JP4241328B2 - Air pressure barometric altimeter and its error correction method - Google Patents

Air pressure barometric altimeter and its error correction method Download PDF

Info

Publication number
JP4241328B2
JP4241328B2 JP2003381932A JP2003381932A JP4241328B2 JP 4241328 B2 JP4241328 B2 JP 4241328B2 JP 2003381932 A JP2003381932 A JP 2003381932A JP 2003381932 A JP2003381932 A JP 2003381932A JP 4241328 B2 JP4241328 B2 JP 4241328B2
Authority
JP
Japan
Prior art keywords
pressure
static pressure
altitude
flying object
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003381932A
Other languages
Japanese (ja)
Other versions
JP2005147726A (en
Inventor
守昭 金田
白史 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2003381932A priority Critical patent/JP4241328B2/en
Publication of JP2005147726A publication Critical patent/JP2005147726A/en
Application granted granted Critical
Publication of JP4241328B2 publication Critical patent/JP4241328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、飛翔体の高度を検知する飛翔体用気圧高度計とその誤差補正方法に関する。   The present invention relates to an air pressure altimeter for detecting the altitude of a flying object and an error correction method thereof.

ロケット弾等の飛翔体の高度を検知するためのセンサには電波高度計やGPS等があるが、これらは一般的に高価である。これに対して、気圧センサを用いた高度計(以下、気圧高度計と呼ぶ)は、低コスト化が可能である特徴がある。
気圧高度計は、ロケット弾等の飛翔体の発射前に取得した発射点の気圧(基準気圧)と目標とする高度差に対応する気圧差を、機体表面に設けた静圧孔を通して気圧センサにより検知するものである。
Sensors for detecting the altitude of flying objects such as rockets include radio wave altimeters and GPS, but these are generally expensive. On the other hand, an altimeter using a barometric sensor (hereinafter referred to as a barometric altimeter) is characterized in that it can be reduced in cost.
The barometric altimeter detects the atmospheric pressure difference corresponding to the target altitude difference from the atmospheric pressure at the launch point (reference atmospheric pressure) acquired before the launch of a flying object such as a rocket bullet and the atmospheric pressure sensor through the static pressure hole provided on the aircraft surface. To do.

なお、ロケット弾等の飛翔体の一例として、特許文献1が開示されている。また、空気圧を利用した高度計の試験装置として、特許文献2が開示されている。さらに、航空機の気圧高度計を更正する手段が、特許文献3および非特許文献1に開示されている。   Patent Document 1 is disclosed as an example of a flying object such as a rocket bullet. Further, Patent Literature 2 is disclosed as an altimeter test device using air pressure. Further, Patent Document 3 and Non-Patent Document 1 disclose means for correcting an air pressure altimeter of an aircraft.

特許文献1の「飛しょう体」は、航空機から前方又は後方の目標体に向けて発射される飛しょう体において、全方位に対処可能で、また後方の目標体を攻撃する際に目標体が遠くにある場合でも、飛しょう体が会合時に大きな旋回荷重倍数を得ることができることを目的とし、図9に示すように、発射筒52の胴体57の後方に設けられ、発射筒が母機から分離した後に滑空して発射筒の高度を上昇させる操舵翼59と、発射筒の胴体の所定部に設けられ発射筒の高度を推定する高度推定手段51と、発射筒の胴体後端部に設けられ発射筒が所定の高度に到達したときに発射筒の高度の低下を抑制させる高度低下抑制手段56とを備えたものである。なお、特許文献1の実施形態において、高度推定手段51は胴体57の側面に設けられた大気圧計であり、高度低下抑制手段56はパラシュートである。   The “flying object” of Patent Document 1 is capable of dealing with all directions in a flying object that is launched from an aircraft toward a forward or backward target object, and the target object is used when attacking a backward target object. The flying object is provided behind the fuselage 57 of the launch tube 52 as shown in FIG. 9 so that the flying body can obtain a large turning load multiple at the time of meeting even when it is far away. The steering wing 59 that glides and raises the altitude of the launcher, the altitude estimation means 51 for estimating the altitude of the launcher provided at a predetermined portion of the launcher, and the rear end of the launcher It is provided with altitude reduction suppression means 56 that suppresses a reduction in altitude of the launcher when the launcher reaches a predetermined altitude. In the embodiment of Patent Document 1, the altitude estimating means 51 is a barometer provided on the side surface of the body 57, and the altitude reduction suppressing means 56 is a parachute.

特許文献2の「高度・速度試験器」は、空気圧を利用した高度計および速度計の試験を、地上において設定値に相当する空気圧を精度よく発生させて行うものである。   The “altitude / speed tester” of Patent Document 2 performs an altimeter and speedometer test using air pressure by accurately generating air pressure corresponding to a set value on the ground.

特許文献3の「位置誤差較正装置及び方法」は、航空機の気圧高度計及び対気速度計の位置誤差較正に必要な真対気速度、ならびに試験飛行実施時の試験実施高度における風向、風速を、試験飛行を行う飛行機の機上にて計測して、計器の較正のために入力し記録することを目的とし、図10に示すように、姿勢角計62からの機首方位、対地速度および対気速度から真対気速度、風向、風速を算出する演算部66と、演算部からの出力値を記録する記録計68と、機首方位および演算部からの出力値で機首方位を指示し保持する姿勢指示装置および姿勢保持装置67と、対気速度と演算部からの出力値で対気速度を指示し保持する速度指示装置および速度保持装置63と、気圧高度と演算部からの出力値で気圧高度を指示し保持する気圧高度指示装置および気圧高度保持装置64と、対値高度および気圧高度保持装置からの出力値で高度を保持する高度保持装置65とからなるものである。なお、特許文献3の実施形態において、気圧高度計61は、静圧ポート60の出力から高度を演算するようになっている。   Patent Document 3 “Position Error Calibration Apparatus and Method” describes the true air speed necessary for position error calibration of an air pressure altimeter and an air speed meter, and the wind direction and wind speed at the test execution altitude at the time of test flight. The purpose is to measure on the plane of the airplane performing the test flight, and input and record it for calibration of the instrument. As shown in FIG. 10, the heading from the attitude angle meter 62, the ground speed, and the A calculation unit 66 for calculating the true airspeed, wind direction, and wind speed from the air speed, a recorder 68 for recording the output value from the calculation unit, and the heading and instructing the heading with the output value from the calculation unit The attitude indicating device and attitude holding device 67 to be held, the speed indicating device and speed holding device 63 for instructing and holding the airspeed by the airspeed and the output value from the calculating unit, and the pressure altitude and the output value from the calculating unit Indicating and maintaining the atmospheric pressure altitude with A pointing device and a pressure altitude holding device 64, is made of high holding device 65 for holding the high output value from the relative value highly and barometric altitude holding device. In the embodiment of Patent Document 3, the barometric altimeter 61 calculates the altitude from the output of the static pressure port 60.

非特許文献1のロケット弾は、図11に示すように、飛翔中の流速の影響で、静圧(気圧)が正しく計測できずに高度誤差が非常に大きくなるのを回避するため、時限方式で一旦ペイロードを分離し、落下傘で減速させた後に気圧高度計で高度計測を行うことによって、流速の影響を減らして、静圧誤差を小さくしている。   As shown in FIG. 11, the rocket bullet of Non-Patent Document 1 is a timed method in order to avoid the fact that the static pressure (atmospheric pressure) cannot be measured correctly and the altitude error becomes very large due to the influence of the flow velocity during flight. By separating the payload once and decelerating with a parachute, the altitude is measured with a barometric altimeter, thereby reducing the influence of the flow velocity and reducing the static pressure error.

特開2003−156300号公報、「飛しょう体」JP 2003-156300 A, “Flying object” 特開平5−87832号公報、「高度・速度試験器」Japanese Patent Laid-Open No. 5-87832 “Altitude / Speed Tester” 特開2001−91295号公報、「位置誤差較正装置及び方法」JP 2001-91295 A, “Position error calibration apparatus and method”

Catalog of "PW216,130mm Advanced RF Distraction Decoy Round",Chemring Countermeasures, EnglandCatalog of "PW216, 130mm Advanced RF Distribution Decay Round", Chemring Countermeasures, England

上述したように従来の気圧高度計は、発射点の気圧(基準気圧)と目標とする高度差に対応する気圧差を、機体表面に設けた静圧孔を通して気圧センサにより検知するものであるが、飛翔中の流速により発生する静圧(気圧)との圧力差(静圧誤差)の影響が大きい問題点があった。   As described above, the conventional barometric altimeter detects a barometric pressure difference corresponding to a target altitude difference from a barometric pressure at the launch point (reference barometric pressure) by a barometric pressure sensor through a static pressure hole provided on the surface of the aircraft. There is a problem that the influence of the pressure difference (static pressure error) from the static pressure (atmospheric pressure) generated by the flow velocity during flight is large.

そのため、大型の航空機等では、この影響の小さい静圧孔位置を風洞試験や飛行試験等により綿密に選定していると共に、他のセンサ類からの機体姿勢や速度等の情報に基づいてエアデータコンピュータ(ADC)で補正を行っているが、外形形状が限定された小型なロケット弾等の飛翔体の場合、静圧孔位置の選定に制約があり、かつ姿勢情報等、圧力誤差を補正する為のセンサ類の適用は、安価なロケット弾においてはコスト的に現実的でない問題点があった。   For this reason, in large aircraft, etc., the static pressure hole position where this effect is small is carefully selected by wind tunnel tests, flight tests, etc., and air data is based on information such as aircraft attitude and speed from other sensors. Although correction is performed by a computer (ADC), in the case of a small flying object such as a small rocket with a limited outer shape, there are restrictions on the selection of static pressure hole positions, and pressure errors such as attitude information are corrected. The application of sensors for this purpose has a problem that is not practical in terms of cost for inexpensive rockets.

また、非特許文献1のように、分離装置や落下傘などの減速装置を用いて減速する場合、機構が複雑化し、高コスト化するとともに、減速のためタイムラグ(作動遅れ)が大きくなる問題点がある。   Further, as in Non-Patent Document 1, when using a speed reducer such as a separation device or a parachute, the mechanism becomes complicated and the cost increases, and the time lag (operation delay) increases due to the speed reduction. is there.

本発明は、上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、機体姿勢や速度等の情報を用いることなく、かつ減速装置を用いて減速することなく、圧力計測のみで飛翔体の高度を正確に検知することができる飛翔体用気圧高度計とその誤差補正方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to detect a flying object's altitude accurately by only pressure measurement without using information such as airframe attitude and speed and without using a speed reducer. It is to provide an altimeter and its error correction method.

本発明によれば、飛翔方向を中心軸とする円筒形外表面を有する飛翔体の高度を検知する飛翔体用気圧高度計であって、
前記円筒形外表面の飛翔方向先端から等しい位置に設けられた複数の静圧孔と、該複数の静圧孔の平均静圧を検出する平均静圧検出器と、飛翔方向先端部に設けられた総圧孔を通して総圧を検出する総圧検出器と、検出された平均静圧と総圧から飛翔中の平均静圧を補正し高度を演算する高度演算装置とを備えた、ことを特徴とする飛翔体用気圧高度計が提供される。
According to the present invention, a flying object pressure altimeter for detecting the height of a flying object having a cylindrical outer surface with a flying direction as a central axis,
A plurality of static pressure holes provided at equal positions from the flying direction tip of the cylindrical outer surface, an average static pressure detector for detecting an average static pressure of the plurality of static pressure holes, and provided at the tip of the flying direction. A total pressure detector that detects the total pressure through the total pressure hole, and an altitude calculation device that calculates the altitude by correcting the average static pressure during flight from the detected average static pressure and total pressure. A flying air pressure altimeter is provided.

また、本発明によれば、飛翔方向を中心軸とする円筒形外表面を有する飛翔体の飛翔方向先端から等しい位置の円筒形外表面に複数の静圧孔を設け、該複数の静圧孔の平均静圧Pを検出し、同時に飛翔方向先端部に作用する総圧P1を検出し、検出された平均静圧と総圧から飛翔中の平均静圧を補正し高度を演算する、ことを特徴とする飛翔体用気圧高度計の誤差補正方法が提供される。   Further, according to the present invention, a plurality of static pressure holes are provided on the cylindrical outer surface at the same position from the front end in the flight direction of the flying object having a cylindrical outer surface with the flight direction as the central axis, and the plurality of static pressure holes Detecting the average static pressure P of the flight, and simultaneously detecting the total pressure P1 acting on the tip in the flight direction, correcting the average static pressure during the flight from the detected average static pressure and the total pressure, and calculating the altitude. A characteristic error correction method for a flying object barometric altimeter is provided.

上述した本発明の装置および方法によれば、複数の静圧孔が円筒形外表面の飛翔方向先端から等しい位置に設けられているので、迎角が変動する場合でも静圧孔の位置(位相)の影響を大幅に低減した平均静圧を検出することができる。
従って高度演算装置で検出された平均静圧と総圧から飛翔中の平均静圧を補正することによって、流速の影響によって発生する高度誤差要因を大幅に低減でき、分離機構や減速機構なしに、通常の飛翔中に高度を正確に検知することができる。
According to the above-described apparatus and method of the present invention, since the plurality of static pressure holes are provided at the same position from the front end of the cylindrical outer surface in the flight direction, the position (phase) of the static pressure holes is varied even when the angle of attack varies. ) Can be detected.
Therefore, by correcting the average static pressure during flight from the average static pressure and total pressure detected by the altitude calculation device, the altitude error factor generated by the influence of the flow velocity can be greatly reduced, without a separation mechanism or deceleration mechanism, Altitude can be accurately detected during normal flight.

本発明の好ましい実施形態によれば、前記複数の静圧孔は、圧力係数Cpの迎角による変動が小さく、かつ飛翔による流速方向と円筒形外表面の中心軸が一致するときに圧力係数Cpがゼロまたはゼロに近い値となる位置に設けられる。   According to a preferred embodiment of the present invention, the plurality of static pressure holes have a small variation due to the angle of attack of the pressure coefficient Cp, and the pressure coefficient Cp when the flow velocity direction due to flight coincides with the central axis of the cylindrical outer surface. Is provided at a position where the value becomes zero or a value close to zero.

この構成により、飛翔による流速方向と円筒形外表面の中心軸が一致するときに圧力係数Cpがほぼゼロであり、迎角による変動も小さいため、飛翔方向に対する迎角が変動する場合でも静圧孔の位置(位相)の影響を大幅に低減しかつ圧力係数Cpをゼロに近い値に保持して平均静圧を検出することができる。   With this configuration, the pressure coefficient Cp is almost zero when the flow velocity direction due to flight coincides with the central axis of the cylindrical outer surface, and the variation due to the angle of attack is small. Therefore, even when the angle of attack with respect to the flight direction varies, the static pressure The average static pressure can be detected while greatly reducing the influence of the hole position (phase) and maintaining the pressure coefficient Cp at a value close to zero.

前記飛翔体は、細長い円筒形の胴部とその末端に尾翼を有するロケット又はロケット弾であり、前記複数の静圧孔は、先端と末端の尾翼から十分離れて圧力係数Cpがゼロに近くなる位置に、中心軸に直交する平面内でかつ中心軸まわりに等しい位相角で、6以上設ける。   The flying object is a rocket or a rocket bullet having an elongated cylindrical body and a tail at its end, and the plurality of static pressure holes are sufficiently separated from the tail and the tail at the end and the pressure coefficient Cp is close to zero. Six or more positions are provided at the same phase angle in the plane perpendicular to the central axis and around the central axis.

この構成により、迎角が変動する場合でも、動圧の影響を低減し圧力係数Cpをゼロに近い値に保持することができる。   With this configuration, even when the angle of attack varies, the influence of dynamic pressure can be reduced and the pressure coefficient Cp can be maintained at a value close to zero.

前記平均静圧Pと総圧P1から飛翔中の動圧推定値q0を総圧P1とPとの差圧q0=P1−Pとして求め、各静圧孔位置での圧力係数の平均値Cp'を風洞試験やCFD解析等であらかじめ設定し、下記の(式1)で平均静圧Pを補正して、高度計算用の静圧P'を算出する、
静圧補正値P'=P−Cp'×q0・・・(式1)
ことが好ましい。
An estimated dynamic pressure value q0 during flight is calculated from the average static pressure P and the total pressure P1 as a differential pressure q0 = P1-P between the total pressures P1 and P, and an average value Cp ′ of pressure coefficients at each static pressure hole position. Is set in advance by a wind tunnel test, CFD analysis, etc., and the static pressure P ′ for altitude calculation is calculated by correcting the average static pressure P by the following (Equation 1).
Static pressure correction value P ′ = P−Cp ′ × q0 (Expression 1)
It is preferable.

この補正方法により、高度誤差検出精度が大幅に向上することが、後述する実施例により確認された。   It was confirmed by an example described later that the altitude error detection accuracy is greatly improved by this correction method.

上述したように、本発明の飛翔体用気圧高度計とその誤差補正方法は、機体姿勢や速度等の情報を用いることなく、かつ減速装置を用いて減速することなく、圧力計測のみで飛翔体の高度を正確に検知することができる、等の優れた効果を有する。   As described above, the air pressure altimeter and its error correction method of the present invention can be used only for pressure measurement without using information such as the attitude and speed of the airframe and without decelerating using the speed reducer. It has excellent effects such as being able to accurately detect altitude.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の飛翔体用気圧高度計を備えた飛翔体の構成図である。この図において、(A)は飛翔体の側面図、(B)は飛翔体の後方から見た端面図である。この例において、飛翔体1は、細長い円筒形の胴部2とその末端に尾翼3を有するロケット又はロケット弾であるが、本発明はこれに限定されず、航空機を含むすべての飛翔体にも適用することができる。   FIG. 1 is a configuration diagram of a flying object equipped with a flying object barometric altimeter according to the present invention. In this figure, (A) is a side view of the flying object, and (B) is an end view as seen from the rear of the flying object. In this example, the flying object 1 is a rocket or a rocket having an elongated cylindrical body 2 and a tail 3 at its end, but the present invention is not limited to this, and all flying objects including an aircraft are also included. Can be applied.

以下、本出願において、胴部2は先端(図で左端)が半球状であり、全体が一定の直径dを有する円筒形であり、その尾翼3を含む全長をLとする。さらに、胴部2の先端を原点とし、図に示すように、x-y-zの直交座標系と迎角α、位相角θを定義する。すなわちx軸は円筒形の中心軸であり、迎角αはx軸と飛翔により発生する流速方向とのなす角度、位相角θは上方を基準とするx軸まわりの角度である。   Hereinafter, in this application, the trunk | drum 2 is hemispherical at the front-end | tip (left end in a figure), the whole is a cylindrical shape which has the fixed diameter d, and makes the full length including the tail 3 be L. Further, with the tip of the body 2 as the origin, as shown in the figure, an xyz orthogonal coordinate system, an angle of attack α, and a phase angle θ are defined. That is, the x-axis is a cylindrical central axis, the angle of attack α is an angle formed by the x-axis and the flow velocity direction generated by flight, and the phase angle θ is an angle around the x-axis with respect to the upper side.

本発明の飛翔体用気圧高度計10は、上述した飛翔体1の高度を検知するものであり、図1に示すように、複数の静圧孔12、平均静圧検出器14、総圧検出器16、および高度演算装置18を備える。   The flying object barometric altimeter 10 of the present invention detects the altitude of the flying object 1 described above. As shown in FIG. 1, a plurality of static pressure holes 12, an average static pressure detector 14, a total pressure detector. 16 and an advanced arithmetic unit 18.

複数の静圧孔12は、飛翔体1の円筒形外表面2aの飛翔体先端から等しい位置に設けられている。この位置は、飛翔方向に対する迎角が変動する場合でも静圧孔の位置(位相)の影響を大幅に低減しかつ圧力係数Cpをゼロに近い値に保持して平均静圧を検出することができるように、圧力係数Cpの迎角による変動が小さく、かつ流速方向と円筒形外表面の中心軸が一致するときに圧力係数Cpがゼロまたはゼロに近い値となる位置に設けるのがよい。
また、複数の静圧孔12は、迎角が変動する場合でも、動圧の影響を低減し圧力係数Cpをゼロに近い値に保持することができるように、先端と末端の尾翼から十分離れて圧力係数Cpがゼロに近くなる位置に、中心軸に直交する平面内でかつ中心軸まわりに等しい位相角で、6以上設けるのがよい。
The plurality of static pressure holes 12 are provided at equal positions from the front end of the flying body of the cylindrical outer surface 2 a of the flying body 1. This position can significantly reduce the influence of the position (phase) of the static pressure hole even when the angle of attack with respect to the flight direction fluctuates, and can detect the average static pressure while maintaining the pressure coefficient Cp at a value close to zero. It is preferable that the pressure coefficient Cp is provided at a position where the fluctuation due to the angle of attack of the pressure coefficient Cp is small and the pressure coefficient Cp becomes zero or a value close to zero when the flow velocity direction coincides with the central axis of the cylindrical outer surface.
The plurality of static pressure holes 12 are sufficiently separated from the tip and tail tails so that the influence of dynamic pressure can be reduced and the pressure coefficient Cp can be maintained at a value close to zero even when the angle of attack varies. It is preferable to provide 6 or more at a position where the pressure coefficient Cp is close to zero, with a phase angle equal to the circumference of the central axis in a plane orthogonal to the central axis.

平均静圧検出器14は、例えば飛翔体1のx軸上に設けられた単一の圧力変換器であり、図示しない複数の導管を介して各静圧孔12と連通し、複数の静圧孔12の平均静圧を検出する。なお、単一の圧力変換器の代わりに各静圧孔12に各々圧力変換器を設け、その出力を平均化してもよい。検出した平均静圧Pはアナログまたはデジタルの電気信号として高度演算装置18に入力される。   The average static pressure detector 14 is, for example, a single pressure transducer provided on the x-axis of the flying object 1 and communicates with each static pressure hole 12 via a plurality of conduits (not shown). The average static pressure of the hole 12 is detected. Instead of a single pressure transducer, a pressure transducer may be provided in each static pressure hole 12, and the output may be averaged. The detected average static pressure P is input to the advanced arithmetic unit 18 as an analog or digital electrical signal.

総圧検出器16は、飛翔体1の飛翔方向先端部に設けられた圧力変換器であり、飛翔方向先端部に設けられた総圧孔を通して総圧P1を検出する。総圧検出器16は、単一でも複数でもよい。検出した総圧P1はアナログまたはデジタルの電気信号として高度演算装置18に入力される。   The total pressure detector 16 is a pressure transducer provided at the tip of the flying object 1 in the flight direction, and detects the total pressure P1 through a total pressure hole provided at the tip of the flying direction. The total pressure detector 16 may be single or plural. The detected total pressure P1 is input to the advanced arithmetic unit 18 as an analog or digital electrical signal.

高度演算装置18は、コンピュータ又はマイクロコンピュータであり、検出された平均静圧Pと総圧P1から飛翔中の平均静圧を補正し高度を演算する。
高度演算装置18による演算は、平均静圧Pと総圧P1から飛翔中の動圧推定値q0を総圧P1とPとの差圧q0=P1−Pとして求め、各静圧孔位置での圧力係数の平均値Cp'を風洞試験やCFD解析等であらかじめ設定し、下記の(式1)で平均静圧Pを補正して、高度計算用の静圧P'を算出する。
静圧補正値P'=P−Cp'×q0・・・(式1)
この補正方法により、高度誤差検出精度を大幅に向上することできる。
The altitude calculation device 18 is a computer or a microcomputer, and calculates the altitude by correcting the average static pressure during flight from the detected average static pressure P and the total pressure P1.
The calculation by the altitude calculation unit 18 obtains the estimated dynamic pressure q0 during flight from the average static pressure P and the total pressure P1 as a differential pressure q0 = P1-P between the total pressures P1 and P, and at each static pressure hole position. An average value Cp ′ of the pressure coefficient is set in advance by a wind tunnel test, CFD analysis, or the like, and the average static pressure P is corrected by the following (Equation 1) to calculate the static pressure P ′ for altitude calculation.
Static pressure correction value P ′ = P−Cp ′ × q0 (Expression 1)
By this correction method, the altitude error detection accuracy can be greatly improved.

以下、本発明の実施例を具体的に説明する。
1. 無誘導のロケット弾において、飛翔中のイベント(例えば、分離やペイロード放出等)のタイミングを決定する方式としては、一般的に時限方式が用いられている。高度検知方式は弾道飛翔するロケット弾においては射距離誤差が大きいため、その適用例はほとんどみられない。しかし射角変動などで高度ばらつきが大きくなる運用において、射距離誤差より所定の高度でのイベント作動を優先させたいニーズもあり、この場合には高度検知方式が有効である。
高度を検知するためのセンサには電波高度計やGPS等があるが、これらは一般的に高価である。気圧センサを用いた高度計は、飛翔速度や適用高度などの制約はあるものの低コスト化が可能であり、ロケット弾に安価に高度検知方式を適用することができる。
気圧センサを用いた高度検知方式として、発射前に取得する発射点の気圧(基準気圧)と目標とする高度差に対応する気圧差を、機体表面に設けた静圧孔を通して気圧センサにより検知することを考える。この際、気圧センサによる高度誤差の要因には、センサ単体のEN(温度特性、応答性等)、気象現象による気圧や空気密度変動等があるが、ロケット弾に適用する場合に最も問題になるのが、飛翔中の流速により発生する静圧(気圧)との圧力差(静圧誤差)の影響である。
大型の航空機等では、この影響の小さい静圧孔位置を風洞試験や飛翔試験等により綿密に選定していると共に、他のセンサ類からの機体姿勢や速度等の情報に基づいてエアデータコンピュータ(ADC)で補正を行っている。
外形形状が限定された小型なロケット弾の場合、静圧孔位置を選定するには制約がある。また姿勢情報等、圧力誤差を補正するためのセンサ類の適用は、安価なロケット弾においてはコスト的に現実的でない。
本発明では、この静圧誤差による高度誤差を低減する方法について、具体的なロケット弾への適用例で示す。
Examples of the present invention will be specifically described below.
1. In a non-guided rocket, a timed method is generally used as a method for determining the timing of an event during flight (for example, separation, payload release, etc.). The altitude detection method has little range error for rockets flying ballistically, so there are few examples of its application. However, there is a need to prioritize event operation at a predetermined altitude over range error in operations where the altitude variation increases due to variations in the angle of incidence, etc. In this case, the altitude detection method is effective.
Sensors for detecting altitude include a radio altimeter, GPS, and the like, but these are generally expensive. An altimeter using a barometric sensor is capable of reducing the cost, although there are restrictions on flight speed and applicable altitude, and an altitude detection method can be applied to rockets at low cost.
As an altitude detection method using an atmospheric pressure sensor, the atmospheric pressure sensor detects the atmospheric pressure difference corresponding to the target altitude difference from the atmospheric pressure (reference atmospheric pressure) of the launch point acquired before launching through the static pressure hole provided on the aircraft surface. Think about it. At this time, factors of altitude error due to the atmospheric pressure sensor include EN (temperature characteristics, responsiveness, etc.) of the sensor alone, fluctuations in atmospheric pressure and air density due to weather phenomena, etc., but it becomes the most problematic when applied to rockets. This is the influence of the pressure difference (static pressure error) from the static pressure (atmospheric pressure) generated by the flow velocity during flight.
For large aircraft, etc., the static pressure hole position with a small influence is selected carefully by wind tunnel tests, flight tests, etc., and an air data computer (based on information such as aircraft attitude and speed from other sensors) ADC).
In the case of a small rocket with a limited outer shape, there are restrictions on selecting the static pressure hole position. Also, the application of sensors for correcting pressure errors such as attitude information is not practical in terms of cost for inexpensive rockets.
In the present invention, a method for reducing the altitude error due to the static pressure error will be described as a specific application example to a rocket.

2. 気圧と標高の関係式及びロケット弾における静圧誤差
標準大気における気圧P(hPa)と標高H(m)の関係は(数1)の(3.1)式で与えられる。
2. Relation between atmospheric pressure and altitude and static pressure error in rocket bullet The relation between atmospheric pressure P (hPa) and altitude H (m) in the standard atmosphere is given by (3.1) in (Equation 1).

Figure 0004241328
Figure 0004241328

飛翔中のロケット弾の静圧誤差は、迎角や動圧及び静圧孔の設置位置(先端からの機軸方向距離及び位相角)によって変動し、(数2)の(3.2)式で表される。
The static pressure error of a flying rocket fluctuates depending on the angle of attack, dynamic pressure, and the installation position of the static pressure hole (axis direction distance and phase angle from the tip), and is expressed by (3.2) in (Equation 2). expressed.

Figure 0004241328
ここで、P:機体表面圧力、P∞:静圧、Cp(L1,θ,α):機体表面の圧力係数、L1:先端からの機軸方向距離、θ:位相角、α:迎角、q:動圧(=1/2・ρ・V2、ρ:空気密度、V:流速)である。
Figure 0004241328
Here, P: Aircraft surface pressure, P∞: Static pressure, Cp (L1, θ, α): Aircraft surface pressure coefficient, L1: Axial direction distance from tip, θ: Phase angle, α: Angle of attack, q : Dynamic pressure (= 1/2 · ρ · V 2 , ρ: air density, V: flow velocity).

3. 高度検知方式の適用対象とするロケット弾
本発明において、高度検知方式の適用対象とするロケット弾は、図1に示したものであり、図2はその飛翔シーケンス、図3は理想条件時の飛翔プロファイルである。
本発明において、気圧センサ(すなわち、圧力検出器14,16)を適用する際の制約条件として、外形寸法等の変更はできないものとした。また低コスト化のために、姿勢や速度等を検知する等の高価なセンサ類は適用しないものとした。
3. Rocket bullets to which the altitude detection method is applied In the present invention, the rocket ammunition to which the altitude detection method is applied is as shown in FIG. 1, FIG. 2 shows its flight sequence, and FIG. 3 shows the flight under ideal conditions. It is a profile.
In the present invention, it is assumed that the external dimensions and the like cannot be changed as a constraint when applying the atmospheric pressure sensor (that is, the pressure detectors 14 and 16). In order to reduce costs, expensive sensors such as detecting the posture and speed are not applied.

4. 静圧誤差による高度誤差の低減方法
上述したロケット弾に高度検知方式を適用した場合の、静圧誤差による高度誤差の低減方法を以下に示す。
4). Method for reducing altitude error due to static pressure error A method for reducing altitude error due to static pressure error when the altitude detection method is applied to the rocket bullets described above is shown below.

(1) ロケット弾の機体表面Cp分布の把握と適切な静圧孔位置の選定
ロケット弾の機体表面Cp分布をCFD解析により算出した結果を図4に示す。この図において、(a)は迎角α=5°の場合、(b)は迎角α=10°の場合である。
この図から、よどみ点(胴部2の先端)から流れが加速していく先端付近は、先端からの機軸方向距離や位相角θによる圧力変動が大きく、先端から離れるとともにCpの絶対値は小さくなり静圧に近づくが、尾翼付近になるとその影響で逆にCpの絶対値は大きくなることがわかる。
また、Cpの推定精度を向上するためには、静圧に近く、位相角や迎角による変動が小さい位置に静圧孔を設置する必要がある。従って静圧孔の設置位置はCpの絶対値がほぼ最小となるL1=0.6L付近を選定した。
(1) Grasp of rocket bullet surface Cp distribution and selection of appropriate static pressure hole position Fig. 4 shows the results of calculating the rocket bullet surface Cp distribution by CFD analysis. In this figure, (a) shows the case where the angle of attack α = 5 °, and (b) shows the case where the angle of attack α = 10 °.
From this figure, in the vicinity of the tip where the flow accelerates from the stagnation point (tip of the body portion 2), the pressure fluctuation due to the axial direction distance and the phase angle θ from the tip is large, and the absolute value of Cp decreases as the distance from the tip increases. Although it approaches the static pressure, it can be seen that the absolute value of Cp increases conversely due to the effect near the tail.
Further, in order to improve the estimation accuracy of Cp, it is necessary to install a static pressure hole at a position that is close to the static pressure and has a small fluctuation due to the phase angle and the angle of attack. Therefore, the installation position of the static pressure hole is selected in the vicinity of L1 = 0.6 L where the absolute value of Cp is almost minimum.

(2) 複数位相の平均化による圧力ばらつきの低減と静圧孔位置のCpの推定
選定したL1=0.6Lの位置に静圧孔を設けて、風洞試験により各位相角毎のCp計測を行った結果及び対応するCFD解析結果を図5に示す。なおCFD解析と風洞試験結果はほぼ一致していた。
この図から迎角が大きい場合、位相角によってCpは大きくばらつくことがわかる。そのためロールフリーのロケット弾の場合、飛翔中の位相角は変動し特定できないため、Cpの推定精度を高くするためには、このばらつきを抑える必要がある。
(2) Reduction of pressure variation by averaging of multiple phases and estimation of Cp of static pressure hole position Static pressure holes are provided at the selected position of L1 = 0.6L, and Cp measurement for each phase angle is performed by a wind tunnel test. The results and the corresponding CFD analysis results are shown in FIG. Note that the CFD analysis and the wind tunnel test results almost coincided.
From this figure, it can be seen that when the angle of attack is large, Cp varies greatly depending on the phase angle. Therefore, in the case of a roll-free rocket, the phase angle during flight fluctuates and cannot be specified. Therefore, in order to increase the Cp estimation accuracy, it is necessary to suppress this variation.

図6に複数位相に等間隔に静圧孔を設けて圧力の平均値をとった場合のその平均数(静圧孔数)と位相によるCpのばらつき幅(半幅)及び相当する高度誤差(理想条件時の飛翔高度200m地点での値)の関係を示す。圧力平均をとらない場合、迎角10°でCpのばらつきは±約0.06(高度誤差で±約40mに相当)であるが、6位相以上の平均をとると±0.002以下(高度誤差で±1m以下に相当)に抑えることができることがわかった。
本発明では8位相に静圧孔を設けて平均をとることとした。この時の迎角に対するCp及び位相によるばらつき(上限及び下限値)を図7に示す。図5に示した平均前に比べ、位相角及び迎角によるCp変動を小さく抑えていることが分かる。
In FIG. 6, when the static pressure holes are provided at equal intervals in a plurality of phases and the average value of the pressure is taken (average number of static pressure holes), the variation width (half width) of Cp depending on the phase, and the corresponding altitude error (ideal (Value at a flight altitude of 200 m at the time). When the pressure average is not taken, the Cp variation is ± 0.06 (corresponding to an altitude error of ± 40 m) at an angle of attack of 10 °, but when taking an average of 6 phases or more, it is ± 0.002 or less (altitude It was found that the error can be suppressed to ± 1 m or less.
In the present invention, static pressure holes are provided in 8 phases and averaged. The variation (upper limit and lower limit value) due to Cp and phase with respect to the angle of attack at this time is shown in FIG. It can be seen that the Cp fluctuation due to the phase angle and the angle of attack is suppressed smaller than before the averaging shown in FIG.

(3) 動圧の推定と静圧誤差の補正
静圧誤差による高度誤差を低減するためには、飛翔中の静圧孔位置のCp及び動圧から静圧誤差を推定して、飛翔中に静圧孔から気圧センサに入力される圧力を補正すれば良い。 飛翔中の動圧は、機体先端に設置した圧力孔を通して得られる総圧と8位相の平均圧力との差分をとることによって推定できる。この動圧推定値は、迎角に応じて誤差が大きくなるが、その誤差はCpの変動に比べ充分小さく、補正上は問題ないといえる。
この動圧推定値と8位相のCp平均値を用いて、静圧孔から気圧センサに入力される各時刻毎の8位相の平均圧力に対して(数3)の(3.3)式に示す補正を行うことにより、高度誤差の低減を図った。
(3) Estimation of dynamic pressure and correction of static pressure error In order to reduce the altitude error due to static pressure error, the static pressure error is estimated from Cp and dynamic pressure of the static pressure hole position during flight. What is necessary is just to correct | amend the pressure input into an atmospheric pressure sensor from a static pressure hole. The dynamic pressure during flight can be estimated by taking the difference between the total pressure obtained through the pressure hole installed at the tip of the aircraft and the average pressure of 8 phases. The error in the estimated dynamic pressure value increases according to the angle of attack, but the error is sufficiently smaller than the fluctuation of Cp, and it can be said that there is no problem in correction.
Using this estimated dynamic pressure value and the 8-phase Cp average value, the equation (3.3) in (Equation 3) is applied to the 8-phase average pressure input to the atmospheric pressure sensor from the static pressure hole. The altitude error was reduced by performing the correction shown.

Figure 0004241328
ここで、P8(t):飛翔中の各時刻tにおいて、静圧孔から気圧センサに入力される
8位相の平均圧力計測値、Cp0:迎角0°時のCpの8位相平均値、(静圧孔位置により一意に決まる補正用設定値)、q0(t):飛翔中の各時刻tにおける、機体先端圧力と8位相平均圧力P8(t)との差圧計測値である。
Figure 0004241328
Here, P 8 (t): an 8-phase average pressure measurement value input from the static pressure hole to the atmospheric pressure sensor at each time t during flight, Cp0: an 8-phase average value of Cp at an angle of attack of 0 °, (Correction set value uniquely determined by static pressure hole position), q0 (t): a differential pressure measurement value between the fuselage tip pressure and the 8-phase average pressure P 8 (t) at each time t during flight.

5. シミュレーションによる検証
飛翔中に気圧センサに入力される圧力のシミュレーションを行い、上述した補正方法による高度誤差の低減効果の検証を行った。以下の2つの飛翔条件について、シミュレーションによる高度誤差算出結果を図8に示す。なお、本シミュレーションでは、高度に対する気圧の関係は標準大気に従うものとし、気圧センサ単体の誤差はないものとした。
5. Verification by simulation The simulation of the pressure input to the atmospheric pressure sensor during flight was performed, and the effect of reducing the altitude error by the correction method described above was verified. FIG. 8 shows altitude error calculation results by simulation under the following two flight conditions. In this simulation, it is assumed that the relationship between the atmospheric pressure and the altitude follows the standard atmosphere, and there is no error in the atmospheric pressure sensor alone.

飛翔条件1:理想条件(射角45°、風速0m/s)の場合
飛翔条件2:高度誤差が大きくなる条件の1例(射角60°、追風20m/sとして発射時に大きな迎角を発生させ、かつ空力安定性を劣化させて迎角振動の減衰を小さくした場合)
Flying condition 1: In case of ideal condition (launch angle 45 °, wind speed 0m / s) Flying condition 2: An example of conditions in which altitude error becomes large (launch angle 60 °, tail wind 20m / s) And attenuating the attack angle vibration to reduce aerodynamic stability)

図7(a)では、目標検知高度差200mに対して、補正無しの場合高度誤差が18mであるのに対して、本発明の補正有りの場合、高度誤差が0.4mまで低減している。また、同様に、図7(b)では、目標検知高度差200mに対して、補正無しの場合高度誤差が19mであるのに対して、本発明の補正有りの場合、高度誤差が0.3mまで低減している。
従ってこの結果から2条件とも、本発明の補正を行うことにより高度誤差を大幅に低減できることが分かる。
In FIG. 7A, the altitude error is 18 m without correction for the target detection altitude difference of 200 m, whereas the altitude error is reduced to 0.4 m with correction according to the present invention. . Similarly, in FIG. 7B, the altitude error is 19 m without correction for the target detection altitude difference of 200 m, whereas the altitude error is 0.3 m with correction according to the present invention. It has been reduced to.
Therefore, it can be seen from these results that the altitude error can be greatly reduced by performing the correction of the present invention under both conditions.

6.上述したように、本発明では、対象とするロケット弾に対して、以下の補正方法により静圧誤差による高度誤差を低減できることを示した。
(1) CFD解析や風洞試験による機体表面Cp分布の把握と適切な静圧孔位置の選定
(2) 複数位相の平均化による圧力ばらつきの低減と静圧孔位置のCpの推定
動圧の推定と静圧誤差の補正
またこれにより、機体姿勢や速度等の情報を用いることなく、かつ減速装置を用いて減速することなく、圧力計測のみで飛翔体の高度を正確に検知することができることが確認された。
6). As described above, the present invention has shown that the altitude error due to the static pressure error can be reduced by the following correction method for the target rocket.
(1) Grasping airframe surface Cp distribution by CFD analysis and wind tunnel test and selection of appropriate static pressure hole position (2) Reduction of pressure variation by averaging multiple phases and estimation of estimated dynamic pressure of Cp at static pressure hole position This makes it possible to accurately detect the altitude of the flying object only by pressure measurement without using information such as the attitude and speed of the aircraft and without decelerating using the reduction device. confirmed.

なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の飛翔体用気圧高度計を備えた飛翔体の構成図である。It is a block diagram of a flying object provided with the atmospheric pressure altimeter for flying objects of this invention. 適用対象とする飛翔体の飛翔シーケンスである。This is a flight sequence of a flying object to be applied. 適用対象とする飛翔体の理想条件時の飛翔プロファイルである。It is a flight profile at the ideal condition of the flying object to be applied. 適用対象とする飛翔体の機体表面Cp分布をCFD解析により算出した結果である。It is the result of having calculated the airframe surface Cp distribution of the flying object made into an application object by CFD analysis. 各位相角毎の迎角によるCp変化のCFD解析結果である。It is a CFD analysis result of Cp change by the angle of attack for each phase angle. 圧力平均数とCpのばらつきの関係図である。It is a relationship diagram of the pressure average number and the dispersion | variation in Cp. 各迎角に対するCpの8位相平均値を示す図である。It is a figure which shows the 8-phase average value of Cp with respect to each angle of attack. シミュレーションによる高度誤差算出結果を示す図である。It is a figure which shows the height error calculation result by simulation. 特許文献1の「飛しょう体」の模式図である。2 is a schematic diagram of a “flying object” of Patent Document 1. FIG. 特許文献3の「位置誤差較正装置及び方法」の模式図である。10 is a schematic diagram of “Position error calibration apparatus and method” in Patent Document 3. FIG. 非特許文献1のロケット弾の説明図である。It is explanatory drawing of the rocket bullet of a nonpatent literature 1.

符号の説明Explanation of symbols

1 飛翔体、2 胴部、2a 外表面、3 尾翼、
10 飛翔体用気圧高度計、12 静圧孔、14 平均静圧検出器、
16 総圧検出器、18 高度演算装置

1 flying body, 2 trunk, 2a outer surface, 3 tail wings,
10 Air pressure altimeter, 12 static pressure holes, 14 average static pressure detector,
16 Total pressure detector, 18 Advanced arithmetic unit

Claims (7)

飛翔方向を中心軸とする円筒形外表面を有する飛翔体の高度を検知する飛翔体用気圧高度計であって、
前記円筒形外表面の飛翔方向先端から等しい位置に設けられた複数の静圧孔と、該複数の静圧孔の平均静圧を検出する平均静圧検出器と、飛翔方向先端部に設けられた総圧孔を通して総圧を検出する総圧検出器と、検出された平均静圧と総圧から飛翔中の平均静圧を補正し高度を演算する高度演算装置とを備えた、ことを特徴とする飛翔体用気圧高度計。
A pressure altimeter for a flying object for detecting the height of a flying object having a cylindrical outer surface with a flying direction as a central axis,
A plurality of static pressure holes provided at equal positions from the flying direction tip of the cylindrical outer surface, an average static pressure detector for detecting an average static pressure of the plurality of static pressure holes, and provided at the tip of the flying direction. A total pressure detector that detects the total pressure through the total pressure hole, and an altitude calculation device that calculates the altitude by correcting the average static pressure during flight from the detected average static pressure and total pressure. Air pressure altimeter for flying objects.
前記複数の静圧孔は、圧力係数Cpの迎角による変動が小さく、かつ飛翔による流速方向と円筒形外表面の中心軸が一致するときに圧力係数Cpがゼロまたはゼロに近い値となる位置に設けられている、ことを特徴とする請求項1に記載の飛翔体用気圧高度計。 The plurality of static pressure holes have a small fluctuation due to the angle of attack of the pressure coefficient Cp, and the position where the pressure coefficient Cp becomes zero or a value close to zero when the flow velocity direction due to flight coincides with the central axis of the cylindrical outer surface. The air pressure altimeter for a flying object according to claim 1, wherein the air pressure altimeter is provided for the flying object. 前記飛翔体は、細長い円筒形の胴部とその末端に尾翼を有するロケット又はロケット弾であり、前記複数の静圧孔は、先端と末端の尾翼から十分離れて圧力係数Cpがゼロに近くなる位置に、中心軸に直交する平面内でかつ中心軸まわりに等しい位相角で、6以上設けられる、ことを特徴とする請求項1に記載の飛翔体用気圧高度計。 The flying object is a rocket or a rocket bullet having an elongated cylindrical body and a tail at its end, and the plurality of static pressure holes are sufficiently separated from the tail and the tail at the end and the pressure coefficient Cp is close to zero. The air pressure altimeter for a flying object according to claim 1, wherein six or more are provided at a position in a plane perpendicular to the central axis and at a phase angle equal to the central axis. 飛翔方向を中心軸とする円筒形外表面を有する飛翔体の飛翔方向先端から等しい位置の円筒形外表面に複数の静圧孔を設け、該複数の静圧孔の平均静圧Pを検出し、同時に飛翔方向先端部に作用する総圧P1を検出し、検出された平均静圧と総圧から飛翔中の平均静圧を補正し高度を演算する、ことを特徴とする飛翔体用気圧高度計の誤差補正方法。 A plurality of static pressure holes are provided on the cylindrical outer surface at the same position from the tip of the flying direction of the flying object having the cylindrical outer surface with the flight direction as the central axis, and the average static pressure P of the plurality of static pressure holes is detected. Simultaneously detecting the total pressure P1 acting on the tip in the flight direction, calculating the altitude by correcting the average static pressure during the flight from the detected average static pressure and total pressure, and calculating the altitude for the flying object Error correction method. 前記複数の静圧孔を、圧力係数Cpの迎角による変動が小さく、かつ飛翔による流速方向と円筒形外表面の中心軸が一致するときに圧力係数Cpがゼロまたはゼロに近い値となる位置に設ける、ことを特徴とする請求項4に記載の誤差補正方法。 A position where the variation of the pressure coefficient Cp due to the angle of attack is small and the pressure coefficient Cp becomes zero or a value close to zero when the flow velocity direction due to flight coincides with the central axis of the cylindrical outer surface. The error correction method according to claim 4, wherein the error correction method is provided. 前記飛翔体は、細長い円筒形の胴部とその末端に尾翼を有するロケット又はロケット弾であり、前記複数の静圧孔を、先端と末端の尾翼から十分離れて圧力係数Cpがゼロに近くなる位置に、中心軸に直交する平面内でかつ中心軸まわりに等しい位相角で、6以上設ける、ことを特徴とする請求項4に記載の誤差補正方法。 The flying object is a rocket or a rocket having an elongated cylindrical body and a tail at the end thereof, and the plurality of static pressure holes are sufficiently separated from the tail and the tail of the tip and the pressure coefficient Cp is close to zero. The error correction method according to claim 4, wherein six or more positions are provided at a position in a plane orthogonal to the central axis and at a phase angle equal to the central axis. 前記平均静圧Pと総圧P1から飛翔中の動圧推定値q0を総圧P1とPとの差圧q0=P1−Pとして求め、各静圧孔位置での圧力係数の平均値Cp'を風洞試験やCFD解析等であらかじめ設定し、下記の(式1)で平均静圧Pを補正して、高度計算用の静圧P'を算出する、
静圧補正値P'=P−Cp'×q0・・・(式1)
ことを特徴とする請求項4に記載の誤差補正方法。

An estimated dynamic pressure value q0 during flight is calculated from the average static pressure P and the total pressure P1 as a differential pressure q0 = P1-P between the total pressures P1 and P, and an average value Cp ′ of pressure coefficients at each static pressure hole position. Is set in advance by a wind tunnel test, CFD analysis, etc., and the static pressure P ′ for altitude calculation is calculated by correcting the average static pressure P by the following (Equation 1).
Static pressure correction value P ′ = P−Cp ′ × q0 (Expression 1)
The error correction method according to claim 4.

JP2003381932A 2003-11-12 2003-11-12 Air pressure barometric altimeter and its error correction method Expired - Fee Related JP4241328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381932A JP4241328B2 (en) 2003-11-12 2003-11-12 Air pressure barometric altimeter and its error correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381932A JP4241328B2 (en) 2003-11-12 2003-11-12 Air pressure barometric altimeter and its error correction method

Publications (2)

Publication Number Publication Date
JP2005147726A JP2005147726A (en) 2005-06-09
JP4241328B2 true JP4241328B2 (en) 2009-03-18

Family

ID=34691129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381932A Expired - Fee Related JP4241328B2 (en) 2003-11-12 2003-11-12 Air pressure barometric altimeter and its error correction method

Country Status (1)

Country Link
JP (1) JP4241328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165618A (en) * 2014-05-23 2014-11-26 湖北三江航天红峰控制有限公司 Apparatus for measuring height of aircraft, and method thereof
KR101475241B1 (en) * 2014-09-30 2014-12-30 국방과학연구소 Apparatus and method for estimating roll angle of dual spinning flying body
CN111797293B (en) * 2020-03-23 2024-03-29 深圳市豪恩声学股份有限公司 Data adjustment method, device, terminal equipment and storage medium
CN113465576B (en) * 2021-09-06 2021-11-19 中国商用飞机有限责任公司 Method and system for calculating barometric altitude based on GNSS altitude of aircraft

Also Published As

Publication number Publication date
JP2005147726A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US9933449B2 (en) Method and system of measurement of mach and dynamic pressure using internal sensors
JP4100515B2 (en) High-speed, wide-range flight speed vector measurement probe and measurement system
Cobleigh et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies
US20120298801A1 (en) Aircraft wing and sensor
US20010054311A1 (en) Method and apparatus for determining air flow and pressure data of an aircraft or aerodynamic vehicle
JPH05288761A (en) Detecting system of vector of flying speed using pitot-tube type probe of frustum of pyramid and pitot-tube type probe of frustum of pyramid
JP6926228B2 (en) Dynamic autopilot
JP4241328B2 (en) Air pressure barometric altimeter and its error correction method
US10746564B2 (en) Inertial sensor
KR101944596B1 (en) Method and Apparatus for compensating meterological data
Ganeev et al. Ion-marking aerodynamic angle and airspeed sensor with logometric informative signals and interpolation processing scheme
CA3061994A1 (en) Acoustic air data sensing systems with skin friction sensors
JPH07507144A (en) Aerodynamic pressure sensor system
WO2019082087A1 (en) A pitot tube that provides speed and altitude information for air vehicles
GB2491167A (en) Aircraft wing blister
WO2015008308A2 (en) System and process for measuring and evaluating air and inertial data
Trefny et al. Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft
KR101972130B1 (en) Appartus and method for determine air mass flow rate of supersonic intake
Albisser et al. Identifiability investigation of the aerodynamic coefficients from free flight tests
Jain et al. Calibration and accuracy determination of airdata system for a modern fighter aircraft
RU2214582C1 (en) Method establishing aerodynamic corrections to readings of pitot-static tubes
Saraf et al. Calibration and accuracy determination of airdata system for a modern fighter
Krylov et al. Analysis of Errors for Measuring Channels of Aircraft Air Data System with a Fixed Non-Protruding Flow Receiver
EP2527845A1 (en) Aircraft wing and sensor
CN111856074A (en) Combined type atmospheric data measurement experiment cabin section and flight data measurement method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees