JP4237839B2 - 1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same - Google Patents

1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same Download PDF

Info

Publication number
JP4237839B2
JP4237839B2 JP32217697A JP32217697A JP4237839B2 JP 4237839 B2 JP4237839 B2 JP 4237839B2 JP 32217697 A JP32217697 A JP 32217697A JP 32217697 A JP32217697 A JP 32217697A JP 4237839 B2 JP4237839 B2 JP 4237839B2
Authority
JP
Japan
Prior art keywords
polymer
compound
triazole
group
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32217697A
Other languages
Japanese (ja)
Other versions
JPH11140060A (en
Inventor
淳二 城戸
義行 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP32217697A priority Critical patent/JP4237839B2/en
Publication of JPH11140060A publication Critical patent/JPH11140060A/en
Application granted granted Critical
Publication of JP4237839B2 publication Critical patent/JP4237839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、新規な1,2,4−トリアゾール基含有ビニル誘導体、その高分子、およびそれを用いた有機EL素子に関する。
【0002】
【従来技術】
有機EL素子の発光は、陽極や陰極のそれぞれから注入されたホールと電子が有機層内を移動し、再結合した際に得られる励起エネルギーを発光エネルギーに変換することによって得られる。しかし、低分子有機材料を用いたEL素子においては、電流注入にともない発生する熱や時間経過等による有機層の結晶化、凝集が素子劣化を引き起こすため、素子の耐久性つまり素子寿命に多大なる影響を与えている。
【0003】
この影響を抑えるため、低分子有機層の利用から結晶性が低く、耐熱性の高い高分子有機層の利用の方向への転換が提案されており、今までにキャリア輸送性基を高分子中に取り込んだ有機EL素子が報告されている。本出願人は、先にホール輸送性基である芳香族ジアミンを含有するポリマーを提案しており、耐熱性が高いうえ、ホール輸送層として機能する優れたポリマーであることを報告している(特願平8−310049号、特願平7−94294号、特願平6−210544号)、また、電子輸送性ポリマーに関しても、1,3,4−オキサジアゾールを含有する主鎖型および側鎖型ポリマーを開発している。(特願平8−94818号など)
【0004】
1,2,4−トリアゾール誘導体に関しても、本出願人は種々の低分子1,2,4−トリアゾール誘導体を合成し、それらの蒸着膜が有機EL素子において、キャリア輸送層や発光層として極めて優れた特性を有することを示した。
【0005】
【発明が解決しようとする課題】
しかし、低分子膜を素子に用いるには真空蒸着法により、成膜する必要があり、素子作製に時間がかかる。さらに、蒸着膜の結晶化により高温における素子耐久性に乏しい欠点を有している。
【0006】
そこで、本発明の目的は、1,2,4−トリアゾール基を側鎖に含有するビニル誘導体、その重合物である耐熱性に優れた新規な1,2,4−トリアゾール基含有高分子およびそれを用いた有機EL素子を提供する点にある。
【0007】
【課題を解決するための手段】
本発明の第一は、下記一般式〔1〕
【化4】

Figure 0004237839
(式中、Rは水素またはアルキル基、Ar1、Ar2およびAr3は、置換基を有することもある芳香族基よりそれぞれ独立して選ばれた基であり、mは0または1、nは0または1であり、m+n=1である。)
で示される1,2,4−トリアゾール基含有ビニル誘導体に関する。
【0008】
本発明の第二は、下記一般式〔2〕
【化5】
Figure 0004237839
(式中、Rは水素またはアルキル基、Ar1、Ar2およびAr3は、置換基を有することもある芳香族基よりなる群からそれぞれ独立して選ばれた基である。)
で示される繰り返し単位を有する数平均分子量1,000〜1,000,000の1,2,4−トリアゾール基含有高分子に関する。
【0009】
本発明の第三は、下記一般式〔3〕
【化6】
Figure 0004237839
(式中、Rは水素またはアルキル基、Ar1、Ar2およびAr3は、置換基を有することもある芳香族基よりなる群からそれぞれ独立して選ばれた基である。)
で示される繰り返し単位を有する数平均分子量1,000〜1,000,000の1,2,4−トリアゾール基含有高分子に関する。
【0010】
本発明の第四は、請求項2および/または請求項3記載の1,2,4−トリアゾール基含有高分子をキャリア輸送層および/または発光層に使用することを特徴とする有機エレクトロルミネッセント素子に関する。
【0011】
前記置換基としては、アルキル基、アルコキシ基、アミノ基、ジアルキルアミノ基、ジフェニルアミノ基、シアノ基、ハロゲンなどを挙げることができ、前記アルキル基、アルコキシ基、ジアルキルアミノ基などにおける炭素数は前記ビニル単量体の重合にさいして立体障害にならない大きさであれば、格別の制限はない。
【0012】
本発明のモノマー合成法の一例を示す。
【化7】
Figure 0004237839
【0013】
前記式中、NBSは、N−ブロモこはく酸イミド、AIBNは、アゾイソブチロニトリル、CCl4は、四塩化炭素、t−BuOKは、カリウムの第三ブチルアルコラート、THFは、テトラヒドロフランである。
【0014】
本発明のビニル化合物は、通常のビニル化合物と同様に重合または共重合することができる。重合方法としてはバルク重合、溶液重合、乳化重合、懸濁重合のいずれの方法も採用することができる。実施例はラジカル重合の系を示しているが、本発明のモノマーはイオン重合とくにアニオン重合によっても高分子化が可能である
【0015】
本発明のポリマーを重合条件を調製することによりワックス状のものから固体状のものに至るまで任意の分子量のものをうることができるが、通常1,000〜1,000,000の分子量のものがポリマーの種々の用途に用いるために有用である。
【0016】
本発明の新規ポリマーは電子輸送性を有するので、単なるポリマーの用途に加えて、この特性を生かした種々の用途に用いることができ、とくにEL素子への利用が考えられる。すなわち、本発明の1,2,4−トリアゾール基含有高分子は、キャリア輸送性で知られる1,2,4−トリアゾール基を側鎖に含有することで、電子や正孔などのキャリアを輸送する特性を示すため、有機EL素子のキャリア輸送層或いは発光層として用いることができる。また、溶液からの塗布により簡便に成膜することができるので、素子製造の際にコストを低減することが可能となる。
【0017】
【実施例】
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。
【0018】
実施例1(モノマーの合成例1)
実施例1の合成プロセスを反応式で示すと下記のとおりである。
【0019】
【化8】
Figure 0004237839
【0020】
(1)1−ナフトエ酸メチルエステル〔前記反応式中(A)の化合物〕の合成
1−ナフトエ酸6.03g(35mmol)をメタノール(150ml)に溶解し、濃硫酸(7ml)を触媒として加え、90℃で6時間還流した。反応終了後エステルをジエチルエーテルで抽出した。エタノールと濃硫酸を水洗により取り除き、ジエチルエーテルを乾燥後留去し、褐色の液状エステル(A)を得た。
12102(186.21)
収量 5.63g
収率 86.5%
IR(KBr)ν−COCH31717cm-1
【0021】
(2)1−ナフトヒドラジド〔前記反応式中(B)の化合物〕の合成
ヒドラジン−水和物15g(300mmol)をエタノール(100ml)に溶解させ窒素置換後、この溶液中に前記化合物(A)5.59g(30mmol)を滴下させ、滴下終了後85℃で48時間還流させた。反応終了後溶媒を除去し、析出した結晶を冷メタノールにて吸引濾過し生成物(B)を得た。
11102O(186.22)
収量 3.35g
収率 66.9%
IR(KBr)ν−NH23400cm-1,ν−CONH−1717cm-1
【0022】
(3)N−(1−ナフトイル)−N′−(4−フェニルベンゾイル)ヒドラジン〔前記反応式中(C)の化合物〕の合成
前記化合物(B)2.70g(13.0mmol)をピリジン(50ml)に溶解させ窒素置換後、この溶液中に4−フェニルベンゾイルクロリド2.42g(13.0mmol)を滴下させ、滴下終了後室温で19時間還流させた。反応終了後、溶液を蒸留水中へ注ぎ入れ白沈した反応生成物を水洗した。水洗後反応物を吸引濾過し、化合物(C)を得た。
241822(366.42)
収量 3.78g
収率 79.4%
IR(KBr)ν−CONH−3195cm-1
【0023】
(4)3−(1−ナフチル)−4−(4−エチルフェニル)−5−(4−フェニルベンゾイル)−1,2,4−トリアゾール〔前記反応式中(D)の化合物〕の合成
o−ジクロロベンゼン(90ml)中にp−エチルアニリン7.34g(60.6mmol)を溶解させてから三塩化リン1.53g(11.1mmol)を加え、約一時間反応させ、反応後N−(1−ナフトイル)−N′−(4−フェニルベンゾイル)ヒドラジン〔前記化合物(C)〕3.70g(10.1mmol)を加え、窒素雰囲気下200℃で48時間還流させた。反応終了後溶液を0.5Nの塩酸水溶液、蒸留水の順で洗浄し、洗浄後o−ジクロロベンゼンを減圧蒸留(80℃/3mmHg)で除去し、粗結晶を得た。得られた粗結晶は混合比1:4の酢酸エチル、クロロホルムの混合溶媒にてカラム精製し、化合物(D)を得た。
Figure 0004237839
【0024】
(5)3−(1−ナフチル)−4−〔4−(1−ブロモエチルフェニル)〕−5−(4−フェニルベンゾイル)−1,2,4−トリアゾール〔前記反応式中(E)の化合物〕の合成
四塩化炭素(50ml)にN−ブロモこはく酸イミド0.28g(1.56mmol)とアゾイソブチロニトリル(AIBN)0.026g(0.16mmol)を溶解し、3−(1−ナフチル)−4−(4−エチルフェニル)−5−(4−フェニルベンゾイル)−1,2,4−トリアゾール〔前記化合物(D)〕0.70g(1.56mmol)を加え、窒素雰囲気下95℃で24時間還流させた。反応終了後2時間放置して未反応物を析出させてから濾過し、濾液の溶媒を除去して粗結晶を得た。得られた粗結晶を酢酸エチル、クロロホルムの混合溶媒でカラム精製し、さらに粗結晶を混合比1:2のベンゼン、n−ヘキサンの混合溶媒で再結晶を行い前記化合物(E)を得た。
Figure 0004237839
【0025】
(6)3−(1−ナフチル)−4−(4−ビニルフェニル)−5−(4−フェニルベンゾイル)−1,2,4−トリアゾール〔前記反応式中(F)の化合物〕の合成
乾燥テトラヒドロフラン(THF)40mlにカリウム−t−ブトキシド0.37g(3.28mmol)を溶解し0℃で撹拌し、この溶液中に乾燥THF10mlに溶解した3−(1−ナフチル)−4−〔4−(1−ブロモエチルフェニル)〕−5−(4−フェニルベンゾイル)−1,2,4−トリアゾール〔前記化合物(E)〕0.58g(1.09mmol)を滴下させ、滴下終了後室温で24時間反応させた。反応終了後溶媒を除去し、残査にクロロホルムを加え、0.01Nの水酸化ナトリウム、蒸留水の順で洗浄し、硫酸マグネシウムで乾燥させた後、溶媒を除去して粗結晶を得た。得られた粗結晶を混合比2:3のベンゼン、n−ヘキサンの混合溶媒で再結晶を行い前記化合物(F)を得た。
Figure 0004237839
【0026】
実施例2(モノマーの合成例2)
実施例2の合成プロセスを反応式に示すと下記のとおりである。
【0027】
【化9】
Figure 0004237839
【0028】
(1)N,N′−(1−ジナフトイル)−ヒドラジン〔前記反応式中(C′)の化合物〕の合成
実施例1の(2)で得られた1−ナフトヒドラジン〔前記(B)の化合物〕
3.30g(17.7mmol)をピリジン(60ml)に溶解させ窒素置換後、この溶液中に1−ナフタレンカルボン酸クロリド3.38g(17.7mmol)を滴下させ、滴下終了後室温で19時間還流させた。反応終了後、溶液を蒸留水中へ注ぎ入れ白沈した反応生成物を水洗した。水洗後反応物を吸引濾過し、生成物(C′)を得た。
221622(340.39)
収量 5.25g
収率 87.1%
IR(KBr)ν−CONH−3187cm-1
【0029】
(2)3,5−ジナフチル−4−(4−エチルフェニル)−1,2,4−トリアゾール〔前記反応式中(D′)の化合物〕の合成
o−ジクロロベンゼン(90ml)中にp−エチルアニリン11.3g(93.4mmol)を溶解させてから三塩化リン2.35g(17.1mmol)を加え、約一時間反応させ、反応後N,N′−(1−ジナフトイル)−ヒドラジン〔前記化合物(C′)〕5.20g(15.5mmol)を加え、窒素雰囲気下200℃で48時間還流させた。反応終了後溶液を0.5Nの塩酸水溶液、蒸留水の順で洗浄し、洗浄後o−ジクロロベンゼンを減圧蒸留(80℃/3mmHg)で除去し、粗結晶を得た。得られた粗結晶は混合比1:4の酢酸エチル、ジクロロメタンの混合溶媒でカラム精製し、化合物(D′)を得た。
Figure 0004237839
【0030】
(3)3,5−ジナフチル−4−〔4−(1−ブロモエチルフェニル)〕−1,2,4−トリアゾール〔前記反応式中(E′)の化合物〕の合成
四塩化炭素(180ml)にN−ブロモこはく酸イミド0.84g(4.70mmol)とAIBN0.08g(0.47mmol)を溶解し、3,5−ジナフチル−4−(4−エチルフェニル)−1,2,4−トリアゾール〔前記化合物(D′)〕2.00g(4.70mmol)を加え窒素雰囲気下95℃で24時間還流させた。反応終了後2時間放置して未反応物を析出させてから濾過し、濾液の溶媒を除去して粗結晶を得た。得られた粗結晶を酢酸エチル、クロロホルムの混合溶媒でカラム精製し、さらに粗結晶を混合比1:2のベンゼン、n−ヘキサンの混合溶媒で再結晶を行い前記化合物(E′)を得た。
Figure 0004237839
【0031】
(4)3,5−ジナフチル−4−(4−ビニルフェニル)−1,2,4−トリアゾール〔前記反応式中(F′)の化合物〕の合成
乾燥THF40mlにカリウム−t−ブトキシド0.87g(7.73mmol)を溶解し0℃で撹拌し、この溶液中に乾燥THF10mlに溶解した3,5−ジナフチル−4−〔4−(1−ブロモエチルフェニル)〕−1,2,4−トリアゾール〔前記化合物(E′)〕1.30g(2.58mmol)を滴下させ、滴下終了後室温で24時間反応させた。反応終了後溶媒を除去し、残査にクロロホルムを加え、0.01Nの水酸化ナトリウム、蒸留水の順で洗浄し、硫酸マグネシウムで乾燥させた後、溶媒を除去して粗結晶を得た。得られた粗結晶を混合比2:3のベンゼン、n−ヘキサンの混合溶媒で再結晶を行い前記化合物(F′)を得た。
Figure 0004237839
【0032】
実施例3(モノマーの合成例3)
下記の反応式により3,5−ジ(4−シアノフェニル)−4−(4−ビニルフェニル)−1,2,4−トリアゾールを合成した。
【0033】
【化10】
Figure 0004237839
【0034】
(1)3,5−ジ(4−シアノフェニル)−4−(4−エチルフェニル)−1,2,4−トリアゾール〔前記反応式中(H)の化合物〕の合成
o−ジクロロベンゼン中120mlにp−エチルアニリン9.24gを溶解させてから三塩化リン1.92gを加え、約一時間反応させた。反応後N,N′−ジ(4−シアノベンゾイル)−ヒドラジン〔前記反応式中(G)の化合物〕3.7gを加え、窒素雰囲気下、24時間還流させた。反応終了後溶液を0.5Nの塩酸水溶液、蒸留水の順で洗浄し、洗浄後o−ジクロロベンゼンを減圧蒸留にて除去し、真空乾燥させて粗結晶を得た。これを酢酸エチル:クロロホルム=1:4の混合溶媒でカラム精製し、アセトン:n−ヘキサン=1:8で再結晶し、化合物(H)針状結晶1.46gを得た。
収率31.2%,m.p.:237〜239℃,IR(KBr):1608cm-1(−C=N−),2966cm-1(−CH3),1H−NMR(270MHz,CDCl3):δ(ppm)1.3(t,3H,−CH3),2.8(q,2H,−CH2−),7.1〜7.7(m,12H,Ar),ANAL.Calcd for C24175;C,76.78%;H,4.56%;N,18.65%.Found;C,76.85%;H,4.65%;N,18.32%.
【0035】
(2)3,5−ジ(4−シアノフェニル)−4−〔4−(1−ブロモエチルフェニル)〕−1,2,4−トリアゾール〔前記反応式中(I)の化合物〕の合成
四塩化炭素中に3,5−ジ(4−シアノフェニル)−4−(4−エチルフェニル)−1,2,4−トリアゾール〔前記反応式中(H)の化合物〕(1.43mmol)、NBS(4.29mmol)、AIBN(0.143mmol)を入れ、窒素雰囲気下24時間還流させた。反応終了後四塩化炭素を除去し粗結晶を得た。これを酢酸エチル:クロロホルム 1:2の混合溶媒でカラム精製し、更にアセトン:n−ヘキサン 1:8で再結晶し、化合物(I)の結晶を得た。
収率46.2%,m.p.:174〜176℃,IR(KBr):1608cm-1(−C=N−),2966cm-1(−CH3),1H−NMR(270MHz,CDCl3):δ(ppm)2.0(d,3H,−CH3),5.2(q,1H,−CHBr−),7.1〜7.6(m,12H,Ar−H),ANAL.Calcd for C24175Br1;C,63.31%;H,4.57%;N,15.38%.Found;C,63.02%;H,3.98%;N,15.56%.
【0036】
(3)3,5−ジ(4−シアノフェニル)−4−(4−ビニルフェニル)−1,2,4−トリアゾール〔前記反応式中(J)の化合物〕の合成
三口フラスコ中の乾燥させたTHF70ml中にカリウム−t−ブトキシド3.30mmolを溶解し氷水で三口フラスコを冷却し、窒素置換後THF30mlに溶解させた3,5−ジ(4−シアノフェニル)−4−〔4−(1−ブロモエチルフェニル)〕−1,2,4−トリアゾール〔前記化合物(I)〕13.2mmolを滴下させた。滴下終了後24時間室温で反応させた。反応終了後THFを除去し、粗結晶を得、これをジクロロエタン:酢酸エチル=4:1の混合溶媒でカラム精製した。更に、アセトン:n−ヘキサン=1:10の混合溶媒で再結晶し、化合物(J)の針状結晶0.20gを得た。
収率25.8%,m.p.:209〜210℃,IR(KBr):1608cm-1(−C=N−),924cm-1(=CH2),1H−NMR(270MHz,CDCl3):δ(ppm)5.5,5.9(d,2H,=CH2),6.8(q,1H,−CH=),7.1〜7.7(m,12H,Ar−H),ANAL.Calcd for C24155;C,77.2%;H,4.05%;N,18.75%.Found;C,76.87%;H,4.29%;N,18.33%.
蛍光スペクトル(励起波長284nm):最大値394nm
【0037】
実施例4(モノマーの合成例4)
下記の反応式により3−(4−ビニルフェニル)−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾールを合成した。
【0038】
【化11】
Figure 0004237839
【0039】
(1)3−(4−エチルフェニル)−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾール〔前記反応式中(H′)の化合物〕の合成
ジクロロベンゼン中150mlにアニリン18.29gを溶解させてから三塩化リン5.39gを加え、約一時間反応させた。反応後N−(4−シアノフェニルカルボニル)−N′−(4−エチルフェニルカルボニル)−ヒドラジン〔前記式中(G′)の化合物〕9.6gを加え、窒素雰囲気下で還流温度まで上昇させた。ここで、前駆体が溶解していないので、滴下ロートよりゆっくりとピリジンを滴下させた。5mlほど滴下させた後、前駆体全てが溶解したところで滴下を終了し、12時間、190℃で反応させた。反応終了後溶液を0.5Nの塩酸水溶液、蒸留水の順で洗浄し、洗浄後o−ジクロロベンゼンを減圧蒸留にて除去し、真空乾燥させて粗結晶を得た。これを酢酸エチル:クロロホルム=1:4の混合溶媒でカラム精製し生成物(4.39g)を得た。また、アセトン:n−ヘキサンにて再結晶を行い化合物(H′)の針状結晶を得た。
収率38.3%,m.p.:190〜192℃,IR(KBr):1608cm-1(−C=N−),2966cm-1(−CH3),1H−NMR(270MHz,CDCl3):δ(ppm)1.3(t,3H,−CH3),2.7(q,2H,−CH2−),7.2〜7.7(m,13H,Ar),ANAL.Calcd for C24175;C,76.83%;H,5.18%;N,15.99%.Found;C,79.03%;H,5.29%;N,15.56%.
【0040】
(2)3−〔4−(1−ブロモエチルフェニル)〕−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾール〔前記反応式中(I′)の化合物〕の合成
四塩化炭素中に3−(4−エチルフェニル)−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾール〔化合物(H′)〕(1.43mmol)、N−ブロモこはく酸イミド(NBS)2.15mmol、AIBN(0.143mmol)を入れ、窒素雰囲気下で24時間還流させた。反応終了後四塩化炭素を除去し粗結晶を得た。これを酢酸エチル:クロロホルム=1:2の混合溶媒でカラム精製し、更にアセトン:n−ヘキサン=1:8で再結晶し、化合物(I′)の結晶を得た。
収率58.6%,m.p.:122〜123℃,IR(KBr):1608cm-1(−C=N−),2966cm-1(−CH3),1H−NMR(270MHz,CDCl3):δ(ppm)2.1(d,3H,−CH3),5.2(q,1H,−CHBr−),7.1〜7.9(m,13H,Ar−H),ANAL.Calcd for C23174Br1;C,64.35%;H,3.99%;N,13.05%.Found;C,65.01%;H,4.35%;N,12.88%。
【0041】
(3)3−(4−ビニルフェニル)−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾール〔前記反応式中(J′)の化合物〕の合成
三口フラスコ中の乾燥させたTHF30ml中にカリウム−t−ブトキシド2.24mmolを溶解し氷水で三口フラスコを冷却し、窒素置換後THF10mlに溶解させた3−〔4−(1−ブロモエチルフェニル)〕−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾール〔前記化合物(I′)〕0.745mmolを滴下させた。滴下終了後24時間室温で反応させた。反応終了後THFを除去し、粗結晶を得、これをジクロロエタン:酢酸エチル=4:1の混合溶媒でカラム精製した。更に、アセトン:n−ヘキサン=1:10の混合溶媒で再結晶し、化合物(J′)の針状結晶0.15gを得た。
収率61.1%,m.p.:221〜223℃,IR(KBr):1608cm-1(−C=N−),924cm-1(=CH2),1H−NMR(270MHz,CDCl3):δ(ppm)5.5,5.9(d,2H,=CH2),6.8(q,1H,−CH=),7.1〜7.7(m,13H,Ar−H),ANAL.Calcd for C23164;C,79.3%;H,4.63%;N,16.1%.Found;C,79.0%;H,4.52%;N,16.0%.
蛍光スペクトル(励起波長309nm):最大値388nm
【0042】
実施例5(実施例1のポリマーの合成)
重合管にジメチルホルムアミド(DMF)0.2mlに溶解させた3−(1−ナフチル)−4−(4−ビニルフェニル)−5−(4−フェニルベンゾイル)−1,2,4−トリアゾール〔前記化合物(F)〕0.05g(0.111mmol)、AIBN0.002g(0.011mol)を入れ凍結脱気窒素置換後、恒温槽で60℃において12時間反応させた。反応終了後メタノールに再沈させてポリマーを得た。このポリマーを3回再沈精製を繰り返し精製した。このポリマーは下記の繰り返し単位を有する。また、その物性は表1〜表3および図1に示した。
Figure 0004237839
【化12】
Figure 0004237839
【0043】
実施例6(実施例2のポリマーの合成)
重合管にDMF0.2mlに溶解させた3,5−ジナフチル−4−(4−ビニルフェニル)−1,2,4−トリアゾール〔前記化合物(F′)〕0.05g(0.118mmol)、開始剤としてAIBN0.002g(0.011mol)を入れ凍結脱気窒素置換後、恒温槽で60℃において12時間反応させた。反応終了後メタノールに再沈させてポリマーを得た。このポリマーを3回再沈精製を繰り返し精製した。このポリマーは下記の繰り返し単位を有する。また、その物性は表1〜表3および図2に示した。
Figure 0004237839
【化13】
Figure 0004237839
【0044】
実施例7(実施例3のポリマーの合成)
5mlの重合管に3,5−ジ(4−シアノフェニル)−4−(4−ビニルフェニル)−1,2,4−トリアゾール〔化合物(J)〕0.3g、開始剤としてAIBN0.013gを入れDMF3mlを溶媒とし、凍結乾燥後24時間60℃で重合させ、下記の繰り返し単位を有するポリマーを得た。また、その物性は表1〜表3および図3に示した。
収量 0.12g
収率 39%
Mn=23,000
Mw/Mn=1.2
【化14】
Figure 0004237839
【0045】
実施例8(実施例4のポリマーの合成)
5mlの重合管に3−(4−ビニルフェニル)−4−フェニル−5−(4−シアノフェニル)−1,2,4−トリアゾール〔化合物(J′)〕0.1g、開始剤としてAIBN5.0×10-4gを入れDMF1mlを溶媒とし、凍結乾燥後24時間60℃で重合させ、下記の繰り返し単位を有するポリマーを得た。また、その物性は表1〜表3および図4に示した。とくに表1から明らかなように、実施例5〜7のトリアゾールの4位の位置がビニル芳香族で置換されたポリマーに較べて、本実施例のトリアゾールの3位の位置がビニル芳香族基で置換されたポリマーは有機溶剤に対する溶解性が大きい。
収量 0.040g,収率 40%,Mn=67,000,Mw/Mn=1.4
【化15】
Figure 0004237839
【0046】
【表1】
Figure 0004237839
【0047】
【表2】
Figure 0004237839
熱分解温度は1分間に10℃の割合で加熱したとき、パーキンエルマー社製TGA7熱重量測定装置によって記録された重量損失が10重量%になったときの温度を示す。
【0048】
【表3】
Figure 0004237839
Ipは、理研計器社製の表面分析機AC−1により決定したイオン化ポテンシャルである。Egは、化合物の光学的エネルギーギャップで、紫外可視吸収スペクトルの吸収端から求めた。Ip−Egは、化合物の擬電子親和力を表わす。
【0049】
実施例9(実施例8のポリマーを用いたEL素子)
図5に示す単層型有機EL素子において、電子輸送性ポリマー層として、実施例8のポリマーを用いて有機EL素子を製造した。このEL素子の電流密度−電圧特性は図6に示すとおりであった。なお図5における陽極はガラス基板上に形成されたITO層であり、そのシート抵抗は15Ω/□であり、陰極はMg:Ag積層層である。
【0050】
実施例10(実施例8のポリマーにTPDを配合)
図5に示す単層型有機EL素子において、電子輸送性ポリマー層として、実施例8のポリマーに下記式
【化16】
Figure 0004237839
で示されるN,N′−ビス(3−メチルフェニル)−1,1′−ビフェニル−4,4−ジアミン(TPD)を全量に対して10wt%、20wt%、30wt%、40wt%および50wt%配合した層をそれぞれ使用した場合の、前記EL素子の示す電流密度−電圧特性を図7に示す。また、図8にそれぞれの素子の発光強度−電圧特性を示す。
【0051】
実施例11(実施例8のポリマーにTPDをドープ)
図5に示す単層型有機EL素子において、電子輸送性ポリマー層として、実施例8のポリマーにTPDをドーピングした層を用いた。このEL素子の輝度と波長の関係を図9に示した。ポリマーのみの蛍光スペクトルのピークは388nmにあり、TPDのみの蛍光スペクトルのピークは410nmにあるのに較べて、ポリマーにTPDをドープしたものの発光スペクトルのピークは512nmであり、ポリマーとTPDの相互作用によりそれぞれ単独の場合に較べて発光スペクトルが長波長側にシフトし、緑色発光を示している。
【0052】
実施例12(実施例8のポリマーにTPDとクマリン6を併用)
図5に示す単層型有機EL素子において、電子輸送性ポリマー層として、ポリマーにTPDを10wt%、下記式
【化17】
Figure 0004237839
Et:C25
で示されるクマリン6を1wt%配合した場合のEL素子が示す電流密度−電圧特性および発光強度−電圧特性を図10と図11に示す。クマリン6の併用により発光強度が向上することが分かる。
【0053】
【効果】
本発明により、新規モノマー、新規ポリマーおよびそれを用いた有機EL素子を提供できた。
【図面の簡単な説明】
【図1】実施例5のポリマーの蛍光スペクトル図である。
【図2】実施例6のポリマーの蛍光スペクトル図である。
【図3】実施例7のポリマーの蛍光スペクトル図である。
【図4】実施例8のポリマーの蛍光スペクトル図である。
【図5】単層型有機EL素子の積層構造を示す。
【図6】実施例8のポリマーのみを電子輸送性ポリマー層として用いた図5に示すEL素子の電流密度−電圧特性を示す。
【図7】実施例8のポリマーにTPDを種々の割合で配合したものを電子輸送性ポリマー層として用いた場合の図5に示すEL素子(実施例10の素子)の電流密度−電圧特性を示す。
【図8】実施例10の各EL素子の発光強度−電圧特性を示す。
【図9】実施例8のポリマーにTPDをドーピングした実施例11のEL素子の発光スペクトルをポリマー自体の蛍光スペクトル、TPD自体の蛍光スペクトルと対比して示す。
【図10】実施例8のポリマーにTPDとクマリン6を併用した実施例12のEL素子の電流密度−電圧特性を示す。
【図11】実施例8のポリマーにTPDとクマリン6を併用した実施例12のEL素子の発光強度−電圧特性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel 1,2,4-triazole group-containing vinyl derivative, a polymer thereof, and an organic EL device using the same.
[0002]
[Prior art]
Light emission of the organic EL element can be obtained by converting excitation energy obtained when holes and electrons injected from each of the anode and the cathode move in the organic layer and recombine to light emission energy. However, in an EL device using a low-molecular organic material, the crystallization and aggregation of the organic layer due to heat generated with current injection and the passage of time cause deterioration of the device, which increases the durability of the device, that is, the device life. It has an influence.
[0003]
In order to suppress this effect, the use of a low molecular weight organic layer has been proposed to shift to the use of a polymer organic layer with low crystallinity and high heat resistance. An organic EL device incorporated in is reported. The present applicant has previously proposed a polymer containing an aromatic diamine that is a hole-transporting group, and reports that it is an excellent polymer that has high heat resistance and functions as a hole-transporting layer ( Japanese Patent Application No. 8-310049, Japanese Patent Application No. 7-94294, Japanese Patent Application No. 6-210544), and the electron-transporting polymer also includes a main chain type containing 1,3,4-oxadiazole and We are developing side chain polymers. (Japanese Patent Application No. 8-94818, etc.)
[0004]
As for 1,2,4-triazole derivatives, the present applicants synthesized various low-molecular 1,2,4-triazole derivatives, and their deposited films are extremely excellent as carrier transport layers and light emitting layers in organic EL devices. It has shown that it has the characteristic.
[0005]
[Problems to be solved by the invention]
However, in order to use a low molecular film for an element, it is necessary to form a film by a vacuum deposition method, and it takes time to manufacture the element. Furthermore, it has a defect of poor element durability at high temperatures due to crystallization of the deposited film.
[0006]
Accordingly, an object of the present invention is to provide a vinyl derivative containing a 1,2,4-triazole group in the side chain, a novel 1,2,4-triazole group-containing polymer having excellent heat resistance, and a polymer thereof. It is in the point which provides the organic EL element using this.
[0007]
[Means for Solving the Problems]
The first of the present invention is the following general formula [1]
[Formula 4]
Figure 0004237839
Wherein R is hydrogen or an alkyl group, Ar1, Ar2And ArThreeAre groups independently selected from aromatic groups that may have a substituent, m is 0 or 1, n is 0 or 1, and m + n = 1. )
The 1,2,4-triazole group containing vinyl derivative shown by these.
[0008]
The second of the present invention is the following general formula [2]
[Chemical formula 5]
Figure 0004237839
Wherein R is hydrogen or an alkyl group, Ar1, Ar2And ArThreeAre groups independently selected from the group consisting of aromatic groups which may have a substituent. )
And a 1,2,4-triazole group-containing polymer having a number average molecular weight of 1,000 to 1,000,000 having a repeating unit represented by
[0009]
The third of the present invention is the following general formula [3]
[Chemical 6]
Figure 0004237839
Wherein R is hydrogen or an alkyl group, Ar1, Ar2And ArThreeAre groups independently selected from the group consisting of aromatic groups which may have a substituent. )
And a 1,2,4-triazole group-containing polymer having a number average molecular weight of 1,000 to 1,000,000 having a repeating unit represented by
[0010]
A fourth aspect of the present invention is an organic electroluminescence characterized in that the 1,2,4-triazole group-containing polymer according to claim 2 and / or claim 3 is used for a carrier transport layer and / or a light emitting layer. The cent element.
[0011]
Examples of the substituent include an alkyl group, an alkoxy group, an amino group, a dialkylamino group, a diphenylamino group, a cyano group, and a halogen. The number of carbon atoms in the alkyl group, the alkoxy group, the dialkylamino group, etc. There is no particular limitation as long as it does not cause steric hindrance during polymerization of the vinyl monomer.
[0012]
An example of the monomer synthesis method of the present invention is shown.
[Chemical 7]
Figure 0004237839
[0013]
In the above formula, NBS is N-bromosuccinimide, AIBN is azoisobutyronitrile, CClFourIs carbon tetrachloride, t-BuOK is tert-butyl alcoholate of potassium, and THF is tetrahydrofuran.
[0014]
The vinyl compound of the present invention can be polymerized or copolymerized in the same manner as a normal vinyl compound. As the polymerization method, any of bulk polymerization, solution polymerization, emulsion polymerization, and suspension polymerization can be employed. Although the examples show radical polymerization systems, the monomers of the present invention can also be polymerized by ionic polymerization, particularly anionic polymerization.
[0015]
The polymer of the present invention can be obtained with any molecular weight from waxy to solid by adjusting the polymerization conditions, but usually has a molecular weight of 1,000 to 1,000,000. Are useful for various applications of polymers.
[0016]
Since the novel polymer of the present invention has an electron transporting property, it can be used for various applications utilizing this characteristic in addition to the use of a simple polymer. In particular, it can be used for EL devices. That is, the 1,2,4-triazole group-containing polymer of the present invention contains a 1,2,4-triazole group, known for carrier transportability, in the side chain, thereby transporting carriers such as electrons and holes. Therefore, it can be used as a carrier transport layer or a light emitting layer of an organic EL element. In addition, since it is possible to easily form a film by application from a solution, it is possible to reduce the cost when manufacturing the element.
[0017]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0018]
Example 1 (Monomer Synthesis Example 1)
The synthesis process of Example 1 is shown as a reaction formula as follows.
[0019]
[Chemical 8]
Figure 0004237839
[0020]
(1) Synthesis of 1-naphthoic acid methyl ester [compound of (A) in the above reaction formula]
6.03 g (35 mmol) of 1-naphthoic acid was dissolved in methanol (150 ml), concentrated sulfuric acid (7 ml) was added as a catalyst, and the mixture was refluxed at 90 ° C. for 6 hours. After completion of the reaction, the ester was extracted with diethyl ether. Ethanol and concentrated sulfuric acid were removed by washing with water, and diethyl ether was distilled off after drying to obtain a brown liquid ester (A).
C12HTenO2(186.21)
Yield 5.63g
Yield 86.5%
IR (KBr) ν-COCHThree1717cm-1
[0021]
(2) Synthesis of 1-naphthhydrazide [compound of (B) in the above reaction formula]
After 15 g (300 mmol) of hydrazine-hydrate was dissolved in ethanol (100 ml) and purged with nitrogen, 5.59 g (30 mmol) of the compound (A) was added dropwise to this solution, and after completion of the addition, the mixture was refluxed at 85 ° C. for 48 hours. It was. After completion of the reaction, the solvent was removed, and the precipitated crystals were subjected to suction filtration with cold methanol to obtain a product (B).
C11HTenN2O (186.22)
Yield 3.35g
Yield 66.9%
IR (KBr) ν-NH23400cm-1, Ν-CONH-1717cm-1
[0022]
(3) Synthesis of N- (1-naphthoyl) -N ′-(4-phenylbenzoyl) hydrazine [compound of (C) in the above reaction formula]
After 2.70 g (13.0 mmol) of the compound (B) was dissolved in pyridine (50 ml) and purged with nitrogen, 2.42 g (13.0 mmol) of 4-phenylbenzoyl chloride was added dropwise to this solution, and after completion of the addition, room temperature. At reflux for 19 hours. After completion of the reaction, the solution was poured into distilled water, and the reaction product which had been white-washed was washed with water. After washing with water, the reaction product was suction filtered to obtain compound (C).
Ctwenty fourH18N2O2(366.42)
Yield 3.78g
Yield 79.4%
IR (KBr) ν-CONH-3195cm-1
[0023]
(4) Synthesis of 3- (1-naphthyl) -4- (4-ethylphenyl) -5- (4-phenylbenzoyl) -1,2,4-triazole [compound of (D) in the above reaction formula]
After dissolving 7.34 g (60.6 mmol) of p-ethylaniline in o-dichlorobenzene (90 ml), 1.53 g (11.1 mmol) of phosphorus trichloride was added and reacted for about one hour. 3.70 g (10.1 mmol) of (1-naphthoyl) -N ′-(4-phenylbenzoyl) hydrazine [the compound (C)] was added, and the mixture was refluxed at 200 ° C. for 48 hours under a nitrogen atmosphere. After completion of the reaction, the solution was washed with a 0.5N aqueous hydrochloric acid solution and distilled water in this order. After washing, o-dichlorobenzene was removed by distillation under reduced pressure (80 ° C./3 mmHg) to obtain crude crystals. The resulting crude crystals were column purified with a mixed solvent of ethyl acetate and chloroform having a mixing ratio of 1: 4 to obtain compound (D).
Figure 0004237839
[0024]
(5) 3- (1-Naphtyl) -4- [4- (1-bromoethylphenyl)]-5- (4-phenylbenzoyl) -1,2,4-triazole [in the above reaction formula, Compound]
In carbon tetrachloride (50 ml), 0.28 g (1.56 mmol) of N-bromosuccinimide and 0.026 g (0.16 mmol) of azoisobutyronitrile (AIBN) were dissolved, and 3- (1-naphthyl)- 4- (4-Ethylphenyl) -5- (4-phenylbenzoyl) -1,2,4-triazole [the aforementioned compound (D)] (0.70 g, 1.56 mmol) was added, and the mixture was added at 95 ° C. under a nitrogen atmosphere at 24 ° C. Reflux for hours. After the reaction was completed, the mixture was allowed to stand for 2 hours to precipitate unreacted substances, followed by filtration. The filtrate was freed from the solvent to obtain crude crystals. The resulting crude crystals were column purified with a mixed solvent of ethyl acetate and chloroform, and the crude crystals were recrystallized with a mixed solvent of benzene and n-hexane having a mixing ratio of 1: 2, to obtain the compound (E).
Figure 0004237839
[0025]
(6) Synthesis of 3- (1-naphthyl) -4- (4-vinylphenyl) -5- (4-phenylbenzoyl) -1,2,4-triazole [compound of (F) in the above reaction formula]
In 40 ml of dry tetrahydrofuran (THF), 0.37 g (3.28 mmol) of potassium tert-butoxide was dissolved and stirred at 0 ° C. 3- (1-naphthyl) -4- [4 dissolved in 10 ml of dry THF in this solution. -(1-Bromoethylphenyl)]-5- (4-phenylbenzoyl) -1,2,4-triazole [the compound (E)] (0.58 g, 1.09 mmol) was added dropwise, and after completion of the addition, at room temperature. The reaction was performed for 24 hours. After completion of the reaction, the solvent was removed, chloroform was added to the residue, washed with 0.01N sodium hydroxide and distilled water in that order, dried over magnesium sulfate, and then the solvent was removed to obtain crude crystals. The obtained crude crystals were recrystallized with a mixed solvent of benzene and n-hexane having a mixing ratio of 2: 3 to obtain the compound (F).
Figure 0004237839
[0026]
Example 2 (Monomer Synthesis Example 2)
The synthesis process of Example 2 is shown in the reaction formula as follows.
[0027]
[Chemical 9]
Figure 0004237839
[0028]
(1) Synthesis of N, N ′-(1-dinaphthoyl) -hydrazine [compound of the above reaction formula (C ′)]
1-Naphthhydrazine obtained in (2) of Example 1 [Compound of (B) above]
After 3.30 g (17.7 mmol) was dissolved in pyridine (60 ml) and purged with nitrogen, 3.38 g (17.7 mmol) of 1-naphthalenecarboxylic acid chloride was added dropwise to this solution, and refluxed at room temperature for 19 hours after completion of the addition. I let you. After completion of the reaction, the solution was poured into distilled water, and the reaction product which had been white-washed was washed with water. After washing with water, the reaction product was subjected to suction filtration to obtain a product (C ′).
Ctwenty twoH16N2O2(340.39)
Yield 5.25g
Yield 87.1%
IR (KBr) ν-CONH-3187cm-1
[0029]
(2) Synthesis of 3,5-dinaphthyl-4- (4-ethylphenyl) -1,2,4-triazole [compound of (D ′) in the above reaction formula]
After dissolving 11.3 g (93.4 mmol) of p-ethylaniline in o-dichlorobenzene (90 ml), 2.35 g (17.1 mmol) of phosphorus trichloride was added and reacted for about one hour. N ′-(1-Dinaphthoyl) -hydrazine [the compound (C ′)] (5.20 g, 15.5 mmol) was added, and the mixture was refluxed at 200 ° C. for 48 hours in a nitrogen atmosphere. After completion of the reaction, the solution was washed with a 0.5N aqueous hydrochloric acid solution and distilled water in this order. After washing, o-dichlorobenzene was removed by distillation under reduced pressure (80 ° C./3 mmHg) to obtain crude crystals. The resulting crude crystals were column purified with a mixed solvent of ethyl acetate and dichloromethane in a mixing ratio of 1: 4 to obtain compound (D ′).
Figure 0004237839
[0030]
(3) Synthesis of 3,5-dinaphthyl-4- [4- (1-bromoethylphenyl)]-1,2,4-triazole [compound of the above reaction formula (E ′)]
In carbon tetrachloride (180 ml), N-bromosuccinimide 0.84 g (4.70 mmol) and AIBN 0.08 g (0.47 mmol) were dissolved, and 3,5-dinaphthyl-4- (4-ethylphenyl) -1 2,4-triazole [the compound (D ′)] 2.00 g (4.70 mmol) was added, and the mixture was refluxed at 95 ° C. for 24 hours under a nitrogen atmosphere. After the reaction was completed, the mixture was allowed to stand for 2 hours to precipitate unreacted substances, followed by filtration. The filtrate was freed from the solvent to obtain crude crystals. The obtained crude crystals were column purified with a mixed solvent of ethyl acetate and chloroform, and the crude crystals were recrystallized with a mixed solvent of benzene and n-hexane in a mixing ratio of 1: 2 to obtain the compound (E ′). .
Figure 0004237839
[0031]
(4) Synthesis of 3,5-dinaphthyl-4- (4-vinylphenyl) -1,2,4-triazole [compound of (F ′) in the above reaction formula]
0.87 g (7.73 mmol) of potassium tert-butoxide was dissolved in 40 ml of dry THF and stirred at 0 ° C., and 3,5-dinaphthyl-4- [4- (1-bromoethyl) dissolved in 10 ml of dry THF was dissolved in this solution. Phenyl)]-1,2,4-triazole [said compound (E ′)] 1.30 g (2.58 mmol) was added dropwise, and the mixture was reacted at room temperature for 24 hours. After completion of the reaction, the solvent was removed, chloroform was added to the residue, washed with 0.01N sodium hydroxide and distilled water in that order, dried over magnesium sulfate, and then the solvent was removed to obtain crude crystals. The obtained crude crystals were recrystallized with a mixed solvent of benzene and n-hexane having a mixing ratio of 2: 3 to obtain the compound (F ′).
Figure 0004237839
[0032]
Example 3 (Monomer Synthesis Example 3)
3,5-di (4-cyanophenyl) -4- (4-vinylphenyl) -1,2,4-triazole was synthesized according to the following reaction formula.
[0033]
[Chemical Formula 10]
Figure 0004237839
[0034]
(1) Synthesis of 3,5-di (4-cyanophenyl) -4- (4-ethylphenyl) -1,2,4-triazole [compound of (H) in the above reaction formula]
After dissolving 9.24 g of p-ethylaniline in 120 ml of o-dichlorobenzene, 1.92 g of phosphorus trichloride was added and allowed to react for about 1 hour. After the reaction, 3.7 g of N, N′-di (4-cyanobenzoyl) -hydrazine [compound of (G) in the above reaction formula] was added and refluxed for 24 hours in a nitrogen atmosphere. After completion of the reaction, the solution was washed with a 0.5N aqueous hydrochloric acid solution and distilled water in this order, and after washing, o-dichlorobenzene was removed by distillation under reduced pressure and vacuum dried to obtain crude crystals. This was column purified with a mixed solvent of ethyl acetate: chloroform = 1: 4 and recrystallized with acetone: n-hexane = 1: 8 to obtain 1.46 g of compound (H) needle crystals.
Yield 31.2%, m.p. p. : 237 to 239 ° C., IR (KBr): 1608 cm-1(-C = N-), 2966 cm-1(-CHThree),1H-NMR (270 MHz, CDClThree): Δ (ppm) 1.3 (t, 3H, —CHThree), 2.8 (q, 2H, -CH2-), 7.1-7.7 (m, 12H, Ar), ANAL. Calcd for Ctwenty fourH17NFiveC, 76.78%; H, 4.56%; N, 18.65%. Found; C, 76.85%; H, 4.65%; N, 18.32%.
[0035]
(2) Synthesis of 3,5-di (4-cyanophenyl) -4- [4- (1-bromoethylphenyl)]-1,2,4-triazole [compound of (I) in the above reaction formula]
3,5-di (4-cyanophenyl) -4- (4-ethylphenyl) -1,2,4-triazole [compound of (H) in the above reaction formula] (1.43 mmol) in carbon tetrachloride NBS (4.29 mmol) and AIBN (0.143 mmol) were added and refluxed for 24 hours under a nitrogen atmosphere. After completion of the reaction, carbon tetrachloride was removed to obtain crude crystals. This was purified by column purification with a mixed solvent of ethyl acetate: chloroform 1: 2, and recrystallized with acetone: n-hexane 1: 8 to obtain crystals of compound (I).
Yield 46.2%, m.p. p. : 174 to 176 ° C., IR (KBr): 1608 cm-1(-C = N-), 2966 cm-1(-CHThree),1H-NMR (270 MHz, CDClThree): Δ (ppm) 2.0 (d, 3H, —CHThree), 5.2 (q, 1H, —CHBr—), 7.1 to 7.6 (m, 12H, Ar—H), ANAL. Calcd for Ctwenty fourH17NFiveBr1C, 63.31%; H, 4.57%; N, 15.38%. Found; C, 63.02%; H, 3.98%; N, 15.56%.
[0036]
(3) Synthesis of 3,5-di (4-cyanophenyl) -4- (4-vinylphenyl) -1,2,4-triazole [compound of (J) in the above reaction formula]
3,5-di (4-cyanophenyl) -4 dissolved in 3.30 mmol of potassium tert-butoxide in 70 ml of dried THF in a three-necked flask, cooled in ice water with ice water, purged with nitrogen and dissolved in 30 ml of THF. -[4- (1-Bromoethylphenyl)]-1,2,4-triazole [said compound (I)] 13.2 mmol was added dropwise. It was made to react at room temperature for 24 hours after completion | finish of dripping. After completion of the reaction, THF was removed to obtain crude crystals, which were purified by column using a mixed solvent of dichloroethane: ethyl acetate = 4: 1. Furthermore, recrystallization was performed with a mixed solvent of acetone: n-hexane = 1: 10 to obtain 0.20 g of needle crystals of the compound (J).
Yield 25.8%, m.p. p. : 209-210 ° C, IR (KBr): 1608 cm-1(-C = N-), 924cm-1(= CH2),1H-NMR (270 MHz, CDClThree): Δ (ppm) 5.5, 5.9 (d, 2H, ═CH2), 6.8 (q, 1H, -CH =), 7.1-7.7 (m, 12H, Ar-H), ANAL. Calcd for Ctwenty fourH15NFiveC, 77.2%; H, 4.05%; N, 18.75%. Found; C, 76.87%; H, 4.29%; N, 18.33%.
Fluorescence spectrum (excitation wavelength 284 nm): maximum value 394 nm
[0037]
Example 4 (Monomer Synthesis Example 4)
3- (4-Vinylphenyl) -4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole was synthesized according to the following reaction formula.
[0038]
Embedded image
Figure 0004237839
[0039]
(1) Synthesis of 3- (4-ethylphenyl) -4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole [compound of (H ′) in the above reaction formula]
After dissolving 18.29 g of aniline in 150 ml of dichlorobenzene, 5.39 g of phosphorus trichloride was added and reacted for about one hour. After the reaction, 9.6 g of N- (4-cyanophenylcarbonyl) -N ′-(4-ethylphenylcarbonyl) -hydrazine [compound of the above formula (G ′)] is added, and the temperature is raised to the reflux temperature in a nitrogen atmosphere. It was. Here, since the precursor was not dissolved, pyridine was dropped slowly from the dropping funnel. After about 5 ml was dropped, the dropping was terminated when all the precursors were dissolved, and the mixture was reacted at 190 ° C. for 12 hours. After completion of the reaction, the solution was washed with a 0.5N aqueous hydrochloric acid solution and distilled water in this order, and after washing, o-dichlorobenzene was removed by distillation under reduced pressure and vacuum dried to obtain crude crystals. This was column purified with a mixed solvent of ethyl acetate: chloroform = 1: 4 to obtain a product (4.39 g). Further, recrystallization was performed with acetone: n-hexane to obtain needle crystals of the compound (H ′).
Yield 38.3%, m.p. p. : 190-192 ° C, IR (KBr): 1608 cm-1(-C = N-), 2966 cm-1(-CHThree),1H-NMR (270 MHz, CDClThree): Δ (ppm) 1.3 (t, 3H, —CHThree), 2.7 (q, 2H, -CH2-), 7.2-7.7 (m, 13H, Ar), ANAL. Calcd for Ctwenty fourH17NFiveC, 76.83%; H, 5.18%; N, 15.99%. Found; C, 79.03%; H, 5.29%; N, 15.56%.
[0040]
(2) 3- [4- (1-Bromoethylphenyl)]-4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole [compound of (I ′) in the above reaction formula] Composition
3- (4-Ethylphenyl) -4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole [compound (H ′)] (1.43 mmol), N-bromo in carbon tetrachloride Succinimide (NBS) 2.15 mmol and AIBN (0.143 mmol) were added and refluxed for 24 hours under a nitrogen atmosphere. After completion of the reaction, carbon tetrachloride was removed to obtain crude crystals. This was purified by column purification with a mixed solvent of ethyl acetate: chloroform = 1: 2, and recrystallized with acetone: n-hexane = 1: 8 to obtain a crystal of compound (I ′).
Yield 58.6%, m.p. p. : 122-123 ° C, IR (KBr): 1608 cm-1(-C = N-), 2966 cm-1(-CHThree),1H-NMR (270 MHz, CDClThree): Δ (ppm) 2.1 (d, 3H, —CHThree), 5.2 (q, 1H, —CHBr—), 7.1 to 7.9 (m, 13H, Ar—H), ANAL. Calcd for Ctwenty threeH17NFourBr1C, 64.35%; H, 3.99%; N, 13.05%. Found; C, 65.01%; H, 4.35%; N, 12.88%.
[0041]
(3) Synthesis of 3- (4-vinylphenyl) -4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole [compound of (J ′) in the above reaction formula]
3- [4- (1-Bromoethylphenyl)] dissolved in 30 ml of dry THF in a three-necked flask was dissolved in 2.24 mmol of potassium tert-butoxide, cooled in ice water with nitrogen, purged with nitrogen, and dissolved in 10 ml of THF. 0.745 mmol of -4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole [the compound (I ′)] was added dropwise. It was made to react at room temperature for 24 hours after completion | finish of dripping. After completion of the reaction, THF was removed to obtain crude crystals, which were purified by column using a mixed solvent of dichloroethane: ethyl acetate = 4: 1. Furthermore, recrystallization was performed with a mixed solvent of acetone: n-hexane = 1: 10 to obtain 0.15 g of needle-like crystals of the compound (J ′).
Yield 61.1%, m.p. p. : 221 to 223 ° C., IR (KBr): 1608 cm-1(-C = N-), 924cm-1(= CH2),1H-NMR (270 MHz, CDClThree): Δ (ppm) 5.5, 5.9 (d, 2H, ═CH2), 6.8 (q, 1H, -CH =), 7.1-7.7 (m, 13H, Ar-H), ANAL. Calcd for Ctwenty threeH16NFourC, 79.3%; H, 4.63%; N, 16.1%. Found; C, 79.0%; H, 4.52%; N, 16.0%.
Fluorescence spectrum (excitation wavelength 309 nm): maximum value 388 nm
[0042]
Example 5 (Synthesis of polymer of Example 1)
3- (1-Naphthyl) -4- (4-vinylphenyl) -5- (4-phenylbenzoyl) -1,2,4-triazole dissolved in 0.2 ml of dimethylformamide (DMF) in a polymerization tube Compound (F)] 0.05 g (0.111 mmol) and AIBN 0.002 g (0.011 mol) were added, and after substitution by freeze degassing nitrogen, the mixture was reacted at 60 ° C. for 12 hours in a thermostatic bath. After completion of the reaction, it was reprecipitated in methanol to obtain a polymer. This polymer was purified by repeating reprecipitation purification three times. This polymer has the following repeating units. The physical properties are shown in Tables 1 to 3 and FIG.
Figure 0004237839
Embedded image
Figure 0004237839
[0043]
Example 6 (Synthesis of polymer of Example 2)
0.05 g (0.118 mmol) of 3,5-dinaphthyl-4- (4-vinylphenyl) -1,2,4-triazole [the compound (F ′)] dissolved in 0.2 ml of DMF in a polymerization tube, start AIBN 0.002 g (0.011 mol) was added as an agent, and after substitution by freeze deaeration and nitrogen, the reaction was carried out at 60 ° C. for 12 hours in a thermostatic bath. After completion of the reaction, it was reprecipitated in methanol to obtain a polymer. This polymer was purified by repeating reprecipitation purification three times. This polymer has the following repeating units. The physical properties are shown in Tables 1 to 3 and FIG.
Figure 0004237839
Embedded image
Figure 0004237839
[0044]
Example 7 (Synthesis of polymer of Example 3)
In a 5 ml polymerization tube, 0.3 g of 3,5-di (4-cyanophenyl) -4- (4-vinylphenyl) -1,2,4-triazole [compound (J)] and 0.013 g of AIBN as an initiator were added. Into 3 ml of DMF as a solvent, polymerization was performed at 60 ° C. for 24 hours after lyophilization to obtain a polymer having the following repeating units. The physical properties are shown in Tables 1 to 3 and FIG.
Yield 0.12g
Yield 39%
Mn = 23,000
Mw / Mn = 1.2
Embedded image
Figure 0004237839
[0045]
Example 8 (Synthesis of polymer of Example 4)
Into a 5 ml polymerization tube, 0.1 g of 3- (4-vinylphenyl) -4-phenyl-5- (4-cyanophenyl) -1,2,4-triazole [compound (J ′)], AIBN5. 0x10-Fourg was added and 1 ml of DMF was used as a solvent, and after lyophilization, polymerization was carried out at 60 ° C. for 24 hours to obtain a polymer having the following repeating units. The physical properties are shown in Tables 1 to 3 and FIG. In particular, as is clear from Table 1, the triazole position of this example is a vinyl aromatic group as compared to the polymer substituted at position 4 of the triazole of Examples 5 to 7 with vinyl aromatic. The substituted polymer is highly soluble in organic solvents.
Yield 0.040 g, Yield 40%, Mn = 67,000, Mw / Mn = 1.4
Embedded image
Figure 0004237839
[0046]
[Table 1]
Figure 0004237839
[0047]
[Table 2]
Figure 0004237839
The thermal decomposition temperature indicates the temperature at which the weight loss recorded by a TGA7 thermogravimetric measuring device manufactured by Perkin Elmer is 10% by weight when heated at a rate of 10 ° C. per minute.
[0048]
[Table 3]
Figure 0004237839
Ip is an ionization potential determined by a surface analyzer AC-1 manufactured by Riken Keiki Co., Ltd. Eg is the optical energy gap of the compound, and was determined from the absorption edge of the UV-visible absorption spectrum. Ip-Eg represents the quasi-electron affinity of the compound.
[0049]
Example 9 (EL device using the polymer of Example 8)
In the single-layer organic EL element shown in FIG. 5, an organic EL element was produced using the polymer of Example 8 as the electron transporting polymer layer. The current density-voltage characteristics of this EL element were as shown in FIG. The anode in FIG. 5 is an ITO layer formed on a glass substrate, the sheet resistance is 15Ω / □, and the cathode is a Mg: Ag multilayer.
[0050]
Example 10 (compounding TPD with the polymer of Example 8)
In the single-layer organic EL device shown in FIG. 5, the polymer of Example 8 has the following formula as an electron transporting polymer layer.
Embedded image
Figure 0004237839
N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4-diamine (TPD) represented by the formula: 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% FIG. 7 shows the current density-voltage characteristics exhibited by the EL element when each of the blended layers is used. FIG. 8 shows the light emission intensity-voltage characteristics of each element.
[0051]
Example 11 (The polymer of Example 8 is doped with TPD)
In the single-layer organic EL device shown in FIG. 5, a layer obtained by doping the polymer of Example 8 with TPD was used as the electron transporting polymer layer. The relationship between the luminance and wavelength of this EL element is shown in FIG. The peak of the fluorescence spectrum of the polymer alone is at 388 nm, and the peak of the emission spectrum of the polymer doped with TPD is 512 nm compared to the peak of the fluorescence spectrum of TPD only at 410 nm, and the interaction between the polymer and TPD As a result, the emission spectrum is shifted to the longer wavelength side as compared with the case of each of them, indicating green light emission.
[0052]
Example 12 (combined use of TPD and coumarin 6 in the polymer of Example 8)
In the single-layer organic EL device shown in FIG. 5, as an electron transporting polymer layer, TPD is 10 wt% in the polymer, and the following formula
Embedded image
Figure 0004237839
Et: C2HFive
10 and 11 show current density-voltage characteristics and light emission intensity-voltage characteristics exhibited by the EL element when 1 wt% of coumarin 6 represented by formula (1) is blended. It can be seen that the combined use of coumarin 6 improves the emission intensity.
[0053]
【effect】
According to the present invention, a novel monomer, a novel polymer, and an organic EL device using the same can be provided.
[Brief description of the drawings]
1 is a fluorescence spectrum diagram of the polymer of Example 5. FIG.
2 is a fluorescence spectrum diagram of the polymer of Example 6. FIG.
3 is a fluorescence spectrum diagram of the polymer of Example 7. FIG.
4 is a fluorescence spectrum diagram of the polymer of Example 8. FIG.
FIG. 5 shows a laminated structure of a single layer type organic EL element.
6 shows the current density-voltage characteristics of the EL device shown in FIG. 5 in which only the polymer of Example 8 was used as the electron transporting polymer layer.
7 shows the current density-voltage characteristics of the EL device shown in FIG. 5 (device of Example 10) when the polymer of Example 8 blended with TPD in various proportions is used as the electron transporting polymer layer. Show.
8 shows the light emission intensity-voltage characteristics of each EL element of Example 10. FIG.
9 shows the emission spectrum of the EL device of Example 11 in which the polymer of Example 8 is doped with TPD in comparison with the fluorescence spectrum of the polymer itself and the fluorescence spectrum of TPD itself. FIG.
10 shows current density-voltage characteristics of an EL device of Example 12 in which TPD and coumarin 6 are used in combination with the polymer of Example 8. FIG.
11 shows the luminescence intensity-voltage characteristics of the EL device of Example 12 in which TPD and coumarin 6 are used in combination with the polymer of Example 8. FIG.

Claims (4)

下記一般式〔1〕
Figure 0004237839
(式中、Rは水素またはアルキル基、Ar1、Ar2およびAr3は、置換基を有することもある芳香族基よりそれぞれ独立して選ばれた基であり、mは0または1、nは0または1であり、m+n=1である。)
で示される1,2,4−トリアゾール基含有ビニル誘導体。
The following general formula [1]
Figure 0004237839
Wherein R is hydrogen or an alkyl group, Ar 1 , Ar 2 and Ar 3 are each independently selected from aromatic groups which may have a substituent, and m is 0 or 1, n Is 0 or 1 and m + n = 1.)
The 1,2,4-triazole group containing vinyl derivative shown by these.
下記一般式〔2〕
Figure 0004237839
(式中、Rは水素またはアルキル基、Ar1、Ar2およびAr3は、置換基を有することもある芳香族基よりなる群からそれぞれ独立して選ばれた基である。)
で示される繰り返し単位を有する数平均分子量1,000〜1,000,000の1,2,4−トリアゾール基含有高分子。
The following general formula [2]
Figure 0004237839
(In the formula, R is hydrogen or an alkyl group, and Ar 1 , Ar 2, and Ar 3 are groups independently selected from the group consisting of aromatic groups that may have a substituent.)
A 1,2,4-triazole group-containing polymer having a number average molecular weight of 1,000 to 1,000,000 having a repeating unit represented by
下記一般式〔3〕
Figure 0004237839
(式中、Rは水素またはアルキル基、Ar1、Ar2およびAr3は、置換基を有することもある芳香族基よりなる群からそれぞれ独立して選ばれた基である。)
で示される繰り返し単位を有する数平均分子量1,000〜1,000,000の1,2,4−トリアゾール基含有高分子。
The following general formula [3]
Figure 0004237839
(In the formula, R is hydrogen or an alkyl group, and Ar 1 , Ar 2, and Ar 3 are groups independently selected from the group consisting of aromatic groups that may have a substituent.)
A 1,2,4-triazole group-containing polymer having a number average molecular weight of 1,000 to 1,000,000 having a repeating unit represented by
請求項2および/または請求項3記載の1,2,4−トリアゾール基含有高分子をキャリア輸送層および/または発光層に使用することを特徴とする有機エレクトロルミネッセント素子。An organic electroluminescent device using the 1,2,4-triazole group-containing polymer according to claim 2 and / or claim 3 in a carrier transport layer and / or a light emitting layer.
JP32217697A 1997-11-07 1997-11-07 1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same Expired - Lifetime JP4237839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32217697A JP4237839B2 (en) 1997-11-07 1997-11-07 1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32217697A JP4237839B2 (en) 1997-11-07 1997-11-07 1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same

Publications (2)

Publication Number Publication Date
JPH11140060A JPH11140060A (en) 1999-05-25
JP4237839B2 true JP4237839B2 (en) 2009-03-11

Family

ID=18140798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32217697A Expired - Lifetime JP4237839B2 (en) 1997-11-07 1997-11-07 1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same

Country Status (1)

Country Link
JP (1) JP4237839B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387166B1 (en) 1999-12-15 2003-06-12 닛뽄덴끼 가부시끼가이샤 Organic Electroluminescence Device
WO2010110280A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Coating solution for organic electroluminescent element

Also Published As

Publication number Publication date
JPH11140060A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP6742652B2 (en) Coating composition, organic light emitting device using the same, and method for producing the same
KR101563387B1 (en) Phenoxazine polymeric compound and light-emitting element comprising same
JP2019533308A (en) Organic light emitting device
JP6910698B2 (en) Method for manufacturing ink composition and organic light emitting device
JP7055486B2 (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP2012530754A (en) Bipolar small molecule host for phosphorescent guest emitters
JP7034446B2 (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP7013076B2 (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP3698481B2 (en) Oxadiazole group-containing polymer and organic EL device using the same
JP6953058B2 (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
KR20210024966A (en) Organic light emitting device
JP4237839B2 (en) 1,2,4-Triazole group-containing vinyl derivative, polymer thereof and organic EL device using the same
US6495644B1 (en) Electroluminiscent conjugated polymers modified with high electronegative heterocyclic moieties and their applications in polymeric light emitting diodes
JP2020536162A (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP6983460B2 (en) New polymer and organic light emitting device containing it
KR102255747B1 (en) Novel compound and organic light emitting device comprising the same
KR102549459B1 (en) Novel polymer and organic light emitting device comprising the same
KR102650117B1 (en) Organic light emitting device
KR102548911B1 (en) Organic Light emitting device
KR20210026941A (en) Organic light emitting device
KR102218558B1 (en) Novel polymer and organic light emitting device comprising the same
KR20190044265A (en) Method for preparing polymer, coating composition comprising the polymer, organic light emitting device using the same and method of manufacturing the same
WO2022065238A1 (en) Thermally-crosslinkable low molecular weight compound-containing composition for light emitting diode
KR20210023256A (en) Organic light emitting device
KR20210022435A (en) Organic light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term