JP4238094B2 - Large bulk material resin molding apparatus and molding method thereof - Google Patents

Large bulk material resin molding apparatus and molding method thereof Download PDF

Info

Publication number
JP4238094B2
JP4238094B2 JP2003304601A JP2003304601A JP4238094B2 JP 4238094 B2 JP4238094 B2 JP 4238094B2 JP 2003304601 A JP2003304601 A JP 2003304601A JP 2003304601 A JP2003304601 A JP 2003304601A JP 4238094 B2 JP4238094 B2 JP 4238094B2
Authority
JP
Japan
Prior art keywords
synthetic resin
mold
pressure control
control member
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003304601A
Other languages
Japanese (ja)
Other versions
JP2005074657A (en
Inventor
和男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUST Co.,Ltd
Original Assignee
TRUST Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUST Co.,Ltd filed Critical TRUST Co.,Ltd
Priority to JP2003304601A priority Critical patent/JP4238094B2/en
Priority to CN 200410068296 priority patent/CN1590067A/en
Publication of JP2005074657A publication Critical patent/JP2005074657A/en
Application granted granted Critical
Publication of JP4238094B2 publication Critical patent/JP4238094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、大形バルク材の樹脂成形装置およびその成形方法に関するものである。   The present invention relates to a resin molding apparatus for a large bulk material and a molding method therefor.

船舶のキール部分を損傷させないように支持したり、工場の床面や地上に重量物を置くときに、木製の角材の上に上記キール部分や重量物を置くことが行なわれている。上記角材の縦,横,長さ寸法は、載置するものの質量が著しく大きいことから大形なものとなり、例えば船舶の場合では、それぞれ35cm,35cm,120cmのサイズとなる。このようなサイズの角材を天然の樹木から求めることは、きわめて大きな樹木が必要となり、また、天然木材の資源が減少しているために、十分な本数を入手することが困難であり、価格的にも高価なものとなっている。
特開平9−155895号公報
When the keel part of a ship is supported so as not to be damaged, or when a heavy object is placed on the floor or ground of a factory, the keel part or heavy object is placed on a wooden square. The vertical, horizontal and length dimensions of the square bars are large because the mass of the object to be placed is remarkably large. For example, in the case of a ship, the dimensions are 35 cm, 35 cm and 120 cm, respectively. Obtaining such a size of timber from natural trees requires very large trees, and due to the decrease in natural timber resources, it is difficult to obtain a sufficient number of trees, which is costly. It is also expensive.
JP-A-9-155895

上記のような角材すなわち大形バルク材の問題を解決するために、コンクリート製や鋼鉄製のものが採用されているが、製作や原価の面において実用化がしにくく、質量が過大であるという問題がある。また、合成樹脂材料で大形バルク材を成形するにあたっては、通常の連続押出成形では製品の断面積が過大であり、連続押出成形としては質量も大きいために成形が著しく困難である。また、型内に射出成形をする方法においては、上記のように大形サイズであるために、製品内部に空洞ができたりして、重量物の支持には耐えられないという問題がある。   In order to solve the problems of square bars, that is, large bulk materials as described above, those made of concrete or steel are adopted, but it is difficult to put into practical use in terms of production and cost, and the mass is excessive. There's a problem. Further, when molding a large bulk material with a synthetic resin material, the cross-sectional area of the product is excessive in normal continuous extrusion molding, and the molding is extremely difficult due to the large mass as continuous extrusion molding. In addition, the method of injection molding in a mold has a problem that since it has a large size as described above, a cavity is formed inside the product and cannot support the support of heavy objects.

本発明は、上記のような事情に鑑みなされたもので、大形バルク材を型を用いて合成樹脂材料で成形するにあたって、製品の内部に気泡や空洞等が実質的に問題にならない程度に大幅に減少するようにした大形バルク材の樹脂成形装置の提供を目的とする。   The present invention has been made in view of the circumstances as described above, and when molding a large bulk material with a synthetic resin material using a mold, bubbles and cavities are not substantially problematic inside the product. An object of the present invention is to provide a resin molding apparatus for large bulk materials which is greatly reduced.

上記目的を達成するため、本発明の大形バルク材の樹脂成形装置は、溶融状態の合成樹脂材料を送出する材料供給装置に、製品成形用の型が結合された大形バルク材の樹脂成形装置であって、
上記型の断面が閉断面でその断面形状が長さ方向に略一定とされ、
上記材料供給装置からの合成樹脂材料を上記型内に供給する供給口が上記型の長手方向の端部に設けられ、
上記供給口に対向しているとともに型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を、所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動する圧力制御部材が設けられ、
上記圧力制御部材は、上記圧力を所定値以上に維持する駆動装置に結合され、
さらに、上記型内には、先端部が上記供給口に近接して長手方向に伸びる冷却部材が、圧力制御部材が摺動可能なように配置されていることを要旨とする。
In order to achieve the above object, a resin molding apparatus for a large bulk material according to the present invention is a resin molding of a large bulk material in which a mold for product molding is coupled to a material supply apparatus that delivers a synthetic resin material in a molten state. A device,
The cross section of the mold is a closed cross section, and its cross sectional shape is substantially constant in the length direction.
A supply port for supplying the synthetic resin material from the material supply device into the mold is provided at an end portion in the longitudinal direction of the mold,
The volume of the product molding part gradually increases in the mold while facing the supply port and maintaining the pressure of the molten synthetic resin material in the process of increasing the synthetic resin material supplied in the mold at a predetermined value or more. A pressure control member that moves in the direction of increasing is provided,
The pressure control member is coupled to a drive device that maintains the pressure above a predetermined value,
Further, the gist of the invention is that a cooling member having a tip portion extending in the longitudinal direction in the vicinity of the supply port is disposed in the mold so that the pressure control member can slide.

本発明の大形バルク材の樹脂成形装置は、上記型の断面が閉断面でその断面形状が長さ方向に略一定とされ、上記材料供給装置からの合成樹脂材料を上記型内に供給する供給口が上記型の長手方向の端部に設けられ、上記供給口に対向しているとともに型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を、所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動する圧力制御部材が設けられている。   In the large bulk material resin molding apparatus of the present invention, the cross section of the mold is a closed cross section and the cross sectional shape thereof is substantially constant in the length direction, and the synthetic resin material from the material supply apparatus is supplied into the mold. A supply port is provided at an end portion in the longitudinal direction of the mold, is opposed to the supply port, and the pressure of the synthetic resin material in a molten state while increasing the amount of the synthetic resin material supplied into the mold is a predetermined value or more. A pressure control member is provided that gradually moves in the mold in a direction in which the volume of the product forming portion increases.

このため、成形初期の段階では、型の内側端面と圧力制御部材との間の製品成形部の空間容積が小さいので、上記材料供給装置から所定の圧力で型内に供給された溶融状態の合成樹脂で直ちに満たされる。この段階において、溶融状態の合成樹脂は、上記供給口からの合成樹脂流となって型内に流入し、直ちに上記圧力制御部材で受け止められる。このようにして溶融状態の合成樹脂は圧力制御部材の表面で冷却されながら、型の内周面の方に向きを変えて放射的な方向に流れて行き、さらに型の内周面で受け止められ冷却されて硬化する。したがって、合成樹脂は圧力制御部材の表面の型内周面に近い箇所が早期の内に硬化し、順次圧力制御部材の中央部に硬化領域が拡大されて行く。そして、未硬化の合成樹脂は材料供給装置で所定圧力で加圧され、その圧力を受けながら圧力制御部材が徐々に型内を製品成形部の容積が大きくなる方向に移動するため、未硬化の合成樹脂の圧力は所定値以上に維持される。これにより、硬化した合成樹脂に引続いて硬化が継続され、加圧下における連続的硬化であるため、気泡や空洞等が大幅に少なくなる。   For this reason, at the initial stage of molding, the space volume of the product molding part between the inner end face of the mold and the pressure control member is small, so the synthesis of the molten state supplied into the mold at a predetermined pressure from the material supply device Immediately filled with resin. At this stage, the molten synthetic resin flows into the mold as a synthetic resin flow from the supply port, and is immediately received by the pressure control member. In this way, while the molten synthetic resin is cooled on the surface of the pressure control member, it changes direction toward the inner peripheral surface of the mold and flows in a radial direction, and is further received by the inner peripheral surface of the mold. Cools and hardens. Therefore, in the synthetic resin, a portion near the inner peripheral surface of the mold on the surface of the pressure control member is hardened in an early stage, and the hardening region is sequentially expanded in the central portion of the pressure control member. The uncured synthetic resin is pressurized at a predetermined pressure by the material supply device, and while receiving the pressure, the pressure control member gradually moves in the mold in the direction in which the volume of the product molding portion increases, The pressure of the synthetic resin is maintained at a predetermined value or higher. Accordingly, the curing is continued following the cured synthetic resin, and the continuous curing under pressure is performed, so that bubbles and cavities are significantly reduced.

上記の初期の段階の後は、圧力制御部材が上記の方向にさらに移動しながら硬化部分の領域が拡大されて行き、加圧下における連続的硬化が継続する。この段階においても、溶融状態の合成樹脂が順次型内に供給されるので、未硬化の合成樹脂圧力は圧力制御部材の徐々な移動によって、所定値以上の圧力に維持され気泡や空洞等が大幅に減少した硬化現象が継続する。なお、圧力制御部材の移動に伴って、硬化した合成樹脂は型の内面を摺動しながら圧力制御部材に追従して行く。   After the initial stage, the region of the cured portion is expanded while the pressure control member further moves in the above direction, and continuous curing under pressure continues. Even at this stage, since the molten synthetic resin is sequentially supplied into the mold, the uncured synthetic resin pressure is maintained at a pressure higher than a predetermined value by the gradual movement of the pressure control member, and bubbles and cavities are greatly reduced. The reduced hardening phenomenon continues. As the pressure control member moves, the cured synthetic resin follows the pressure control member while sliding on the inner surface of the mold.

上記のような溶融状態の合成樹脂の継続的な加圧供給と、圧力制御部材の制御された移動が最終段階に達すると、圧力制御部材は型内側の他端面等に当たって停止する。このときに、合成樹脂の加圧状態を継続しておくことにより、未硬化部分の冷却硬化時に気泡や空洞が大幅に減少して製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。
また、溶融合成樹脂は型の内周面で冷却されると同時に、溶融合成樹脂は冷却部材に接触することにより製品成形部の中央部において冷却される。したがって、溶融合成樹脂は、型の内周面と冷却部材の両方で冷却され、このような冷却状態が圧力制御部材の後退時に継続的に維持され、大形バルク材の内側と外側から冷却される。このような型の長手方向の継続した冷却現象により、大形バルク材は短時間で硬化するので、気泡や空洞の成長が全長にわたって抑制され、密度が均一化されると共に高荷重に耐えられる大形バルク材が得られる。
When the continuous pressure supply of the synthetic resin in the molten state as described above and the controlled movement of the pressure control member reach the final stage, the pressure control member hits the other end surface inside the mold and stops. At this time, by continuing the pressurized state of the synthetic resin, bubbles and cavities are greatly reduced when the uncured part is cooled and cured, resulting in a dense and normal internal state over the entire product, and a high load is applied. A large bulk material that does not deform even is obtained.
In addition, the molten synthetic resin is cooled at the inner peripheral surface of the mold, and at the same time, the molten synthetic resin is cooled at the center of the product molding portion by contacting the cooling member. Therefore, the molten synthetic resin is cooled by both the inner peripheral surface of the mold and the cooling member, and such a cooling state is continuously maintained when the pressure control member is retracted, and is cooled from the inside and outside of the large bulk material. The Due to the continuous cooling phenomenon in the longitudinal direction of such a mold, the large bulk material is cured in a short time, so that the growth of bubbles and cavities is suppressed over the entire length, the density is made uniform, and it can withstand high loads. A shaped bulk material is obtained.

本発明においては、「溶融状態の合成樹脂材料の圧力が所定値以上に維持されている」のであるが、この所定値以上の圧力は、気泡や空洞等の発生を大幅に少なくすることができる圧力であることを意味する。適正な圧力値は、使用する材料やバルク材の要求特性等によって適宜設定すれば良いが、その設定圧力値は、材料供給装置の供給圧力および圧力制御部材に加えられる圧力等により設定される。   In the present invention, “the pressure of the molten synthetic resin material is maintained at or above a predetermined value”, but the pressure above this predetermined value can greatly reduce the occurrence of bubbles, cavities, and the like. Means pressure. The appropriate pressure value may be set as appropriate depending on the required characteristics of the material to be used and the bulk material, but the set pressure value is set by the supply pressure of the material supply device and the pressure applied to the pressure control member.

本発明の大形バルク材の樹脂成形装置において、上記圧力制御部材の外周面が上記型の内周面に摺動するかまたは上記外周面と上記内周面との間の間隙が微小な値とされている場合には、流入してきた溶融状態の合成樹脂が圧力制御部材の外周部から漏洩することがなく、製品部分を正確に成形することができる。さらに、合成樹脂は圧力制御部材に接した型の内周面に近い箇所から硬化し始めるので、この硬化部分が溶融合成樹脂に対するシール部材の役割を果たし、溶融合成樹脂のリークを防止する。したがって、上記隙間が若干大きい場合であっても正常な型成形が可能となる。   In the resin molding apparatus for a large bulk material of the present invention, the outer peripheral surface of the pressure control member slides on the inner peripheral surface of the mold, or the gap between the outer peripheral surface and the inner peripheral surface is a minute value. In this case, the molten synthetic resin that has flowed in does not leak from the outer peripheral portion of the pressure control member, and the product portion can be accurately molded. Furthermore, since the synthetic resin begins to harden from a position close to the inner peripheral surface of the mold that is in contact with the pressure control member, the cured portion serves as a seal member for the molten synthetic resin and prevents leakage of the molten synthetic resin. Therefore, even when the gap is slightly large, normal molding can be performed.

本発明の大形バルク材の樹脂成形装置において、上記圧力制御部材が、上記圧力を所定値以上に維持する駆動装置に結合されている場合には、材料供給装置からの溶融合成樹脂の供給圧力と溶融合成樹脂の型内における増量速度に対向させて、上記駆動装置が圧力制御部材をバックアップしながら圧力制御部材が移動する。したがって、大形バルク材の成形途上において溶融合成樹脂の圧力を所定値以上に維持することができ、未硬化部分の冷却硬化時に気泡や空洞が大幅に少なく製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。   In the large bulk resin molding apparatus of the present invention, when the pressure control member is coupled to a driving device that maintains the pressure at a predetermined value or higher, the supply pressure of the molten synthetic resin from the material supply device The pressure control member moves while the drive device backs up the pressure control member in opposition to the speed of increase in the mold of the molten synthetic resin. Therefore, the pressure of the molten synthetic resin can be maintained at a predetermined value or higher during the molding of large bulk materials, and there is much less bubbles and cavities when cooling and curing the uncured part, resulting in a dense and normal internal state throughout the product. A large bulk material that does not deform even when a high load is applied can be obtained.

本発明の大形バルク材の樹脂成形装置において、上記駆動装置は、加圧力制御装置に接続された油圧シリンダである場合には、材料供給装置からの溶融合成樹脂の供給圧力と溶融合成樹脂の型内における増量速度に対向させて、上記油圧シリンダの出力が上記加圧力制御装置によって最適値に設定され、この最適値とされた油圧シリンダの出力が圧力制御部材をバックアップしながら圧力制御部材が移動する。さらに、季節変化等による環境温度、合成樹脂の種類、合成樹脂の溶融温度等が変化するために、合成樹脂の硬化速度に遅速が発生するのであるが、上記加圧力制御装置によって、圧力制御部材の移動速度を上記の各種硬化速度の変化因子に適合した最適の移動速度が設定できる。したがって、大形バルク材の成形途上において溶融合成樹脂の圧力を所定値以上に正確に維持することができ、未硬化部分の冷却硬化時に気泡や空洞が大幅に減少して製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。   In the large bulk material resin molding apparatus of the present invention, when the driving device is a hydraulic cylinder connected to the pressure control device, the supply pressure of the molten synthetic resin from the material supply device and the molten synthetic resin The output of the hydraulic cylinder is set to an optimum value by the pressurizing control device in opposition to the increasing speed in the mold, and the pressure control member is operated while the output of the hydraulic cylinder having the optimum value backs up the pressure control member. Moving. Furthermore, since the environmental temperature, the type of synthetic resin, the melting temperature of the synthetic resin, etc. change due to seasonal changes, the curing speed of the synthetic resin is slow. It is possible to set an optimal moving speed suitable for the above-mentioned various change factors of the curing speed. Therefore, the pressure of the molten synthetic resin can be accurately maintained above the specified value during the molding of large bulk materials, and bubbles and cavities are greatly reduced when the uncured part is cooled and cured. Thus, a large bulk material that does not deform even when a high load is applied can be obtained.

上記目的を達成するため、本発明の大形バルク材の樹脂成形方法は、溶融状態の合成樹脂材料を製品成型用の型内に注入して大形バルク材を成形する大形バルク材の合成樹脂成形方法であって、上記型内に進退可能な状態で挿入した圧力制御部材を、型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動させて圧力制御部材に近い方から合成樹脂材料を順次硬化させる際、
上記型内には、先端部が上記供給口に近接して長手方向に伸びる冷却部材が、圧力制御部材が摺動可能なように配置され、上記冷却部材によっても合成樹脂材料を冷却することを要旨とする。
In order to achieve the above object, the resin molding method for a large bulk material according to the present invention is a method for synthesizing a large bulk material in which a molten synthetic resin material is injected into a mold for product molding to mold the large bulk material. In the resin molding method, the pressure of the pressure control member inserted in the mold so as to be able to advance and retreat is maintained at a predetermined pressure or higher in the molten synthetic resin material while the amount of the synthetic resin material supplied into the mold is increasing. While gradually curing the synthetic resin material from the side closer to the pressure control member by gradually moving the inside of the mold in the direction of increasing the volume of the product molding part,
In the mold, a cooling member having a tip portion extending in the longitudinal direction close to the supply port is disposed so that the pressure control member can slide, and the cooling resin also cools the synthetic resin material. The gist.

本発明の大形バルク材の樹脂成形方法は、上記型内に進退可能な状態で挿入した圧力制御部材を、型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動させて圧力制御部材に近い方から合成樹脂材料を順次硬化させる。   The resin molding method for a large bulk material according to the present invention is the pressure of the molten synthetic resin material in the process of increasing the amount of the synthetic resin material supplied into the mold by inserting the pressure control member inserted in the mold so as to be able to advance and retreat. The synthetic resin material is sequentially cured from the side closer to the pressure control member by gradually moving the inside of the mold in the direction in which the volume of the product molding portion is increased while maintaining the value above a predetermined value.

このため、成形初期の段階では、型の内側端面と圧力制御部材との間の製品成形部の空間容積が小さいので、上記材料供給装置から所定の圧力で型内に供給された溶融状態の合成樹脂で直ちに満たされる。この段階において、溶融状態の合成樹脂は、圧力制御部材を直撃するような流れの状態で直ちに上記圧力制御部材で受け止められる。このようにして溶融状態の合成樹脂は圧力制御部材の表面で冷却されながら、型の内周面の方に向きを変えて放射的な方向に流れて行き、さらに型の内周面で受け止められ冷却されて硬化する。したがって、合成樹脂は圧力制御部材の表面の型内周面に近い箇所が早期の内に硬化し、順次圧力制御部材の中央部に硬化領域が拡大されて行く。そして、未硬化の合成樹脂は材料供給装置で所定圧力で加圧され、その圧力を受けながら圧力制御部材が徐々に型内を製品成形部の容積が大きくなる方向に移動するため、未硬化の合成樹脂の圧力は所定値以上に維持される。これにより、硬化した合成樹脂に引続いて硬化が継続され、加圧下における連続的硬化であるため、気泡や空洞等が大幅に少なくなる。   For this reason, at the initial stage of molding, the space volume of the product molding part between the inner end face of the mold and the pressure control member is small, so the synthesis of the molten state supplied into the mold at a predetermined pressure from the material supply device Immediately filled with resin. At this stage, the molten synthetic resin is immediately received by the pressure control member in a flow state that strikes the pressure control member directly. In this way, while the molten synthetic resin is cooled on the surface of the pressure control member, it changes direction toward the inner peripheral surface of the mold and flows in a radial direction, and is further received by the inner peripheral surface of the mold. Cools and hardens. Therefore, in the synthetic resin, a portion near the inner peripheral surface of the mold on the surface of the pressure control member is hardened in an early stage, and the hardening region is sequentially expanded in the central portion of the pressure control member. The uncured synthetic resin is pressurized at a predetermined pressure by the material supply device, and while receiving the pressure, the pressure control member gradually moves in the mold in the direction in which the volume of the product molding portion increases, The pressure of the synthetic resin is maintained at a predetermined value or higher. Accordingly, the curing is continued following the cured synthetic resin, and the continuous curing under pressure is performed, so that bubbles and cavities are significantly reduced.

上記の初期の段階の後は、圧力制御部材が上記の方向にさらに移動しながら硬化部分の領域が拡大されて行き、加圧下における連続的硬化が継続する。この段階においても、溶融状態の合成樹脂が順次型内に供給されるので、未硬化の合成樹脂圧力は圧力制御部材の徐々な移動によって、所定値以下の圧力に維持され気泡や空洞等が大幅に減少して硬化現象が継続する。なお、圧力制御部材の移動に伴って、硬化した合成樹脂は型の内面を摺動しながら圧力制御部材に追従して行く。   After the initial stage, the region of the cured portion is expanded while the pressure control member further moves in the above direction, and continuous curing under pressure continues. Even at this stage, since the molten synthetic resin is sequentially supplied into the mold, the uncured synthetic resin pressure is maintained at a pressure lower than a predetermined value by the gradual movement of the pressure control member, and bubbles and cavities are greatly reduced. The curing phenomenon continues to decrease. As the pressure control member moves, the cured synthetic resin follows the pressure control member while sliding on the inner surface of the mold.

上記のような溶融状態の合成樹脂の継続的な加圧供給と、圧力制御部材の制御された移動が最終段階に達すると、圧力制御部材は型内側の他端面等に当たって停止する。このときに、合成樹脂の加圧状態を継続しておくことにより、未硬化部分の冷却硬化時に気泡や空洞が大幅に少なく製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。
また、溶融合成樹脂は型の内周面で冷却されると同時に、溶融合成樹脂は冷却部材に接触することにより製品成形部の中央部において冷却される。したがって、溶融合成樹脂は、型の内周面と冷却部材の両方で冷却され、このような冷却状態が圧力制御部材の後退時に継続的に維持され、大形バルク材の内側と外側から冷却される。このような型の長手方向の継続した冷却現象により、大形バルク材は短時間で硬化するので、気泡や空洞の成長が全長にわたって抑制され、密度が均一化されると共に高荷重に耐えられる大形バルク材が得られる。
When the continuous pressure supply of the synthetic resin in the molten state as described above and the controlled movement of the pressure control member reach the final stage, the pressure control member stops by hitting the other end surface or the like inside the mold. At this time, by continuing the pressurized state of the synthetic resin, there is much less bubbles and cavities when cooling and curing the uncured part, and the product is in a dense and normal internal state throughout the product, even if a high load is applied A large bulk material that does not deform is obtained.
In addition, the molten synthetic resin is cooled at the inner peripheral surface of the mold, and at the same time, the molten synthetic resin is cooled at the center of the product molding portion by contacting the cooling member. Therefore, the molten synthetic resin is cooled by both the inner peripheral surface of the mold and the cooling member, and such a cooling state is continuously maintained when the pressure control member is retracted, and is cooled from the inside and outside of the large bulk material. The Due to the continuous cooling phenomenon in the longitudinal direction of such a mold, the large bulk material is cured in a short time, so that the growth of bubbles and cavities is suppressed over the entire length, the density is made uniform, and it can withstand high loads. A shaped bulk material is obtained.

つぎに、本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described.

以下の説明では、型の断面が閉断面でその断面形状が長さ方向に略一定とされ、材料供給装置からの合成樹脂材料を上記型内に供給する供給口が上記型の長手方向の端部に設けられ、上記供給口に対向しているとともに型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を、所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動する圧力制御部材が設けられ、しかも上記圧力制御部材が、上記圧力を所定値以上に維持する駆動装置に結合され、さらに、上記駆動装置は、加圧力制御装置に接続された油圧シリンダとされている。   In the following description, the cross section of the mold is a closed cross section, the cross sectional shape thereof is substantially constant in the length direction, and the supply port for supplying the synthetic resin material from the material supply device into the mold is the end in the longitudinal direction of the mold. Product in the mold gradually while maintaining the pressure of the synthetic resin material in the molten state facing the supply port and in the middle of increasing the amount of the synthetic resin material supplied into the mold at a predetermined value or more. A pressure control member that moves in a direction in which the volume of the molding part increases is provided, and the pressure control member is coupled to a drive device that maintains the pressure at a predetermined value or more. The hydraulic cylinder is connected to the device.

図1〜図3は、大形バルク材の樹脂成形装置の一参考例を示す。 1 to 3 show an Example of the resin molding apparatus of a large form bulk material.

図1は、大形バルク材の樹脂成形装置の全体構造を示す断面図、図2は、図1の〔2〕−〔2〕断面図、図3は、大形バルク材が硬化しながら徐々に型内で大きくなって行く変化状態を示す断面図である。   FIG. 1 is a cross-sectional view showing the entire structure of a large bulk resin molding apparatus, FIG. 2 is a cross-sectional view of [2]-[2] in FIG. 1, and FIG. It is sectional drawing which shows the change state which becomes large within a type | mold.

大形バルク材の樹脂成形装置全体は符号1で示され、上記装置1は、合成樹脂材料を送出する材料供給装置2と、上記材料供給装置2から溶融状態の合成樹脂が供給される大形バルク材成形用の型3と、加圧力制御装置で出力制御がなされ上記型3に接続されている駆動装置4から構成されている。   The entire large bulk material resin molding apparatus is denoted by reference numeral 1, and the apparatus 1 is a material supply apparatus 2 for sending out a synthetic resin material, and a large type in which a molten synthetic resin is supplied from the material supply apparatus 2. It comprises a mold 3 for forming a bulk material, and a drive device 4 that is output-controlled by a pressure control device and connected to the die 3.

上記材料供給装置2としては種々な方式のものが採用できるが、ここでは一般的に使用されている射出成形装置である。この射出成形装置は、断面円形の供給シリンダ5内に長尺なスクリュー6が挿入され、回転駆動装置7によって上記スクリュー6にフィード回転が付与される。上記供給シリンダ5の外周には合成樹脂材料を溶融させるヒータ8が取り付けてある。供給シリンダ5の端部には、ペレット等の合成樹脂材料や充填材等を貯留し供給シリンダ5内に上記材料を供給するホッパー9が設けられている。供給シリンダ5の他端にはノズルプレート10が取り付けられ、上記ノズルプレート10に設けられた多数の開口11から溶融合成樹脂が押出されるようになっている。   Although various types of materials can be adopted as the material supply device 2, here, it is an injection molding device generally used. In this injection molding apparatus, a long screw 6 is inserted into a supply cylinder 5 having a circular cross section, and a feed rotation is applied to the screw 6 by a rotation driving device 7. A heater 8 for melting the synthetic resin material is attached to the outer periphery of the supply cylinder 5. A hopper 9 is provided at the end of the supply cylinder 5 to store a synthetic resin material such as pellets or a filler and supply the material into the supply cylinder 5. A nozzle plate 10 is attached to the other end of the supply cylinder 5, and molten synthetic resin is extruded from a number of openings 11 provided in the nozzle plate 10.

上記ノズルプレート10に中継管12が接続され、この中継管12を経て上記型3内に合成樹脂が供給されるようになっている。型3は、その断面が閉断面でその断面形状や断面寸法が長さ方向に略一定とされ、上記中継管12からの合成樹脂材料を型3内に供給する円形の供給口13が、型3の長手方向の端部に設けてある。型3は、図2に示すように、肉厚の鋼板で製作され、その断面形状は略正方形である。型3の端部に略正方形の端板14が配置され、その略中央部に上記供給口13が設けてある。   A relay pipe 12 is connected to the nozzle plate 10, and synthetic resin is supplied into the mold 3 through the relay pipe 12. The mold 3 has a closed cross section, and its cross sectional shape and cross sectional dimensions are substantially constant in the length direction. A circular supply port 13 for supplying the synthetic resin material from the relay pipe 12 into the mold 3 3 at the end in the longitudinal direction. As shown in FIG. 2, the mold 3 is made of a thick steel plate and has a substantially square cross-sectional shape. A substantially square end plate 14 is disposed at the end of the mold 3, and the supply port 13 is provided at a substantially central portion thereof.

上記供給口13から型3内に流入してきた合成樹脂を受け止めて、溶融状態の合成樹脂の圧力を所定値以上に維持するとともに、端板14との間に製品成形部15を構成する圧力制御部材16が設けられている。上記圧力制御部材16は、型3の断面形状と同様に略正方形とされ、その外周面17と型3の内周面3Aとの間に微小な間隙Cがあけられている。圧力制御部材16は上記のように配置されて、供給口13に対向しているとともに型3内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を、所定値以上に維持しながら徐々に型3内を製品成形部15の容積が大きくなる方向に移動するようになっている。   The pressure control which receives the synthetic resin which flowed in into the type | mold 3 from the said supply port 13, maintains the pressure of the synthetic resin of a molten state more than predetermined value, and comprises the product shaping | molding part 15 between the end plates 14 A member 16 is provided. The pressure control member 16 has a substantially square shape similar to the cross-sectional shape of the mold 3, and a minute gap C is formed between the outer peripheral surface 17 and the inner peripheral surface 3 </ b> A of the mold 3. The pressure control member 16 is arranged as described above, and the pressure of the synthetic resin material in a molten state is increased to a predetermined value or more while facing the supply port 13 and in the process of increasing the amount of the synthetic resin material supplied into the mold 3. While maintaining, the inside of the mold 3 is gradually moved in the direction in which the volume of the product molding portion 15 is increased.

大形バルク材の成形が完了して型3から抜き出すために、上記端板14かまたは端板14とは反対側の端板18が外せるようにしてある。この例では、上記端板18が外せるようになっていて、端板18側に設けたフランジ19と、型3の本体側に設けたフランジ20とを衝合し、この衝合部分を分離させて型3の端部が開放される。また、上記衝合部分を強く密着させておいて合成樹脂の注入がなされる。衝合部分の衝合状態を確実に維持するために、クランプ機構21が両フランジ19,20の複数箇所に等間隔で配置されている。上記クランプ機構21は一般的に使用されている形式のものであり、この例では、両フランジ19,20を貫通する軸部材22と、それに結合したクランプレバー23で構成されている。図1に示した状態は、上記クランプレバー23を締付位置に停止させて、両フランジ19,20が強く密着している状態である。また、クランプレバー23を回動して締付状態を緩めて軸部材22を両フランジ19,20から外すと、端板18を開放できる状態になる。   The end plate 14 or the end plate 18 on the opposite side to the end plate 14 can be removed in order to complete the forming of the large bulk material and extract it from the mold 3. In this example, the end plate 18 can be removed, and the flange 19 provided on the end plate 18 side and the flange 20 provided on the main body side of the mold 3 are abutted to separate the abutting portion. The end of the mold 3 is opened. Further, the synthetic resin is injected while the abutting portion is in close contact. In order to reliably maintain the abutting state of the abutting portion, the clamp mechanisms 21 are arranged at a plurality of positions on the flanges 19 and 20 at equal intervals. The clamp mechanism 21 is of a type that is generally used. In this example, the clamp mechanism 21 includes a shaft member 22 that passes through both flanges 19 and 20 and a clamp lever 23 coupled thereto. The state shown in FIG. 1 is a state in which the clamp lever 23 is stopped at the tightening position and the flanges 19 and 20 are in close contact with each other. Further, when the clamp lever 23 is rotated to loosen the tightening state and the shaft member 22 is removed from both the flanges 19 and 20, the end plate 18 can be opened.

供給口13が開口している側の端板14を着脱する場合にも、端板18側と同様なクランプ機構等を採用する。   Even when the end plate 14 on the side where the supply port 13 is opened is attached or detached, a clamp mechanism similar to that on the end plate 18 side is employed.

つぎに、上記圧力制御部材16の中央部には駆動軸24が結合され、この駆動軸24は端板18の軸受部25を貫通して上記駆動装置4に結合されている。駆動装置4としては油圧シリンダ26が用いられており、圧力制御部材16を、上記材料供給装置2から導入される溶融合成樹脂の圧力に対向し、所定の速度で圧力制御部材16を製品成形部が大きくなる方向に移動させるために、加圧力制御装置27が設けられている。上記加圧力制御装置27は、製品成形部15の溶融合成樹脂の圧力信号を変換手段を用いて、圧力制御弁を動作させることのできる通常の装置であり、油圧ポンプPから油圧ピストン28の左右に伝達される油圧が、上記圧力制御弁によって溶融合成樹脂の圧力に対応させて設定されている。   Next, a drive shaft 24 is coupled to the central portion of the pressure control member 16, and the drive shaft 24 passes through the bearing portion 25 of the end plate 18 and is coupled to the drive device 4. As the driving device 4, a hydraulic cylinder 26 is used. The pressure control member 16 is opposed to the pressure of the molten synthetic resin introduced from the material supply device 2, and the pressure control member 16 is moved at a predetermined speed to the product molding unit. In order to move in the direction in which the pressure increases, a pressure control device 27 is provided. The pressure control device 27 is a normal device capable of operating a pressure control valve by using a means for converting the pressure signal of the molten synthetic resin of the product molding unit 15. The hydraulic pressure transmitted to is set in accordance with the pressure of the molten synthetic resin by the pressure control valve.

増量途上の上記溶融合成樹脂の圧力を所定値以上に維持するためには、単位時間当たりの溶融合成樹脂の増量量に応じて、圧力制御部材16の移動速度を設定することにより行なわれる。すなわち、上記増量量に対して圧力制御部材16の移動速度をやや遅く設定することにより、溶融合成樹脂は常に圧縮状態におかれる。圧力制御部材16の移動速度を上記のように設定するために、図1に示した油圧ピストン28の右側から左側に移動する作動油に所定の絞り抵抗を付与するのであり、この絞り抵抗の設定が加圧力制御装置27でなされる。   In order to maintain the pressure of the molten synthetic resin in the course of increasing to a predetermined value or more, it is performed by setting the moving speed of the pressure control member 16 in accordance with the increasing amount of the molten synthetic resin per unit time. That is, by setting the moving speed of the pressure control member 16 slightly slower than the increase amount, the molten synthetic resin is always put in a compressed state. In order to set the moving speed of the pressure control member 16 as described above, a predetermined throttle resistance is given to the hydraulic oil moving from the right side to the left side of the hydraulic piston 28 shown in FIG. Is performed by the pressure control device 27.

上記型3の断面形状は略正方形であるが、大形バルク材の形状に応じて、円形断面,長方形断面,台形断面等にすることができる。また、上記間隙Cをさらに微小にして、外周面17が型3の内周面3Aに摺動するようにすることもできる。さらに、駆動装置4として油圧シリンダ26が採用されているが、これを電動モータ等に置きかえることも可能である。   Although the cross-sectional shape of the mold 3 is substantially square, it can be a circular cross-section, a rectangular cross-section, a trapezoidal cross-section, or the like according to the shape of the large bulk material. Further, the gap C can be further reduced so that the outer peripheral surface 17 slides on the inner peripheral surface 3A of the mold 3. Furthermore, although the hydraulic cylinder 26 is employed as the driving device 4, it can be replaced with an electric motor or the like.

つぎに、合成樹脂の種類としては、大形バルク材に対する圧縮荷重に耐えられるものであれば種々な合成樹脂が採用できるのであるが、この例では、オレフィン系樹脂(ポリプロピレン)の廃材を粒子状にしたものと、充填材としての木紛とを混合して上記ホッパー9に投入している。上記合成樹脂の廃材と木紛との混合比率は、重量%で上記廃材60%,上記木紛40%である。なお、上記合成樹脂と充填材については、大形バルク材の耐圧性能、大きさ等に応じて、選択される合成樹脂や充填材の種類および両者の混合比率が設定される。   Next, as the type of synthetic resin, various synthetic resins can be used as long as they can withstand the compressive load on the large bulk material. In this example, the waste material of olefin resin (polypropylene) is particulate. What was made and wood powder as a filler were mixed and put into the hopper 9. The mixing ratio of the synthetic resin waste material and wood powder is 60% of the waste material and 40% of the wood powder in weight%. In addition, about the said synthetic resin and a filler, according to the pressure | voltage resistant performance of a large-sized bulk material, a magnitude | size, etc., the kind of synthetic resin selected, a filler, and the mixture ratio of both are set.

図3は、製品成形部15内に流入した合成樹脂が所定の圧力を維持した状態で硬化して行く状態を示している。同図(A)は、製品成形部15の容積が最小の状態とされた成形初期の段階である。この段階では供給口13から流入してきた溶融合成樹脂が、圧力制御部材16の端面中央部を直撃し、圧力制御部材16で冷却されながら放射方向に流動する。その後、合成樹脂は型3の内周面3Aで受け止められてそこでさらに冷却される。このような初期の合成樹脂の流動現象により、圧力制御部材16に近い型3の内周面3Aから硬化が開始され、それに引続いて圧力制御部材16の中央部の方へ硬化領域が拡大して行く。そして、順次溶融合成樹脂が流入してくるので、それに対向させながら圧力制御部材16を徐々に右方へ移動させ、溶融合成樹脂の圧力は材料供給装置2の供給圧力と略同じかまたはそれよりもやや低い圧力に維持される。図3において、29は合成樹脂が溶融状態である未硬化部分、30は硬化部分である。   FIG. 3 shows a state in which the synthetic resin flowing into the product molding portion 15 is cured while maintaining a predetermined pressure. FIG. 4A shows the initial stage of molding in which the volume of the product molding unit 15 is minimized. At this stage, the molten synthetic resin flowing in from the supply port 13 strikes the center of the end face of the pressure control member 16 and flows in the radial direction while being cooled by the pressure control member 16. Thereafter, the synthetic resin is received by the inner peripheral surface 3A of the mold 3 and further cooled there. By such an initial synthetic resin flow phenomenon, curing starts from the inner peripheral surface 3A of the mold 3 close to the pressure control member 16, and subsequently, the curing region expands toward the central portion of the pressure control member 16. Go. Then, since the molten synthetic resin sequentially flows in, the pressure control member 16 is gradually moved to the right while facing it, and the pressure of the molten synthetic resin is substantially the same as or higher than the supply pressure of the material supply device 2. Maintained at slightly lower pressure. In FIG. 3, 29 is an uncured portion where the synthetic resin is in a molten state, and 30 is a cured portion.

図3(B)の段階になると、硬化部分30の領域が拡大されるとともに、未硬化部分29は(A)よりも大きい領域となっている。この段階においても、圧力制御部材16の移動速度が、製品成形部15の容積の増大を抑制するような遅い速度であるから、未硬化部分29の圧力は材料供給装置2の供給圧力と略同じかまたはそれよりもやや低い圧力に維持される。   At the stage of FIG. 3 (B), the area of the cured portion 30 is enlarged, and the uncured portion 29 is an area larger than (A). Even at this stage, since the moving speed of the pressure control member 16 is a slow speed that suppresses an increase in the volume of the product molding portion 15, the pressure of the uncured portion 29 is substantially the same as the supply pressure of the material supply device 2. Or at a slightly lower pressure.

図3(C)の段階になると、未硬化部分29の容量は(B)と同じであるが、硬化部分30は増大し硬化した製品部分がさらに大きくなっている。この段階においても、未硬化部分29の圧力は上記(B)に示す段階と同様な圧力状態になっている。   At the stage of FIG. 3C, the capacity of the uncured portion 29 is the same as that in FIG. 3B, but the cured portion 30 is increased and the cured product portion is further enlarged. Also in this stage, the pressure of the uncured portion 29 is in the same pressure state as in the stage shown in (B) above.

未硬化部分29の圧力が設定される条件としては、製品成形部15の容積,合成樹脂の粘性,型3の冷却度合い等が掲げられるが、この例では、材料供給装置2の供給圧力が1500Kg/cm(14709.975×10−4Pa),上記1500Kg/cmに対向する油圧シリンダの加圧は800Kg/cm(7845.32×10−4Pa)である。上記両圧力の比は10:5から10:9の範囲内である。 Conditions for setting the pressure of the uncured portion 29 include the volume of the product molding portion 15, the viscosity of the synthetic resin, the degree of cooling of the mold 3, etc. In this example, the supply pressure of the material supply device 2 is 1500 kg. / cm 2 (14709.975 × 10 -4 Pa), the pressure of the hydraulic cylinder opposite to the 1500 Kg / cm 2 is 800Kg / cm 2 (7845.32 × 10 -4 Pa). The ratio of the two pressures is in the range of 10: 5 to 10: 9.

上記型3内で合成樹脂が硬化したら、クランプ機構21を動作させて端板18を外し、その後、型3を中継管12から分離して、型3を上下方向の姿勢にして吊り上げ、硬化収縮した大形バルク材を下方に抜き出す。あるいは、端板14の側に端板18のような開放機能を付与することにより、油圧シリンダ26の押圧出力で大形バルク材を型3から押出すことができ、作業性が向上する。また、上記のような大形バルク材の抜き取りを容易にするために、型3の内面に離型剤を塗布しておくことにより、作業性を改善することができる。   When the synthetic resin is cured in the mold 3, the clamp mechanism 21 is operated to remove the end plate 18, and then the mold 3 is separated from the relay pipe 12, and the mold 3 is lifted up and down to cure and shrink. Pull out the large bulk material. Alternatively, by providing an opening function like the end plate 18 on the end plate 14 side, a large bulk material can be extruded from the mold 3 by the pressing output of the hydraulic cylinder 26, and workability is improved. Moreover, workability can be improved by applying a release agent to the inner surface of the mold 3 in order to facilitate extraction of the large bulk material as described above.

上記の参考例の構成による作用効果を列記すると、次のとおりである。 It is as follows when the effect by the structure of said reference example is listed.

成形初期の段階では、型3の内側端面すなわち端板14と圧力制御部材16との間の製品成形部15の空間容積が小さいので、上記材料供給装置2から所定の圧力で型3内に供給された溶融状態の合成樹脂で直ちに満たされる。この段階において、溶融状態の合成樹脂は、上記供給口13からの合成樹脂流となって型3内に流入し、直ちに上記圧力制御部材16で受け止められる。このようにして溶融状態の合成樹脂は圧力制御部材16の表面で冷却されながら、型3の内周面3Aの方に向きを変えて放射的な方向に流れて行き、さらに型3の内周面3Aで受け止められ冷却されて硬化する。したがって、合成樹脂は圧力制御部材16の表面の型内周面3Aに近い箇所が早期の内に硬化し、順次圧力制御部材16の中央部に硬化領域が拡大されて行く。そして、未硬化の合成樹脂は材料供給装置2で所定圧力で加圧され、その圧力を受けながら圧力制御部材16が徐々に型3内を製品成形部15の容積が大きくなる方向に移動するため、未硬化の合成樹脂の圧力は所定値以上に維持される。これにより、硬化した合成樹脂に引続いて硬化が継続され、加圧下における連続的硬化であるため、気泡や空洞等が大幅に少なくなる。   At the initial stage of molding, since the space volume of the product molding portion 15 between the inner end face of the mold 3, that is, the end plate 14 and the pressure control member 16 is small, the material supply device 2 supplies the mold 3 with a predetermined pressure. Immediately filled with the melted synthetic resin. At this stage, the molten synthetic resin flows into the mold 3 as a synthetic resin flow from the supply port 13 and is immediately received by the pressure control member 16. In this way, the molten synthetic resin is cooled on the surface of the pressure control member 16, changes its direction toward the inner peripheral surface 3 </ b> A of the mold 3, and flows in a radial direction. It is received by the surface 3A, cooled and hardened. Therefore, the synthetic resin is hardened at an early stage at a portion close to the mold inner peripheral surface 3 </ b> A on the surface of the pressure control member 16, and the hardening region is gradually expanded in the central portion of the pressure control member 16. The uncured synthetic resin is pressurized at a predetermined pressure by the material supply device 2, and the pressure control member 16 gradually moves in the mold 3 in the direction in which the volume of the product molding portion 15 increases while receiving the pressure. The pressure of the uncured synthetic resin is maintained at a predetermined value or higher. Accordingly, the curing is continued following the cured synthetic resin, and the continuous curing under pressure is performed, so that bubbles and cavities are significantly reduced.

上記の初期の段階の後は、圧力制御部材16が上記の方向にさらに移動しながら硬化部分30の領域が拡大されて行き、加圧下における連続的硬化が継続する。この段階においても、溶融状態の合成樹脂が順次型3内に供給されるので、未硬化の合成樹脂圧力は圧力制御部材16の徐々な移動によって、所定値以上に維持され気泡や空洞等が大幅に減少して硬化現象が継続する。なお、圧力制御部材16の移動に伴って、硬化した合成樹脂は型3の内周面3Aを摺動しながら圧力制御部材16に追従して行く。   After the initial stage, the region of the cured portion 30 is expanded while the pressure control member 16 is further moved in the above direction, and continuous curing under pressure continues. Also in this stage, since the molten synthetic resin is sequentially supplied into the mold 3, the uncured synthetic resin pressure is maintained at a predetermined value or more by the gradual movement of the pressure control member 16, and bubbles and cavities are greatly increased. The curing phenomenon continues to decrease. As the pressure control member 16 moves, the cured synthetic resin follows the pressure control member 16 while sliding on the inner peripheral surface 3A of the mold 3.

上記のような溶融状態の合成樹脂の継続的な加圧供給と、圧力制御部材16の制御された移動が最終段階に達すると、圧力制御部材16は型内側の他端面等に当たって停止する。このときに、合成樹脂の加圧状態を継続しておくことにより、未硬化部分29の冷却硬化時に気泡や空洞が大幅に少なくなり製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。   When the continuous pressure supply of the synthetic resin in the molten state as described above and the controlled movement of the pressure control member 16 reach the final stage, the pressure control member 16 hits the other end surface inside the mold and stops. At this time, by continuing the pressurized state of the synthetic resin, bubbles and cavities are greatly reduced when the uncured portion 29 is cooled and cured, resulting in a dense and normal internal state throughout the product, and a high load is applied. A large bulk material that does not deform even is obtained.

上記圧力制御部材16の外周面17と上記型3の内周面3Aとは、摺動関係または微小な間隙Cが設定されている。したがって、流入してきた溶融状態の合成樹脂が圧力制御部材16の外周面17から漏洩することがなく、製品部分を正確に成形することができる。さらに、合成樹脂は圧力制御部材16に接した型3の内周面3Aに近い箇所から硬化し始めるので、この硬化部分30が溶融合成樹脂に対するシール部材の役割を果たし、溶融合成樹脂のリークを防止する。したがって、上記間隙Cが若干大きい場合であっても正常な型成形が可能となる。   A sliding relationship or a minute gap C is set between the outer peripheral surface 17 of the pressure control member 16 and the inner peripheral surface 3A of the mold 3. Therefore, the molten synthetic resin that has flowed in does not leak from the outer peripheral surface 17 of the pressure control member 16, and the product portion can be accurately molded. Further, since the synthetic resin begins to harden from a location near the inner peripheral surface 3A of the mold 3 that is in contact with the pressure control member 16, the cured portion 30 serves as a sealing member for the molten synthetic resin, and leaks the molten synthetic resin. To prevent. Therefore, even when the gap C is slightly large, normal molding can be performed.

上記圧力制御部材16が、駆動装置4で動作されているので、材料供給装置2からの溶融合成樹脂の供給圧力と溶融合成樹脂の型3内における増量速度に対向させて、上記駆動装置4が圧力制御部材16をバックアップしながら圧力制御部材16が移動する。したがって、大形バルク材の成形途上において溶融合成樹脂の圧力を所定値以上に維持することができ、未硬化部分29の冷却硬化時に気泡や空洞が大幅に減少して製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。   Since the pressure control member 16 is operated by the driving device 4, the driving device 4 is opposed to the supply pressure of the molten synthetic resin from the material supply device 2 and the increasing speed of the molten synthetic resin in the mold 3. The pressure control member 16 moves while backing up the pressure control member 16. Therefore, the pressure of the molten synthetic resin can be maintained at a predetermined value or more during the molding of the large bulk material, and bubbles and cavities are greatly reduced when the uncured portion 29 is cooled and cured, and the product is dense and normal throughout the entire product. A large bulk material that is in an internal state and does not deform even when a high load is applied can be obtained.

上記駆動装置4は、加圧力制御装置27に接続された油圧シリンダ26であるから、材料供給装置2からの溶融合成樹脂の供給圧力と溶融合成樹脂の型3内における増量速度に対向させて、上記油圧シリンダ26の出力が上記加圧力制御装置27によって最適値に設定され、この最適値とされた油圧シリンダ26の出力が圧力制御部材16をバックアップしながら圧力制御部材16が移動する。さらに、季節変化等による環境温度、合成樹脂の種類、合成樹脂の溶融温度等が変化するために、合成樹脂の硬化速度に遅速が発生するのであるが、加圧力制御装置27によって、圧力制御部材16の移動速度を上記の各種硬化速度の変化因子に適合した最適の移動速度が設定できる。したがって、大形バルク材の成形途上において溶融合成樹脂の圧力を所定値以上に正確に維持することができ、未硬化部分29の冷却硬化時に気泡や空洞が大幅に少なくなって製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。   Since the drive device 4 is a hydraulic cylinder 26 connected to the pressure control device 27, the drive pressure of the molten synthetic resin from the material supply device 2 and the increasing speed of the molten synthetic resin in the mold 3 are opposed to each other. The output of the hydraulic cylinder 26 is set to an optimum value by the pressure control device 27, and the pressure control member 16 moves while the output of the hydraulic cylinder 26 having the optimum value backs up the pressure control member 16. Furthermore, since the environmental temperature, the type of synthetic resin, the melting temperature of the synthetic resin, and the like change due to seasonal changes and the like, the synthetic resin is cured at a slow rate. It is possible to set an optimum moving speed in which the moving speed of 16 is adapted to the change factors of the above various curing speeds. Accordingly, the pressure of the molten synthetic resin can be accurately maintained at a predetermined value or more during the molding of the large bulk material, and bubbles and cavities are greatly reduced when the uncured portion 29 is cooled and cured, so that the entire product is dense. A large bulk material that is in a normal internal state and does not deform even when a high load is applied can be obtained.

上記のように、加圧条件下で合成樹脂を硬化させるので、熱化塑性合成樹脂の廃材を粒状にして再利用しても、高い密度をもって気泡や空洞が実質的に問題にならないレベルで硬化させることができ、コストダウンにとって有利である。また、木紛等の充填材も上記のような圧力条件下で硬化した合成樹脂中に混在しているので、充填材混入による大形バルク材の圧縮強度を低下させることがない。   As mentioned above, since the synthetic resin is cured under pressurized conditions, even if the waste material of the thermoplastic plastic synthetic resin is granulated and reused, it cures at a high density so that bubbles and cavities do not become a problem. This is advantageous for cost reduction. Moreover, since fillers such as wood powder are also mixed in the synthetic resin cured under the pressure conditions as described above, the compressive strength of the large bulk material due to mixing of the fillers is not reduced.

上記圧力制御部材16の後退速度を型3の全長にわたって一定にした場合には、溶融合成樹脂の注入初期の段階では製品成形部15の圧力が十分に高くならないので、この部位には気泡等の分布が基準値を上回る現象が生じる。一方、圧力制御部材16が最終的な位置まで後退した状態では、溶融合成樹脂の圧力が所定値以上に安定して設定されているので、最終段階で硬化する部分の気泡等は基準値以下となる。このように大形バルク材の両端部近傍では気泡等の分布にばらつきができるので、必要に応じて、上記両端部を切り捨てて、全長にわたって均一な気泡や空洞等の分布をした大形バルク材に仕上げる。   If the retreat speed of the pressure control member 16 is made constant over the entire length of the mold 3, the pressure of the product molding portion 15 does not become sufficiently high at the initial stage of injection of the molten synthetic resin. A phenomenon occurs in which the distribution exceeds the reference value. On the other hand, in the state in which the pressure control member 16 is retracted to the final position, the pressure of the molten synthetic resin is stably set to a predetermined value or higher, so that the bubbles and the like that are cured in the final stage are less than the reference value. Become. Since the distribution of bubbles and the like can vary in the vicinity of both ends of the large bulk material in this way, the large bulk material having the uniform distribution of bubbles and cavities over the entire length by truncating the both ends as necessary. Finish.

図4〜図8は、本発明の大形バルク材の樹脂成形装置の一実施例を示す。 Figures 4-8 show the Kazumi施例the resin molding apparatus of large bulk material of the present invention.

この実施例は、成形された大形バルク材の長手方向の密度をできるだけ均一化すると共に、成形中および成形後の冷却性を高めるものである。   In this embodiment, the density in the longitudinal direction of the molded large bulk material is made as uniform as possible, and the cooling property during and after molding is improved.

図4は、主として上記型3の内部構造を示す横断平面図である。圧力制御部材16は、前板16Aと後板16Bが間隔をおいて配置された2重構造とされ、上記前板16Aと後板16Bは中央部の接続部16Cで一体化されている。この例では、駆動軸24が2本平行に配置され、その一端は支持板31に結合され、他端は圧力制御部材16に結合されている。上記支持板31は、油圧シリンダ26のピストンロッド32に結合されている。また、駆動軸24と圧力制御部材16の結合は、駆動軸24の端部に形成した雄ねじ部とそれに螺合するナットのいわゆるねじ構造で結合することも可能であるが、この例では、上記後板16Bに駆動軸24を摺動可能な状態で貫通させ、その先端部を前板16Aの背面に突き当てた構造とされている。   FIG. 4 is a cross-sectional plan view mainly showing the internal structure of the mold 3. The pressure control member 16 has a double structure in which a front plate 16A and a rear plate 16B are arranged at an interval, and the front plate 16A and the rear plate 16B are integrated at a connecting portion 16C at the center. In this example, two drive shafts 24 are arranged in parallel, one end of which is coupled to the support plate 31 and the other end is coupled to the pressure control member 16. The support plate 31 is coupled to the piston rod 32 of the hydraulic cylinder 26. In addition, the drive shaft 24 and the pressure control member 16 can be connected by a so-called screw structure of a male screw portion formed at the end of the drive shaft 24 and a nut screwed to the male screw portion. The drive shaft 24 is slidably penetrated through the rear plate 16B, and the front end thereof is abutted against the back surface of the front plate 16A.

上記型3の略中央部に型3の長手方向にわたって鋼鉄製の冷却管33が配置されている。上記冷却管33は、上記圧力制御部材16の接続部16Cにあけた挿通穴16Dを摺動可能な状態で貫通しており、後部は端板18にあけたガイド穴34にガイドされている。上記ガイド穴34は、中央部に冷却管33を支持する大径部34Aと、上記大径部34Aの両側に駆動軸24が通る通過部34Bとから構成されている。図6に示すように、上記冷却管33の後端を受けとめるストッパプレート35に2本のボルト36が貫通し、その先端側が端板18にねじ込まれている。   A steel cooling pipe 33 is disposed in a substantially central portion of the mold 3 over the longitudinal direction of the mold 3. The cooling pipe 33 passes through an insertion hole 16D formed in the connection portion 16C of the pressure control member 16 in a slidable state, and a rear portion is guided by a guide hole 34 formed in the end plate 18. The guide hole 34 includes a large-diameter portion 34A that supports the cooling pipe 33 in the center, and a passage portion 34B through which the drive shaft 24 passes on both sides of the large-diameter portion 34A. As shown in FIG. 6, two bolts 36 pass through a stopper plate 35 that receives the rear end of the cooling pipe 33, and the front end side is screwed into the end plate 18.

上記冷却管33は、図8に示すように、断面が円形であり中空部33Aを有する中空管とされていて、その先端部にはテーパ部33Bが設けられ中空部33Aを閉塞している。冷却管33の直径は上記供給口13の内径よりも大きく設定され、この例では、冷却管33の直径が90mm、供給口13の開口部の内径が80mmである。また、冷却管33が最も後退してしている位置は、テーパ部33Bの先端部が供給口13内に進入した位置であり、この位置において合成樹脂材料が型3内に流入する流路37が形成されている。上記流路37は、図7に示すように、環状の流通空間の形状とされ、その流路幅は符号Wで示されている。上記テーパ部33Bの中心軸と供給口13の中心軸を合致させるために、断面「く」字型の受け部材38を冷却管33の下側に配置して、端板14の内面に溶接してある。   As shown in FIG. 8, the cooling pipe 33 is a hollow pipe having a circular cross section and having a hollow portion 33A. A tapered portion 33B is provided at the tip of the cooling tube 33 to close the hollow portion 33A. . The diameter of the cooling pipe 33 is set larger than the inner diameter of the supply port 13. In this example, the diameter of the cooling pipe 33 is 90 mm and the inner diameter of the opening of the supply port 13 is 80 mm. Further, the position where the cooling pipe 33 is most retracted is a position where the tip of the tapered portion 33B has entered the supply port 13, and the flow path 37 through which the synthetic resin material flows into the mold 3 at this position. Is formed. As shown in FIG. 7, the flow path 37 has a shape of an annular flow space, and the flow path width is indicated by a symbol W. In order to make the central axis of the tapered portion 33B coincide with the central axis of the supply port 13, a receiving member 38 having a "<" shape in cross section is disposed below the cooling pipe 33 and welded to the inner surface of the end plate 14. It is.

上記ボルト36を締め込むと、ストッパプレート35が端板18の方に移動するので、それとともに冷却管33が供給口13の方へ押され、テーパ部33Bが供給口13の開口縁に圧接される。したがって、テーパ部33Bと供給口13の開口縁によって弁のような機能を果たす。   When the bolt 36 is tightened, the stopper plate 35 moves toward the end plate 18, so that the cooling pipe 33 is pushed toward the supply port 13 and the tapered portion 33 </ b> B is pressed against the opening edge of the supply port 13. The Therefore, the tapered portion 33B and the opening edge of the supply port 13 serve as a valve.

上述のように、この例では、冷却管33の直径が90mm、供給口13の開口部の内径が80mmであるが、一方、型3の内部寸法は縦,横はそれぞれ350mm、長さは1700mmである。それ以外は、上記参考例と同様であり、同様の部分には同じ符号を付している。また、船舶用の大形バルク材は船舶が進水後に浮上するようにしておくのが大形バルク材の回収上便利であり、また、地上で搬送するときにも軽量であることが得策である。そのような観点から、大形バルク材の比重は1g/cc以下、望ましくは天然木材に近い0.5g/ccに設定される。このような比重の設定は、使用する合成樹脂の種類、充填材の種類や混入量によって調整される。 As described above, in this example, the diameter of the cooling pipe 33 is 90 mm and the inner diameter of the opening of the supply port 13 is 80 mm. On the other hand, the internal dimensions of the mold 3 are 350 mm in length and width, and 1700 mm in length. It is. Other than that, it is the same as that of the above-mentioned reference example, and the same numerals are given to the same portion. In addition, it is convenient to collect large bulk materials for ships in order to recover large bulk materials so that the ships float after launch, and it is also advantageous to be lightweight when transported on the ground. is there. From such a viewpoint, the specific gravity of the large bulk material is set to 1 g / cc or less, preferably 0.5 g / cc close to natural wood. Such setting of specific gravity is adjusted according to the type of synthetic resin to be used, the type of filler, and the mixing amount.

上記構成により、溶融した合成樹脂材料は上記環状の流路37から製品成形部15内に流入する。このときの溶融合成樹脂の流れ形態は、テーパ部33Bの形状によって略テーパ型に拡散した流れになり、その主流は型3の内周面3Aの方を指向している。したがって、溶融合成樹脂は型3の内周面3Aで冷却される。これと同時に、溶融合成樹脂は冷却管33に接触することにより製品成形部15の中央部において冷却される。したがって、溶融合成樹脂は、型3の内周面3Aと冷却管33の両方で冷却され、このような冷却状態が圧力制御部材16の後退時に継続的に維持され、大形バルク材の内側と外側から冷却される。このような型3の長手方向の継続した冷却現象により、大形バルク材は短時間で硬化するので、気泡や空洞の成長が全長にわたって抑制され、密度が均一化されると共に高荷重に耐えられる大形バルク材が得られる。   With the above configuration, the molten synthetic resin material flows into the product molding portion 15 from the annular flow path 37. The flow form of the molten synthetic resin at this time is a flow diffused in a substantially tapered shape due to the shape of the tapered portion 33B, and the main flow is directed toward the inner peripheral surface 3A of the die 3. Therefore, the molten synthetic resin is cooled by the inner peripheral surface 3 </ b> A of the mold 3. At the same time, the molten synthetic resin is cooled at the center of the product molding portion 15 by contacting the cooling pipe 33. Therefore, the molten synthetic resin is cooled by both the inner peripheral surface 3A of the mold 3 and the cooling pipe 33, and such a cooling state is continuously maintained when the pressure control member 16 is retracted, and the inside of the large bulk material Cooled from the outside. Due to the continuous cooling phenomenon in the longitudinal direction of the mold 3, the large bulk material is cured in a short time, so that the growth of bubbles and cavities is suppressed over the entire length, the density is made uniform, and it can withstand high loads. Large bulk material is obtained.

圧力制御部材16が最も後退して製品成形部15が未硬化部分29と硬化部分30で満たされると、ボルト36を締め込んで冷却管33を供給口13の方へ移動し、テーパ部33Bを供給口13の開口縁に着座させる。これにより、供給口13から製品成形部15にわたって連続している溶融合成樹脂が切断された状態になり、材料供給装置2からの溶融合成樹脂の供給が打ち切られる。その後、製品成形部15全体が硬化すると、クランプ機構21を解除して端板18を型3から外し、さらに駆動軸24を後退させて圧力制御部材16を型3から抜き取る。これにより、型3内には大形バルク材とそれを貫通している冷却管が残ることになる。その後、冷却管33の後端をつかんで大形バルク材を型3から引き出す。さらに、大形バルク材から冷却管33を抜き取って成形品単体の状態になる。   When the pressure control member 16 retreats most and the product molding portion 15 is filled with the uncured portion 29 and the cured portion 30, the bolt 36 is tightened to move the cooling pipe 33 toward the supply port 13, and the tapered portion 33B is moved. It is seated on the opening edge of the supply port 13. As a result, the molten synthetic resin continuous from the supply port 13 to the product molding portion 15 is cut, and the supply of the molten synthetic resin from the material supply device 2 is terminated. Thereafter, when the entire product molding portion 15 is cured, the clamp mechanism 21 is released, the end plate 18 is removed from the mold 3, and the drive shaft 24 is further retracted to extract the pressure control member 16 from the mold 3. As a result, a large bulk material and a cooling pipe passing therethrough remain in the mold 3. Thereafter, the large bulk material is pulled out from the mold 3 by grasping the rear end of the cooling pipe 33. Furthermore, the cooling pipe 33 is extracted from the large bulk material to be in a state of a single molded product.

上述のように、溶融合成樹脂を製品成形部15に供給しているときには、冷却管33の中空部33Aを経て溶融合成樹脂の熱が放散されて、合成樹脂の硬化を促進し、気泡や空洞部の発生を大幅に少なくすることができる。また。冷却管33が大形バルク材から抜き取られてからは、大形バルク材に形成された貫通穴が放熱に役立ち、空冷の促進に有効である。   As described above, when the molten synthetic resin is supplied to the product molding portion 15, the heat of the molten synthetic resin is dissipated through the hollow portion 33A of the cooling pipe 33, and the curing of the synthetic resin is promoted. The generation of parts can be greatly reduced. Also. After the cooling pipe 33 is extracted from the large bulk material, the through holes formed in the large bulk material are useful for heat dissipation and effective in promoting air cooling.

また、上記のように、冷却機能を果たす冷却管33によって、溶融合成樹脂の流入を遮断するバルブ機能を行なわせるので、冷却管33を多機能化して構造を簡素化するのに有効である。   In addition, as described above, the cooling pipe 33 that performs the cooling function performs the valve function that blocks the inflow of the molten synthetic resin, which is effective in simplifying the structure by making the cooling pipe 33 multifunctional.

冷却管33は中空構造とされているので、その全長にわたって冷却機能を果たすことができ、圧力制御部材16の後退にともなって連続的な冷却が行なえる。また、冷却管33には溶融合成樹脂の圧力が作用するので、その後端部はストッパプレート35に押し当てられた状態になり、これによって、テーパ部33Bと供給口13の開口縁との相対位置すなわち上記流路幅Wが正確に設定され、製品成形部15内への適正な溶融合成樹脂の流入が得られる。   Since the cooling pipe 33 has a hollow structure, it can perform a cooling function over its entire length, and continuous cooling can be performed as the pressure control member 16 moves backward. Further, since the pressure of the molten synthetic resin acts on the cooling pipe 33, the rear end portion is pressed against the stopper plate 35, whereby the relative position between the tapered portion 33 </ b> B and the opening edge of the supply port 13. That is, the flow path width W is accurately set, and an appropriate flow of molten synthetic resin into the product molding portion 15 is obtained.

圧力制御部材16が後退して行くと、冷却管33の先端部は片持ちになり自重で下方に変位して、テーパ部33Bの中心軸と供給口13の中心軸とがずれるおそれがある。しかし、受け部材38が設けてあるので上記のような中心線がずれることがなく、流路幅Wも円周方向に均一な状態で保持され、良好な溶融合成樹脂の流入が確保できる。なお、受け部材38の存在が溶融合成樹脂の流れを乱すことも考えられるが、受け部材38の大きさを小さくしたり図8に示した空隙部38Aを流通させることにより、流れへの影響を最小化することができる。   When the pressure control member 16 moves backward, the tip of the cooling pipe 33 is cantilevered and displaced downward by its own weight, and the central axis of the tapered portion 33B and the central axis of the supply port 13 may be displaced. However, since the receiving member 38 is provided, the center line as described above is not shifted, the flow path width W is also maintained in a uniform state in the circumferential direction, and a good inflow of molten synthetic resin can be secured. Although it is conceivable that the presence of the receiving member 38 disturbs the flow of the molten synthetic resin, the influence on the flow can be reduced by reducing the size of the receiving member 38 or circulating the gap 38A shown in FIG. Can be minimized.

図6に示すように、ストッパプレート35に通気穴39をあけて、中空部33Aからの放熱を促進させて、一層冷却効果を高めることができる。さらに、通気穴39から冷却空気を送給して冷却性をさらに向上させることもできる。あるいは、図示していないが、冷却管33を水冷式にすることも可能である。   As shown in FIG. 6, it is possible to further enhance the cooling effect by opening the vent hole 39 in the stopper plate 35 to promote the heat radiation from the hollow portion 33A. Further, the cooling performance can be further improved by supplying cooling air from the vent hole 39. Alternatively, although not shown, the cooling pipe 33 can be water-cooled.

端板18にあけられた上記ガイド穴34は、冷却管33を通過させる大径部34Aと駆動軸24を通す通過部34Bから構成されているので、駆動軸24と冷却管33を型3内に配置することが容易に行なえる。   The guide hole 34 formed in the end plate 18 includes a large-diameter portion 34A that allows the cooling pipe 33 to pass therethrough and a passage portion 34B that allows the driving shaft 24 to pass. Can be easily arranged.

さらに、駆動軸24が圧力制御部材16をバックアップするような状態で圧力制御部材16に結合されていると共に、冷却管33が圧力制御部材16の挿通穴16Dを貫通しているので、溶融合成樹脂が製品成形部15に供給されて圧力制御部材16が徐々に後退するときの移動動作が滑らかになり、異常な機械的抵抗が発生したりしない。したがって、溶融合成樹脂の圧力状態を狂わせるような因子が除去され、所定値以上の圧力が正確に維持される。   Further, since the drive shaft 24 is coupled to the pressure control member 16 so as to back up the pressure control member 16, and the cooling pipe 33 passes through the insertion hole 16D of the pressure control member 16, the molten synthetic resin Is supplied to the product molding part 15 and the moving operation when the pressure control member 16 is gradually retracted becomes smooth, and no abnormal mechanical resistance is generated. Therefore, a factor that disturbs the pressure state of the molten synthetic resin is removed, and a pressure equal to or higher than a predetermined value is accurately maintained.

上記テーパ部33Bで供給口13を閉じる時期は、未硬化部分29の容積ができるだけ減少してから閉じるのが望ましい。このような時期に供給口13を閉じることにより、未硬化部分29が硬化するときの凝縮を少なくすることができ、成形形状を正確に形成することができる。   It is desirable to close the supply port 13 with the tapered portion 33B after the volume of the uncured portion 29 is reduced as much as possible. By closing the supply port 13 at such a time, condensation when the uncured portion 29 is cured can be reduced, and the molded shape can be accurately formed.

図9は、本発明の大形バルク材の樹脂成形装置の第の実施例を示す。 Figure 9 shows a second embodiment of the resin molding apparatus of large bulk material of the present invention.

この実施例は、加圧ポンプ40を供給口13の上流側に配置したものである。上記加圧ポンプ40としては、押出し圧力が調整できるギヤ式ポンプが採用されている。それ以外は、上記実施例と同様であり、同様の部分には同じ符号を付している。 In this embodiment, the pressurizing pump 40 is arranged on the upstream side of the supply port 13. As the pressurizing pump 40, a gear pump capable of adjusting the extrusion pressure is employed. Otherwise, the same as the above you施例, are denoted by the same reference numerals to like parts.

上記構成により、型3内への溶融合成樹脂の供給圧力が調整できるので、上記の未硬化部分29の圧力状態をより一層正確に制御することができ、気泡や空洞の発生を最小化することができる。上記実施例における未硬化部分29の圧力は、材料供給装置2の供給圧力と略同じかまたはそれよりもやや低い圧力であるが、加圧ポンプ40を配置することにより、未硬化部分29の圧力を材料供給装置2の供給圧力よりも高い値に設定することができ、気泡や空洞等の発生を最小化するのに有効である。それ以外は、上記実施例と同様の作用効果を奏する。 With the above configuration, since the supply pressure of the molten synthetic resin into the mold 3 can be adjusted, the pressure state of the uncured portion 29 can be controlled more accurately, and the generation of bubbles and cavities can be minimized. Can do. The pressure of the uncured portions 29 of the upper you施例is the supply pressure of the material supply device 2 is substantially the same or slightly lower pressure than, by arranging the pressure pump 40, uncured portions 29 Can be set to a value higher than the supply pressure of the material supply device 2, which is effective in minimizing the generation of bubbles and cavities. Otherwise, the same effects as above you施例.

また、本発明による大形バルク材の樹脂成形方法によれば、成形初期の段階では、型3の内側端面すなわち端板14と圧力制御部材16との間の製品成形部15の空間容積が小さいので、上記材料供給装置2から所定の圧力で型3内に供給された溶融状態の合成樹脂で直ちに満たされる。この段階において、溶融状態の合成樹脂は、圧力制御部材16を直撃するような流れの状態で直ちに上記圧力制御部材16で受け止められる。このようにして溶融状態の合成樹脂は圧力制御部材16の表面で冷却されながら、型3の内周面の方に向きを変えて放射的な方向に流れて行き、さらに型3の内周面で受け止められ冷却されて硬化する。したがって、合成樹脂は圧力制御部材16の表面の型内周面に近い箇所が早期の内に硬化し、順次圧力制御部材16の中央部に硬化領域が拡大されて行く。そして、未硬化の合成樹脂は材料供給装置2で所定圧力で加圧され、その圧力を受けながら圧力制御部材16が徐々に型内を製品成形部15の容積が大きくなる方向に移動するため、未硬化の合成樹脂の圧力は所定値以上に維持される。これにより、硬化した合成樹脂に引続いて硬化が継続され、加圧下における連続的硬化であるため、気泡や空洞等が大幅に少なくなる。   Further, according to the method for molding a large bulk material according to the present invention, at the initial stage of molding, the space volume of the product molding portion 15 between the inner end face of the mold 3, that is, the end plate 14 and the pressure control member 16, is small. Therefore, it is immediately filled with the molten synthetic resin supplied into the mold 3 from the material supply device 2 at a predetermined pressure. At this stage, the molten synthetic resin is immediately received by the pressure control member 16 in a flow state that strikes the pressure control member 16 directly. In this way, the molten synthetic resin is cooled on the surface of the pressure control member 16, changes its direction toward the inner peripheral surface of the mold 3 and flows in a radial direction, and further the inner peripheral surface of the mold 3. It is received and cooled and hardened. Therefore, the synthetic resin is hardened at an early stage at a portion close to the inner peripheral surface of the mold on the surface of the pressure control member 16, and the hardening region is sequentially expanded in the central portion of the pressure control member 16. The uncured synthetic resin is pressurized at a predetermined pressure by the material supply device 2, and the pressure control member 16 gradually moves in the mold in the direction in which the volume of the product molding portion 15 increases while receiving the pressure. The pressure of the uncured synthetic resin is maintained at a predetermined value or higher. Accordingly, the curing is continued following the cured synthetic resin, and the continuous curing under pressure is performed, so that bubbles and cavities are significantly reduced.

上記の初期の段階の後は、圧力制御部材16が上記の方向にさらに移動しながら硬化部分30の領域が拡大されて行き、加圧下における連続的硬化が継続する。この段階においても、溶融状態の合成樹脂が順次型内に供給されるので、未硬化の合成樹脂圧力は圧力制御部材16の徐々な移動によって、所定値以上に維持され気泡や空洞等が大幅に少なくなって硬化現象が継続する。なお、圧力制御部材16の移動に伴って、硬化した合成樹脂は型3の内面を摺動しながら圧力制御部材16に追従して行く。   After the initial stage, the region of the cured portion 30 is expanded while the pressure control member 16 is further moved in the above direction, and continuous curing under pressure continues. Even in this stage, since the molten synthetic resin is sequentially supplied into the mold, the uncured synthetic resin pressure is maintained at a predetermined value or more by the gradual movement of the pressure control member 16, and bubbles and cavities are greatly reduced. The curing phenomenon continues to decrease. As the pressure control member 16 moves, the cured synthetic resin follows the pressure control member 16 while sliding on the inner surface of the mold 3.

上記のような溶融状態の合成樹脂の継続的な加圧供給と、圧力制御部材16の制御された移動が最終段階に達すると、圧力制御部材16は型内側の他端面等に当たって停止する。このときに、合成樹脂の加圧状態を継続しておくことにより、未硬化部分29の冷却硬化時に気泡や空洞が大幅に減少して製品全域にわたって緻密で正常な内部状態となり、高荷重が作用しても変形することのない大形のバルク材が得られる。   When the continuous pressure supply of the synthetic resin in the molten state as described above and the controlled movement of the pressure control member 16 reach the final stage, the pressure control member 16 hits the other end surface inside the mold and stops. At this time, by continuing the pressurized state of the synthetic resin, bubbles and cavities are greatly reduced when the uncured portion 29 is cooled and cured, resulting in a dense and normal internal state over the entire product, and a high load is applied. A large bulk material that does not deform even if it is obtained.

大形バルク材を樹脂成形によって製造するに当たり、内部の気泡や空洞の発生が実質的になくなり、船舶や工作機械等の重量物の支持部材として有効に活用でき、広い産業分野での利用が可能である。   When manufacturing large bulk materials by resin molding, the generation of internal bubbles and cavities is virtually eliminated, and it can be effectively used as a support member for heavy objects such as ships and machine tools, and can be used in a wide range of industrial fields. It is.

本発明の参考例を示す装置の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the apparatus which shows the reference example of this invention. 図1の〔2〕−〔2〕断面図である。It is [2]-[2] sectional drawing of FIG. 製品が成形されて行く状態を順を追って示す断面図である。It is sectional drawing which shows the state in which a product is shape | molded later on in order. 本発明の第の実施例を示す型内部の全体構造を示す横断平面図である。It is a cross-sectional top view which shows the whole structure inside the type | mold which shows 1st Example of this invention. 図4の〔5〕−〔5〕断面図である。It is [5]-[5] sectional drawing of FIG. 冷却管の動作構造を示す断面図である。It is sectional drawing which shows the operation | movement structure of a cooling pipe. 冷却管の先端部分を示す側面図である。It is a side view which shows the front-end | tip part of a cooling pipe. 図7の〔8〕−〔8〕断面図である。It is [8]-[8] sectional drawing of FIG. 本発明の第の実施例を示す部分的な断面図である。It is a fragmentary sectional view showing the 2nd example of the present invention.

符号の説明Explanation of symbols

1 大形バルク材の樹脂成形装置
2 材料供給装置
3 型
3A 内周面
4 駆動装置
5 供給シリンダ
6 スクリュー
7 回転駆動装置
8 ヒータ
9 ホッパー
10 ノズルプレート
11 開口
12 中継管
13 供給口
14 端板
15 製品成形部
16 圧力制御部材
16A 前板
16B 後板
16C 接続部
16D 挿通穴
17 外周面
18 端板
C 間隙
19 フランジ
20 フランジ
21 クランプ機構
22 軸部材
23 クランプレバー
24 駆動軸
25 軸受部
26 油圧シリンダ
27 加圧力制御装置
28 油圧ピストン
P 油圧ポンプ
29 未硬化部分
30 硬化部分
31 支持板
32 ピストンロッド
33 冷却管
33A 中空部
33B テーパ部
34 ガイド穴
34A 大径部
34B 通過部
35 ストッパプレート
36 ボルト
37 流路
W 流路幅
38 受け部材
38A 空隙部
39 通気穴
40 加圧ポンプ
DESCRIPTION OF SYMBOLS 1 Large bulk material resin molding apparatus 2 Material supply apparatus 3 Type | mold 3A Inner peripheral surface 4 Drive apparatus 5 Supply cylinder 6 Screw 7 Rotation drive apparatus 8 Heater 9 Hopper 10 Nozzle plate 11 Opening 12 Relay pipe 13 Supply port 14 End plate 15 Product forming portion 16 Pressure control member 16A Front plate 16B Rear plate 16C Connection portion 16D Insertion hole 17 Outer peripheral surface 18 End plate C Gap 19 Flange 20 Flange 21 Clamp mechanism 22 Shaft member 23 Clamp lever 24 Drive shaft 25 Bearing portion 26 Hydraulic cylinder 27 Pressure control device 28 Hydraulic piston P Hydraulic pump 29 Uncured portion 30 Cured portion 31 Support plate 32 Piston rod 33 Cooling tube 33A Hollow portion 33B Tapered portion 34 Guide hole 34A Large diameter portion 34B Passing portion 35 Stopper plate 36 Bolt 37 Flow path W Channel width 38 Receiving member 38A Cavity 39 Ventilation hole 40 Pressure pump

Claims (5)

溶融状態の合成樹脂材料を送出する材料供給装置に、製品成形用の型が結合された大形バルク材の樹脂成形装置であって、
上記型の断面が閉断面でその断面形状が長さ方向に略一定とされ、
上記材料供給装置からの合成樹脂材料を上記型内に供給する供給口が上記型の長手方向の端部に設けられ、
上記供給口に対向しているとともに型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を、所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動する圧力制御部材が設けられ
上記圧力制御部材は、上記圧力を所定値以上に維持する駆動装置に結合され、
さらに、上記型内には、先端部が上記供給口に近接して長手方向に伸びる冷却部材が、圧力制御部材が摺動可能なように配置されていることを特徴とする大形バルク材の樹脂成形装置。
A large-bulk resin molding device in which a mold for product molding is coupled to a material supply device that delivers a synthetic resin material in a molten state,
The cross section of the mold is a closed cross section, and its cross sectional shape is substantially constant in the length direction.
A supply port for supplying the synthetic resin material from the material supply device into the mold is provided at an end portion in the longitudinal direction of the mold,
The volume of the product molding part gradually increases in the mold while facing the supply port and maintaining the pressure of the molten synthetic resin material in the process of increasing the synthetic resin material supplied in the mold at a predetermined value or more. A pressure control member that moves in the direction of increasing is provided ,
The pressure control member is coupled to a drive device that maintains the pressure above a predetermined value,
Further, in the mold, a cooling member having a distal end extending in the longitudinal direction close to the supply port is disposed so that the pressure control member is slidable . Resin molding equipment.
上記圧力制御部材の外周面は上記型の内周面に摺動するかまたは上記外周面と上記内周面との間の間隙が微小な値とされている請求項1記載の大形バルク材の樹脂成形装置。   2. The large bulk material according to claim 1, wherein an outer peripheral surface of the pressure control member slides on an inner peripheral surface of the mold or a gap between the outer peripheral surface and the inner peripheral surface is set to a minute value. Resin molding equipment. 上記冷却部材の先端部にテーパ部が設けられ、テーパ部の先端が供給口内に侵入した位置で冷却部材が配置されることにより、供給口の開口縁とテーパ部との間に、樹脂が流入する環状の流入空間が形成されている請求項1または2記載の大形バルク材の樹脂成形装置。 A taper is provided at the tip of the cooling member, and the cooling member is disposed at a position where the tip of the taper enters the supply port, so that resin flows between the opening edge of the supply port and the taper. An apparatus for molding a large bulk material according to claim 1 or 2, wherein an annular inflow space is formed . 合成樹脂材料注入後に上記冷却部材を供給口側に移動させ、供給口の開口縁にテーパ部を着座させて溶融供給樹脂の供給を打ち切り可能に構成されている請求項1〜3のいずれか一項に記載の大形バルク材の樹脂成形装置。 The cooling member is moved to the supply port side after injection of the synthetic resin material, and a tapered portion is seated on the opening edge of the supply port so that the supply of the molten supply resin can be aborted. The large bulk material resin molding apparatus as described in the item . 溶融状態の合成樹脂材料を製品成型用の型内に注入して大形バルク材を成形する大形バルク材の合成樹脂成形方法であって、上記型内に進退可能な状態で挿入した圧力制御部材を、型内に供給された合成樹脂材料の増量途上における溶融状態の合成樹脂材料の圧力を所定値以上に維持しながら徐々に型内を製品成形部の容積が大きくなる方向に移動させて圧力制御部材に近い方から合成樹脂材料を順次硬化させる際、
上記型内には、先端部が上記供給口に近接して長手方向に伸びる冷却部材が、圧力制御部材が摺動可能なように配置され、上記冷却部材によっても合成樹脂材料を冷却することを特徴とする大形バルク材の合成樹脂成形方法。
A large bulk synthetic resin molding method in which molten synthetic resin material is injected into a mold for product molding to form a large bulk material. The pressure control is inserted into the mold in a state where it can be advanced and retracted. While maintaining the pressure of the synthetic resin material in a molten state in the course of increasing the amount of the synthetic resin material supplied into the mold at a predetermined value or more, the member is gradually moved in the mold in the direction in which the volume of the product molding part increases. When curing synthetic resin materials sequentially from the side closer to the pressure control member ,
In the mold, a cooling member having a tip portion extending in the longitudinal direction close to the supply port is disposed so that the pressure control member can slide, and the cooling resin also cools the synthetic resin material. A synthetic resin molding method for large bulk materials.
JP2003304601A 2003-08-28 2003-08-28 Large bulk material resin molding apparatus and molding method thereof Expired - Fee Related JP4238094B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003304601A JP4238094B2 (en) 2003-08-28 2003-08-28 Large bulk material resin molding apparatus and molding method thereof
CN 200410068296 CN1590067A (en) 2003-08-28 2004-08-27 Resin shaper for large block parts and its shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304601A JP4238094B2 (en) 2003-08-28 2003-08-28 Large bulk material resin molding apparatus and molding method thereof

Publications (2)

Publication Number Publication Date
JP2005074657A JP2005074657A (en) 2005-03-24
JP4238094B2 true JP4238094B2 (en) 2009-03-11

Family

ID=34408243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304601A Expired - Fee Related JP4238094B2 (en) 2003-08-28 2003-08-28 Large bulk material resin molding apparatus and molding method thereof

Country Status (2)

Country Link
JP (1) JP4238094B2 (en)
CN (1) CN1590067A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106738632A (en) * 2017-02-07 2017-05-31 泉州泉港润美环保科技有限公司 A kind of environment-friendly type injection machine being readily transported
CN106976214B (en) * 2017-05-19 2018-11-20 黄烁 A kind of plastic forming
CN116551951B (en) * 2023-05-12 2023-10-20 常州极束半导体材料有限公司 Injection molding packaging device capable of being rapidly molded for semiconductor module

Also Published As

Publication number Publication date
JP2005074657A (en) 2005-03-24
CN1590067A (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US6116884A (en) Mold core for overmolded flexible valve
JP4914559B2 (en) Optimization of in-mold coating injection molded thermoplastic substrates
CA2094386C (en) Injection molding apparatus and process
US6440351B1 (en) Molding die drive unit, molding unit and molding method
CN1034269C (en) Method of injection-molding thermoplastic resin and mold for injection molding
CN100410050C (en) Process and apparatus for injection moulding
CN105228804A (en) There is the low constant voltage adapted to injection system of the mold cavity of position changeable
JP4238094B2 (en) Large bulk material resin molding apparatus and molding method thereof
EP0868988A1 (en) Injection molding machine for thermoplastic resin
KR20180011708A (en) Double extruder type injection machine having different rotating speeds
AU5813096A (en) Method and system for injection molding utilizing a variable volume spill cavityand article produced thereby
JP5932159B1 (en) Injection molding method, screw of injection molding machine and injection molding machine
AU2008200548B1 (en) An Apparatus and Method for Internally Lining an Elongate Member
JP2006205546A (en) Demolding apparatus for rtm molding
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
CN206011621U (en) A kind of inner bag injection mold
KR102005001B1 (en) Injection machine
EP0035916B1 (en) Conversion apparatus for injection moulding machines
KR20060063956A (en) Molding method, molding die, molded product, and molding machine
CN114515832A (en) Integrated equipment for metal powder injection molding production
JP4028683B2 (en) Injection molding method and injection molding machine
CN205416202U (en) Full -automatic injection molding machine
CN108044902A (en) A kind of anti-blockage type injection molding machine of plastic
CN102101165A (en) Mechanism for pushing product out of fixed die
CN202293242U (en) Injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4238094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151226

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees