JP4238944B2 - Method for producing 4,6-diaminoresorcinol or a salt thereof - Google Patents

Method for producing 4,6-diaminoresorcinol or a salt thereof Download PDF

Info

Publication number
JP4238944B2
JP4238944B2 JP01652099A JP1652099A JP4238944B2 JP 4238944 B2 JP4238944 B2 JP 4238944B2 JP 01652099 A JP01652099 A JP 01652099A JP 1652099 A JP1652099 A JP 1652099A JP 4238944 B2 JP4238944 B2 JP 4238944B2
Authority
JP
Japan
Prior art keywords
diaminoresorcinol
salt
reaction
substituted
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01652099A
Other languages
Japanese (ja)
Other versions
JPH11279128A (en
Inventor
健一 徳永
元人 白鳥
和彦 穐本
秀雄 鈴木
功 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP01652099A priority Critical patent/JP4238944B2/en
Publication of JPH11279128A publication Critical patent/JPH11279128A/en
Application granted granted Critical
Publication of JP4238944B2 publication Critical patent/JP4238944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、4,6−ジアミノレゾルシノールまたはその塩の製造方法に関する。更に詳しくいえば、4,6−ビス(置換)フェニルアゾレゾルシノールの還元により4,6−ジアミノレゾルシノールまたはその塩の製造方法に関する。
【0002】
4,6−ジアミノレゾルシノールは、ポリベンゾオキサゾールのモノマーであり、このポリベンゾオキサゾールは高強度、高弾性率を有し、また耐熱性、耐薬品性に優れた特性を有するポリマーである(特表昭61−501452号公報、特開平2−229143号公報参照)。
【0003】
【従来の技術】
4,6−ビスフェニルアゾレゾルシノールの還元は通常、貴金属触媒を用い水素で還元する(特開平7−242604号公報)。特開平7−242604号公報によれば、還元は中性条件で溶媒中で実施されている。溶媒としては、水、低級アルコール、芳香族炭化水素類、ハロ置換ベンゼン類、ハロゲン化脂肪族炭化水素類、エーテル類、低級ケトン類を単独、または組み合わせて使用することが記載されている。また、還元反応終了後の後処理は2つの方法が記載されている。1つは、窒素雰囲気下そのままセライト濾過して4,6−ジアミノレゾルシノールを得た後、酸を加え酸性塩とし、触媒およびセライトを濾別後、精製し単離する方法である。2つ目は、反応液に酸を加えて塩とし溶解して、触媒を濾別後、精製し単離する方法である。
【0004】
前者は、反応で生成するアニリンの回収が容易で、精製工程が簡単であるという効果があるが、濾過性が非常に悪い。濾液への4,6−ジアミノレゾルシノールのロスが多く収率が60%と悪く、工業的方法とは言い難い。
【0005】
後者は、酸を加えて塩としているので空気中の安定性は良く操作性は良い。また、濾過性も良く、問題になることはない。ただし、副生成するアニリンと4,6−ジアミノレゾルシノールの分離精製が酸性溶液中のため甚だ複雑になる欠点も有する。
【0006】
【発明が解決しようとする課題】
4,6−ビス(置換)フェニルアゾレゾルシノールの還元では、4,6−ジアミノレゾルシノールの他に2当量のアニリン誘導体が副生する。このアニリン誘導体をいかに簡便に、生成した目的物の4,6−ジアミノレゾルシノールのロスを少なく分離できるかが、4,6−ビス(置換)フェニルアゾレゾルシノールの還元方法の最大の課題である。
【0007】
本発明者等は、鋭意検討の結果、4,6−ジアミノレゾルシノールをフリーで工業的に扱う方法を見出し本発明を完成させた。すなわち、4,6−ビスフェニルアゾレゾルシノール誘導体の還元反応を、選ばれた溶媒中で貴金属触媒下水素で還元することにより、高収率で4,6−ジアミノレゾルシノールを得た。
【0008】
ただし、溶媒によっては濾過性が悪い場合もある。その時は、活性炭などの濾過助剤を加えて反応すると、濾過性が著しく改善される。
【0009】
本発明の目的は、4,6−ビス(置換)フェニルアゾレゾルシノールより、高純度の4,6−ジアミノレゾルシノールを高収率で容易に得る事が出来る方法の提供にある。これによりアニリン誘導体の回収率も向上し、経済的に有利になる。
【0010】
【課題を解決するための手段】
本発明者等は、鋭意研究の結果、前記課題を解決する方法を見出し本発明を完成した。即ち、本発明は、式〔1〕
【0011】
【化3】

Figure 0004238944
【0012】
(式中、Rはハロゲン原子、炭素原子数1〜5のアルキル基、ヒドロキシカルボニル基又は炭素原子数1〜5のアルコキシ基を表し、nは0又は1〜5のいずれかの整数を表し、2個以上のRは互いに同一又は異なっていてもよい。)で表される4,6−ビス(置換)フェニルアゾレゾルシノールを金属触媒の存在下に水素還元し、4,6−ジアミノレゾルシノール又はその塩(その塩とは、4,6−ジアミノレゾルシノールの酸塩を意味する。以下、同じ)を得る方法において、溶媒として脂肪族ニトリル化合物を用いることを特徴とする4,6−ジアミノレゾルシノール又はその塩の製造方法に関する。
【0013】
また、本発明は、上記の式〔1〕で表される4,6−ビス(置換)フェニルアゾレゾルシノールを金属触媒及び溶媒の存在下に水素還元し、4,6−ジアミノレゾルシノール又はその塩を得る還元方法において、溶媒として脂肪族ニトリル化合物、炭素数3〜5の脂肪族アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル及びジオキサンから選ばれる少なくとも一種の有機溶媒を用い、更に濾過助剤の存在下に還元を行うことを特徴とする4,6−ジアミノレゾルシノール又はその塩の製造方法に関する。
【0014】
【発明の実施の形態】
本発明の出発原料である4,6−ビス(置換)フェニルアゾレゾルシノールは、式〔2〕
【0015】
【化4】
Figure 0004238944
【0016】
(式中、Rとnは式〔1〕中と同じに定義される。)
で表される(置換)アニリンをジアゾ化し(置換)ベンゼンジアゾニウム塩を得、該ジアゾニウム塩を、レゾルシノールとカップリング反応させて得ることができる。具体的には、置換アニリンと5〜10重量倍の水との混合物中に、冷却下、アニリンに対して2.5〜4当量の無機酸を滴下し、この混合液中へ、(置換)アニリンに対し2〜3重量倍の水に溶解した1〜1.5倍モルの亜硝酸ナトリウム又は亜硝酸カリウムを10℃以下で滴下することにより(置換)ベンゼンジアゾニウム塩を得る。無機酸としては塩酸、臭化水素酸、硫酸及び燐酸の中から選ばれた少なくとも1種の無機酸が用いられる。これらの無機酸の中で塩酸が工業上経済的に好ましい。
【0017】
具体的には、例えばアニリン、2−クロロアニリン、4−クロロアニリン、2,6−ジクロロアニリン、o−トルイジン、m−トルイジン、p−トルイジン、アントラニル酸、o−アニシジン、m−アニシジン及びp−アニシジン等を挙げることができ、これらのアニリンのいずれかを使用することが好ましい。経済性、化合物の安定性などでアニリンが最も好ましい。
【0018】
(置換)ベンゼンジアゾニウム塩とレゾルシノールのカップリング反応は、公知の方法が用いられるが、本出願人が特開平9−124575号として出願した式〔3〕
【0019】
【化5】
Figure 0004238944
【0020】
(式中、Rとnは式〔1〕中と同じに定義され、XはCl、Br、OSO3H又はOPO32を表す。)
で表される(置換)ベンゼンジアゾニウム塩をアルカリ性にした溶媒中で反応させることによる方法、或いは特開平9−157239号として出願した、式〔3〕で表される(置換)ベンゼンジアゾニウム塩の溶液とアルカリ金属又はアルカリ土類金属の水酸化物の溶液又は懸濁液とを混合し、アルカリ性とした混合液を得、この混合液とレゾルシノール及び/又はそのアルカリ金属塩若しくはアルカリ土類金属塩を混合し反応させる方法が、好ましい。
【0021】
この様に本願発明の原料である4,6−ビス(置換)フェニルアゾレゾルシノールはレゾルシノールとアルカリ性(置換)ベンゼンジアゾニュウム塩を反応したのち、酸性とした後濾集し、水洗したものである。これをそのまま用いても良いし、乾燥して用いても良い。還元反応の収率的に見れば水の混入は、濾液への4,6−ジアミノレゾルシノールの逃げを大きくするので、乾燥品が好ましい。反応混合物を精製しないで使用する為、4,6−ビス(置換)フェニルアゾレゾルシノールの純度は80%前後であり、他に4−フェニルアゾレゾルシノールや2,4,6−トリフェニルアゾレゾルシノールや構造不明のものも含まれるが、大きな問題はない。この混合物をトルエンなどで再結晶し精製したものも、当然使用でき結果は良いが、4,6−ビスフェニルアゾレゾルシノールの精製は、その溶解性の悪さの為に非常に困難である。
【0022】
次に、4,6−ビス(置換)フェニルアゾレゾルシノールの金属触媒及び溶媒の存在下の水素還元方法について述べる。還元反応に用いられる溶媒としては、、脂肪族ニトリル化合物、炭素数3〜5の脂肪族アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル及びジオキサンから選ばれる少なくとも一種の有機溶媒を用いられる。メタノール、エタノールでは、4,6−ジアミノレゾルシノールの濾液への逃げが多く、経済性に問題がある。ニトリル類以外は生成した4,6−ジアミノレゾルシノールの濾集の際に、極めて濾過性が悪く工業的操作は問題がある。その際に反応中に濾過助剤を加えると、濾過性は大幅に改善される。 一方、ニトリル類は濾過性も良く、濾液への逃げも少なく好ましい。濾過助剤の添加はニトリル類でも、濾過性改良に効果的である。
【0023】
濾過助剤としては、活性炭、セライト、活性白土及びセルロースが用いられ、特には活性炭が好ましい。
【0024】
濾過助剤の量としては4,6−ビス(置換)フェニルアゾレゾルシノールに対して1〜100重量%であるが、濾過性が悪い場合は多く、良い場合は少なくて良い。好ましくは5〜30重量%である。反応系への濾過助剤の添加は、濾過性の向上のみならず、反応時間の短縮にも効果的である。原料中の不純物を吸着し、触媒の劣化を防いでるのであろう。また、場合により、反応終了後に濾過助剤を添加しても濾過性の改善が見られる。
【0025】
脂肪族ニトリル化合物としては、炭素数2〜6のモノシアノ化合物が好ましい。具体的には、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、トリメチルアセトニトリル、ヘキサンニトリル及び4−メチルバレロニトリル等が挙げられる。特に好ましいものは、反応が速く、経済的に安価なアセトニトリル、プロピオニトリル、ブチロニトリル及びイソブチロニトリル等が挙げられる。
【0026】
更に、具体的に示せば、反応基質を4,6−ビスフェニルアゾレゾルシノールを用いた場合、4,6−ジアミノレゾルシノールの反応収率は98〜99%で、4,6−ジアミノレゾルシノールの結晶収率は93〜96%で得られ、更に、4,6−ジアミノレゾルシノールの粗結晶中のアニリン収率は、1〜2%となり、高純度の4,6−ジアミノレゾルシノールが高収率で結晶として単離することができる。一方、濾液には、ほぼ理論量のアニリンが含まれている。
【0027】
溶媒の使用量は、4,6−ビス(置換)フェニルアゾレゾルシノールを基準として1〜50重量倍、好ましくは2〜20重量倍である。
【0028】
本発明で使用する金属触媒としては、銅及び周期律表第8族元素の中から選ばれた少なくとも一種の金属である。周期律表第8族元素としては白金、パラジウム、ルテニウム、ロジウム、ニッケル、コバルト、イリジウム等が挙げられる。これらの金属触媒の中で白金及びパラジウムが、本反応では4,6−ジアミノレゾルシノールを高収率で得ることができ好ましい。
【0029】
触媒の形態としては、例えばパラジウム黒や白金黒等の単体、ラネーニッケルやコバルト等の合金、塩化パラジウムや酢酸パラジウム等の金属塩、酸化銅や酸化白金等の金属酸化物、アセチルアセトン銅やアセチルアセトンパラジウム等の金属錯体及び炭素、シリカ、アルミナ、ジルコニア、チタニア、ゼオライト等の酸化物に担持させた担体付き金属等が挙げられる。これらの中で特には担体付き金属が回収再使用の都合上好ましく、パラジウム−炭素や白金−炭素が好ましい。特に白金−炭素が、低担持量にもかかわらず、パラジウム−活性炭より高活性で好ましい。
【0030】
更に、活性を向上させる目的と反応及び酸処理等による劣化を抑制し、再使用を可能にする目的から、白金、パラジウムまたはルテニウム等の第一金属に、第二金属を添加した多元金属系触媒にすることもできる。第二金属としては、レニウム、イリジウム、錫、アンチモン、ゲルマニウム、インジウム及びロジウム等の一種以上を、第一金属に対して2〜50原子モル%添加する事が好ましい。
【0031】
具体的には、例えば5%Pd/1%Re−C、5%Pd/2%In−C、2%Pt/0.5%Re−C、1%Pt/0.2%Ge−C等を挙げることができる。
【0032】
触媒の使用量は、4,6−ビス(置換)フェニルアゾレゾルシノールに対し金属分として0.0005〜10重量%が好ましく、特には0.001〜10重量%で使用される。
【0033】
水素圧は、常圧〜10000kPaであるが、好ましくは常圧〜1000kPaである。反応温度は、−10〜150℃で可能であるが、好ましくは0〜100℃より好ましくは10〜80℃である。
【0034】
反応液は、4,6−ジアミノレゾルシノールが固体となり存在している。取り出し方法について説明する。空気に触れないようにして、濾過することで4,6−ジアミノレゾルシノールを触媒、濾過助剤とともに得る事ができる。アニリンは濾液に行くが、濾過性が悪いとケーキの含液が多くアニリンの除去が不充分になるので、少量の反応溶媒、低級アルコール、水のいずれかで洗浄する。
【0035】
4,6−ジアミノレゾルシノールはフリーでは、酸素、温度とも不安定であるので酸を加えて塩とする必要がある。酸としては塩酸、臭化水素酸、硫酸およびリン酸等が使用できるが塩酸がもっとも工業的に好ましい。2倍モル以上の塩酸水溶液に加えて、加熱溶解するか、ロート上に2倍モル以上の塩酸水溶液を加えて溶解または懸濁して抜き出し、加熱溶解する。不溶物を濾別し、必要によっては活性炭処理を行い、活性炭を濾別し塩酸を加えて冷却して析出した4,6−ジアミノレゾルシノール塩酸塩を濾集する。活性炭は脱色に卓効がある。
【0036】
塩酸水溶液を用いて4,6−ジアミノレゾルシノールを溶解するとき、塩酸量は2〜10倍モル使用するが、塩酸が多いと溶解度が下がるので、4,6−ジアミノレゾルシノールの2〜3倍モルが好ましい。水は4,6−ジアミノレゾルシノールの1〜20部使用するが、溶解度及び晶析の関係で3〜10部が好ましい。活性炭は着色と目的に応じて必要量が変わるが、0〜100重量%、好ましくは5〜30重量%である。
【0037】
活性炭処理後、濃塩酸を加えて塩析で固体を析出するが、加える塩酸は4,6−ジアミノレゾルシノールの4〜20倍モルが良い。経済的には水量にも影響されるが、4〜8倍モルが好ましい。更に濾過後乾燥して4,6−ジアミノレゾルシノール2塩酸塩を得る。
【0038】
4,6−ジアミノレゾルシノール2塩酸塩も酸化を受けやすいが、塩化第1錫を加えると酸化に対して抵抗効果がある。
尚、前記還元反応は、連続的に行う事が出来る。
【0039】
【実施例】
以下、実施例により本願発明をより詳細に説明するが、本発明は、これらによって限定されるものではない。
参考例−1
アニリン41g、35%塩酸98g、水100gの混合溶液中に、0〜5℃で亜硝酸ナトリウム30gを水55gに溶解させた溶液を滴下し、塩化ベンゼンジアゾニウム水溶液を合成した。この塩化ベンゼンジアゾニウム水溶液を水酸化ナトリウム55g、水110gよりなる混合液に10℃以下で滴下した。
【0040】
この混合液をレゾルシノール22g、水酸化ナトリウム24g、水22gよりなる混合液に10℃で40分かけ滴下した。滴下終了後10℃で3時間撹拌した。反応終了後、反応混合物に塩酸を加え酸性とし、析出した固体を濾集、水洗、乾燥して62gの暗赤色固体を得た。4,6−ビスフェニルアゾレゾルシノールの純度は79.5%であり、約5%の2,4,6−トリフェニルアゾレゾルシノールを含む。
【0041】
実施例1
4,6−ビスフェニルアゾレゾルシノール(純度79.5%)10.0g(0.025mol)、アセトニトリル50g、5%Pd−C2.0gを100mlハステロイ製オートクレーブに仕込み、水素を300kPaの一定圧力で水素蓄圧器より供給しながら、攪拌速度600rpm、30℃で反応させた。反応時間2.5時間で、水素蓄圧器の圧力減少が停止した。そこで攪拌停止後、オートクレーブを室温に戻してから、窒素置換後反応物を取り出した。スラリー状の反応物を窒素雰囲気下濾過によりケーキと濾液に分離した。この濾過時間は20分であった。ケーキは、アセトニトリルで洗浄し、湿品を得た。湿品およびろ洗液(濾液と洗液を混合したもの)は塩酸塩として以下の分析を行った。
【0042】
即ち、湿品及びろ洗液中に生成した4,6−ジアミノレゾルシノール(DAR)とアニリンの収率を液体クロマトグラフィーで分析した。結果を表1に示す。湿品中のDAR収率は、92.5%、ろ洗液中の収率は、4.5%で合計収率は97%であった。アニリンの収率は、湿品中1.5%、ろ洗液中222.0%で合計収率は223.5%であった。
【0043】
尚、アニリン収率が、200%を越えるのは、原料の不純物として含まれる4−アゾレゾルシノール及び2,4,6−トリアゾレゾルシノールが水素化分解されてアニリンを遊離するためである。
【0044】
比較例1
実施例1において溶媒をイソプロパノールに代えた他は実施例1と同様に還元反応を行った。濾過時間が、約1時間かかっても終わらないのでその後の処理を中断した。
【0045】
実施例2
4,6−ビスフェニルアゾレゾルシノール(純度79.5%)10.0g(0.025mol)、アセトニトリル50g、5%Pd−C2.0g及び活性炭1.0gを100mlハステロイ製オートクレーブに仕込み、水素を300kPaの一定圧力で水素蓄圧器より供給しながら、攪拌速度600rpm、30℃で反応させた。反応時間2.5時間で、水素蓄圧器の圧力減少が停止した。そこで攪拌停止後、オートクレーブを室温に戻してから、窒素置換後反応物を取り出した。スラリー状の反応物を窒素雰囲気下濾過によりケーキと濾液に分離した。この濾過時間は10分であった。ケーキは、アセトニトリルで洗浄し、湿品を得た。実施例1と同様に分析を行った。湿品中のDAR収率は、93.1%、濾洗液中の収率は、4.9%で合計収率は98.0%であった。アニリンの収率は、結晶中1.5%、濾洗液中222.0%で、合計収率は223.5%であった。
【0046】
実施例3〜11、比較例2〜6
実施例2に於いて、アセトニトリルを他の溶媒に変えた他は、実施例2と同様に反応させた。結果を表1に示す。なお、濾過時間は、いずれも30分以下であった。
【0047】
【表1】
Figure 0004238944
【0048】
表1に示す様に還元反応溶媒として、アセトニトリル、プロピオニトリル及びブチロニトリルを用いることにより、結晶としてアニリン含量が少なく、DAR収率が高い結果が得られた。メタノールやエタノールの場合は、濾液に溶解した4,6−ジアミノレゾルシノールが多く、結晶として得られた4,6−ジアミノレゾルシノールの収率が低い。
【0049】
実施例12
4,6−ビスフェニルアゾレゾルシノール(純度79.1%)161g(0.4mol)、アセトニトリル636g、5%Pd−C5.09g及び活性炭(50%含水品)38.2gを2lSUS製オートクレーブに仕込み、水素を3kg/cm2の一定圧力で水素蓄圧器より供給しながら、攪拌速度400rpm、30℃で反応させた。反応時間3時間で、水素蓄圧器の圧力減少が停止した。そこで攪拌停止後、オートクレーブを室温に戻してから、窒素置換後反応物を取り出しした。スラリー状の反応物を濾過によりケーキと濾液に分離した。ケーキは、アセトニトリル77gと230gで2回洗浄した。湿品158.6g、濾液704gと洗液を得た。
【0050】
ケーキ中、濾液中および洗液中に生成した4,6−ジアミノレゾルシノール(DAR)とアニリンを塩酸塩とした後、液体クロマトグラフィーで分析した結果、ケーキ中のDAR収率は、93.8%、アニリン収率は3.4%であり、濾液中のDAR収率は、1.1%で、アニリン収率は、203.1%であった。更に、洗液中のDAR収率は、0.1%、アニリン収率6.5%であった。
【0051】
次にこのケーキ67.4g(DAR0.16mol)を35%塩酸水34.4g(2.2モル倍)、水153g及び塩化第一スズ・2水和物0.61gの溶液に加え60℃で1時間で溶解させた。続いて濾過により触媒と活性炭を分離した。尚、この触媒と活性炭は、1%塩酸水15.3gと30.7gで2回洗浄した。
【0052】
こうして得られた濾液に活性炭(50%含水品)13.4gを加え、80℃で2時間攪拌した。
続いて、熱濾過により活性炭を分離した後、濾液に35%塩酸水112gを加え、80℃で20分間加温後、10℃まで冷却した。析出した結晶を濾別し20%塩酸水9.2gで洗浄後50℃で3時間減圧乾燥し、4,6−ジアミノレゾルシノール2塩酸塩24.3g(純度99.3%)を得た。
【0053】
実施例13、14
実施例1に於いて触媒を1%Pt−C1.0g、2%Pt/0.5%Re−Cに変えた以外は、同様に反応及び後処理操作を行い、それぞれ9.83g、9.61gの結晶(湿品)を得た。
この結晶及び及び濾液の分析結果を表2に示す。
【0054】
【表2】
Figure 0004238944
【0055】
【発明の効果】
反応溶媒として脂肪族ニトリル化合物を用いることにより、或いは、反応溶媒として脂肪族ニトリル化合物、炭素数3〜5の脂肪族アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル及びジオキサンから選ばれる少なくとも一種の有機溶媒を用い、更に濾過助剤の存在下に還元を行うことにより、高収率で4,6−ジアミノレゾルシノールが生成し、かつその4,6−ジアミノレゾルシノールの大部分が、スラリーとして分離するために濾過により高収率のまま捕集することができ、しかも副生するアニリン誘導体は、濾液として高回収率で分離することができる。こうして、反応直後に単離された4,6−ジアミノレゾルシノールの固体(粗結晶)は、アニリン誘導体含量が少なく、以降の精製を容易にし、且つ精製ロスを少なくすることができる。即ち、高純度の4,6−ジアミノレゾルシノールを高精製収率で容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing 4,6-diaminoresorcinol or a salt thereof. More specifically, the present invention relates to a method for producing 4,6-diaminoresorcinol or a salt thereof by reduction of 4,6-bis (substituted) phenylazoresorcinol.
[0002]
4,6-Diaminoresorcinol is a monomer of polybenzoxazole, and this polybenzoxazole is a polymer having high strength, high elastic modulus, and excellent properties in heat resistance and chemical resistance (special table). (See Japanese Patent Application Laid-Open Nos. 61-501452 and 2-229143).
[0003]
[Prior art]
The reduction of 4,6-bisphenylazoresorcinol is usually reduced with hydrogen using a noble metal catalyst (Japanese Patent Laid-Open No. 7-242604). According to Japanese Patent Application Laid-Open No. 7-242604, the reduction is carried out in a solvent under neutral conditions. As the solvent, it is described that water, lower alcohol, aromatic hydrocarbons, halo-substituted benzenes, halogenated aliphatic hydrocarbons, ethers, and lower ketones are used alone or in combination. In addition, two methods are described for the post-treatment after completion of the reduction reaction. One is a method in which 4,6-diaminoresorcinol is obtained by filtration through celite as it is in a nitrogen atmosphere, and then an acid is added to form an acid salt. The catalyst and celite are separated by filtration and then purified and isolated. The second is a method in which an acid is added to the reaction solution to dissolve it as a salt, and the catalyst is filtered off and then purified and isolated.
[0004]
The former is effective in that the aniline produced in the reaction can be easily recovered and the purification process is simple, but the filterability is very poor. The loss of 4,6-diaminoresorcinol in the filtrate is large and the yield is as bad as 60%, which is not an industrial method.
[0005]
In the latter, acid is added to form a salt, so the stability in air is good and the operability is good. Moreover, filterability is also good and does not become a problem. However, there is a disadvantage that separation and purification of by-product aniline and 4,6-diaminoresorcinol are extremely complicated because they are in an acidic solution.
[0006]
[Problems to be solved by the invention]
In the reduction of 4,6-bis (substituted) phenylazoresorcinol, 2 equivalents of aniline derivative are by-produced in addition to 4,6-diaminoresorcinol. The most important problem of the method for reducing 4,6-bis (substituted) phenylazoresorcinol is how easily and easily this aniline derivative can be separated with little loss of the produced 4,6-diaminoresorcinol.
[0007]
As a result of intensive studies, the present inventors have found a method for industrially handling 4,6-diaminoresorcinol and have completed the present invention. That is, 4,6-diaminoresorcinol was obtained in high yield by reducing the 4,6-bisphenylazoresorcinol derivative with hydrogen in a selected solvent under a noble metal catalyst.
[0008]
However, filterability may be poor depending on the solvent. At that time, if a filter aid such as activated carbon is added and reacted, the filterability is remarkably improved.
[0009]
An object of the present invention is to provide a method capable of easily obtaining high-purity 4,6-diaminoresorcinol from 4,6-bis (substituted) phenylazoresorcinol in a high yield. This also improves the recovery rate of the aniline derivative, which is economically advantageous.
[0010]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found a method for solving the above-mentioned problems and have completed the present invention. That is, the present invention provides the formula [1]
[0011]
[Chemical 3]
Figure 0004238944
[0012]
(In the formula, R represents a halogen atom, an alkyl group having 1 to 5 carbon atoms, a hydroxycarbonyl group or an alkoxy group having 1 to 5 carbon atoms, n represents an integer of 0 or 1 to 5; Two or more Rs may be the same or different from each other.) 4,6-bis (substituted) phenylazoresorcinol represented by the following formula: 4,6-diaminoresorcinol or its 4,6-diaminoresorcinol characterized by using an aliphatic nitrile compound as a solvent in a method for obtaining a salt (the salt means an acid salt of 4,6-diaminoresorcinol; hereinafter the same) The present invention relates to a method for producing a salt.
[0013]
In the present invention, 4,6-bis (substituted) phenylazoresorcinol represented by the above formula [1] is hydrogen reduced in the presence of a metal catalyst and a solvent, and 4,6-diaminoresorcinol or a salt thereof is obtained. In the reduction method to be obtained, an aliphatic nitrile compound, an aliphatic alcohol having 3 to 5 carbon atoms, at least one organic solvent selected from ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether and dioxane is used as a solvent, Furthermore, it is related with the manufacturing method of 4, 6- diamino resorcinol or its salt characterized by performing reduction | restoration in presence of a filter aid.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The starting material of the present invention, 4,6-bis (substituted) phenylazoresorcinol has the formula [2]
[0015]
[Formula 4]
Figure 0004238944
[0016]
(In the formula, R and n are defined as in formula [1].)
The (substituted) aniline represented by formula (2) can be diazotized to obtain a (substituted) benzenediazonium salt, and the diazonium salt can be obtained by a coupling reaction with resorcinol. Specifically, 2.5 to 4 equivalents of an inorganic acid is added dropwise to a mixture of a substituted aniline and 5 to 10 times by weight of water while cooling, and (substitute) A (substituted) benzenediazonium salt is obtained by dropping 1 to 1.5 times moles of sodium nitrite or potassium nitrite dissolved in 2 to 3 times by weight of water with respect to aniline at 10 ° C. or lower. As the inorganic acid, at least one inorganic acid selected from hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid is used. Of these inorganic acids, hydrochloric acid is industrially preferred.
[0017]
Specifically, for example, aniline, 2-chloroaniline, 4-chloroaniline, 2,6-dichloroaniline, o-toluidine, m-toluidine, p-toluidine, anthranilic acid, o-anisidine, m-anisidine and p- Anisidine and the like can be mentioned, and it is preferable to use any of these anilines. Aniline is most preferable in view of economy and stability of the compound.
[0018]
For the coupling reaction of (substituted) benzenediazonium salt and resorcinol, a known method is used, but the formula [3] filed by the present applicant as Japanese Patent Application Laid-Open No. 9-124575.
[0019]
[Chemical formula 5]
Figure 0004238944
[0020]
(In the formula, R and n are defined as in formula [1], and X represents Cl, Br, OSO 3 H or OPO 3 H 2. )
Or a solution of a (substituted) benzenediazonium salt represented by the formula [3] filed as JP-A-9-157239, or a method by reacting the (substituted) benzenediazonium salt represented by And an alkali metal or alkaline earth metal hydroxide solution or suspension are mixed to obtain an alkaline mixture, and this mixture and resorcinol and / or its alkali metal salt or alkaline earth metal salt are mixed. A method of mixing and reacting is preferable.
[0021]
As described above, 4,6-bis (substituted) phenylazoresorcinol, which is a raw material of the present invention, is obtained by reacting resorcinol with an alkaline (substituted) benzenediazonium salt, acidifying the solution, and then collecting and washing with water. . This may be used as it is, or may be used after drying. From the viewpoint of the yield of the reduction reaction, mixing of water increases the escape of 4,6-diaminoresorcinol into the filtrate, so a dry product is preferred. Since the reaction mixture is used without purification, the purity of 4,6-bis (substituted) phenylazoresorcinol is around 80%. Besides, 4-phenylazoresorcinol, 2,4,6-triphenylazoresorcinol and the structure Some are unknown, but there are no major problems. A product obtained by recrystallizing and purifying this mixture with toluene or the like can of course be used and has good results. However, purification of 4,6-bisphenylazoresorcinol is very difficult due to its poor solubility.
[0022]
Next, a hydrogen reduction method in the presence of a metal catalyst of 4,6-bis (substituted) phenylazoresorcinol and a solvent will be described. The solvent used for the reduction reaction is at least one organic solvent selected from aliphatic nitrile compounds, aliphatic alcohols having 3 to 5 carbon atoms, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether and dioxane. Is used. In methanol and ethanol, there are many escapes of 4,6-diaminoresorcinol to the filtrate, and there is a problem in economical efficiency. Except for nitriles, when the produced 4,6-diaminoresorcinol is collected by filtration, the filterability is very poor and industrial operation is problematic. At this time, if a filter aid is added during the reaction, the filterability is greatly improved. On the other hand, nitriles are preferable because they have good filterability and little escape to the filtrate. Addition of a filter aid is effective for improving filterability even with nitriles.
[0023]
As the filter aid, activated carbon, celite, activated clay, and cellulose are used, and activated carbon is particularly preferable.
[0024]
The amount of the filter aid is 1 to 100% by weight based on 4,6-bis (substituted) phenylazoresorcinol, but it is often when filterability is poor and may be small when good. Preferably, it is 5 to 30% by weight. Addition of a filter aid to the reaction system is effective not only for improving filterability but also for shortening the reaction time. It will adsorb impurities in the raw material and prevent the catalyst from deteriorating. In some cases, the filterability is improved even when a filter aid is added after the reaction is completed.
[0025]
As the aliphatic nitrile compound, a monocyano compound having 2 to 6 carbon atoms is preferable. Specific examples include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, trimethylacetonitrile, hexanenitrile, 4-methylvaleronitrile and the like. Particularly preferred are acetonitrile, propionitrile, butyronitrile, isobutyronitrile, etc., which have a fast reaction and are economically inexpensive.
[0026]
More specifically, when 4,6-bisphenylazoresorcinol is used as the reaction substrate, the reaction yield of 4,6-diaminoresorcinol is 98-99%, and the crystal yield of 4,6-diaminoresorcinol is The yield is 93 to 96%, and the yield of aniline in the crude crystals of 4,6-diaminoresorcinol is 1 to 2%, and high-purity 4,6-diaminoresorcinol is obtained as crystals in a high yield. It can be isolated. On the other hand, the filtrate contains an approximately theoretical amount of aniline.
[0027]
The amount of the solvent used is 1 to 50 times by weight, preferably 2 to 20 times by weight, based on 4,6-bis (substituted) phenylazoresorcinol.
[0028]
The metal catalyst used in the present invention is at least one metal selected from copper and Group 8 elements of the periodic table. Examples of Group 8 elements of the Periodic Table include platinum, palladium, ruthenium, rhodium, nickel, cobalt, iridium and the like. Among these metal catalysts, platinum and palladium are preferable because 4,6-diaminoresorcinol can be obtained in a high yield in this reaction.
[0029]
Examples of catalyst forms include simple substances such as palladium black and platinum black, alloys such as Raney nickel and cobalt, metal salts such as palladium chloride and palladium acetate, metal oxides such as copper oxide and platinum oxide, acetylacetone copper and acetylacetone palladium, etc. And metal with a carrier supported on oxides such as carbon, silica, alumina, zirconia, titania and zeolite. Among these, a metal with a carrier is particularly preferred for the convenience of recovery and reuse, and palladium-carbon and platinum-carbon are preferred. In particular, platinum-carbon is preferred because it is more active than palladium-activated carbon, despite the low loading.
[0030]
Furthermore, for the purpose of improving the activity and suppressing the deterioration due to the reaction and acid treatment, etc., and the purpose of enabling reuse, a multi-metallic catalyst in which a second metal is added to a first metal such as platinum, palladium or ruthenium. It can also be. As the second metal, it is preferable to add 2 to 50 atomic mol% of rhenium, iridium, tin, antimony, germanium, indium, rhodium and the like with respect to the first metal.
[0031]
Specifically, for example, 5% Pd / 1% Re-C, 5% Pd / 2% In-C, 2% Pt / 0.5% Re-C, 1% Pt / 0.2% Ge-C, etc. Can be mentioned.
[0032]
The amount of the catalyst used is preferably from 0.0005 to 10% by weight, particularly from 0.001 to 10% by weight, based on 4,6-bis (substituted) phenylazoresorcinol.
[0033]
The hydrogen pressure is from normal pressure to 10000 kPa, preferably from normal pressure to 1000 kPa. The reaction temperature can be −10 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 80 ° C.
[0034]
In the reaction solution, 4,6-diaminoresorcinol is present as a solid. The extraction method will be described. By filtering without contact with air, 4,6-diaminoresorcinol can be obtained together with the catalyst and the filter aid. The aniline goes to the filtrate, but if the filterability is poor, the cake will contain a lot of liquid and the removal of aniline will be insufficient, so wash with a small amount of reaction solvent, lower alcohol, or water.
[0035]
Since 4,6-diaminoresorcinol is free and unstable in both oxygen and temperature, it is necessary to add an acid to form a salt. As the acid, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid and the like can be used, but hydrochloric acid is most preferred industrially. Add to a 2 times mole or more hydrochloric acid aqueous solution and dissolve by heating, or add 2 times a mole or more hydrochloric acid aqueous solution on a funnel to dissolve or suspend and take out and dissolve by heating. Insoluble matters are filtered off, and if necessary, activated carbon treatment is performed. The activated carbon is filtered off, and hydrochloric acid is added thereto, followed by cooling to precipitate 4,6-diaminoresorcinol hydrochloride. Activated carbon has an excellent effect on decolorization.
[0036]
When 4,6-diaminoresorcinol is dissolved using an aqueous hydrochloric acid solution, the amount of hydrochloric acid is 2 to 10 times mol. However, since the solubility decreases when there is much hydrochloric acid, 2 to 3 times mol of 4,6-diaminoresorcinol is used. preferable. Water is used in an amount of 1 to 20 parts of 4,6-diaminoresorcinol, but 3 to 10 parts is preferable in terms of solubility and crystallization. The required amount of activated carbon varies depending on the color and purpose, but is 0 to 100% by weight, preferably 5 to 30% by weight.
[0037]
After the activated carbon treatment, concentrated hydrochloric acid is added to precipitate a solid by salting out, and the added hydrochloric acid is preferably 4 to 20 times mol of 4,6-diaminoresorcinol. Economically, it is also influenced by the amount of water, but 4 to 8 times mol is preferable. Further, after filtration, drying is performed to obtain 4,6-diaminoresorcinol dihydrochloride.
[0038]
4,6-Diaminoresorcinol dihydrochloride is also susceptible to oxidation, but adding stannous chloride has a resistance to oxidation.
The reduction reaction can be performed continuously.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited by these.
Reference Example-1
A solution prepared by dissolving 30 g of sodium nitrite in 55 g of water at 0 to 5 ° C. was dropped into a mixed solution of 41 g of aniline, 98 g of 35% hydrochloric acid and 100 g of water to synthesize a benzenediazonium chloride aqueous solution. This aqueous solution of benzenediazonium chloride was added dropwise to a mixed solution consisting of 55 g of sodium hydroxide and 110 g of water at 10 ° C. or lower.
[0040]
This mixed solution was dropped into a mixed solution composed of 22 g of resorcinol, 24 g of sodium hydroxide and 22 g of water at 10 ° C. over 40 minutes. After completion of dropping, the mixture was stirred at 10 ° C. for 3 hours. After completion of the reaction, the reaction mixture was acidified with hydrochloric acid, and the precipitated solid was collected by filtration, washed with water and dried to obtain 62 g of a dark red solid. The purity of 4,6-bisphenylazoresorcinol is 79.5% and contains about 5% 2,4,6-triphenylazoresorcinol.
[0041]
Example 1
10.0 g (0.025 mol) of 4,6-bisphenylazoresorcinol (purity: 79.5%), 50 g of acetonitrile, and 2.0 g of 5% Pd-C were charged into a 100 ml Hastelloy autoclave, and hydrogen was supplied at a constant pressure of 300 kPa. While supplying from the pressure accumulator, the reaction was carried out at a stirring speed of 600 rpm and 30 ° C. The pressure reduction of the hydrogen accumulator stopped after a reaction time of 2.5 hours. Therefore, after the stirring was stopped, the autoclave was returned to room temperature, and then the reactant was taken out after nitrogen substitution. The slurry-like reaction product was separated into a cake and a filtrate by filtration under a nitrogen atmosphere. This filtration time was 20 minutes. The cake was washed with acetonitrile to obtain a wet product. The wet product and the filter washing liquid (mixed filtrate and washing liquid) were analyzed as the hydrochloride salt as follows.
[0042]
That is, the yields of 4,6-diaminoresorcinol (DAR) and aniline produced in the wet product and the filtrate were analyzed by liquid chromatography. The results are shown in Table 1. The DAR yield in the wet product was 92.5%, the yield in the filtrate was 4.5%, and the total yield was 97%. The yield of aniline was 1.5% in the wet product and 222.0% in the filter washing solution, and the total yield was 223.5%.
[0043]
The reason why the aniline yield exceeds 200% is that 4-azoresorcinol and 2,4,6-triazoresorcinol contained as raw material impurities are hydrocracked to release aniline.
[0044]
Comparative Example 1
The reduction reaction was performed in the same manner as in Example 1 except that the solvent was changed to isopropanol in Example 1. Even if the filtration time took about 1 hour, the subsequent treatment was interrupted.
[0045]
Example 2
10.0 g (0.025 mol) of 4,6-bisphenylazoresorcinol (purity 79.5%), 50 g of acetonitrile, 2.0 g of 5% Pd—C and 1.0 g of activated carbon were charged into a 100 ml Hastelloy autoclave, and hydrogen was supplied at 300 kPa. The reaction was carried out at a stirring speed of 600 rpm and 30 ° C. while being supplied from a hydrogen pressure accumulator at a constant pressure of. The pressure reduction of the hydrogen accumulator stopped after a reaction time of 2.5 hours. Therefore, after the stirring was stopped, the autoclave was returned to room temperature, and then the reactant was taken out after nitrogen substitution. The slurry-like reaction product was separated into a cake and a filtrate by filtration under a nitrogen atmosphere. This filtration time was 10 minutes. The cake was washed with acetonitrile to obtain a wet product. Analysis was performed in the same manner as in Example 1. The DAR yield in the wet product was 93.1%, the yield in the filtrate was 4.9%, and the total yield was 98.0%. The yield of aniline was 1.5% in the crystal and 222.0% in the filter washing solution, and the total yield was 223.5%.
[0046]
Examples 3-11, Comparative Examples 2-6
In Example 2, the reaction was carried out in the same manner as in Example 2 except that acetonitrile was changed to another solvent. The results are shown in Table 1. The filtration time was 30 minutes or less in all cases.
[0047]
[Table 1]
Figure 0004238944
[0048]
As shown in Table 1, by using acetonitrile, propionitrile and butyronitrile as the reduction reaction solvent, the result was that the aniline content was small as crystals and the DAR yield was high. In the case of methanol or ethanol, the amount of 4,6-diaminoresorcinol dissolved in the filtrate is large, and the yield of 4,6-diaminoresorcinol obtained as crystals is low.
[0049]
Example 12
161 g (0.4 mol) of 4,6-bisphenylazoresorcinol (purity: 79.1%), 636 g of acetonitrile, 5.09 g of 5% Pd-C, and 38.2 g of activated carbon (50% water-containing product) were charged in a 2 lSUS autoclave. While supplying hydrogen from a hydrogen pressure accumulator at a constant pressure of 3 kg / cm 2 , the reaction was performed at a stirring speed of 400 rpm and 30 ° C. In the reaction time of 3 hours, the pressure reduction of the hydrogen pressure accumulator stopped. Therefore, after the stirring was stopped, the autoclave was returned to room temperature, and then the reactant was taken out after nitrogen substitution. The slurry-like reaction product was separated into a cake and a filtrate by filtration. The cake was washed twice with 77 g and 230 g of acetonitrile. A wet product of 158.6 g and a filtrate of 704 g were obtained.
[0050]
The 4,6-diaminoresorcinol (DAR) and aniline produced in the cake, filtrate and washing solution were converted to hydrochloride and analyzed by liquid chromatography. As a result, the DAR yield in the cake was 93.8%. The aniline yield was 3.4%, the DAR yield in the filtrate was 1.1%, and the aniline yield was 203.1%. Furthermore, the DAR yield in the washing solution was 0.1%, and the aniline yield was 6.5%.
[0051]
Next, 67.4 g of this cake (DAR 0.16 mol) was added to a solution of 35% aqueous hydrochloric acid 34.4 g (2.2 mol times), water 153 g and stannous chloride dihydrate 0.61 g at 60 ° C. It was dissolved in 1 hour. Subsequently, the catalyst and activated carbon were separated by filtration. The catalyst and activated carbon were washed twice with 15.3 g and 30.7 g of 1% aqueous hydrochloric acid.
[0052]
13.4 g of activated carbon (50% water-containing product) was added to the filtrate thus obtained, and the mixture was stirred at 80 ° C. for 2 hours.
Subsequently, activated carbon was separated by hot filtration, 112 g of 35% hydrochloric acid was added to the filtrate, and the mixture was heated at 80 ° C. for 20 minutes and then cooled to 10 ° C. The precipitated crystals were separated by filtration, washed with 9.2 g of 20% aqueous hydrochloric acid and dried under reduced pressure at 50 ° C. for 3 hours to obtain 24.3 g (purity 99.3%) of 4,6-diaminoresorcinol dihydrochloride.
[0053]
Examples 13 and 14
Except that the catalyst was changed to 1% Pt—C 1.0 g and 2% Pt / 0.5% Re—C in Example 1, the reaction and post-treatment operations were performed in the same manner, and 9.83 g and 9. 61 g of crystals (wet product) were obtained.
Table 2 shows the analysis results of the crystals and the filtrate.
[0054]
[Table 2]
Figure 0004238944
[0055]
【The invention's effect】
By using an aliphatic nitrile compound as a reaction solvent, or from an aliphatic nitrile compound, an aliphatic alcohol having 3 to 5 carbon atoms, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether and dioxane as a reaction solvent. By performing reduction in the presence of a filter aid using at least one organic solvent selected, 4,6-diaminoresorcinol is produced in a high yield, and most of the 4,6-diaminoresorcinol is produced. In order to separate it as a slurry, it can be collected in a high yield by filtration, and the aniline derivative produced as a by-product can be separated as a filtrate with a high recovery rate. Thus, the solid (crude crystal) of 4,6-diaminoresorcinol isolated immediately after the reaction has a low aniline derivative content, facilitates subsequent purification, and reduces purification loss. That is, high-purity 4,6-diaminoresorcinol can be easily obtained with a high purification yield.

Claims (5)

式〔1〕
Figure 0004238944
(式中、Rはハロゲン原子、炭素原子数1〜5のアルキル基、ヒドロキシカルボニル基又は炭素原子数1〜5のアルコキシ基を表し、nは0又は1〜5のいずれかの整数を表し、2個以上のRは互いに同一又は異なっていてもよい。)で表される4,6−ビス(置換)フェニルアゾレゾルシノールを金属触媒及び溶媒の存在下に水素還元し、4,6−ジアミノレゾルシノール又はその塩を得る還元方法において、金属触媒として銅及び周期律表第8族元素の中から選ばれる少なくとも一種の金属を用い、溶媒として脂肪族ニトリル化合物、炭素数3〜5の脂肪族アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル及びジオキサンから選ばれる少なくとも一種の有機溶媒を使用し、更に活性炭、セライト、活性白土及びセルロースから選ばれる少なくとも一種の濾過助剤の存在下に還元を行うことを特徴とする4,6−ジアミノレゾルシノール又はその塩の製造方法。
Formula [1]
Figure 0004238944
(In the formula, R represents a halogen atom, an alkyl group having 1 to 5 carbon atoms, a hydroxycarbonyl group or an alkoxy group having 1 to 5 carbon atoms, n represents an integer of 0 or 1 to 5; And two or more Rs may be the same or different from each other.) 4,6-bis (substituted) phenylazoresorcinol represented by the following formula: 4,6-diaminoresorcinol Or a reduction method for obtaining a salt thereof, using at least one metal selected from copper and Group 8 elements of the periodic table as a metal catalyst, an aliphatic nitrile compound, an aliphatic alcohol having 3 to 5 carbon atoms as a solvent, At least selected from ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether and dioxane Using the seeds of organic solvents, further active carbon, Celite, and performing at least one reduced in the presence of a filter aid selected from activated clay and cellulose, the production of 4,6-diaminoresorcinol or a salt thereof Method.
請求項において脂肪族ニトリル化合物が、炭素原子数2〜6のモノシアノ炭化水素化合物である4,6−ジアミノレゾルシノール又はその塩の製造方法。Aliphatic nitrile compound according to claim 1 is a monocyano hydrocarbon compound having 2 to 6 carbon atoms, 4,6-diaminoresorcinol or a salt thereof. 請求項において金属触媒が白金である4,6−ジアミノレゾルシノール又はその塩の製造方法。Metal catalyst is a platinum in claim 1, 4,6-diaminoresorcinol or a salt thereof. 請求項において金属触媒が、白金、ルテニウム又はパラジウムに、レニウム、インジウム、錫、アンチモン、ゲルマニウム、イリジウム及びロジウムから選ばれた一種以上の元素を添加した多元素系触媒である4,6−ジアミノレゾルシノール又はその塩の製造方法。Metal catalyst according to claim 1, platinum, ruthenium or palladium, a multi-element catalyst added rhenium, indium, tin, antimony, germanium, one or more elements selected from iridium and rhodium, 4,6 A method for producing diaminoresorcinol or a salt thereof. 濾過助剤の量が4,6−ビス(置換)フェニルアゾレゾルシノールに対して1〜100重量%である請求項記載の4,6−ジアミノレゾルシノール又はその塩の製造方法。The amount of filter aid is 1-100% by weight relative to 4,6-bis (substituted) phenyl azo resorcinol method according to claim 1 4,6-diaminoresorcinol or a salt thereof according.
JP01652099A 1998-01-27 1999-01-26 Method for producing 4,6-diaminoresorcinol or a salt thereof Expired - Fee Related JP4238944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01652099A JP4238944B2 (en) 1998-01-27 1999-01-26 Method for producing 4,6-diaminoresorcinol or a salt thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-13684 1998-01-27
JP1368498 1998-01-27
JP01652099A JP4238944B2 (en) 1998-01-27 1999-01-26 Method for producing 4,6-diaminoresorcinol or a salt thereof

Publications (2)

Publication Number Publication Date
JPH11279128A JPH11279128A (en) 1999-10-12
JP4238944B2 true JP4238944B2 (en) 2009-03-18

Family

ID=26349511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01652099A Expired - Fee Related JP4238944B2 (en) 1998-01-27 1999-01-26 Method for producing 4,6-diaminoresorcinol or a salt thereof

Country Status (1)

Country Link
JP (1) JP4238944B2 (en)

Also Published As

Publication number Publication date
JPH11279128A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
CN101287710A (en) Preparation of 4,5-diamino-1-(substituted)-pyrazole and acid addition salts thereof
JP4238944B2 (en) Method for producing 4,6-diaminoresorcinol or a salt thereof
US8163955B2 (en) Process for the synthesis of 2,6-diamino-3,5-dinitrotoluene
JP2904038B2 (en) Process for producing 4,6-diaminoresorcinol and its precursor
KR100574880B1 (en) Process for preparation of 4,6-diaminoresorcinol or salts thereof
US8404898B2 (en) Integrated process for the preparation of polybenzimidazole precursors
JPH0456824B2 (en)
US8158830B1 (en) Integrated process for the preparation of tetraaminobenzene
US8188317B2 (en) Integrated process for the preparation of polybenzimidazole precursors
US8143450B1 (en) Process for the preparation of derivatives of tetraaminobenzene
US20130046109A1 (en) Integrated processes for the preparation of polybenzimidazole precursors
JP4228587B2 (en) Process for producing aminomethyl group-containing benzamide compound
JP4367592B2 (en) Method for producing 4,6-diaminoresorcinol or a salt thereof
JP3981894B2 (en) Process for producing 4,6-diaminoresorcinol and / or a salt thereof
US20130172621A1 (en) Integrated processes for the preparation of polybenzimidazole precursors
JP4072651B2 (en) Process for producing 4-aminoresorcinol or a salt thereof
JP4379548B2 (en) 5- (substituted) anilino-4,6-diaminoresorcinol or a salt thereof and a process for producing the same
JP4849287B2 (en) Process for producing 4,6-bis (substituted) phenylazoresorcinol and 4,6-diaminoresorcinol
JP3790934B2 (en) Process for producing 4,6-bis (substituted) phenylazoresorcinol
JP3834739B2 (en) Method for producing 4,6-bis (substituted) phenylazoresorcinol
JP4022953B2 (en) Process for producing 2,2-bis (3-amino-4-hydroxyphenyl) propane
JP4028912B2 (en) Novel cyclopropylanilines and process for producing the same
WO2001014319A1 (en) 4,6-bis(substituted)phenylazoresorcinol and process for producing 4,6-diaminoresorcinol
CN113943256A (en) Synthetic method of 2- (4-aminophenyl) -5-aminobenzimidazole
JP3547497B2 (en) Method for producing benzothiazolone compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4238944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees