JP4241165B2 - Dishwasher - Google Patents

Dishwasher Download PDF

Info

Publication number
JP4241165B2
JP4241165B2 JP2003118237A JP2003118237A JP4241165B2 JP 4241165 B2 JP4241165 B2 JP 4241165B2 JP 2003118237 A JP2003118237 A JP 2003118237A JP 2003118237 A JP2003118237 A JP 2003118237A JP 4241165 B2 JP4241165 B2 JP 4241165B2
Authority
JP
Japan
Prior art keywords
oxygen
cleaning
water
water level
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003118237A
Other languages
Japanese (ja)
Other versions
JP2004321375A (en
Inventor
浩章 乾
潤一 縄間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003118237A priority Critical patent/JP4241165B2/en
Publication of JP2004321375A publication Critical patent/JP2004321375A/en
Application granted granted Critical
Publication of JP4241165B2 publication Critical patent/JP4241165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Washing And Drying Of Tableware (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素を富化した洗浄水を利用する食器洗い乾燥機に関する。
【0002】
【従来の技術】
従来、この種の食器洗い乾燥機は、図9に示すような洗浄コースを有するものであった(例えば、特許文献1参照)。以下、その洗浄について説明する。
【0003】
図9に示すように、専用洗剤を投入せずに洗浄を行う食器洗い乾燥機において、本洗い工程の到達温度を40度、55度の二段階に変えて洗浄水を加温するという、水の機械力と熱エネルギによる洗浄力で食器等に付着した汚れを除去していた。
【0004】
【特許文献1】
特開2001−204676号公報
【0005】
【発明が解決しようとする課題】
しかしながら、図9に示すように、従来の食器洗い乾燥機で行う洗剤なしコースは、洗浄時間を長くして洗浄温度を数段階に変えて洗浄を行う本洗い工程、あるいは予洗い工程を追加して予め大きな汚れを除去するなどの運転を行っているが、洗剤を使用しないため、タンパク汚れ、油汚れ、タンパクと油の複合汚れなどに対して満足した洗浄性能を得られていないという課題があった。
【0006】
本発明は、前記従来の課題を解決するもので、タンパク汚れ等の主要な食器汚れに対しても満足した洗浄性能が得られる食器洗い乾燥機を提供することを目的とする。
【0007】
【課題を解決するための手段】
従来の課題を解決するために、本発明の食器洗い乾燥機は、洗浄水を貯水する洗浄槽と、洗浄水を加圧する洗浄ポンプと、空気より高い酸素濃度を有する酸素富化気体を洗浄水中に溶存させる酸素富化気体付加手段洗浄槽に貯水する洗浄水位をフロートによって検知する水位検知手段と、前記酸素富化気体付加手段と前記水位検知手段とを連通する水位検知側経路と、前記水位検知側経路の途中に第二の電磁開閉弁とを備え、最終すすぎ工程時に、前記第二の電磁開閉弁を開いて前記酸素富化気体付加手段により前記水位検知手段内の洗浄水中に酸素富化気体を溶存させるようにしたものである。
【0008】
これにより、水位検知手段内の洗浄水に溶け込んだ酸素の一部が酸化力の高い活性酸素となって洗浄水中に高濃度に溶存し、主要な食器汚れであるタンパク質等の酸化分解を促進させ、水位検知手段内壁へのタンパク質やデンプン等の汚れの付着を防止することができるとともに、最終すすぎ工程時に酸素富化気体を水位検知手段内の洗浄水中に溶存させるものであり、最終のすすぎ工程時は洗浄水中の汚れ成分がもっとも少ないため、発生し た活性酸素を水位検知手段内壁へ付着したタンパク質やデンプン等の汚れの除去に最大限作用させることができる。よって、水位検知手段の高い動作信頼性を得ることができる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、洗浄水を貯水する洗浄槽と、洗浄水を加圧する洗浄ポンプと、空気中より高い酸素濃度を有する酸素富化気体を洗浄水中に溶存させる酸素富化気体付加手段と、洗浄槽に貯水する洗浄水位をフロートによって検知する水位検知手段と、前記酸素富化気体付加手段と前記水位検知手段とを連通する水位検知側経路と、前記水位検知側経路の途中に第二の電磁開閉弁とを備え、最終すすぎ工程時に、前記第二の電磁開閉弁を開いて前記酸素富化気体付加手段により前記水位検知手段内の洗浄水中に酸素富化気体を溶存させるようにしたものであり、これにより、水位検知手段内の洗浄水に溶け込んだ酸素の一部が酸化力の高い活性酸素となって洗浄水中に高濃度に溶存し、主要な食器汚れであるタンパク質等の酸化分解を促進させ、洗浄ポンプ内等と異なり洗浄水の流れが緩やかで汚れが堆積しやすい水位検知手段内の内壁へのタンパク質やデンプン等の汚れの付着を防止することができるとともに、最終すすぎ工程時に酸素富化気体を水位検知手段内の洗浄水中に溶存させるものであり、最終すすぎ工程時は洗浄水中の汚れ成分がもっとも少ないため、発生した活性酸素を水位検知手段内壁へ付着したタンパク質やデンプン等の汚れの除去に最大限作用させることができる。よって、水位検知手段内壁とフロートとの間で汚れが堆積してフロートが固着して動作不良を起こすことなく、水位検知手段の高い動作信頼性を得ることができる。
【0010】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0011】
(実施例1)
図1に示すように、食器洗い乾燥機の本体20には、扉21で開閉可能な洗浄槽22を設け、食器等の被洗浄物23は食器かご24にセットされ、洗浄槽22内に収容している。26は給水弁25を介して供給された洗浄槽22の洗浄水を加圧する洗浄ポンプで、複数の噴射孔を設けた洗浄ノズル(洗浄手段)27に洗浄水を供給し、洗浄ノズル27より洗浄水を噴射する。洗浄ノズル27は、食器かご24の下方に設置されており、洗浄水を噴射する噴射口28を4〜10個程度備え、噴流によって軸まわりに回転しながらから食器に向けて洗浄水を噴射する。
【0012】
洗浄槽22の底部には、洗浄ポンプ26の吸い込み側へ連通した排水口29を有し、この排水口29には残さいを収集する残さいフィルタ30と加熱用の発熱体10を設け、洗浄槽22の温度を検知する温度センサ31を設けている。排水ポンプ32は洗浄槽22内の洗浄水を排出するものである。送風機33は、送風経路34を通して洗浄槽22に空気を送り、その排気を排気口35より排出するようにしている。水位検知手段36は、フロート式であり排水口29に連通しており、洗浄槽22に一定量の洗浄水が溜まると給水弁25が閉じるよう動作する。
【0013】
洗浄ポンプ26の吐出経路37には、洗浄水に高濃度の酸素を供給、溶存させるために酸素富化気体付加手段38を設置しており、この酸素富化気体付加手段38は、図2に示す構造をしている。高酸素濃度気体を貯蔵した酸素貯蔵タンク41は洗浄ポンプ26の吐出経路37に設けた溶存部39(以下、「噴出口」と称す)との間を第一の経路40(以下、「ポンプ側経路」と称す)で連通しており、その途中に第一の電磁開閉弁42と、洗浄ポンプ26から洗浄水の進入を防止する逆止弁43を設けている。
【0014】
また、同様に酸素貯蔵タンク41は水位検知装置36との間を水位装置側経路44で連通しており、その途中に第二の電磁開閉弁45を設けている。なお、水位検知装置36は大気に解放されており、酸素貯蔵タンク41側に洗浄水が逆流することがないので、特に逆止弁は設けていない。酸素富化気体付加手段38は、酸素貯蔵タンク41と第一の電磁開閉弁42と逆止弁43で構成する。
【0015】
図3は、食器洗い乾燥機の運転概念図であり、横軸に運転時間、縦軸に各工程の洗浄水温度を表示したものである。
【0016】
上記構成において、まず、食器洗い乾燥機の基本動作について説明する。食器等の被洗浄物23を食器かご24にセットして洗浄槽22に収納し、扉21により食器洗浄機の本体20の開口部を閉塞し、運転を開始する。被洗浄物23の大きな汚れを予め落とす予洗い工程と、その後に食器に残った汚れを落とす本洗い工程、付着した洗剤や残菜を流すすすぎ工程、そして被洗浄物23に付着している水適を乾燥させる乾燥工程の順に実行する。図3において予洗い工程は実線と波線とで表示させているが、実線は洗浄水を加熱して予洗いをする場合であり、油汚れの除去を促進させるのに有効な予洗方法である。
【0017】
また波線はヒータを入れずに予洗いする場合であり、野菜汚れや水溶性汚れなど、洗浄水の機械力のみで汚れが落ちる時に有効な予洗い方法である。特に、洗剤レスコースの場合、予め食器に付着した汚れを除去する予洗い工程は、後の本洗い工程での汚れ除去性能を高める効果的な工程である。
【0018】
予洗い工程終了後、給水弁25を動作して所定量の洗浄水を洗浄槽22に給水し、続いて洗浄ポンプ26により洗浄水を加圧し、洗浄ノズル27から洗浄水を噴射する。この際、洗浄槽22内に設けたシーズヒータ等の発熱体46に通電しており、洗浄水を加温しながら本洗い工程は行われる。また、温度センサ31は洗浄槽22の温度を検知しており、所定温度以上になると発熱体46への通電を停止する。
【0019】
洗浄水は、残さいフィルタ30を通過して洗浄ポンプ26に吸い込まれ、洗浄ポンプ26より洗浄槽22に設けた洗浄ノズル27に供給されて、洗浄槽22内に噴射され、被洗浄物23を洗浄した後、再び排水口29に戻るという経路で循環する。この際、被洗浄物23から脱落した残さい等は、洗浄水とともに残さいフィルタ30に流入し、残さいフィルタ30を通過できない大きさの残さいは残さいフィルタ30に捕集される。
【0020】
所定時間の本洗い工程を終えると、汚れを含む洗浄水は排水ポンプ32により機外に排出され、新たに洗浄水が供給される。洗浄ポンプ26を運転し、洗浄ノズル27から再び洗浄水を噴射して、洗剤や残菜等の付着した被洗浄物23のすすぎを行う。所定時間運転した後、洗浄水を排出し、再び洗浄水を供給するという動作を繰り返し、このすすぎ工程は連続して3回程度行う。そして、最終すすぎは洗浄水を約70℃まで加熱した高温すすぎを行い、最後に、洗浄水を機外に排出してすすぎ工程は終了する。
【0021】
続いて乾燥工程を行い、送風機33を動作させることにより、送風経路34を通って外気が洗浄槽22内に送風され、排気口35から排出される。この際、発熱体46には通電されており、送風と温度の両方の効果によって被洗浄物23に付着した水滴の蒸発は促進される。所定時間これらの乾燥工程を行い、運転を終了する。
【0022】
次に、本実施例の特徴的な構成である酸素富化気体付加手段38の動作、作用について説明する。図1および図2に示すように、本洗い工程が始まり、洗浄ポンプ26が起動すると、酸素貯蔵タンク41の開閉弁(図示せず)および第一の電磁開閉弁42が開き、高酸素濃度気体が噴出口39より吐出経路37に噴出する。発生した活性水素は汚れと反応する度に減少するため、高酸素濃度気体は酸素貯蔵タンク41からは断続的、継続的に供給されるよう動作する。また、逆止弁43をポンプ側経路40に設けており、洗浄ポンプ26からの酸素貯蔵タンク41側への水の進入を防止するものである。
【0023】
噴出した酸素は、気泡となり洗浄水に溶け込む。そして、溶け込んだ酸素の一部が、酸化力が高く反応性の高い活性酸素(酸素ラジカル)に変わる。そして、食器の汚れであるタンパク質やデンプン、あるいは油脂などを構成している分子の分子間結合は、活性酸素と反応することで酸化反応により分解されて結合力が弱まり、食器から除去されやすくなる。
【0024】
また、噴出口は洗浄ポンプの吐出経路に設けていることで、発生した活性酸素のできるだけ多くを食器に付着した汚れに対して反応させることができる。これは、活性酸素が反応性に富むためであり、例えば残さいフィルタ近傍に噴出口を持ってくると、食器に付着した汚れに反応させる前に残さいフィルタに捕集された汚れと反応してしまうためである。
【0025】
また、洗浄ポンプの吐出経路に噴出口を設けることで、洗浄ポンプの気泡混入によるエアガミを回避し、洗浄ポンプ能力の低下を起こすことはない。
【0026】
続いて、食器や洗浄槽等に付着した汚れをすすぐすすぎ工程を行うが、このときも洗浄水中に高酸素濃度気体を溶存させる。活性酸素の働きは、汚れに対しては分子間結合力を弱めて、食器からはがれやすくする働きがあるが、他にも酸化作用により細菌の細胞膜を破壊するという効果がある。この効果により、汚れ中に存在する細胞を死滅させることができる。つまり、除菌効果も得ることができる。
【0027】
このため、すすぎ工程に高酸素濃度気体を溶存させることで、食器や洗浄槽、洗浄水等に混入する細菌の除菌を行うことができる。
【0028】
なお、上記活性酸素は汚れ成分と反応することでなくなっていくため、本洗い中は絶えず高酸素濃度気体を供給し続けるか、あるいは大量の高酸素濃度気体を一度あるいは数回に分けて供給する必要がある。つまり、汚染量に対しての活性酸素の絶対必要量を本洗い工程で投入することで洗浄性能を得ることができるものである。
【0029】
また、本発明の実施例ではすすぎ工程に高酸素濃度気体を付加させることで除菌効果を得ることができると説明したが、特に除菌コースなるものを設けた場合にも同様の効果が得られる。例えば、まな板や包丁など汚れてはいないが除菌したい場合には、予洗いを数分した後、洗浄水を入れ替えて高酸素濃度気体を付加させた洗浄水でもう一度すすぐことで除菌効果を得ることができる。従来の除菌コースは、次亜塩素酸や塩素の酸化力を利用するため、次亜塩素酸をすすぐすすぎ工程が必要であり、使用水量が増えるという課題がある。また、塩素による金属類やゴム類などの食器洗い乾燥機の構成部材に対する腐食や臭いの問題があった。
【0030】
ところが本発明の構成は、活性酸素による酸化力を利用するため、上記課題を起こすことはない安全な除菌方法である。
【0031】
また本発明の食器洗い乾燥機には、水位検知側経路44で水位検知装置36と酸素富化気体付加手段38とを連通し、噴出口39を水位検知装置36内、あるいは水位検知装置36に連通する経路内に設けた構成を有している。水位検知装置36はフロート式であり、フロート47と水位検知装置36内壁との間で汚れが堆積することで、フロート47が固着して動作不良になるという問題がある。これは、洗浄ポンプ内と違い、水位検知装置36内は洗浄水の流れが緩やかであり、汚れが堆積しやすい環境にあるためである。
【0032】
ところが本発明の構成により、水位検知装置内の洗浄水を酸化力の高い状態に保持することができる。よって、水位検知装置内は常に清潔に保持することができるため、フロートを安定動作させることができる。しかも、運転時、洗浄水中の汚れ成分が最も少ない最終すすぎ工程で行うことで、発生する活性酸素のほとんどを水位検知装置内汚れの除去に使用することができるため、より効果的な洗浄が可能となる。
【0033】
なお、本発明の高酸素濃度気体に関して、通常、空気中での酸素濃度は約21%であり、それよりも酸素濃度の高い気体(例えば酸素濃度を30%程度で残りを窒素や二酸化炭素、あるいは100%酸素の気体)を用いることで酸化力を高めた洗浄水とするものであり、その酸素濃度により洗浄性能が左右される。また、本実施例で説明した溶存部の洗浄経路内設置と水位検知手段内への設置と最終すすぎ工程での使用、本洗い工程、すすぎ工程への使用に関しては一体で実施する必然性はなく、各々独立して実施が可能である。また、実施例1では、乾燥機能を有する食器洗い乾燥機の例を示したが、乾燥機能を伴わない食器洗い乾燥機においても同様の効果が得られる。
【0034】
(実施例2)
図4において、50は酸素発生手段として水道水の電気分解により酸素を作り出す酸素発生手段(以下、「酸素発生装置」と称す)、51はポンプ側経路40内に設けた加圧手段(以下、「容積型加圧ポンプ」と称す)で、酸素発生装置50で発生した酸素を加圧しながら噴出口39から吐出経路37に噴出させる。また、噴出口39には、多孔質材料で構成する気泡微細化部材52を設けており、容積型の加圧ポンプ51で加圧した高酸素濃度気体を気泡微細化部材52に通すことで気泡径を数十ミクロン程度に微細化するものである。
【0035】
なお、洗浄ポンプ26による発生圧力は通常、0.4kgf/cm程度であり、容積型加圧ポンプとしては1.2kgf/cm程度の加圧力のものを使用する。この程度の圧力であれば、圧力損失の高い多孔質材料を用いても気泡の微細化は十分可能である。また酸素発生手段50は、電解槽70の内部に、一対の電極53を隔膜54で仕切り、電極53に直流電流を流すことにより陽極から酸素を発生するものである。酸素発生手段50は、電解槽70と一対の電極53と隔膜54で構成する。給水弁25より洗浄水を補給するため、酸素発生装置50に関して本実施例では一対の電極を隔膜で仕切った電解手段で酸素を発生させる方法で説明しているが、他にも燃料電池で利用している方法なども考えられる。また、この他の基本構成、動作に関しては実施例1と同様であり省略する。
【0036】
高酸素濃度気体は、洗浄性能を発揮させるために多量に必要であるが、酸素発生装置50を食器洗い乾燥機の本体20に内蔵することで、高酸素濃度気体を外部から定期的に補充することなく、所定の洗浄性能を維持することができる。特に、電気分解の場合は水道水を供給するだけであり、使用者はメンテナンスフリーで食器洗い乾燥機を使用することができる。
【0037】
また、噴出口に多孔質材料で構成する気泡微細化部材を設けることで、洗浄中に噴出した微細な酸素富化気体の気泡は、洗浄水に接触する気泡の表面積の増大によって洗浄水への溶解速度が速くなり、単位時間当たりに生成される活性酸素量が増えることで洗浄水の酸化力が高くなり、洗浄性能の向上を図ることができる。
【0038】
また、発生した酸素富化気体を洗浄ポンプによる加圧力以上に加圧する加圧手段を備えたことで、噴出口に設けた多孔質材料で構成する気泡微細化部材について、通過圧力損失は大きくなるが、その分空隙穴をより小さいものを使用することができるため、発生する気泡もより気泡径を小さく、しかも大量に発生させることができる。
【0039】
よって、酸素富化気体の溶解速度の飛躍的向上による洗浄力強化を図ることができる。また、過大な気泡を混入することで食器表面に付着した汚れ近傍で破裂する酸素富化気体から発生する衝撃波により、汚れを除去する効果を高めることができる。
【0040】
また、本洗い工程でアルカリ洗剤を投入した場合、洗浄水のpHをアルカリ性にすることで洗浄水中の活性酸素の活性度が高まるため、酸化力をより向上させることができる。よって、単に洗剤を投入した以上に洗浄性能を高めることができる。
【0041】
なお、本実施例で説明した酸素発生装置の設置と、気体微細化部材の付加と、加圧手段の設置と、アルカリ洗剤の使用に関しては、一体で実施する必然性はなく各々独立して実施が可能である。
【0042】
(実施例3)
図5において、酸素富化手段60(以下、「酸素富化膜装置」と称す)の内部には、酸素の濃度を高め、いわゆる酸素富化空気を発生する、例えば酸素富化膜ユニット等の61を設けてある。酸素富化膜ユニット61は有機高分子の平膜より構成され、膜を通過する分子の速度の差を利用するもので、空気中の窒素に比べて酸素をよく通すため、比較的高い酸素濃度のいわゆる酸素富化空気が得られる。通常の空気において酸素が占める割合は約21%(窒素約79%)であるが、本実施例の酸素富化膜ユニット61を通過後の酸素富化空気においては、酸素の占める割合が約30%(窒素70%)となる。
【0043】
また酸素富化膜ユニット61は図7、図8に示す如くメッシュ構造のフレーム62両側面に略長方形の酸素富化膜63を貼って両膜間を通路としたモジュール64を、複数枚積層した略直方体のユニット構造となっており、フレーム62の通路内を吸引することにより、酸素富化膜63の周辺を流れる空気の一部が酸素富化膜63を通過してフレーム62の通路内に入り込み、酸素富化空気が得られ、この得られた酸素富化空気を酸素富化膜ユニット61の唯一の排出口であるユニット排出口67から集中排気している。
【0044】
また、略長方形の酸素富化膜63を、短辺側が空気の進行方向(本発明では酸素富化膜装置60の前後方向)と略平行に、長辺側が空気の進行方向と略直角方向になるように、酸素富化膜装置60内に設けられている。
【0045】
また、酸素富化膜装置60の内部には食器洗い乾燥機の本体20に設けた吸気口(図示せず)から酸素富化膜装置60内に外気を吸引し、酸素富化膜ユニット61に送った後、酸素富化膜63を通過しフレーム62の通路内に吸引されて空気を除いた外気を、食器洗い乾燥機の本体20に設けた排気口(図示せず)から外部に排気するためモーターファン等の送風部(以下「ファン」と称す)65を有している。
【0046】
またファン65は、酸素富化膜ユニット61の下流側で、排気口の近傍に設けられている。66はポンプ等の吸引手段(以下「ポンプ」と称す)で、酸素富化膜装置60内の酸素富化膜ユニット61の上方に設けられ、酸素の通路内に吸引して上流部に送る。そしてさらにこのポンプ66は、酸素富化膜63を通過した後の酸素富化空気を、上流部の噴出口39に送り、洗浄水中へ吐出される。
【0047】
また、ポンプ66には、酸素富化膜63の通過圧力損失に対抗して酸素富化空気の流量を稼ぐために運転時の圧力が高いベローズポンプが用いられている。酸素富化手段60は、酸素富化膜ユニット61とユニット排出口67とファン65とポンプ66で構成する。
【0048】
また、本洗い工程の洗浄水の到達温度に関して、高濃度付加空気を使用する場合の到達温度を、洗剤を用いて本洗い工程を行う標準運転コースの到達温度より低く設定している。例えば図6に示すように、洗剤を用いる標準運転コースでは本洗い工程の到達温度は約55℃である。これに対して、高濃度付加空気を使用する場合の到達温度は約45℃に設定している。これは、洗浄水温度が低くなれば、溶存できる酸素量が増えるためである。よって、より多くの活性水素を洗浄水の中に溶存させることで洗浄水の酸化力を向上させ、洗浄性能を高くすることができる。
【0049】
なお、この他の基本構成、動作に関しては実施例1と同様であり省略する。
【0050】
このように本発明によれば、酸素富化膜装置を食器洗い乾燥機本体に設置することにより、全く追加の消費材を必要とすることなく酸素富化気体を製造することができる。そして、空気中の酸素を高濃度化して洗浄水の酸化力を高めることで、洗剤を使用しないでも高い洗浄性能を実現する食器洗い乾燥機を実現することができる。
【0051】
また、本洗い工程時の洗浄水の到達温度を洗剤投入時の標準運転コースより低く設定することで、酸素の洗浄水中への溶存量も増えるため、洗浄水中の活性酸素量も高濃度になり、酸化力も向上する。よって、汚れに対する酸化分解力が高くなることで、洗浄性能を向上させることができる。しかも、より低温で洗浄することで、洗浄水の温水化に必要な消費電力量を削減できるため、より省エネな運転を実現できる。
【0052】
なお、本実施例で説明した酸素富化膜装置の設置と、本洗い温度の低温化に関しては、一体で実施する必然性はなく各々独立して実施が可能である。
【0053】
【発明の効果】
以上のように本発明によれば、洗浄水中の活性酸素量を増すことで洗浄水の洗浄力を向上させることができるため、洗剤を使用しなくとも食器の汚れや水位検知手段内の汚れを十分に洗浄できる食器洗い乾燥機を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1の食器洗い乾燥機の断面図
【図2】 同食器洗い乾燥機の要部断面図
【図3】 同食器洗い乾燥機の洗浄の工程と洗浄温度を示す図
【図4】 本発明の実施例2の食器洗い乾燥機の要部断面図
【図5】 本発明の実施例3の食器洗い乾燥機の要部断面図
【図6】 同食器洗い乾燥機の洗浄の工程と洗浄温度を示す図
【図7】 同食器洗い乾燥機の酸素富化ユニットの斜視図
【図8】 (a)同酸素富化ユニットの詳細図(組立前)
(b)同酸素富化ユニットの詳細図(組立後)
【図9】 従来の食器洗い乾燥機の運転コースを示す図
【符号の説明】
22 洗浄槽
26 洗浄ポンプ
27 洗浄ノズル(洗浄手段)
36 水位検知装置(水位検知手段)
37 吐出経路
38 酸素富化気体付加手段
39 噴出部(溶存部)
40 ポンプ側経路(第一の経路)
41 酸素貯蔵タンク(酸素富化気体付加手段
42 第一の電磁開閉弁(酸素富化気体付加手段
43 逆止弁(酸素富化気体付加手段
50 酸素発生装置(酸素発生手段)
51 加圧ポンプ(加圧手段)
52 気泡微細化部材
53 電極(酸素発生手段)
54 隔膜(酸素発生手段)
60 酸素富化膜装置(酸素富化手段)
61 酸素富化膜ユニット(酸素富化手段)
65 ファン(酸素富化手段)
66 ポンプ(酸素富化手段)
67 ユニット排出口(酸素富化手段)
70 電解槽(酸素発生手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dishwasher using oxygen-enriched wash water.
[0002]
[Prior art]
Conventionally, this type of dishwasher has a washing course as shown in FIG. 9 (see, for example, Patent Document 1). Hereinafter, the cleaning will be described.
[0003]
As shown in FIG. 9, in a dishwasher that performs washing without introducing a dedicated detergent, the temperature of the main washing process is changed to two stages of 40 degrees and 55 degrees to heat the washing water. The dirt attached to the tableware and the like was removed by the cleaning power by mechanical power and heat energy.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-204676
[Problems to be solved by the invention]
However, as shown in FIG. 9, the conventional dishwasher-free course has a main washing process or a pre-washing process in which the washing time is increased and the washing temperature is changed to several stages. Although operations such as removing large stains in advance are performed, there is a problem that satisfactory cleaning performance cannot be obtained for protein stains, oil stains, protein-oil composite stains, etc., because no detergent is used. It was.
[0006]
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a dishwasher / dryer capable of obtaining satisfactory cleaning performance against major tableware stains such as protein stains.
[0007]
[Means for Solving the Problems]
In order to solve the conventional problems, the dishwasher of the present invention includes a washing tank for storing washing water, a washing pump for pressurizing washing water, and an oxygen-enriched gas having an oxygen concentration higher than air in the washing water. An oxygen-enriched gas addition means for dissolving, a water level detection means for detecting a cleaning water level stored in the washing tank by a float, a water level detection side path communicating with the oxygen-enriched gas addition means and the water level detection means, and A second electromagnetic on-off valve is provided in the middle of the water level detection side path, and in the final rinsing step, the second electromagnetic on-off valve is opened and oxygen is added to the cleaning water in the water level detection means by the oxygen-enriched gas addition means. The enriched gas is dissolved.
[0008]
As a result, part of the oxygen dissolved in the wash water in the water level detection means becomes active oxygen with high oxidizing power and is dissolved in a high concentration in the wash water, and promotes oxidative decomposition of proteins, etc., which are major dish stains. In addition, it is possible to prevent dirt such as protein and starch from adhering to the inner wall of the water level detection means, and to dissolve the oxygen-enriched gas in the washing water in the water level detection means during the final rinsing process. At times, since there are few dirt components in the washing water, the generated active oxygen can be made to work to the maximum extent in removing dirt such as protein and starch adhering to the inner wall of the water level detection means. Therefore, high operational reliability of the water level detection means can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided a cleaning tank for storing cleaning water, a cleaning pump for pressurizing the cleaning water, and an oxygen-enriched gas addition for dissolving an oxygen-enriched gas having a higher oxygen concentration in the cleaning water. Means , a water level detecting means for detecting the cleaning water level stored in the cleaning tank by a float, a water level detecting side path communicating with the oxygen enriched gas adding means and the water level detecting means, and in the middle of the water level detecting side path A second electromagnetic opening / closing valve, and opening the second electromagnetic opening / closing valve during the final rinsing step so that the oxygen-enriched gas is dissolved in the wash water in the water level detecting means by the oxygen-enriched gas adding means. As a result, some of the oxygen dissolved in the wash water in the water level detection means becomes active oxygen with high oxidizing power and dissolves in the wash water at a high concentration, so that proteins that are the main dish stains, etc. Oxidative decomposition of Unlike the inside of the washing pump, etc., the washing water flow is gentle and dirt can be deposited. The enriched gas is dissolved in the washing water in the water level detection means, and since there are few dirt components in the washing water during the final rinsing process, the generated active oxygen is attached to the inner wall of the water level detection means such as protein and starch. It can be used to maximize the removal of dirt. Therefore, high operational reliability of the water level detection means can be obtained without causing dirt to accumulate between the inner wall of the water level detection means and the float and causing the float to adhere to cause malfunction.
[0010]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0011]
(Example 1)
As shown in FIG. 1, a main body 20 of the dishwasher is provided with a washing tub 22 that can be opened and closed by a door 21, and an object to be cleaned 23 such as tableware is set in a tableware basket 24 and accommodated in the washing tub 22. ing. A cleaning pump 26 pressurizes the cleaning water in the cleaning tank 22 supplied via the water supply valve 25. The cleaning water is supplied to a cleaning nozzle (cleaning means) 27 provided with a plurality of injection holes, and the cleaning nozzle 27 performs cleaning. Spray water. The cleaning nozzle 27 is installed below the tableware basket 24 and includes about 4 to 10 injection ports 28 for injecting cleaning water. The cleaning nozzle 27 rotates around the axis by the jet and then injects the cleaning water toward the tableware. .
[0012]
The bottom of the cleaning tank 22 has a drain port 29 communicating with the suction side of the cleaning pump 26. The drain port 29 is provided with a residue filter 30 for collecting residue and a heating element 10 for heating. A temperature sensor 31 for detecting the temperature of the tank 22 is provided. The drainage pump 32 discharges the cleaning water in the cleaning tank 22. The blower 33 sends air to the cleaning tank 22 through the blower path 34 and discharges the exhaust from the exhaust port 35. The water level detection means 36 is a float type and communicates with the drain port 29 and operates so that the water supply valve 25 is closed when a certain amount of cleaning water is accumulated in the cleaning tank 22.
[0013]
In the discharge path 37 of the cleaning pump 26, oxygen-enriched gas adding means 38 is installed to supply and dissolve high-concentration oxygen in the cleaning water. This oxygen-enriched gas adding means 38 is shown in FIG. It has the structure shown. The oxygen storage tank 41 storing the high oxygen concentration gas has a first path 40 (hereinafter referred to as “pump side”) between a dissolved portion 39 (hereinafter referred to as “spout port”) provided in the discharge path 37 of the cleaning pump 26. The first electromagnetic on-off valve 42 and a check valve 43 that prevents the cleaning water from entering from the cleaning pump 26 are provided in the middle.
[0014]
Similarly, the oxygen storage tank 41 communicates with the water level detection device 36 through a water level device side path 44, and a second electromagnetic switching valve 45 is provided in the middle thereof. The water level detection device 36 is open to the atmosphere, and since the washing water does not flow back to the oxygen storage tank 41 side, no check valve is provided. The oxygen-enriched gas adding means 38 includes an oxygen storage tank 41, a first electromagnetic on-off valve 42, and a check valve 43.
[0015]
FIG. 3 is a conceptual diagram of the operation of the dishwasher, in which the horizontal axis indicates the operation time, and the vertical axis indicates the washing water temperature of each process.
[0016]
In the above configuration, first, the basic operation of the dishwasher will be described. An object to be cleaned 23 such as tableware is set in the tableware basket 24 and stored in the cleaning tank 22, the opening of the main body 20 of the tableware washing machine is closed by the door 21, and the operation is started. A pre-washing process for removing large dirt on the object to be cleaned 23 in advance, a main washing process for removing dirt remaining on the tableware, a rinsing process for pouring the attached detergent and residual vegetables, and water adhering to the object to be cleaned 23 Perform in order of the drying process to dry the suitable. In FIG. 3, the prewashing process is indicated by a solid line and a wavy line, but the solid line is a case of prewashing by heating the wash water, and is a prewashing method effective for promoting the removal of oil stains.
[0017]
The wavy line indicates a case of pre-washing without a heater, and is an effective pre-washing method when dirt is removed only by mechanical force of washing water such as vegetable dirt and water-soluble dirt. In particular, in the case of a detergent-less course, the pre-washing process for removing dirt previously adhered to the tableware is an effective process for improving the dirt removing performance in the subsequent main washing process.
[0018]
After the pre-washing process is completed, the water supply valve 25 is operated to supply a predetermined amount of cleaning water to the cleaning tank 22, then the cleaning water is pressurized by the cleaning pump 26, and the cleaning water is jetted from the cleaning nozzle 27. At this time, a heating element 46 such as a sheathed heater provided in the cleaning tank 22 is energized, and the main washing process is performed while heating the cleaning water. The temperature sensor 31 detects the temperature of the cleaning tank 22 and stops energization of the heating element 46 when the temperature exceeds a predetermined temperature.
[0019]
The cleaning water passes through the residual filter 30 and is sucked into the cleaning pump 26, supplied from the cleaning pump 26 to the cleaning nozzle 27 provided in the cleaning tank 22, and sprayed into the cleaning tank 22, thereby cleaning the object 23 to be cleaned. After washing, it circulates along a route that returns to the drain 29 again. At this time, the residue or the like dropped from the object to be cleaned 23 flows into the residue filter 30 together with the cleaning water, and the residue having a size that cannot pass through the residue filter 30 is collected by the residue filter 30.
[0020]
When the main washing process for a predetermined time is finished, the washing water containing dirt is discharged out of the apparatus by the drain pump 32, and the washing water is newly supplied. The washing pump 26 is operated, and washing water is again sprayed from the washing nozzle 27 to rinse the article 23 to be washed, such as detergent and leftovers. After the operation for a predetermined time, the operation of discharging the cleaning water and supplying the cleaning water again is repeated, and this rinsing process is continuously performed about three times. And the final rinse performs the high temperature rinse which heated the wash water to about 70 degreeC, and finally discharges wash water outside the apparatus and the rinse process is complete | finished.
[0021]
Subsequently, by performing a drying process and operating the blower 33, the outside air is blown into the cleaning tank 22 through the blower path 34 and is discharged from the exhaust port 35. At this time, the heating element 46 is energized, and evaporation of water droplets adhering to the object to be cleaned 23 is promoted by the effects of both air blowing and temperature. These drying steps are performed for a predetermined time, and the operation is terminated.
[0022]
Next, the operation and action of the oxygen-enriched gas adding means 38, which is a characteristic configuration of the present embodiment, will be described. As shown in FIGS. 1 and 2, when the main washing process is started and the cleaning pump 26 is started, the on-off valve (not shown) of the oxygen storage tank 41 and the first electromagnetic on-off valve 42 are opened, and the high oxygen concentration gas Is ejected from the ejection port 39 to the discharge path 37. Since the generated active hydrogen decreases every time it reacts with dirt, the high oxygen concentration gas operates so as to be supplied intermittently and continuously from the oxygen storage tank 41. In addition, a check valve 43 is provided in the pump side path 40 to prevent water from entering the oxygen storage tank 41 side from the cleaning pump 26.
[0023]
The ejected oxygen becomes bubbles and dissolves in the cleaning water. A part of the dissolved oxygen is changed to active oxygen (oxygen radical) having high oxidizing power and high reactivity. And the intermolecular bonds of the molecules that make up the dirt, protein, starch, fats and oils of tableware are decomposed by the oxidation reaction by reacting with active oxygen, weakening the binding force and easy to be removed from the tableware. .
[0024]
Further, by providing the ejection port in the discharge path of the washing pump, as much of the generated active oxygen as possible can be reacted with the dirt adhering to the tableware. This is because active oxygen is rich in reactivity. For example, if a spout is brought near the residue filter, it reacts with dirt collected in the residue filter before reacting with dirt attached to the tableware. It is because it ends up.
[0025]
In addition, by providing a jet outlet in the discharge path of the cleaning pump, air stagnation due to bubbles in the cleaning pump is avoided, and the cleaning pump capacity is not reduced.
[0026]
Subsequently, a rinsing process is performed to remove dirt adhering to the tableware, the washing tank, and the like. At this time, a high oxygen concentration gas is dissolved in the washing water. The action of active oxygen has a function of weakening intermolecular binding force against dirt and facilitating peeling from dishes, but also has an effect of destroying bacterial cell membranes by oxidation. This effect can kill cells present in the soil. That is, a sterilization effect can also be obtained.
[0027]
For this reason, bacteria dissolved in tableware, a washing tank, washing water, etc. can be sterilized by dissolving high oxygen concentration gas in a rinse process.
[0028]
In addition, since the active oxygen disappears by reacting with the soil components, the high oxygen concentration gas is continuously supplied during the main washing or a large amount of high oxygen concentration gas is supplied once or several times. There is a need. That is, the cleaning performance can be obtained by supplying the absolute necessary amount of active oxygen with respect to the contamination amount in the main cleaning step.
[0029]
Further, in the examples of the present invention, it has been described that a sterilization effect can be obtained by adding a high oxygen concentration gas to the rinsing process, but the same effect can be obtained particularly when a sterilization course is provided. It is done. For example, if you want to sterilize a chopping board or kitchen knife that is not dirty, after pre-washing for a few minutes, replace the wash water and rinse again with wash water to which a high oxygen concentration gas has been added. Obtainable. Since the conventional sterilization course uses the oxidizing power of hypochlorous acid or chlorine, a rinsing process of hypochlorous acid is necessary, and there is a problem that the amount of water used increases. Moreover, there has been a problem of corrosion and odor with respect to components of the dishwasher such as metals and rubbers by chlorine.
[0030]
However, since the structure of the present invention utilizes the oxidizing power of active oxygen, it is a safe sterilization method that does not cause the above problems.
[0031]
In the dishwasher according to the present invention, the water level detection device 36 and the oxygen-enriched gas adding means 38 are communicated with each other through the water level detection side path 44, and the spout 39 is communicated with the water level detection device 36 or the water level detection device 36. It has the structure provided in the path | route which carries out. The water level detection device 36 is a float type, and dirt accumulates between the float 47 and the inner wall of the water level detection device 36, so that there is a problem that the float 47 is fixed and malfunctions. This is because, unlike the inside of the cleaning pump, the flow of the cleaning water is gentle in the water level detection device 36, and it is easy to accumulate dirt.
[0032]
However, according to the configuration of the present invention, it is possible to maintain the cleaning water in the water level detection device in a state having a high oxidizing power. Therefore, the inside of the water level detection device can always be kept clean, so that the float can be stably operated. In addition, during the operation, most of the active oxygen generated can be used to remove dirt in the water level detection device by performing the final rinsing process with the least amount of dirt components in the washing water, enabling more effective washing. It becomes.
[0033]
In addition, regarding the high oxygen concentration gas of the present invention, the oxygen concentration in the air is usually about 21%, and a gas having a higher oxygen concentration (for example, the oxygen concentration is about 30% and the rest is nitrogen or carbon dioxide, Alternatively, a cleaning water having an increased oxidizing power is obtained by using a gas of 100% oxygen, and the cleaning performance depends on the oxygen concentration. In addition, there is no necessity to carry out integrally with respect to the use in the cleaning path of the dissolved portion described in the present embodiment, the use in the water level detection means and the use in the final rinsing process, the main washing process, and the rinsing process. Each can be implemented independently. Moreover, in Example 1, although the example of the dishwasher which has a drying function was shown, the same effect is acquired also in the dishwasher which does not accompany a drying function.
[0034]
(Example 2)
In FIG. 4, 50 is oxygen generating means for generating oxygen by electrolysis of tap water as oxygen generating means (hereinafter referred to as “oxygen generating apparatus”), and 51 is a pressurizing means (hereinafter referred to as “oxygen generating apparatus”) provided in the pump side passage 40. (Referred to as “volumetric pressure pump”), the oxygen generated in the oxygen generator 50 is pressurized and ejected from the ejection port 39 to the discharge path 37. In addition, the nozzle 39 is provided with a bubble refining member 52 made of a porous material. By passing a high oxygen concentration gas pressurized by a positive displacement pressure pump 51 through the bubble refining member 52, bubbles are formed. The diameter is reduced to about several tens of microns.
[0035]
The pressure generated by the cleaning pump 26 is usually about 0.4 kgf / cm 2 , and a positive pressure pump having a pressure of about 1.2 kgf / cm 2 is used. With such a pressure, bubbles can be sufficiently miniaturized even if a porous material having a high pressure loss is used. The oxygen generating means 50 generates oxygen from the anode by partitioning a pair of electrodes 53 with a diaphragm 54 inside the electrolytic cell 70 and causing a direct current to flow through the electrodes 53. The oxygen generating means 50 includes an electrolytic cell 70, a pair of electrodes 53, and a diaphragm 54. In order to replenish the cleaning water from the water supply valve 25, the oxygen generator 50 is described in the present embodiment by a method of generating oxygen by means of electrolysis with a pair of electrodes partitioned by a diaphragm. The method of doing is also considered. Other basic configurations and operations are the same as those in the first embodiment, and are omitted.
[0036]
Although a large amount of high oxygen concentration gas is necessary to exert cleaning performance, the high oxygen concentration gas is periodically replenished from outside by incorporating the oxygen generator 50 in the main body 20 of the dishwasher. In addition, the predetermined cleaning performance can be maintained. In particular, in the case of electrolysis, only tap water is supplied, and the user can use the dishwasher without maintenance.
[0037]
In addition, by providing a bubble refining member made of a porous material at the spout, fine oxygen-enriched gas bubbles ejected during cleaning can be supplied to the cleaning water by increasing the surface area of the bubbles in contact with the cleaning water. By increasing the dissolution rate and increasing the amount of active oxygen generated per unit time, the oxidizing power of the cleaning water increases, and the cleaning performance can be improved.
[0038]
Further, by providing a pressurizing means for pressurizing the generated oxygen-enriched gas to a pressure higher than the pressurizing force by the cleaning pump, the passage pressure loss becomes large for the bubble refining member composed of the porous material provided at the ejection port. However, since it is possible to use a pore having a smaller gap, the generated bubbles can be generated with a smaller bubble diameter and in a large amount.
[0039]
Therefore, it is possible to enhance the cleaning power by dramatically improving the dissolution rate of the oxygen-enriched gas. Moreover, the effect which removes dirt can be heightened by the shock wave which generate | occur | produces from the oxygen-enriched gas which bursts in the dirt vicinity adhering to the tableware surface by mixing an excessive bubble.
[0040]
In addition, when an alkaline detergent is added in the main washing step, the activity of active oxygen in the wash water is increased by making the pH of the wash water alkaline, so that the oxidizing power can be further improved. Therefore, it is possible to improve the cleaning performance more than simply adding a detergent.
[0041]
It should be noted that the installation of the oxygen generator, the addition of the gas refining member, the installation of the pressurizing means, and the use of the alkaline detergent described in the present embodiment are not necessarily carried out as a single unit, but can be carried out independently. Is possible.
[0042]
(Example 3)
In FIG. 5, oxygen enrichment means 60 (hereinafter referred to as “oxygen enriched membrane device”) has an increased oxygen concentration and generates so-called oxygen enriched air, such as an oxygen enriched membrane unit. 61 is provided. The oxygen-enriched membrane unit 61 is composed of a flat membrane of an organic polymer and utilizes the difference in the speed of molecules passing through the membrane. It passes oxygen better than nitrogen in the air, so it has a relatively high oxygen concentration. So-called oxygen-enriched air is obtained. The proportion of oxygen in normal air is about 21% (nitrogen is about 79%), but in the oxygen-enriched air after passing through the oxygen-enriched membrane unit 61 of this embodiment, the proportion of oxygen is about 30. % (Nitrogen 70%).
[0043]
In addition, as shown in FIGS. 7 and 8, the oxygen-enriched membrane unit 61 is formed by laminating a plurality of modules 64 each having a substantially rectangular oxygen-enriched membrane 63 pasted on both sides of a mesh structure frame 62 and having a passage between both membranes. It has a substantially rectangular parallelepiped unit structure, and by sucking the inside of the passage of the frame 62, a part of the air flowing around the oxygen-enriched film 63 passes through the oxygen-enriched film 63 into the passage of the frame 62. The oxygen-enriched air enters, and the obtained oxygen-enriched air is concentrated and exhausted from the unit outlet 67 which is the only outlet of the oxygen-enriched membrane unit 61.
[0044]
In addition, the substantially rectangular oxygen-enriched film 63 has a short side substantially parallel to the air traveling direction (in the present invention, the front-rear direction of the oxygen-enriched film device 60) and a long side substantially perpendicular to the air traveling direction. Thus, the oxygen enriched film device 60 is provided.
[0045]
In addition, outside air is sucked into the oxygen-enriched membrane device 60 from an air inlet (not shown) provided in the main body 20 of the dishwasher inside the oxygen-enriched membrane device 60 and sent to the oxygen-enriched membrane unit 61. Then, the motor passes through the oxygen-enriched film 63 and is sucked into the passage of the frame 62 to remove the outside air from the exhaust port (not shown) provided in the main body 20 of the dishwasher. It has a blower section (hereinafter referred to as “fan”) 65 such as a fan.
[0046]
The fan 65 is provided in the vicinity of the exhaust port on the downstream side of the oxygen-enriched membrane unit 61. Reference numeral 66 denotes suction means such as a pump (hereinafter referred to as “pump”), which is provided above the oxygen-enriched membrane unit 61 in the oxygen-enriched membrane device 60 and sucks it into the oxygen passage and sends it upstream. Further, the pump 66 sends the oxygen-enriched air after passing through the oxygen-enriched film 63 to the upstream outlet 39 and is discharged into the wash water.
[0047]
The pump 66 is a bellows pump having a high operating pressure in order to increase the flow rate of oxygen-enriched air against the passage pressure loss of the oxygen-enriched membrane 63. The oxygen enrichment means 60 includes an oxygen enrichment membrane unit 61, a unit discharge port 67, a fan 65 and a pump 66.
[0048]
Moreover, regarding the ultimate temperature of the wash water in the main washing step, the ultimate temperature when using high-concentration additional air is set lower than the ultimate temperature of the standard operation course in which the main washing step is performed using a detergent. For example, as shown in FIG. 6, in the standard operation course using a detergent, the temperature reached in the main washing process is about 55 ° C. On the other hand, the ultimate temperature when using high-concentration additional air is set to about 45 ° C. This is because the amount of oxygen that can be dissolved increases as the washing water temperature decreases. Therefore, by dissolving more active hydrogen in the cleaning water, the oxidizing power of the cleaning water can be improved and the cleaning performance can be enhanced.
[0049]
Other basic configurations and operations are the same as those in the first embodiment, and are omitted.
[0050]
As described above, according to the present invention, by installing the oxygen-enriched membrane device in the dishwasher main body, it is possible to produce oxygen-enriched gas without requiring any additional consumption material. And the dishwasher which implement | achieves high washing | cleaning performance can be implement | achieved even if it does not use a detergent by making oxygen in air high concentration and raising the oxidizing power of washing water.
[0051]
In addition, by setting the temperature at which the cleaning water reaches during the main washing process to be lower than the standard operation course when the detergent is added, the amount of dissolved oxygen in the cleaning water also increases, so the amount of active oxygen in the cleaning water also increases. , Oxidation power is also improved. Therefore, the cleaning performance can be improved by increasing the oxidative decomposition power against dirt. In addition, by washing at a lower temperature, it is possible to reduce the amount of power consumption required for warming the washing water, so that more energy-saving operation can be realized.
[0052]
It should be noted that the installation of the oxygen-enriched membrane device described in the present embodiment and the lowering of the main washing temperature are not necessarily carried out integrally and can be carried out independently.
[0053]
【The invention's effect】
According to the present invention as described above, it is possible to improve the detergency of the washing water by increasing the amount of active oxygen in the wash water, without the use of detergents dirt in dirt and water level detecting means tableware A dishwasher that can be sufficiently washed can be provided.
[Brief description of the drawings]
1 is a cross-sectional view of a dishwasher according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a main part of the dishwasher. FIG. 3 is a diagram showing a washing process and a washing temperature of the dishwasher. 4] Cross-sectional view of the main part of the dishwasher according to the second embodiment of the present invention. [FIG. 5] Cross-sectional view of the main part of the dishwasher according to the third embodiment of the present invention. Figure showing temperature [Fig. 7] Perspective view of the oxygen enrichment unit of the dishwasher [Fig. 8] (a) Detailed view of the oxygen enrichment unit (before assembly)
(B) Detailed view of the oxygen enrichment unit (after assembly)
[Figure 9] Diagram showing the operation course of a conventional dishwasher [Explanation of symbols]
22 Cleaning tank 26 Cleaning pump 27 Cleaning nozzle (cleaning means)
36 Water level detection device (water level detection means)
37 Discharge path 38 Oxygen-enriched gas addition means 39 Ejection part (dissolved part)
40 Pump side route (first route)
41 Oxygen storage tank ( oxygen-enriched gas addition means )
42 1st electromagnetic on-off valve ( oxygen-enriched gas addition means )
43 Check valve ( oxygen-enriched gas addition means )
50 Oxygen generator (oxygen generator)
51 Pressurizing pump (pressurizing means)
52 Bubble miniaturization member 53 Electrode (oxygen generating means)
54 Diaphragm (oxygen generating means)
60 Oxygen-enriched membrane device (oxygen-enriching means)
61 Oxygen-enriched membrane unit (oxygen-enriching means)
65 fans (oxygen enrichment means)
66 Pump (oxygen enrichment means)
67 Unit outlet (oxygen enrichment means)
70 Electrolysis tank (oxygen generating means)

Claims (1)

洗浄水を貯水する洗浄槽と、洗浄水を加圧する洗浄ポンプと、空気より高い酸素濃度を有する酸素富化気体を洗浄水中に溶存させる酸素富化気体付加手段と、洗浄槽に貯水する洗浄水位をフロートによって検知する水位検知手段と、前記酸素富化気体付加手段と前記水位検知手段とを連通する水位検知側経路と、前記水位検知側経路の途中に第二の電磁開閉弁とを備え、最終すすぎ工程時に、前記第二の電磁開閉弁を開いて前記酸素富化気体付加手段により前記水位検知手段内の洗浄水中に酸素富化気体を溶存させるようにした食器洗い乾燥機。A cleaning tank for storing cleaning water, a cleaning pump for pressurizing the cleaning water, an oxygen-enriched gas addition means for dissolving an oxygen-enriched gas having an oxygen concentration higher than air in the cleaning water, and a cleaning water level stored in the cleaning tank A water level detection means for detecting a water level, a water level detection side path communicating the oxygen enriched gas addition means and the water level detection means, and a second electromagnetic on-off valve in the middle of the water level detection side path, In the final rinsing step, the second electromagnetic on-off valve is opened and the oxygen-enriched gas is dissolved by the oxygen-enriched gas adding means in the wash water in the water level detecting means.
JP2003118237A 2003-04-23 2003-04-23 Dishwasher Expired - Fee Related JP4241165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118237A JP4241165B2 (en) 2003-04-23 2003-04-23 Dishwasher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118237A JP4241165B2 (en) 2003-04-23 2003-04-23 Dishwasher

Publications (2)

Publication Number Publication Date
JP2004321375A JP2004321375A (en) 2004-11-18
JP4241165B2 true JP4241165B2 (en) 2009-03-18

Family

ID=33497835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118237A Expired - Fee Related JP4241165B2 (en) 2003-04-23 2003-04-23 Dishwasher

Country Status (1)

Country Link
JP (1) JP4241165B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974545B2 (en) 2006-04-07 2015-03-10 Xeros Limited Cleaning method
US9121000B2 (en) 2010-09-14 2015-09-01 Xeros Limited Cleaning method
US9523169B2 (en) 2013-11-25 2016-12-20 Xeros Limited Cleaning apparatus and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577186B2 (en) * 2005-10-26 2010-11-10 パナソニック電工株式会社 Dishwasher
JP6155524B2 (en) * 2013-03-13 2017-07-05 パナソニックIpマネジメント株式会社 Mixer tap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974545B2 (en) 2006-04-07 2015-03-10 Xeros Limited Cleaning method
US9017423B2 (en) 2006-04-07 2015-04-28 Xeros Limited Cleaning method
US9121000B2 (en) 2010-09-14 2015-09-01 Xeros Limited Cleaning method
US9523169B2 (en) 2013-11-25 2016-12-20 Xeros Limited Cleaning apparatus and method

Also Published As

Publication number Publication date
JP2004321375A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4264798B2 (en) Cleaning device and home appliances using the cleaning device
US9131826B2 (en) Method for disinfecting conduit systems of a water-conducting appliance and such a household appliance
WO2006127793A1 (en) Commercial glassware dishwasher and related method
CN104854271A (en) Washing maching including integral filter module and aerator
JP4241165B2 (en) Dishwasher
JP3552357B2 (en) Food cleaning equipment
JP2004129772A (en) Dishwasher
JP2003135361A (en) Dishwasher
JP2009005747A (en) Washing apparatus
JP2003079560A (en) Dishwasher
JP4688742B2 (en) Dishwasher
JP2003265394A (en) Dish washer
JP4159484B2 (en) Dishwasher
JP4030316B2 (en) dishwasher
JP2004050046A (en) Electrolyzed water production apparatus and washer
JP4131184B2 (en) Bathroom cleaning equipment
JP2010162261A (en) Dishwasher
JP4106536B2 (en) Dishwasher
JP2017023985A (en) Washer
JP3882574B2 (en) Dishwasher
JP2001212060A (en) Dish washing unit
JP2003325419A5 (en)
JP2004016364A (en) Dishwasher
JP2003135359A (en) Washing machine, and generating device for electrolytic water
JP2003325422A (en) Dishwasher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees