JP4240191B2 - Process for producing aromatic nitrile and heterocyclic nitrile - Google Patents

Process for producing aromatic nitrile and heterocyclic nitrile Download PDF

Info

Publication number
JP4240191B2
JP4240191B2 JP2002065579A JP2002065579A JP4240191B2 JP 4240191 B2 JP4240191 B2 JP 4240191B2 JP 2002065579 A JP2002065579 A JP 2002065579A JP 2002065579 A JP2002065579 A JP 2002065579A JP 4240191 B2 JP4240191 B2 JP 4240191B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrile
compound
heterocyclic
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002065579A
Other languages
Japanese (ja)
Other versions
JP2003267942A (en
Inventor
秀司 江端
英明 荻野
建悟 塚原
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002065579A priority Critical patent/JP4240191B2/en
Publication of JP2003267942A publication Critical patent/JP2003267942A/en
Application granted granted Critical
Publication of JP4240191B2 publication Critical patent/JP4240191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭素環化合物または複素環化合物をアンモニアおよび酸素を含む混合ガスと反応させ、芳香族ニトリルまたは複素環ニトリルを製造する方法に関する。芳香族ニトリルは、合成樹脂、農薬等の製造原料およびアミン、イソシアネート等の中間原料として有用である。一方、複素環ニトリルは、医薬品、飼料添加剤、食品添加剤等の中間原料として用いられる。
【0002】
【従来の技術】
炭素環化合物または複素環化合物に気相でアンモニアと酸素を反応させるアンモ酸化反応は、いずれも大量の反応熱が発生するために反応温度の制御が著しく困難であり、その解決策として流動層形式の反応器が有効とされる。触媒にはシリカを坦体に用いる特公昭49−45860号は特公昭45−19284号を改良したものであり、優れた性能を示す。また、特公昭51−15028号、特開平1−275551号、特開平5−170724号も同じく流動層反応器を用いて好ましい結果が得られる。しかしながら、これらの触媒は何れも流動状態における触媒摩耗と微粉化が免れず、安定した反応を継続することが難しい。一方、固定床形式では多管式の反応器が用いられ、一般には、アルミナやチタニアに有効成分を担持した金属酸化物触媒が使用される。これら触媒は、対応するニトリル化合物を高収率で得ることと同時に、触媒充填の際や反応条件下において触媒粉化による反応器内の変流を防止するために、実用上、耐えうる強度を有することが重要とされる。
【0003】
触媒強度を向上させる方法としては、1000℃以上で焼結によって強固な担体を形成し、その上に有効金属酸化物を担持することができるが、有効金属酸化物を多く必要とする触媒系では、担体と有効金属酸化物の間に、外的衝撃や熱応力によって、剥離やひび割れ等の欠陥が生じ、粉化することから充分な強度を得ることが難しい。担体と有効金属酸化物の結合力を上げるために、担体と有効金属酸化物を粉末の段階で混合し、更に化学的な結合力を有する、例えばアルミナやジルコニア等の成型助剤を添加することも有効な手段ではあるが、この場合も強度が向上する一方で、それら酸化物の化学的な活性点で分解反応が促進され、目的のニトリル生成物を高収率で得ることができない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、炭素環化合物または複素環化合物を気相接触反応によりアンモ酸化させ、対応する芳香族ニトリルまたは複素環ニトリルを製造するに際し、固定床の多管式反応器で実用的な高強度を有し、且つ、目的生成物を高収率で得る触媒を提案することである。
【0005】
【課題を解決するための手段】
本発明者は、上記目的を達成するために鋭意検討した結果、クロム化合物を特定のクロム処理剤を用いて処理したものを、バナジウム、モリブデンまたは鉄を含む金属酸化物と、アルミナまたはチタニアに混合することにより、実用的に耐えうる強度を有し、且つ、目的生成物が高収率で得られる触媒ができることを見出し、本発明を完成するに至った。すなわち本発明は、炭素環化合物または複素環化合物と、アンモニアおよび酸素を含む混合ガスを触媒上で接触反応させて対応するニトリル化合物を製造するに際し、クロム化合物をアルコール類、糖類、有機オキシ化合物および水溶性アルデヒド類から選ばれる少なくとも一種のクロム処理剤を用いて加熱沸騰処理したものと、V、MoおよびFeから選ばれた一種以上の金属の酸化物、およびアルミナまたはチタニアを混合して調製した高強度触媒を用いることを特徴とする芳香族ニトリルまたは複素環ニトリルの製造方法に関するものである。
【0006】
【発明の実施の態様】
以下、本発明を具体的に説明する。
本発明における反応は、炭素環化合物または複素環化合物と、酸素含有ガスおよびアンモニアとの反応(アンモ酸化反応)であり、触媒上で気相接触させることでなされる。
【0007】
本発明で原料として用いられる炭素環化合物は芳香族化合物及び脂環族化合物であり、脂環族化合物は酸素含有ガスおよびアンモニアとの本反応(アンモ酸化反応)において、同時に酸化、脱水素反応により容易に芳香族ニトリルに変換できる。芳香族化合物及び脂環族化合物は、ベンゼン、ナフタレン、アントラセン、シクロヘキセン、シクロヘキサン、ジヒドロナフタレン、テトラリン、デカリン等の炭素環を有し、結合したメチル基、エチル基、プロピル基、ホルミル基、アセチル基、ヒドロキシメチル基、メトキシカルボニル基等、アンモ酸化反応によりシアノ基を生成し得る側鎖(以下、置換基と称す)を少なくとも1つ有する炭素環化合物である。また、この炭素環化合物はハロゲン基、ヒドロキシル基、アルコキシル基、アミノ基、ニトロ基等を含んでいても使用できる。
例えば、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、メチルナフタレン、ジメチルナフタレン、メチルテトラリン、ジメチルテトラリン、クロロトルエン、ジクロロトルエン、メチルアミリン、クレゾール、メチルアニソール等が挙げられる。
これらの化合物は単独または混合物で使用できる。
【0008】
本発明に用いられる複素環化合物は、フラン、ピロール、インドール、チオフェン、ピラゾール、イミアゾール、オキサゾール、ピラン、ピリジン、キノリン、イソキノリン、ピロリン、ピロリジン、イミドゾリン、イミダゾリジン、ペピリジン、ペピラジン等の複素環を有する化合物であり、その側鎖には、上記炭素環化合物と同様に置換基を有する。また、炭素環化合物と同様に、ハロゲン基等の置換基を含んでいても良い。
例えば、フルフラール、2−メチルチオフェン、3−メチルチオフェン、2−ホルミルチオフェン、4−メチルチアゾール、メチルピリジン、ジメチルピリジン、トリメチルピリジン、メチルキノリン、メチルピラジン、ジメチルピラジン、メチルペピラジン等が挙げられる。
これらの化合物は単独または混合物で使用できる。
【0009】
本発明に用いられる原料アンモニアは工業用グレードで良い。アンモニアの使用量は炭素環化合物または複素環化合物1モルに含まれる置換基1個に対して1〜10倍モル、好ましくは3〜6倍モルの範囲である。これより使用量が少ないと目的生成物の収率は低下し、一方、これより多いと空時収率が小さくなる。本発明方法では、反応ガスに含まれる未反応アンモニアを回収し、反応系に戻し再使用できる。反応ガスから未反応アンモニアの回収方法は種々考えられるが、工業的には、未反応アンモニアを水に吸収させた後、それを蒸留操作でアンモニアを他の副生物と分離するのが有利である。ここで回収されるアンモニア中の水分量は蒸留の操作条件によってことなるが、通常は5〜20容量%が含まれる。
【0010】
本発明で使用される酸素は、酸素含有ガスの形で供給され、通常は空気が用いられる。別法として、空気または酸素を不活性ガス、例えば窒素、炭酸ガス、排ガス等で希釈して用いることもできる。酸素の使用量は、炭素環化合物または複素環化合物1モルに含まれる置換基1個に対して1.5倍モル以上、好ましくは2〜50倍モルの範囲である。これより使用量が少ないと目的生成物の収率が低下し、一方、これより多いと空時収率が小さくなる。
【0011】
本発明で用いられる触媒は、基本的にはV、MoおよびFeから選ばれる一種以上の金属酸化物と、後述するクロム処理物を含む組成で構成される。クロム処理物は、クロムの金属酸化物基準で1.0〜10.0重量%の範囲であることが好ましく、クロム処理物がこれより少ない場合には、触媒の強度と目的生成物の収率が悪くなる。一方、これより多い場合も希釈作用により収率低下が起こると共に、触媒費が嵩み、経済面で不利となる。また、上記金属酸化物に対し、Mg、Ca、Ba、W、Co、Ni、B、Ge、Sn、Pb、P、SbおよびBiの群から選ばれた少なくとも一種の金属の酸化物を添加し、修飾した組成系が好ましく、下記の組成式で表される金属酸化物触媒が特に好ましい。
組成式:(Cr)a(V)b(Mo)c(Fe)d(X)e(O)f
(但し、XはMg、Ca,Ba、W、Co、Ni、B、Ge、Sn、Pb、P、SbおよびBiの群から選ばれた少なくとも一種の元素、添字のa,b,c,dおよびeは原子比を各々示し、a=0.01〜1(好ましくは0.1〜0.7)、b=0.01〜1(好ましくは0.1〜0.7)、c=0〜1、d=0〜1(好ましくは0.05〜0.7)、e=0〜1(好ましくは0.05〜0.7)、およびfは上記元素が結合して得られる酸化物の酸素数)。
これらの金属酸化物触媒は、担体としてアルミナまたはチタニアを用いることにより、本発明における高強度触媒とすることができる。
【0012】
本発明においては、上記の組成式で包含される種々の金属酸化物触媒を用いることができるが、特にCr〜V〜B〜Moに担体としてアルミナまたはチタニアを50〜99重量%、好ましくは65〜97重量%を加えた高強度触媒が好適に用いられる。
【0013】
本触媒におけるバナジウム源としては、メタバナジン酸アンモニウム、硫酸バナジル、およびシュウ酸、酒石酸などの有機酸のバナジウム塩類が使用されるが、その後の焼成操作で分解し、容易に酸化物となりうるメタバナジン酸アンモニウム、シュウ酸バナジル、酒石酸バナジルなどが好ましい。
ホウ素源としては、ホウ酸、ホウ酸アンモニウム、などが使用される。
また、モリブデン源としてはパラモリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウムなどがあげられるが、このうち、その後の焼成操作で容易に分解し、ナトリウムイオン、カリウムイオン等の金属陽イオンが触媒中に残留しないパラモリブデン酸アンモニウムが好適である。
【0014】
クロム源としては、無水クロム酸、クロム酸アンモニウム、クロム酸ナトリウム、重クロム酸アンモニウム、重クロム酸カリウム、重クロム酸ナトリウムなどのクロム化合物を使用することができるが、これらのうち、金属陽イオンを含む塩は、これを除去する操作(例えばイオン交換法など)が必要であり、この操作を必要としない無水クロム酸、クロム酸アンモニウム、重クロム酸アンモニウムを用いることが有利である。更に、原料の価格を考慮すると無水クロム酸が最も好ましい。
【0015】
本発明のクロム処理剤は、アルコール類、糖類、有機オキシ化合物および水溶性アルデヒド類から選ぶことができる。アルコール類としては、エタノール、プロパノール、ブタノール、プロピレングリコール、グリセリン、ペンタエリスリトール、キシロール、ソルビトール等が例示され、糖類としては、ガラクトース、マンニット、イノシット、果糖、デンプン等が挙げられる。また、有機オキシ化合物としては、有機オキシ酸およびそのアンモニウム塩が好ましく、具体的には、グリコール酸、グリセリン酸、シュウ酸および酒石酸と、そのアンモニウム塩が挙げられる。水溶性アルデヒド類としては、ホルムアルデヒド、グリコールアルデヒド等が挙げられる。
上記の化合物は、単独または2種以上の混合物として使用することができる。
【0016】
クロム化合物の処理方法は、クロム化合物の水溶液と上記処理剤の水溶液を混合し、還流器付きの反応器で加熱沸騰せしめる。その際、クロム化合物の濃度および処理剤の濃度は臨界的ではなく、用いるクロム化合物および処理剤の種類に応じて広範に変えうるが、一般には、双方とも0.1〜5.0モル/リットルの濃度が有利であり、これより濃度が低いと生産性が悪く、経済性の面で不利であり、また、これより濃度は高いと得られるクロム化合物の粒子成長が大きくなり、その後の混合の際に均質性ある触媒を得ることができない。加熱により処理する時間は2時間以内、好ましくは30分〜1時間が有利である。この処理により上記クロムの水溶液からゾル状物質(クロム処理物)となる。
【0017】
触媒は公知の方法を用いて製造することができる。例えば、酸化バナジウムをシュウ酸に溶かした水溶液に、ホウ酸水溶液を加え、均一水溶液とした後に、クロム処理物および担体であるアルミナまたはチタニアの粉末を加え混合する。その後、充分に触媒の均質化を図るため機械的な操作により混練した後に、二軸押出し成型機により適用な形状に押出し成型する。得られた成型体は110〜150℃で恒量になるまで乾燥し、次いで、焼成を350〜700℃、好ましくは400〜600℃で数時間以上、空気を流通しながら行う。なお、この焼成に先立って200〜350℃において予備焼成を行うと、より好ましい結果を得ることができる。
【0018】
反応温度は300〜500℃の広い範囲で実施できるが、330〜470℃であることが好ましい。300℃より低い温度では原料化合物の転化率が小さく、500℃より高い温度では二酸化炭素、シアン化水素などの生成が増加しニトリル化合物の収率が低下する。最高の収率を示す反応温度は、原料の種類、原料濃度、接触時間、および触媒の焼成温度などにより変化するので、これらの条件に応じて適宜この範囲で選択することが好ましい。反応ガスと触媒の接触時間は一般にはかなり広い範囲に採ることができるが、0.5〜30秒であることが好ましい。
【0019】
本発明の反応は通常、常圧にて行われるが、加圧下または減圧下にても行うことができる。反応生成物の捕集は、任意の適当な方法、例えば、生成物が析出するに充分な温度まで冷却し捕集する方法、水その他適当な溶媒などで反応生成ガスを洗浄、捕集する方法などが使用される。
【0020】
【実施例】
次に実施例および比較例により、本発明を更に具体的に説明する。但し本発明はこれらの実施例により制限されるものでない。
【0021】
実施例1
(触媒の調製)無水クロム酸CrO319.6gを水80mlに溶解した後に、50℃においてソルビトール35.3gを徐々に加え、溶解し、反応させた後に、還流装置付きフラスコで煮沸し、クロムの処理を完全に行った。一方、五酸化バナジウムV2517.8gを水40mlに溶解し、80〜90℃に加熱後、よく攪拌しながらシュウ酸44.4gを加え、溶解した液に、水30mlに溶解したパラモリブデン酸アンモニウム(NH46Mo724・4H2O 0.69gとホウ酸H3BO31.21gを加えた。次に、酸化アルミニウムα-Al23の粉末300gと、先に調製したクロム処理物をV、Mo、Bの混合水溶液に加えた後、石川式らいかい機により、3時間を要し均質となるまで混練した。その後、得られたケーキを二軸押出し成型機により成型し、110℃で12時間乾燥した後、250℃で予備焼成し、最終450℃で15時間焼成した。この触媒の原子比はCr:V:B:Moが1.0:1.0:0.1:0.02の割合で含有され、触媒中の担体アルミナの濃度は90wt%である。
【0022】
(触媒強度)この触媒の平均直径は3.2mmであり、圧壊強度を測定した結果、強度は113(N)粉化率は1.0重量%と良好な値を示し、実用に耐える強度を有していた。
【0023】
(触媒の活性試験)溶融塩にて加熱された内径23mmの反応器に、この触媒13mlを充填し、メタキシレン濃度0.6容積%、アンモニア3.8容積%、空気95.6容積%よりなるガスを、この触媒が最高のイソフタロニトリル収率を与える温度である400℃において、空時速度SV2330Hr-1の条件で接触反応させた。この結果、メタキシレンに対してイソフタロニトリルの収率が83.8モル%、メタトルニトリルの収率が1.9モル%であり、反応したメタキシレンに対するイソフタロニトリルの選択率は84.1モル%であった。
【0024】
実施例2
(触媒の活性試験)実施例1で調製した触媒を用い、メタキシレンに代えて3メチル−ピリジンを使用して、実施例1と同様に活性試験を行った。3−メチルピリジン0.7容量%、アンモニア2.0容量%、空気97.3容量%よりなるガスを、この触媒が最高の3−シアノピリジン収率を与える温度である390℃、SV2290Hr-1の条件で反応した。この結果、3−メチルピリジンに対する3―シアノピリジンの収率は、90.5モル%であり、反応した3−メチルピリジンに対する3−シアノピリジンの選択率は90.7モル%であった。
【0025】
実施例3
(触媒の調製)ソルビトールに代えて、酒石酸29.4gを用いた以外は実施例1と同様に行った。
【0026】
(触媒強度)この触媒の平均直径は3.2mmであり、圧壊強度を測定した結果、強度は126(N)、粉化率は0.8重量%と良好な値を示し、実用に耐える強度を有していた。
【0027】
(触媒の活性試験)実施例1と同様に活性試験を行った。メタキシレン濃度0.6容積%、アンモニア3.8容積%、空気95.6容積%よりなるガスを、この触媒が最高のイソフタロニトリル収率を与える温度である400℃において、空時速度SV2310Hr-1の条件で接触反応させた。この結果、メタキシレンに対してイソフタロニトリルの収率が82.5モル%、メタトルニトリルの収率が1.6モル%であり、反応したメタキシレンに対するイソフタロニトリルの選択率は83.0モル%であった。
【0028】
実施例4
(触媒の調製)担体アルミナに代えて、酸化チタンの粉末300gを用いた以外は実施例1と同様に行った。
【0029】
(触媒強度)この触媒の平均直径は3.1mmであり、圧壊強度を測定した結果、強度は103(N)、粉化率は1.5重量%と良好な値を示し、実用に耐える強度を有していた。
【0030】
(触媒の活性試験)実施例1と同様に活性試験を行った。メタキシレン濃度0.7容積%、アンモニア3.9容積%、空気95.4容積%よりなるガスを、この触媒が最高のイソフタロニトリル収率を与える温度である375℃において、空時速度SV2350Hr-1の条件で接触反応させた。この結果、メタキシレンに対してイソフタロニトリルの収率が85.6モル%、メタトルニトリルの収率が1.2モル%であり、反応したメタキシレンに対するイソフタロニトリルの選択率は86.1モル%であった。
【0031】
比較例1
(触媒の調製)五酸化バナジウムV2517.8gを水40mlに溶解し、80〜90℃に加熱後、よく攪拌しながらシュウ酸44.4gを加え、溶解した液に、水30mlに溶解したパラモリブデン酸アンモニウム(NH46Mo724・4H2O 0.69gとホウ酸H3BO31.21gを加えた。次に、酸化アルミニウムα-Al23の粉末164gを、先に調製したV、Mo、B混合水溶液に加えた後、石川式らいかい機により、3時間を要し均質となるまで混練した。その後、得られたケーキを二軸押出し成型機により成型し、110℃で12時間乾燥した後、250℃で予備焼成し、最終450℃で15時間焼成した。この触媒の原子比はV:B:Moが1.0:0.1:0.02の割合で含有され、触媒中の担体アルミナの濃度は90wt%である。
【0032】
(触媒強度)この触媒の平均直径は3.3mmであり、圧壊強度を測定した結果、強度は27(N)、粉化率は6.9重量%と悪く、実用上において耐えない強度であった。
【0033】
(触媒の活性試験)溶融塩にて加熱された内径23mmの反応器にこの触媒13mlを充填し、メタキシレン濃度0.6容積%、アンモニア3.8容積%、空気95.6容積%よりなるガスを、この触媒が最高のイソフタロニトリル収率を与える温度である405℃において、空時速度SV2250Hr-1の条件で接触反応させた。この結果、メタキシレンに対してイソフタロニトリルの収率が72.8モル%、メタトルニトリルの収率が1.0モル%であり、反応したメタキシレンに対するイソフタロニトリルの選択率は73.0モル%であった。
【0034】
比較例2
(触媒の活性試験)比較例1で調製した触媒を用い、メタキシレンに代えて3メチル−ピリジンを使用して、比較例1と同様に活性試験を行った。3−メチルピリジン0.7容量%、アンモニア1.9容量%、空気97.4容量%よりなるガスを、この触媒が最高の3−シアノピリジン収率を与える温度である395℃、SV2310Hr-1の条件で反応した。この結果、3−メチルピリジンに対する3―シアノピリジンの収率は、81.5モル%であり、反応した3−メチルピリジンに対する3−シアノピリジンの選択率は81.8モル%であった。
【0035】
比較例3
(触媒の調製)担体アルミナに代えて、酸化チタンの粉末300gを用いた以外は比較例1と同様に行った。
【0036】
(触媒強度)この触媒の平均直径は3.2mmであり、圧壊強度を測定した結果、強度は22(N)、粉化率は7.5重量%と悪く、実用上において耐えない強度であった。
【0037】
(触媒の活性試験)比較例1と同様に活性試験を行った。メタキシレン濃度0.7容積%、アンモニア3.9容積%、空気95.4容積%よりなるガスを、この触媒が最高のイソフタロニトリル収率を与える温度である380℃において、空時速度SV2300Hr-1の条件で接触反応させた。この結果、メタキシレンに対してイソフタロニトリルの収率が72.2モル%、メタトルニトリルの収率が1.5モル%であり、反応したメタキシレンに対するイソフタロニトリルの選択率は72.9モル%であった。
【0038】
【発明の効果】
上述のように、クロム化合物をアルコール類、糖類、有機オキシ化合物および水溶性アルデヒド類から選ばれる少なくとも一種のクロム処理剤で処理したものと、V、MoおよびFeから選ばれた一種以上の金属の酸化物、およびアルミナまたはチタニアを混合することにより、実施例に示される如く、炭素環化合物や複素環化合物をアンモ酸化して対応するニトリル化合物が極めて高い収率で得られ、且つ、取扱い上において実用に耐えうる高強度を有する触媒を得ることができる。一般的に大量の発熱を伴うアンモ酸化反応を固定床で行うためには多管反応器の使用が不可欠であり、本触媒はその実施下において、充分に特性が発揮され、対応するニトリル化合物を工業的に極めて有利に製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aromatic nitrile or a heterocyclic nitrile by reacting a carbocyclic compound or a heterocyclic compound with a mixed gas containing ammonia and oxygen. Aromatic nitriles are useful as production raw materials for synthetic resins, agricultural chemicals, and the like, and as intermediate raw materials for amines, isocyanates, and the like. On the other hand, heterocyclic nitriles are used as intermediate raw materials for pharmaceuticals, feed additives, food additives and the like.
[0002]
[Prior art]
The ammoxidation reaction in which ammonia and oxygen are reacted with a carbocyclic compound or heterocyclic compound in the gas phase is extremely difficult to control the reaction temperature due to the generation of a large amount of reaction heat. The reactor is effective. JP-B-49-45860, which uses silica as a carrier for the catalyst, is an improvement of JP-B-45-19284 and exhibits excellent performance. Also, JP-B-51-15028, JP-A-1-275551, and JP-A-5-170724 can obtain preferable results using a fluidized bed reactor. However, all of these catalysts are subject to catalyst wear and pulverization in a fluid state, and it is difficult to continue a stable reaction. On the other hand, in the fixed bed type, a multi-tubular reactor is used, and generally a metal oxide catalyst in which an active ingredient is supported on alumina or titania is used. These catalysts have a practically durable strength in order to obtain the corresponding nitrile compound in a high yield, and at the same time, to prevent transformation in the reactor due to catalyst dusting during catalyst filling and reaction conditions. It is important to have.
[0003]
As a method for improving the catalyst strength, a strong support can be formed by sintering at 1000 ° C. or higher, and an effective metal oxide can be supported thereon. However, in a catalyst system that requires a large amount of effective metal oxide, It is difficult to obtain sufficient strength because defects such as peeling and cracking occur due to external impact and thermal stress between the support and the effective metal oxide, and the powder is pulverized. In order to increase the bonding force between the support and the effective metal oxide, the support and the effective metal oxide are mixed in the powder stage, and further a molding aid such as alumina or zirconia having a chemical bonding force is added. In this case as well, the strength is improved, but the decomposition reaction is accelerated at the chemically active sites of these oxides, and the desired nitrile product cannot be obtained in high yield.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to provide a practical high-performance reactor in a fixed-bed multi-tubular reactor for ammoxidation of a carbocyclic compound or heterocyclic compound by a gas phase catalytic reaction to produce a corresponding aromatic nitrile or heterocyclic nitrile. It is to propose a catalyst having strength and obtaining the target product in high yield.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor mixed a chromium compound treated with a specific chromium treating agent with a metal oxide containing vanadium, molybdenum or iron and alumina or titania. As a result, the inventors have found that a catalyst having a strength that can be practically endured and capable of obtaining the target product in a high yield can be obtained, and the present invention has been completed. That is, in the present invention, when a carbocyclic compound or a heterocyclic compound and a mixed gas containing ammonia and oxygen are contact-reacted on a catalyst to produce a corresponding nitrile compound, the chromium compound is converted into alcohols, sugars, organic oxy compounds and Prepared by mixing at least one kind of chromium treating agent selected from water-soluble aldehydes with heating and boiling treatment, one or more metal oxides selected from V, Mo and Fe, and alumina or titania. The present invention relates to a method for producing an aromatic nitrile or heterocyclic nitrile characterized by using a high-strength catalyst.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described.
The reaction in the present invention is a reaction (ammoxidation reaction) of a carbocyclic compound or a heterocyclic compound with an oxygen-containing gas and ammonia, and is carried out by contacting in a gas phase on a catalyst.
[0007]
The carbocyclic compound used as a raw material in the present invention is an aromatic compound and an alicyclic compound, and the alicyclic compound is simultaneously oxidized and dehydrogenated in this reaction (ammoxidation reaction) with an oxygen-containing gas and ammonia. Can be easily converted to an aromatic nitrile. Aromatic compounds and alicyclic compounds have a carbocyclic ring such as benzene, naphthalene, anthracene, cyclohexene, cyclohexane, dihydronaphthalene, tetralin, decalin, etc., and bonded methyl, ethyl, propyl, formyl, acetyl groups , A carbocyclic compound having at least one side chain (hereinafter referred to as a substituent) capable of generating a cyano group by an ammoxidation reaction, such as a hydroxymethyl group or a methoxycarbonyl group. The carbocyclic compound can be used even if it contains a halogen group, a hydroxyl group, an alkoxyl group, an amino group, a nitro group, or the like.
For example, toluene, xylene, trimethylbenzene, ethylbenzene, methylnaphthalene, dimethylnaphthalene, methyltetralin, dimethyltetralin, chlorotoluene, dichlorotoluene, methylamylin, cresol, methylanisole and the like can be mentioned.
These compounds can be used alone or in a mixture.
[0008]
The heterocyclic compound used in the present invention has a heterocyclic ring such as furan, pyrrole, indole, thiophene, pyrazole, imiazole, oxazole, pyran, pyridine, quinoline, isoquinoline, pyrroline, pyrrolidine, imidozoline, imidazolidine, pepyridine, and pepyrazine. It is a compound, and has a substituent in the side chain similarly to the said carbocyclic compound. Further, like the carbocyclic compound, it may contain a substituent such as a halogen group.
Examples thereof include furfural, 2-methylthiophene, 3-methylthiophene, 2-formylthiophene, 4-methylthiazole, methylpyridine, dimethylpyridine, trimethylpyridine, methylquinoline, methylpyrazine, dimethylpyrazine, methylpepyrazine and the like.
These compounds can be used alone or in a mixture.
[0009]
The raw material ammonia used in the present invention may be an industrial grade. The amount of ammonia used is in the range of 1 to 10 times mol, preferably 3 to 6 times mol for one substituent contained in 1 mol of the carbocyclic compound or heterocyclic compound. If the amount used is less than this, the yield of the target product is lowered, while if it is more than this, the space-time yield is reduced. In the method of the present invention, unreacted ammonia contained in the reaction gas can be recovered and returned to the reaction system for reuse. There are various methods for recovering unreacted ammonia from the reaction gas, but industrially, it is advantageous to absorb unreacted ammonia in water and then separate it from other by-products by distillation operation. . The amount of water in the ammonia recovered here varies depending on the distillation operating conditions, but is usually 5 to 20% by volume.
[0010]
The oxygen used in the present invention is supplied in the form of an oxygen-containing gas, and usually air is used. Alternatively, air or oxygen can be diluted with an inert gas such as nitrogen, carbon dioxide, exhaust gas or the like. The amount of oxygen used is 1.5 times mol or more, preferably 2 to 50 times mol for one substituent contained in 1 mol of the carbocyclic compound or heterocyclic compound. If the amount used is less than this, the yield of the target product is lowered, while if it is more than this, the space-time yield is reduced.
[0011]
The catalyst used in the present invention is basically composed of a composition containing at least one metal oxide selected from V, Mo and Fe and a chromium-treated product described later. The chromium-treated product is preferably in the range of 1.0 to 10.0% by weight based on the chromium metal oxide. When the chromium-treated product is less than this, the strength of the catalyst and the yield of the target product are obtained. Becomes worse. On the other hand, when the amount is larger than this, the yield is lowered by the diluting action and the catalyst cost is increased, which is disadvantageous in terms of economy. Further, an oxide of at least one metal selected from the group consisting of Mg, Ca, Ba, W, Co, Ni, B, Ge, Sn, Pb, P, Sb and Bi is added to the metal oxide. A modified composition system is preferable, and a metal oxide catalyst represented by the following composition formula is particularly preferable.
Composition formula: (Cr) a (V) b (Mo) c (Fe) d (X) e (O) f
(Where X is Mg, Ca, Ba, W, Co, Ni, B, Ge, Sn, Pb, P, Sb and Bi, subscripts a, b, c, d And e each represent an atomic ratio, a = 0.01 to 1 (preferably 0.1 to 0.7), b = 0.01 to 1 (preferably 0.1 to 0.7), c = 0 -1, d = 0 to 1 (preferably 0.05 to 0.7), e = 0 to 1 (preferably 0.05 to 0.7), and f is an oxide obtained by bonding the above elements Of oxygen).
These metal oxide catalysts can be used as high-strength catalysts in the present invention by using alumina or titania as a support.
[0012]
In the present invention, various metal oxide catalysts included in the above composition formula can be used. In particular, 50 to 99% by weight, preferably 65 to 95% by weight of alumina or titania as a support in Cr to V to B to Mo. A high-strength catalyst added with ˜97% by weight is preferably used.
[0013]
As the vanadium source in this catalyst, ammonium metavanadate, vanadyl sulfate, and vanadium salts of organic acids such as oxalic acid and tartaric acid are used, but ammonium metavanadate that can be easily decomposed into an oxide by subsequent calcination operation. , Vanadyl oxalate, vanadyl tartrate and the like are preferable.
As the boron source, boric acid, ammonium borate, or the like is used.
In addition, examples of the molybdenum source include ammonium paramolybdate, sodium molybdate, and potassium molybdate. Among these, metal cations such as sodium ions and potassium ions are easily decomposed in the subsequent calcination operation, and the catalyst contains metal cations such as sodium ions and potassium ions. Preference is given to ammonium paramolybdate which does not remain in the water.
[0014]
As the chromium source, chromium compounds such as chromic anhydride, ammonium chromate, sodium chromate, ammonium dichromate, potassium dichromate, sodium dichromate, etc. can be used. The salt containing is required to be removed (for example, an ion exchange method), and it is advantageous to use chromic anhydride, ammonium chromate, or ammonium dichromate that does not require this operation. Furthermore, chromic anhydride is most preferable in consideration of the price of the raw material.
[0015]
The chromium treating agent of the present invention can be selected from alcohols, sugars, organic oxy compounds and water-soluble aldehydes. Examples of alcohols include ethanol, propanol, butanol, propylene glycol, glycerin, pentaerythritol, xylol, sorbitol, and the like. Examples of sugars include galactose, mannitol, inosit, fructose, and starch. Moreover, as an organic oxy compound, an organic oxy acid and its ammonium salt are preferable, and specifically, glycolic acid, glyceric acid, oxalic acid, tartaric acid, and its ammonium salt are mentioned. Examples of water-soluble aldehydes include formaldehyde and glycol aldehyde.
Said compound can be used individually or in mixture of 2 or more types.
[0016]
In the method of treating the chromium compound, an aqueous solution of the chromium compound and an aqueous solution of the above-mentioned treatment agent are mixed and heated and boiled in a reactor equipped with a reflux. At that time, the concentration of the chromium compound and the concentration of the treatment agent are not critical and can vary widely depending on the type of the chromium compound and the treatment agent to be used, but generally both are 0.1 to 5.0 mol / liter. If the concentration is lower than this, the productivity will be poor, and it will be disadvantageous in terms of economy. In this case, a homogeneous catalyst cannot be obtained. The treatment time by heating is advantageously within 2 hours, preferably 30 minutes to 1 hour. By this treatment, the chromium aqueous solution becomes a sol-like substance (chromium treated product).
[0017]
The catalyst can be produced using a known method. For example, an aqueous boric acid solution is added to an aqueous solution in which vanadium oxide is dissolved in oxalic acid to obtain a uniform aqueous solution, and then a chromium-treated product and alumina or titania powder as a carrier are added and mixed. Thereafter, in order to sufficiently homogenize the catalyst, the mixture is kneaded by a mechanical operation and then extruded into an appropriate shape by a biaxial extruder. The obtained molded body is dried at 110 to 150 ° C. until a constant weight is obtained, and then calcined at 350 to 700 ° C., preferably 400 to 600 ° C., for several hours or more while circulating air. In addition, a more preferable result can be obtained when preliminary baking is performed at 200 to 350 ° C. prior to the baking.
[0018]
Although reaction temperature can be implemented in the wide range of 300-500 degreeC, it is preferable that it is 330-470 degreeC. When the temperature is lower than 300 ° C., the conversion rate of the raw material compound is small, and when the temperature is higher than 500 ° C., the production of carbon dioxide, hydrogen cyanide and the like increases and the yield of the nitrile compound decreases. Since the reaction temperature showing the highest yield varies depending on the type of raw material, the raw material concentration, the contact time, the calcination temperature of the catalyst, and the like, it is preferably selected within this range depending on these conditions. In general, the contact time between the reaction gas and the catalyst can be in a considerably wide range, but is preferably 0.5 to 30 seconds.
[0019]
The reaction of the present invention is usually carried out at normal pressure, but can be carried out under pressure or under reduced pressure. The reaction product can be collected by any appropriate method, for example, a method of cooling and collecting to a temperature sufficient to precipitate the product, a method of washing and collecting the reaction product gas with water or other suitable solvent Etc. are used.
[0020]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by these examples.
[0021]
Example 1
(Preparation of catalyst) After 19.6 g of CrO 3 chromic acid was dissolved in 80 ml of water, 35.3 g of sorbitol was gradually added at 50 ° C., dissolved, reacted, and then boiled in a flask equipped with a reflux apparatus. The processing of was complete. On the other hand, 17.8 g of vanadium pentoxide V 2 O 5 was dissolved in 40 ml of water, heated to 80 to 90 ° C., 44.4 g of oxalic acid was added with good stirring, and the dissolved liquid was dissolved in 30 ml of water. 0.69 g of ammonium molybdate (NH 4 ) 6 Mo 7 O 24 · 4H 2 O and 1.21 g of boric acid H 3 BO 3 were added. Next, after adding 300 g of aluminum oxide α-Al 2 O 3 powder and the previously prepared chromium-treated product to the mixed aqueous solution of V, Mo, and B, it takes 3 hours to homogenize with an Ishikawa-type cracker. Until kneaded. Thereafter, the obtained cake was molded by a twin screw extrusion molding machine, dried at 110 ° C. for 12 hours, pre-fired at 250 ° C., and finally fired at 450 ° C. for 15 hours. The atomic ratio of this catalyst is such that Cr: V: B: Mo is contained at a ratio of 1.0: 1.0: 0.1: 0.02, and the concentration of carrier alumina in the catalyst is 90 wt%.
[0022]
(Catalyst strength) The average diameter of this catalyst is 3.2 mm, and the crushing strength was measured. As a result, the strength was 113 (N) and the powdering rate was a good value of 1.0% by weight. Had.
[0023]
(Catalyst activity test) A reactor having an inner diameter of 23 mm heated with a molten salt was charged with 13 ml of this catalyst. From a metaxylene concentration of 0.6 vol%, ammonia of 3.8 vol%, and air of 95.6 vol% Was reacted at 400 ° C., the temperature at which this catalyst gave the highest isophthalonitrile yield, under the conditions of space-time rate SV2330Hr −1 . As a result, the yield of isophthalonitrile with respect to metaxylene was 83.8 mol%, the yield of methanitronitrile was 1.9 mol%, and the selectivity of isophthalonitrile with respect to the reacted metaxylene was 84. It was 1 mol%.
[0024]
Example 2
(Catalyst activity test) An activity test was conducted in the same manner as in Example 1 except that the catalyst prepared in Example 1 was used, and 3-methyl-pyridine was used instead of metaxylene. A gas consisting of 0.7% by volume of 3-methylpyridine, 2.0% by volume of ammonia and 97.3% by volume of air was converted to 390 ° C., SV2290Hr −1 , the temperature at which this catalyst gives the highest 3-cyanopyridine yield. It reacted on the conditions of. As a result, the yield of 3-cyanopyridine with respect to 3-methylpyridine was 90.5 mol%, and the selectivity for 3-cyanopyridine with respect to reacted 3-methylpyridine was 90.7 mol%.
[0025]
Example 3
(Preparation of catalyst) The same procedure as in Example 1 was conducted except that 29.4 g of tartaric acid was used instead of sorbitol.
[0026]
(Catalyst strength) The average diameter of this catalyst is 3.2 mm, and the crushing strength was measured. As a result, the strength was 126 (N), and the powdering rate was 0.8% by weight. Had.
[0027]
(Catalyst activity test) The activity test was conducted in the same manner as in Example 1. A gas consisting of a metaxylene concentration of 0.6% by volume, ammonia of 3.8% by volume, and air of 95.6% by volume at a temperature of 400 ° C., the temperature at which this catalyst gives the highest isophthalonitrile yield, is a space time rate SV2310Hr. The contact reaction was carried out under the condition of -1 . As a result, the yield of isophthalonitrile with respect to metaxylene was 82.5 mol%, and the yield of metatolunitrile was 1.6 mol%. The selectivity of isophthalonitrile with respect to the reacted metaxylene was 83. It was 0 mol%.
[0028]
Example 4
(Preparation of catalyst) The same procedure as in Example 1 was conducted except that 300 g of titanium oxide powder was used instead of carrier alumina.
[0029]
(Catalyst strength) The average diameter of this catalyst is 3.1 mm, and the crushing strength was measured. As a result, the strength was 103 (N), and the powdering rate was 1.5% by weight. Had.
[0030]
(Catalyst activity test) The activity test was conducted in the same manner as in Example 1. A gas consisting of a meta-xylene concentration of 0.7% by volume, ammonia of 3.9% by volume, and air of 95.4% by volume at a temperature of 375 ° C., the temperature at which this catalyst gives the highest isophthalonitrile yield, is a space time rate of SV2350Hr. The contact reaction was carried out under the condition of -1 . As a result, the yield of isophthalonitrile was 85.6 mol% with respect to metaxylene, and the yield of metatolunitrile was 1.2 mol%. The selectivity of isophthalonitrile with respect to the reacted metaxylene was 86. It was 1 mol%.
[0031]
Comparative Example 1
(Preparation of catalyst) 17.8 g of vanadium pentoxide V 2 O 5 was dissolved in 40 ml of water, heated to 80 to 90 ° C., 44.4 g of oxalic acid was added with good stirring, and 30 ml of water was added to the dissolved solution. 0.69 g of dissolved ammonium paramolybdate (NH 4 ) 6 Mo 7 O 24 · 4H 2 O and 1.21 g of boric acid H 3 BO 3 were added. Next, 164 g of aluminum oxide α-Al 2 O 3 powder was added to the previously prepared mixed aqueous solution of V, Mo, and B, and then kneaded with an Ishikawa-type cracker until homogenous for 3 hours. . Thereafter, the obtained cake was molded by a twin screw extrusion molding machine, dried at 110 ° C. for 12 hours, pre-fired at 250 ° C., and finally fired at 450 ° C. for 15 hours. The atomic ratio of this catalyst is such that V: B: Mo is contained at a ratio of 1.0: 0.1: 0.02, and the concentration of carrier alumina in the catalyst is 90 wt%.
[0032]
(Catalyst strength) The average diameter of this catalyst was 3.3 mm, and the crushing strength was measured. As a result, the strength was 27 (N) and the powdering rate was 6.9% by weight, which was unacceptable in practical use. It was.
[0033]
(Catalyst activity test) A reactor having an inner diameter of 23 mm heated with molten salt was charged with 13 ml of this catalyst, and consisted of a metaxylene concentration of 0.6% by volume, ammonia of 3.8% by volume, and air of 95.6% by volume. The gas was catalytically reacted at 405 ° C., the temperature at which this catalyst gave the highest isophthalonitrile yield, at a space time rate of SV2250 Hr −1 . As a result, the yield of isophthalonitrile with respect to metaxylene was 72.8 mol%, and the yield of metatolunitrile was 1.0 mol%. The selectivity of isophthalonitrile with respect to the reacted metaxylene was 73. It was 0 mol%.
[0034]
Comparative Example 2
(Catalyst activity test) An activity test was conducted in the same manner as in Comparative Example 1 except that the catalyst prepared in Comparative Example 1 was used, and 3-methyl-pyridine was used instead of metaxylene. A gas consisting of 0.7% by volume of 3-methylpyridine, 1.9% by volume of ammonia, and 97.4% by volume of air was converted to 395 ° C., SV2310Hr −1 , the temperature at which this catalyst gives the highest 3-cyanopyridine yield. It reacted on the conditions of. As a result, the yield of 3-cyanopyridine with respect to 3-methylpyridine was 81.5 mol%, and the selectivity for 3-cyanopyridine with respect to reacted 3-methylpyridine was 81.8 mol%.
[0035]
Comparative Example 3
(Preparation of catalyst) The same procedure as in Comparative Example 1 was conducted except that 300 g of titanium oxide powder was used instead of carrier alumina.
[0036]
(Catalyst strength) The average diameter of this catalyst was 3.2 mm, and the crushing strength was measured. As a result, the strength was 22 (N) and the powdering rate was 7.5 wt%, which was unacceptable in practical use. It was.
[0037]
(Catalyst activity test) The activity test was conducted in the same manner as in Comparative Example 1. A gas consisting of a metaxylene concentration of 0.7% by volume, ammonia of 3.9% by volume, and air of 95.4% by volume at a temperature of 380 ° C., the temperature at which this catalyst gives the highest isophthalonitrile yield, is a space-time rate of SV2300Hr. The contact reaction was carried out under the condition of -1 . As a result, the yield of isophthalonitrile with respect to metaxylene was 72.2 mol%, and the yield of metatolunitrile was 1.5 mol%. The selectivity of isophthalonitrile with respect to the reacted metaxylene was 72. It was 9 mol%.
[0038]
【The invention's effect】
As described above, a chromium compound treated with at least one chromium treating agent selected from alcohols, saccharides, organic oxy compounds and water-soluble aldehydes, and one or more metals selected from V, Mo and Fe By mixing the oxide and alumina or titania, as shown in the examples, the carbocyclic compound or heterocyclic compound is ammoxidized to obtain the corresponding nitrile compound in a very high yield. A catalyst having high strength that can withstand practical use can be obtained. In general, the use of a multi-tube reactor is indispensable for carrying out an ammoxidation reaction with a large amount of heat generation in a fixed bed. It can be produced very advantageously industrially.

Claims (4)

炭素環化合物または複素環化合物と、アンモニアおよび酸素を含む混合ガスを触媒上で接触反応させて対応するニトリル化合物を製造するに際し、クロム化合物をアルコール類、糖類、有機オキシ化合物および水溶性アルデヒド類から選ばれる少なくとも一種のクロム処理剤を用いて加熱沸騰処理したものと、V、MoおよびFeから選ばれた一種以上の金属の酸化物、およびアルミナまたはチタニアを混合して調製した高強度触媒を用いることを特徴とする芳香族ニトリルまたは複素環ニトリルの製造方法。When producing a corresponding nitrile compound by catalytically reacting a mixed gas containing ammonia and oxygen with a carbocyclic compound or heterocyclic compound, the chromium compound is converted from alcohols, sugars, organic oxy compounds and water-soluble aldehydes. A high-strength catalyst prepared by mixing at least one kind of chromium treatment agent selected by heating and boiling with one or more metal oxides selected from V, Mo and Fe, and alumina or titania is used. A process for producing an aromatic nitrile or heterocyclic nitrile, characterized in that 前記クロム化合物が、無水クロム酸、クロム酸アンモニウムおよび/または重クロム酸アンモニウムである請求項1に記載の芳香族ニトリルまたは複素環ニトリルの製造方法。The method for producing an aromatic nitrile or heterocyclic nitrile according to claim 1, wherein the chromium compound is chromic anhydride, ammonium chromate and / or ammonium dichromate. 前記高強度触媒が、Mg、Ca,Ba、W、Co、Ni、B、Ge、Sn、Pb、P、SbおよびBiの群から選ばれた少なくとも一種の金属の酸化物を更に含むものである請求項1または2に記載の芳香族ニトリルまたは複素環ニトリルの製造方法。The high-strength catalyst further contains an oxide of at least one metal selected from the group consisting of Mg, Ca, Ba, W, Co, Ni, B, Ge, Sn, Pb, P, Sb and Bi. A process for producing an aromatic nitrile or heterocyclic nitrile according to 1 or 2. 高強度触媒に含まれる金属の酸化物が、V、MoおよびBの酸化物である請求項3に記載の芳香族ニトリルまたは複素環ニトリルの製造方法。The method for producing an aromatic nitrile or heterocyclic nitrile according to claim 3, wherein the metal oxide contained in the high-strength catalyst is an oxide of V, Mo and B.
JP2002065579A 2002-03-11 2002-03-11 Process for producing aromatic nitrile and heterocyclic nitrile Expired - Lifetime JP4240191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065579A JP4240191B2 (en) 2002-03-11 2002-03-11 Process for producing aromatic nitrile and heterocyclic nitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065579A JP4240191B2 (en) 2002-03-11 2002-03-11 Process for producing aromatic nitrile and heterocyclic nitrile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008151462A Division JP2009007354A (en) 2008-06-10 2008-06-10 Process for producing aromatic nitrile and heterocyclic nitrile

Publications (2)

Publication Number Publication Date
JP2003267942A JP2003267942A (en) 2003-09-25
JP4240191B2 true JP4240191B2 (en) 2009-03-18

Family

ID=29197818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065579A Expired - Lifetime JP4240191B2 (en) 2002-03-11 2002-03-11 Process for producing aromatic nitrile and heterocyclic nitrile

Country Status (1)

Country Link
JP (1) JP4240191B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341613A1 (en) 2003-09-10 2005-04-14 Basf Ag Process for the preparation of xylylenediamine
JP5353095B2 (en) * 2008-07-22 2013-11-27 三菱瓦斯化学株式会社 Method for producing aromatic nitrile
JP2010024187A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile
US8212080B2 (en) 2008-12-26 2012-07-03 Mitsubishi Gas Chemical Company, Inc. Production method of xylylenediamine
JP5884738B2 (en) 2011-01-31 2016-03-15 三菱瓦斯化学株式会社 Method for producing xylylenediamine
JP5858319B1 (en) 2014-03-10 2016-02-10 三菱瓦斯化学株式会社 Dicyanobenzene production method and production apparatus
TWI811312B (en) * 2018-03-30 2023-08-11 日商三菱瓦斯化學股份有限公司 Method for producing aromatic nitrile by ammoxidation reaction

Also Published As

Publication number Publication date
JP2003267942A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JPH0132820B2 (en)
JP4240191B2 (en) Process for producing aromatic nitrile and heterocyclic nitrile
US4985581A (en) Catalyst and process for producing aromatic nitriles
JP5626208B2 (en) Ammoxidation catalyst and method for producing nitrile compound using the same
JP4240162B2 (en) Method for producing nitrile compound and catalyst for production
EP0930295B1 (en) Process for producing nitrile compound and catalyst used therefor
JP2010024187A (en) Method for producing aromatic nitrile
US3959339A (en) Process for producing aromatic nitriles
JP3156734B2 (en) Method for producing nitrile compound and catalyst for production
JP4386155B2 (en) Method for producing aromatic nitrile or heterocyclic nitrile
JP2009007354A (en) Process for producing aromatic nitrile and heterocyclic nitrile
JP4380866B2 (en) Method for producing nitrile compound
JP4114019B2 (en) Nitrile compound production method and production catalyst
JP5353095B2 (en) Method for producing aromatic nitrile
US7102025B2 (en) Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
EP0525367A1 (en) Catalyst and process for producing nitrile compounds
CN115041203B (en) Ammonia oxidation catalyst, preparation method and application
JP3431032B2 (en) Method for producing naphthalene nitriles
EP3778561B1 (en) Method for producing aromatic nitrile by ammoxidation reaction
JP4054959B2 (en) Method for producing nitrile compound
JP2933114B2 (en) Method for producing naphthalene nitriles
JP2002088043A (en) Method for producing nitrile compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4240191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

EXPY Cancellation because of completion of term