナイザー(イズミフードマシナリー製)にて50MPaの高圧均質化処理をした。次に高圧均質化処理液をUHT(超高温瞬間滅菌装置 日阪製作所製)により140℃、5秒間滅菌処理をし飲料用組成物のサンプルとした。保存試験は5℃及び25℃にて3ヶ月間行った。飲料用組成物の調製比較例及び評価を表3に示す。
【0022】
【表3】
Figure 0004242671
【0023】
(*1)ショ糖ステアリン酸エステル HLB11 (三菱化学フーズ(株))
(*2)ショ糖ステアリン酸エステル HLB9 (三菱化学フーズ(株))
(*3)ステアリン酸モノグリセリド HLB4 (太陽化学(株))
(*4)クエン酸モノステアリン酸グリセリン (太陽化学(株))
保存評価 ◎ 分離、沈殿、凝集が発生しない
保存評価 ○ 分離、沈殿、凝集がほぼ発生しない
保存評価 △ 分離、沈殿は無いが凝集が発生
保存評価 × 分離、凝集、沈殿が発生
なおここで言う分離とは乳化層と非乳化層が分かれること、沈殿とは蛋白等の固形物が底部に沈降すること、凝集とは溶液中に目視観察可能な不連続層が発生することを示す。
表3より明らかなように、比較例で調製した飲料用組成物は、分離、凝集、沈殿等が観察された。
【0024】
飲料の調製方法
乳飲料試作方法I
コーヒー抽出液(Bx3.0)400g、脱脂粉乳10g、グラニュー糖60g、リョートーP−1670(三菱化学フーズ(株))5g、比較例にて調製された飲料用組成物は最終脂肪含量が0.5%となるように量を調整して添加、水を加え混合溶解し、重曹にてpH6.7に調整後、さらに水を加え全量を1000gとした。調合されたコーヒーミックスを65〜70℃に昇温し、高圧ホモジナイザーにて15MPaの圧力で均質化し缶容器に充填した。充填された缶容器は121℃、30分間レトルト殺菌を行い、飲料サンプルとした。保存試験は、5℃、25℃及び55℃にて4週間行った。
【0025】
乳飲料試作方法II
紅茶抽出液(Bx1.5)200g、脱脂粉乳20g、グラニュー糖60g、リョートーP−1670(三菱化学フーズ(株))5g、比較例にて調製された飲料用組成物は最終脂肪含量が1.0%となるように量を調整して添加、水を加え混合溶解し、重曹にてpH6.8に調整後、さらに水を加え全量を1000gとした。調合された紅茶ミックスを65〜70℃に昇温し、高圧ホモジナイザーにて15MPaの圧力で均質化し、次いでUHT(超高温瞬間滅菌装置)にて145℃、30秒間の殺菌処理を行い、ペットボトル容器に充填した。保存試験は、5℃、25℃及び55℃にて4週間行った。
飲料の比較例及び評価を表4に示す。
【0026】
【表4】
Figure 0004242671
【0027】
評点7以上を良、4〜6を並、3以下を不良と評価した。
なお、クリームA〜Eとは比較例1〜5で示した飲料用組成物の1〜5に対応する。また、ここで言うリングの発生とは飲料保存時に気−液界面に発生する白色クリーム状物質のこと、乳化破壊とは保存時に乳化が壊れ油脂が分離すること、沈殿の発生とは保存中に蛋白等の固形物が底部に沈降すること、白色浮遊物の発生とは液中に分散しない白色の固形物が発生することを示す。
【0028】
表4より明らかなように、比較例で調製されたクリームを使用した飲料は、いずれの温度帯でもリングの発生、乳化破壊、沈殿の発生等が発生し、品質的に著しく劣る結果となった。
【0029】
【発明の効果】
本発明はフレッシュチーズを加工する際、乳化剤及びカゼインナトリウムを添加することにより安定な飲料用組成物を提供することができ、かつ飲料を作る際、調製された飲料用組成物を使用することによりリングの発生、乳化破壊、沈殿の発生等品質劣化を防止することができる安定な飲料の製造法を提供するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a beverage composition. In detail, it is related with the manufacturing method of the drink composition using the composition for beverages which was excellent in the emulsion stability which used fresh cheese as a raw material.
[0002]
[Prior art]
Fresh cheese is a kind of natural cheese, specifically non-mature molded cheese made using milk, partially skimmed milk, cream or the like as a raw material and using a production technique including a coagulation action. At first glance, it looks like yogurt, but fresh cheese is more drained than this. Its main application is to apply it to cookies and bread as it is, or to use it as a raw material for cheesecake.
There are various types of fresh cheese depending on the difference in hardness and milk fat content, all of which are characterized by smoothness and moderate acidity. Some types of fresh cheese have a high milk fat content, and can be formulated into various foods for the purpose of imparting a milk flavor. It cannot be said that the dispersibility is poor and easy to use. Moreover, when mix | blending with liquid foods, such as a drink, since the emulsified state of fresh cheese itself is not good, isolation | separation and precipitation generate | occur | produce and it cannot endure use.
As a technique for improving the physical properties of these fresh cheeses, there has been proposed a fluid cream technique comprising an oil-in-water emulsion containing at least cheeses, water and salts, which are homogenized and sterilized. (For example, refer to Patent Document 1.) However, as a result of verification by the present inventors, it is difficult to say that sufficient emulsification is achieved because the emulsifying power is insufficient only by the addition of the proposed salts.
Heat stability comprising an average particle size of 1 μm or less, characterized by comprising a step of adding and blending an emulsifier to fresh cream, and a step of subjecting the composition containing the fresh cream and the emulsifier to high-pressure homogenization. A technique for producing a fresh cream emulsion excellent in water resistance has been proposed. (For example, refer to Patent Document 2.) By adding an emulsifier and carrying out a high-pressure homogenization treatment, it is possible to prepare a cream emulsion having better emulsion stability. However, in this technique, the raw material is limited to fresh cream, and the milk component used in combination is only butter oil, and the fresh cheese proposed by the present inventors is not touched. Unlike fresh cheese, fresh cream is a relatively stable emulsion, and contains a small amount of milk protein and many unmodified products. The emulsification of fresh cheese in which the protein is modified into a fiber is much higher hurdles than fresh cream, and it is difficult to prepare the beverage composition proposed by the present invention using the proposed technology. .
Techniques for producing milk beverages containing cheese have been proposed. (For example, refer to Patent Document 3) The technique of adding salts for the purpose of reducing the viscosity of cheese has been known for a long time, and even in this technique, sodium citrate is added and a high-pressure homogenization treatment is performed to prepare a milk beverage. ing. However, the amount of sodium citrate added is very high at 15 to 45% per cheese protein, and in fact, the dairy drink processed by such a preparation method has a poor flavor and low commercial value.
[0003]
[Patent Document 1]
JP-A-5-15308 (page 2-3)
[Patent Document 2]
Japanese Patent No. 3258634 (page 1-3)
[Patent Document 3]
Japanese Examined Patent Publication No. 47-7939 (page 1-2)
[0004]
[Problems to be solved by the invention]
Therefore, this invention aims at providing the composition for drinks with a sufficient flavor in the emulsification stable state which can be preserve | saved for a long time using the fresh cheese considered conventionally difficult. In addition, after adding the prepared beverage composition, the emulsion is stable even when subjected to severe sterilization conditions such as retort sterilization and ultra-high temperature short time sterilization. The purpose is to provide a stable beverage that does not cause quality degradation such as fat separation and precipitation.
[0005]
[Means for Solving the Problems]
In view of the above-mentioned present situation, the present inventors have conducted intensive research for the purpose of preparing a beverage composition using fresh cheese and further providing a stable beverage using the prepared beverage composition. As a result, the present invention has been achieved.
The present invention relates to a technique capable of preparing a stable beverage composition by adding an emulsifier and sodium caseinate to fresh cheese. Furthermore, it is related with the technique which can manufacture the drink excellent in stability using the prepared composition for drinks.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, fresh cheese is used as a raw material, but there is no particular limitation on the fresh cheese that can be used, and any conventional cheese that has been conventionally known may be used. However, in order to maintain a stable cream state and impart a good milk flavor, the use of cream cheese is preferable because fresh cheese with a high milk fat content is better. The milk fat content is preferably 10% or more. Further, it is more preferably 30% or more, and most preferably 50% or more.
The milk fat content in the beverage composition of the present invention is not particularly limited. However, if the milk fat content is too low, the milk flavor tends to be weak, and if the milk fat content is too high, the stability tends to be low. Therefore, the milk fat content in the beverage composition is preferably in the range of 5 to 50%, more preferably in the range of 10 to 40%.
[0007]
The emulsifier used for obtaining the emulsion in the present invention is not limited at all as long as it is an emulsifier usually used in the food field. Examples include glycerin fatty acid ester (monoglyceride, organic acid monoglyceride, polyglycerin fatty acid ester), sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, lecithin, enzymatically decomposed lecithin, saponin, polysorbate, etc. A combination of an organic acid monoglyceride and a hydrophilic emulsifier of HLB11 or more is preferable. Examples of the organic acid monoglyceride include lactic acid monoglyceride, succinic acid monoglyceride, citric acid monoglyceride, and diacetyltartaric acid monoglyceride, preferably citric acid monoglyceride and succinic acid monoglyceride. In addition, the higher the HLB, the better the hydrophilic emulsifier, and it is better if the HLB is 12 or more. Furthermore, HLB14 or more is the most preferable. Here, HLB is an abbreviation for Hydrophile Lipophile Balance and is a numerical value indicating the balance between hydrophilic groups and lipophilic groups in the emulsifier. A higher HLB value indicates a hydrophilic emulsifier.
The type of fatty acid constituting the emulsifier is not particularly limited, but preferably 10 to 22 carbon atoms. More preferably, it has 12 to 18 carbon atoms. An emulsifier having a constituent fatty acid having a carbon number of less than 10 tends to be inferior in flavor, and an emulsifier having a carbon number of more than 22 tends to have a high melting point and become difficult to handle.
[0008]
The amount of the emulsifier is not particularly limited, but is 0.01 to 6% by weight, preferably 0.1 to 3% by weight, more preferably 0.2 to 0.2% by weight based on the final product from the viewpoint of flavor and effect. It is desirable to add within the range of 2% by weight.
The amount of sodium caseinate added in the present invention is not particularly limited, but it is 0.1 to 15% by weight, preferably 0.5 to 10% by weight, more preferably 1%, based on the final product in terms of flavor and effect. ~ 6% by weight is good.
As described above, the present invention is a technique for adding an emulsifier and sodium caseinate to fresh cheese, but there is no limitation to using other food additives together for the purpose of stabilizing the emulsification. Absent. Examples of food additives include thickening stabilizers, salts, saccharides and the like. Specific examples include carrageenan (κ type, ι type, λ type), xanthan gum, gellan gum, pullulan, curdlan, galactomannans (locust bean gum, tara gum, guar gum), pectin, tamarind gum, gluco Mannan, gum arabic, agar, soybean polysaccharide, carboxymethylcellulose and its salts, crystalline cellulose, karaya gum, sodium alginate, starches, modified starches such as soluble starches, protein gelatins, etc. Carrageenan, xanthan gum and crystalline cellulose are preferred for the purpose of enhancing the emulsion stability. The addition amount is 0.001 to 1% by weight, preferably 0.01 to 0.5% by weight, based on the total amount. Examples of salts include phosphoric acids (phosphoric acid, pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid), citric acid, succinic acid, tartaric acid and other alkali metal salts (potassium, sodium, etc.). Among them, phosphoric acid, hexametaphosphoric acid, Alkali metal salts of citric acid (potassium, sodium) are preferred for the purpose of enhancing the emulsion stability. The addition amount is 0.01 to 1% by weight, preferably 0.1 to 0.5% by weight. Examples of the saccharide include monosaccharides, disaccharides, oligosaccharides, and reducing saccharides. In order to prevent the Maillard reaction, saccharides having no reducing end are preferable. In this sense, trehalose and reducing saccharides (sorbitol, maltitol, Reduced starch syrup or the like) is preferred. These food additives or sugars may be used alone or in combination of two or more kinds with the emulsifier and sodium caseinate. Among them, particularly preferred combined substances include iota carrageenan, phosphoric acid, hexametaphosphoric acid, and alkali metal salts of citric acid (potassium and sodium).
[0009]
In the present invention, the emulsified particles are finely divided and the high-pressure homogenization treatment is performed for the purpose of improving the emulsification stability, and the high-pressure homogenization treatment referred to here uses a commercially available emulsification apparatus such as Manton Gorin, Micro Nanomizer, It means that the treatment is performed at a pressure higher than the usual pressure. Specifically, the treatment is performed at a high pressure of 15 MPa or more, but the treatment at a higher pressure tends to make the emulsion particle size finer, preferably 20 MPa or more, and more preferably 30 MPa or more. When the homogenization pressure is low, specifically, 10 MPa or less, the average emulsified particle size of the beverage composition is not 1 μm or less, which is not preferable.
In the present invention, as described above, the emulsion particle size is adjusted using an appropriate means such as high-pressure homogenization treatment, but the average emulsion particle size of the prepared beverage composition is desirably 1 μm or less. The average particle size is preferably 0.8 μm or less, more preferably the average particle size is 0.6 μm or less, and the maximum particle size is 1 μm or less. The emulsified particle size has a great influence on the physical properties of the emulsion. When the average emulsified particle size exceeds 1 μm, separation during storage tends to occur. Further, when producing a beverage using the prepared beverage composition, the influence of the particle size is large. When the average emulsified particle size exceeds 1 μm, ring generation, precipitation, heat sterilization, Problems such as emulsion breakage during storage at high temperatures are likely to occur.
[0010]
The method for measuring the particle diameter in the present invention is not particularly limited. For example, it can be measured by a Beckman Coulter LS230 model, which is a laser diffraction scattering method particle size distribution measuring apparatus.
The beverage composition prepared according to the present invention can be used in various beverages. The beverage composition prepared according to the present invention can solve the above-mentioned beverage problems by controlling the emulsion particle size, and also contains many milk components derived from fresh cheese, so that it has a good flavor and is stable. Can be provided. Beverages here include coffee, tea, cocoa, green tea, green tea, fruit juice, soy milk, eggs, vegetables, cheese, and other ingredients such as fragrances and sweeteners added to the taste, and the milk solids are added to taste. Refers to the prepared one. In this case, in addition to the beverage composition of the present invention, there is no restriction on using milk products such as raw milk, concentrated milk, defatted concentrated milk, fresh cream, defatted powdered milk, and whole fat powdered milk together. is not. Specific examples of beverages include coffee beverages, tea beverages, cocoa beverages, fruit juice beverages, matcha tea beverages, soy milk beverages, egg beverages such as pudding and milk shakes, vegetable beverages, soup beverages such as potage, supplement beverages, shiko beverages, amazake, caramel beverages And sesame drinks. Other than this, any beverage containing milk solids can be applied to any beverage. However, it is preferable that beverages sold at high temperature, so-called hot benders, have high stability standards due to severe quality deterioration. In that sense, it is preferably used for coffee beverages, tea beverages, and soups.
[0011]
Examples of beverage forms include cans, bottles, pet containers, bottle cans, paper packs, plastic containers, cheer packs, and the like. However, the container form is not limited as long as it is a sealed container. However, the beverage composition of the present invention is suitable for beverages sold as hot vendors as described above, and cans, bottles, and pet containers which are containers that can be sold as hot vendors are preferable. In addition, regarding the use for the drink of the composition for drinks of this invention, it does not necessarily need to be a liquid state, and the use to semi-solid form like a jelly drink is also possible.
Examples of the present invention are shown below, but the present invention is not limited to these examples.
[0012]
【Example】
Example Beverage Composition Preparation Method Fresh cheese and water were mixed and heated to 70 ° C., sodium caseinate and various emulsifiers were added and dispersed and dissolved while stirring. After dissolution, the mixture was pre-emulsified with a homomixer and homogenized. This preliminary homogenized liquid was subjected to a high-pressure homogenization treatment of 15 to 50 MPa with a high-pressure homogenizer (manufactured by Izumi Food Machinery) at 70 ° C. Next, the high-pressure homogenization treatment liquid was sterilized at 140 ° C. for 5 seconds using UHT (Ultra High Temperature Instant Sterilizer, manufactured by Nisaka Seisakusho Co., Ltd.) to obtain a beverage composition sample. The storage test was conducted at 5 ° C. and 25 ° C. for 3 months. Table 1 shows the preparation examples and evaluation of the beverage composition.
[0013]
[Table 1]
Figure 0004242671
[0014]
(* 1) Sucrose stearate ester HLB11 (Mitsubishi Chemical Foods)
(* 2) Decaglycerin monolaurate HLB15.5 (Taiyo Chemical Co., Ltd.)
(* 3) Decaglycerin monostearate HLB12 (Taiyo Chemical Co., Ltd.)
(* 4) Enzyme-degraded soybean lecithin HLB12 (Taiyo Chemical Co., Ltd.)
(* 5) Glycerol monostearate (Taiyo Chemical Co., Ltd.)
(* 6) Glycerol monostearate (Taiyo Chemical Co., Ltd.)
Storage evaluation ◎ Storage evaluation with no separation, precipitation, or aggregation ○ Storage evaluation with almost no separation, precipitation, or aggregation △ No separation or precipitation, but aggregation occurs Storage evaluation × Separation, aggregation, or precipitation occurs Means that the emulsified layer is separated from the non-emulsified layer, the term “precipitate” means that a solid such as protein settles at the bottom, and the term “aggregation” means that a discontinuous layer that can be visually observed is generated in the solution.
[0015]
As is apparent from Table 1, the average emulsified particle size after high-pressure homogenization was 1 μm or less in any of the test sections of Examples 1 to 6 and was in a good homogenized state. The average emulsified particle size after UHT was also 1 μm or less and did not change much compared to before UHT (after high-pressure homogenization), and thus it was found that the homogenized state was good even when UHT treatment was performed. Furthermore, when the preservation | save test was done for the sample of the prepared composition for drinks by the temperature range of 10 degreeC and 25 degreeC, isolation | separation, precipitation, generation | occurrence | production of aggregation, etc. were not observed in storage for 3 months, and average The emulsified particle size was 1 μm or less and was in a good homogenized state.
[0016]
Milk Beverage Prototype Method I
400 g of coffee extract (Bx3.0), 10 g of skim milk powder, 60 g of granulated sugar, 5 g of Ryoto P-1670 (Mitsubishi Chemical Foods), and the beverage composition of the present invention has a final fat content of 0.5%. The amount was adjusted and added, and water was added to dissolve the mixture. After adjusting the pH to 6.7 with sodium bicarbonate, water was further added to make the total amount 1000 g. The prepared coffee mix was heated to 65-70 ° C., homogenized at a pressure of 15 MPa with a high-pressure homogenizer, and filled into a can container. The filled can container was subjected to retort sterilization at 121 ° C. for 30 minutes to obtain a beverage sample. The storage test was conducted at 5 ° C, 25 ° C and 55 ° C for 4 weeks.
[0017]
Milk Drink Prototype Method II
Black tea extract (Bx1.5) 200 g, skim milk powder 20 g, granulated sugar 60 g, Ryoto P-1670 (Mitsubishi Chemical Foods) 5 g, the beverage composition of the present invention has a final fat content of 1.0%. Thus, the amount was adjusted and added, and water was added to dissolve the mixture. After adjusting to pH 6.8 with sodium bicarbonate, water was further added to make the total amount 1000 g. The prepared black tea mix is heated to 65-70 ° C., homogenized at a pressure of 15 MPa with a high-pressure homogenizer, then sterilized at 145 ° C. for 30 seconds with a UHT (ultra-high temperature flash sterilizer), and then a plastic bottle The container was filled. The storage test was conducted at 5 ° C, 25 ° C and 55 ° C for 4 weeks. Table 2 shows examples and evaluations of beverages using the product of the present invention.
[0018]
[Table 2]
Figure 0004242671
[0019]
A rating of 7 or higher was evaluated as good, 4 to 6 were rated, and 3 or lower were evaluated as bad.
The creams 1 to 6 correspond to the beverage compositions 1 to 6 shown in Examples 1 to 6. In addition, the occurrence of a ring referred to here is a white cream-like substance that occurs at the gas-liquid interface during beverage storage. Emulsification failure refers to the fact that emulsification breaks and oils and fats are separated during storage. Precipitation occurs during storage. The solid matter such as protein settles to the bottom and the generation of white suspended matter indicates the generation of a white solid that is not dispersed in the liquid.
[0020]
As apparent from Table 2, the beverage using the beverage composition of the present invention had no or little quality deterioration such as ring formation, emulsion breakage, and precipitation at any temperature range.
[0021]
Comparative Example Beverage Composition Preparation Method Fresh cheese and water were mixed and heated to 70 ° C., and sodium caseinate or various emulsifiers were added and dispersed and dissolved while stirring. After dissolution, the mixture was pre-emulsified with a homomixer and homogenized. This pre-homogenized liquid was subjected to high-pressure homogenization at 50 MPa with a high-pressure homogenizer (manufactured by Izumi Food Machinery) at 70 ° C. Next, the high-pressure homogenization treatment liquid was sterilized at 140 ° C. for 5 seconds using UHT (Ultra High Temperature Instant Sterilizer, manufactured by Nisaka Seisakusho Co., Ltd.) to obtain a beverage composition sample. The storage test was conducted at 5 ° C. and 25 ° C. for 3 months. Table 3 shows preparation comparative examples and evaluations of beverage compositions.
[0022]
[Table 3]
Figure 0004242671
[0023]
(* 1) Sucrose stearate ester HLB11 (Mitsubishi Chemical Foods)
(* 2) Sucrose stearate HLB9 (Mitsubishi Chemical Foods)
(* 3) Stearic acid monoglyceride HLB4 (Taiyo Chemical Co., Ltd.)
(* 4) Glycerol monostearate (Taiyo Chemical Co., Ltd.)
Storage evaluation ◎ Storage evaluation with no separation, precipitation, or aggregation ○ Storage evaluation with almost no separation, precipitation, or aggregation △ No separation or precipitation, but aggregation occurs Storage evaluation × Separation, aggregation, or precipitation occurs Means that the emulsified layer is separated from the non-emulsified layer, the term “precipitate” means that a solid such as protein settles at the bottom, and the term “aggregation” means that a discontinuous layer that can be visually observed is generated in the solution.
As is apparent from Table 3, separation, aggregation, precipitation and the like were observed in the beverage composition prepared in the comparative example.
[0024]
Beverage Preparation Method Milk Beverage Prototype Method I
400 g of coffee extract (Bx3.0), 10 g of skim milk powder, 60 g of granulated sugar, 5 g of Ryoto P-1670 (Mitsubishi Chemical Foods), and the beverage composition prepared in the comparative example have a final fat content of 0.00. The amount was adjusted to 5%, added, mixed and dissolved with water, adjusted to pH 6.7 with sodium bicarbonate, water was further added to make the total amount 1000 g. The prepared coffee mix was heated to 65-70 ° C., homogenized at a pressure of 15 MPa with a high-pressure homogenizer, and filled into a can container. The filled can container was subjected to retort sterilization at 121 ° C. for 30 minutes to obtain a beverage sample. The storage test was conducted at 5 ° C, 25 ° C and 55 ° C for 4 weeks.
[0025]
Milk Drink Prototype Method II
Black tea extract (Bx1.5) 200 g, skim milk powder 20 g, granulated sugar 60 g, Ryoto P-1670 (Mitsubishi Chemical Foods) 5 g, the beverage composition prepared in the comparative example has a final fat content of 1. The amount was adjusted to 0%, added, mixed and dissolved with water, adjusted to pH 6.8 with sodium bicarbonate, further added water to a total amount of 1000 g. The prepared black tea mix is heated to 65-70 ° C., homogenized at a pressure of 15 MPa with a high-pressure homogenizer, then sterilized at 145 ° C. for 30 seconds with a UHT (ultra-high temperature flash sterilizer), and then a plastic bottle The container was filled. The storage test was conducted at 5 ° C, 25 ° C and 55 ° C for 4 weeks.
Table 4 shows comparative examples and evaluation of beverages.
[0026]
[Table 4]
Figure 0004242671
[0027]
A rating of 7 or higher was evaluated as good, 4 to 6 were rated, and 3 or lower were evaluated as bad.
In addition, cream AE respond | corresponds to 1-5 of the composition for drinks shown in Comparative Examples 1-5. In addition, the occurrence of a ring referred to here is a white cream-like substance that occurs at the gas-liquid interface during beverage storage. Emulsification failure refers to the fact that emulsification breaks and oils and fats are separated during storage. Precipitation occurs during storage. The solid matter such as protein settles to the bottom and the generation of white suspended matter indicates the generation of a white solid that is not dispersed in the liquid.
[0028]
As is clear from Table 4, the beverages using the creams prepared in the comparative examples generated ring, emulsion breakage, precipitation, etc. at any temperature range, resulting in significantly inferior quality. .
[0029]
【The invention's effect】
The present invention can provide a stable beverage composition by adding an emulsifier and sodium caseinate when processing fresh cheese, and by using the prepared beverage composition when making a beverage. It is an object of the present invention to provide a stable beverage production method capable of preventing quality deterioration such as ring generation, emulsion breakage, and precipitation.

Claims (4)

フレッシュチーズ、有機酸モノグリセリド、HLB11以上の乳化剤、カゼインナトリウム及び水を含有する飲料用組成物であって、フレッシュチーズの組成物中の配合量が20%〜50%である飲料用組成物。  Beverage composition containing fresh cheese, organic acid monoglyceride, emulsifier of HLB11 or more, sodium caseinate and water, and the blending amount in the composition of fresh cheese is 20% to 50%. 平均粒径1μm以下である請求項1記載の飲料用組成物。  The beverage composition according to claim 1, having an average particle size of 1 µm or less. 請求項1または2記載の飲料用組成物を含有する飲料。  A beverage containing the beverage composition according to claim 1. 請求項1または2記載の飲料用組成物を添加する工程を有する飲料の製造方法。  The manufacturing method of the drink which has the process of adding the composition for drinks of Claim 1 or 2.
JP2003058146A 2003-03-05 2003-03-05 Beverage composition Expired - Fee Related JP4242671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058146A JP4242671B2 (en) 2003-03-05 2003-03-05 Beverage composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058146A JP4242671B2 (en) 2003-03-05 2003-03-05 Beverage composition

Publications (2)

Publication Number Publication Date
JP2004267013A JP2004267013A (en) 2004-09-30
JP4242671B2 true JP4242671B2 (en) 2009-03-25

Family

ID=33121326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058146A Expired - Fee Related JP4242671B2 (en) 2003-03-05 2003-03-05 Beverage composition

Country Status (1)

Country Link
JP (1) JP4242671B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006248B2 (en) * 2008-04-23 2012-08-22 太陽化学株式会社 Coffee drink with milk ingredients
JP5904700B2 (en) * 2009-07-31 2016-04-20 三菱化学フーズ株式会社 Emulsified composition for food and drink
CN107822150A (en) * 2009-11-30 2018-03-23 株式会社明治 The alimentation composition beneficial to small intestine
CN101773161B (en) * 2010-02-11 2013-04-03 全球食品贸易(上海)有限公司 Fluid milk composite
CN101785501B (en) * 2010-02-11 2013-02-13 全球食品贸易(上海)有限公司 Preparation method of liquid milk composite
JP5710893B2 (en) * 2010-05-13 2015-04-30 太陽化学株式会社 Method for producing cheese emulsion, cheese emulsion, and milk-containing beverage using the same
JP5189195B2 (en) * 2011-09-06 2013-04-24 キリンビバレッジ株式会社 Milk-containing coffee
CN102919377B (en) * 2012-10-19 2014-07-02 菏泽大树生物工程科技有限公司 Cheese type non-dairy creamer and preparation method thereof
CN108175020A (en) * 2013-03-21 2018-06-19 三菱化学食品株式会社 Diet usable emulsification composition, the manufacturing method of diet usable emulsification composition, diet product and milk beverage
CN103283927A (en) * 2013-04-23 2013-09-11 张冬娟 Honey peach pineapple fermented milk shake and preparation method thereof
CN103283922A (en) * 2013-04-23 2013-09-11 张冬娟 Grapefruit mulberry fermented milk shake and preparation method thereof
CN112841323A (en) 2013-09-13 2021-05-28 三菱化学食品株式会社 Milk beverage and method for producing same
WO2016031953A1 (en) * 2014-08-29 2016-03-03 株式会社明治 Cheese sauce and method for producing same
JP6961339B2 (en) * 2015-12-18 2021-11-05 アサヒ飲料株式会社 Beverage containing microbial cells

Also Published As

Publication number Publication date
JP2004267013A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4242671B2 (en) Beverage composition
JP2014511708A (en) Creamer and manufacturing method thereof
JP2019509028A (en) Nut-based liquid creamer and method for producing the same
JP2016514469A (en) Liquid creamer composition containing oleosomes as an alternative to oil and method of making the same
JP7256800B2 (en) Creamer with improved texture/mouthfeel and method of making same
EP3316694B1 (en) Creamers with improved texture/mouthfeel and method of making thereof
JP2015512268A (en) Creamer composition comprising protein, low molecular weight emulsifier and hydroxypropyl starch
JP2008212107A (en) Oil-in-water emulsified product containing butter and butter-containing beverage
JP2019517798A (en) Coconut-based liquid coffee creamer and method of making same
JP6593380B2 (en) Emulsified composition for food and drink
JP2007159573A (en) Emulsion stabilizer for milk-containing beverage
JP2009118821A (en) Stabilizing composition for milk-containing beverage
JP2003325147A (en) Coconut milk-containing food and drink and method for producing the same
JP2008220177A (en) Baked confectionery
JP2007166917A (en) Method for stabilizing milk-containing beverage
JP4795180B2 (en) Dairy beverage having a new texture and method for producing the same
JP4210644B2 (en) Soy milk-containing coffee whitener
KR20180107103A (en) How to make creamer
WO2017078114A1 (en) Milk beverage and method for production of same
JP6337039B2 (en) Food and production method thereof
JP4347660B2 (en) Oil-in-water emulsified oil and fat composition
JP7385998B2 (en) Liquid beverage and its manufacturing method
JP2017201927A (en) Edible foaming cream and edible whipped cream
EP3879990B1 (en) Liquid creamer
JP6849646B2 (en) Beverage white turbidity enhancer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4242671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees