JP4236853B2 - Authenticity judgment system - Google Patents

Authenticity judgment system Download PDF

Info

Publication number
JP4236853B2
JP4236853B2 JP2002063911A JP2002063911A JP4236853B2 JP 4236853 B2 JP4236853 B2 JP 4236853B2 JP 2002063911 A JP2002063911 A JP 2002063911A JP 2002063911 A JP2002063911 A JP 2002063911A JP 4236853 B2 JP4236853 B2 JP 4236853B2
Authority
JP
Japan
Prior art keywords
light
selective reflection
polarized light
polarization
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063911A
Other languages
Japanese (ja)
Other versions
JP2003262724A (en
Inventor
隆 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002063911A priority Critical patent/JP4236853B2/en
Publication of JP2003262724A publication Critical patent/JP2003262724A/en
Application granted granted Critical
Publication of JP4236853B2 publication Critical patent/JP4236853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/337Guilloche patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • G07D7/0032Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements using holograms
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Credit Cards Or The Like (AREA)
  • Polarising Elements (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カード,商品券,金券,切符,紙幣,パスポート,身分証明書,証券,公共競技投票券などの対象物が真正品であるか否か判定する真正判定システムに関するものである。
【0002】
【従来の技術】
従来より、クレジットカードや証書,金券類の偽造を防止する方法として、偽造防止対象物に、偽造の困難な真正判定体を貼付し、これを目視又は機械的に真正性を判定する方法が知られている。このような真正判定体としては、例えば、ホログラムを応用したものがあり、これには、文字や絵柄をホログラム像として、目視判別するもの、数値コードや特定のパターンをホログラム像として、機械認識するもの及び両者の組み合わせたものなどがある。ホログラム像は、通常のカラーコピー装置等では複製できず偽造防止に有効であること、意匠性が高いこと、製造が困難なことなどから、広く普及してきている。
【0003】
【発明が解決しようとする課題】
しかし、近年のホログラム製造技術の普及に伴って、偽造品製造が可能となってきており、偽造防止効果が低下しており、新たな偽造防止方法が要望されている。
【0004】
本発明の課題は、偽造防止効果が高く、また、偽造防止手段の存在が他人に悟らることのない真正判定システムを提供することである。
【0005】
【課題を解決するための手段】
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない
【0015】
前記課題を解決するために、請求項1の発明は、コレステリック相を固定化した液晶層により形成され、入射した光のうち、第1の偏光状態の光(L1)を反射し、第2の偏光状態の光(L2)を透過する第1の光選択反射部(11a)と、コレステリック相を固定化した液晶層により形成され、第2の偏光状態の光(L2)を反射し、第1の偏光状態の光(L1)を透過する第2の光選択反射部(11b)と、コレステリック相を固定化した液晶層を加熱して形成され、偏光状態に依存することのない反射特性を有し、前記第1の光選択反射部(11a)及び前記第2の光選択反射部(11b)以外の領域に配置される非選択反射部(11c)と、前記第1の光選択反射部(11a)及び前記第2の光選択反射部(11b)に形成され、前記第1の光選択反射部(11a)及び前記第2の光選択反射部(11b)が選択的に反射するそれぞれの反射光と同一の偏光状態の光を反射して光回折現象が発生する光回折構造形成部(12)と、を備える光選択反射体(10)を使用して真正品を判定する真正判定システムであって、光源(21)からの光を第1の偏光状態の光に変換する第1の偏光形成手段(24a)により変換された光と、前記光源(21)からの光を第2の偏光状態の光に変換する第2の偏光形成手段(24b)により変換された光とを交互に照射して、前記光選択反射体(10)の第1の光選択反射部(11a)及び第2の光選択反射部(11b)が、交互に、目視できなくなったときは、その光選択反射体(10)が真正品であると判定することを特徴とする真正判定システムである。
請求項2の発明は、請求項1に記載の真正判定システムにおいて、前記第1の偏光形成手段(24a)及び前記第2の円偏光手段(24b)は、光(L3)を直線偏光(L4)にする直線偏光化手段(22)と、その直線偏光(L4)を円偏光(L5)に変換する円偏光化手段(23)とを有し、光を特定の偏光状態の円偏光(L5)に変換することを特徴とする真正判定システムである。
【0016】
【発明の実施の形態】
以下、図面等を参照して、本発明の実施の形態について、さらに詳しく説明する。
(第1実施形態)
図1は、本発明による光選択反射ラベルの第1実施形態を示す図であり、図1(A)は平面図、図1(B)は図1(A)のB−B断面図である。
光選択反射ラベル10は、光選択反射層11を備える光選択反射体である。
【0017】
光選択反射層11は、入射した円偏光を選択して反射又は透過する光選択反射フィルム層である。本実施形態の光選択反射層11は、右ねじれ構造を有するコレステリック液晶(Cholesteric Liquid Crystal)の液晶フィルムによって形成されている。このとき、光選択反射層11は、左円偏光を透過し、右円偏光を反射する。
【0018】
次に、コレステリック液晶について説明する。
図2は、反射層のコレステリック液晶の構造を示す模式図である。
コレステリック液晶Cは、液晶分子の配向構造が膜厚方向に螺旋を描くように規則的なねじれを有している(図2)。また、コレステリック液晶は、ピッチP(液晶分子が360°回転するのに必要な膜厚)と入射光の波長λとがほぼ等しい場合に、波長選択反射性と円偏光選択性という2つの光学的性質を示す。
【0019】
ここに、波長選択反射性とは、入射光のうち、特定の波長帯域内にある光を強く反射し、それ以外の光を透過する性質である。この波長選択反射性は、特定の波長帯域内で限定的に発現するので、コレステリック液晶のピッチPを適切に選択することで、反射光は、色純度の高い有彩色になる。その帯域の中心波長をλs,帯域幅をΔλとすれば、これらは、光学媒体のピッチP(=λ/nm )と平均屈折率nm (=√((ne 2 +no 2 )/2))とによって、式(1),(2) のように決まる。ここで、Δnは、光学媒体の面内の異常光線屈折率ne と常光線屈折率no との差(Δn=ne −no )である。
λs=nm ・P ・・・(1)
Δλ=Δn・P/nm ・・・(2)
【0020】
式(1),(2)に示した中心波長λs及び波長帯域幅Δλは、コレステリック液晶層への入射光が垂直入射(0°入射,on−axis入射)の場合であるが、入射光が斜め入射(off−axis入射)である場合は、ピッチPが見かけ上減少するので、中心波長λsは短波長側へ移行し、帯域幅Δλは減少する。この現象は、λsが短波長側へ移行することからブルーシフトと呼ばれ、その移行量は入射角に依存するが、目視でも容易に識別可能である。たとえば、垂直(0°入射位置)から見るときに赤色を呈色するコレステリック液晶の反射色は、視野角を大きくしていくにつれて、オレンジ色,黄色,緑色,青緑色,青色と順次変化するように見える。
【0021】
図3は、円偏光選択反射性について説明する図である。
円偏光選択反射性とは、特定の回転方向の円偏光だけを反射し、これと回転方向が反対の円偏光を透過する性質である。入射光のうちコレステリック液晶の配向構造のねじれ方向と同方向の円偏光成分を反射し、逆方向に回転する円偏光成分を透過する。このとき、反射光の回転方向も同一方向となる。
例えば、右ねじれ構造のコレステリック液晶の光選択反射層11は、右円偏光L1を反射し、かつ、その反射光L1は右円偏光のままであるが(図3(A))、左円偏光L2は透過する(図3(B))。
【0022】
図4は、第1実施形態の特定偏光照射装置を示す模式図である。
特定偏光照射装置20は、光源21と、偏光層22と、複屈折層23とを備える。
光源21は、例えば、100Wの白色灯などである。
偏光層22は、光源21の光L3の中で、特定の偏光方向の直線偏光L4のみを透過させる直線偏光フィルムである。偏光層22は、ポリビニルアルコール(PVAL)などの延伸フィルムに二色性色素等の色素を吸収させた偏光フィルム・シートなどで形成することができる。
【0023】
複屈折層23は、入射した光を複屈折する、いわゆるλ/4位相差フィルムであり、偏光層22に形成されている。
ここに、複屈折とは、媒質の屈折率が、偏光方向によって均質でないために生じる現象であり、このような媒質を透過した光の位相差σは、
σ=2π(ne −no )d/λ
e :常光線屈折率
o :異常光線屈折率
d :媒質の厚さ
λ :光の波長
で、与えられる。この式から明らかなように、位相差σは、媒質の厚さdに依存する。したがって、この媒質の厚さdを変更することによって、位相差σを変えることができる。
本実施形態では、複屈折層23は、偏光層22を透過した直線偏光L4を入射して、位相差σの円偏光L5を出射する。このように、偏光層22及び複屈折層23は、光源から出た光L3を円偏光L5にする偏光形成手段として作用する。なお、円偏光の回転方向は、上述の通り、媒質の厚さdを調整することで自在に決めることができる。本実施形態では、左円偏光を出射するように厚さdが調整されている。
【0024】
複屈折層23は、延伸工程で作製されたプラスチック・フィルムで形成することができる。延伸とは、プラスチックを融点以下ガラス転移点以上の適当な温度で引き延ばしてフィルムを作製する工法であり、その引き延ばす方向によって、一軸延伸、二軸延伸などがある。本発明においては、屈折率異方性が存在すればよいため、一軸延伸、二軸延伸のいずれの工法で作製したフィルムでも使用することができる。
具体的には、複屈折層23は、セロハン,ポリエステル,ポリエチレン(PE),ポリプロピレン(PP),ポリビニルアルコール(PVAL),ポリ塩化ビニル(PVC),ポリ塩化ビニリデン(PVDC),ポリスチレン(PS),ポリエチレンテレフタレート(PET),ポリカーボネート(PC),ナイロン等を材料とする延伸フィルムを用いて形成することができる。
【0025】
複屈折層23は、偏光層22に接着して形成する。なお、図4では、理解を容易にするために、複屈折層23は、偏光層22から分離して描いてある。この接着には、熱硬化性樹脂(例えば、フェノール系樹脂,フラン系樹脂,尿素系樹脂,メラミン系樹脂,ポリエステル系樹脂,ポリウレタン系樹脂,エポキシ系樹脂その他の樹脂)、熱硬化性樹脂(例えば、ポリ酢酸ビニル,ポリビニルアルコール,ポリ塩化ビニル樹脂,ポリビニルブチラール樹脂,ポリ(メタ)アクリル系樹脂,ニトロセルロース,ポリアミドその他の樹脂)、ゴム(例えば、ブタジエン−アクリロニトリルゴム,ネオブレンゴムその他のゴム)、ニカワ、天然樹脂、カゼイン、ケイ酸ナトリウム、デキストリン、でんぷん、アラビアゴム等のうち、1種類又は2種類以上を主成分とする接着剤を使用することができる。また、これらの接着剤は、溶液型,エマルジョン型,粉末型又はフィルム型のいずれでもよい。さらに、これらの接着剤は、常温固化型,溶剤揮発固化型又は融解固化型のいずれでもよい。
【0026】
(真正判定方法)
図5は、真正判定方法を説明する図であり、図6は、真正判定時の光選択反射ラベルの状態を示す図である。
図5に示すように、光選択反射ラベル10は、特定偏光照射装置20の光を照射して真正判定を行う。
自然光の下では、光選択反射層11が、その自然光に含まれる特定波長の特定円偏光を反射するので、判定者は、光選択反射ラベル10が着色されて見える(図6(A))。また、この状態では、光選択反射ラベル10は、普通のフィルムのように見えるので、他人に、真正判定手段であることを悟られない。
他人に、真正判定手段の存在を悟られることがない。
次に、光選択反射ラベル10を特定偏光照射装置20の下に置き、左円偏光を照射する。
すると、その照射された左円偏光は、光選択反射ラベル10(光選択反射層11)を通過してしまうので、判定者は、光選択反射ラベル10が見えなくなる(図6(B))。これにより、判定者は、この光選択反射ラベル10が真正品であると判定できる。
【0027】
本実施形態によれば、光選択反射ラベル10に対して特定偏光照射装置20の光を照射するだけで、その光選択反射ラベル10が真正品であるか否かを容易に判定することができる。
また、自然光の下では、光選択反射ラベル10は、普通のフィルムのように見えるので、他人に、真正判定手段であることを悟られない。
さらに、光選択反射層11にコレステリック液晶フィルムを使用しているので、反射光が非常にきれいで意匠性に優れる。
さらにまた、特定偏光照射装置20は、偏光層22及び複屈折層23によって形成することができるので、安価に製造することができる。
【0028】
(第2実施形態)
図7は、本発明による光選択反射ラベルの第2実施形態を示す図である。
なお、以下に示す各実施形態では、前述した第1実施形態と同様の機能を果たす部分には、同一の符号又は末尾が同一の符号を付して、重複する説明を適宜省略する。
本実施形態の光選択反射ラベル10は、光選択反射層11と、光回折構造形成部12とを備える。
光選択反射層11は、左円偏光選択反射部11aと、右円偏光選択反射部11bと、非選択反射部11cとを備える光選択反射フィルム層である。
【0029】
左円偏光選択反射部11aは、入射光のうち、円偏光を透過し、円偏光を反射する。左円偏光選択反射部11aは、ねじれ構造を有するコレステリック液晶によって形成されている。
右円偏光選択反射部11bは、入射光のうち、円偏光を透過し、円偏光を反射する。右円偏光選択反射部11bは、ねじれ構造を有するコレステリック液晶によって形成されている。
非選択反射部11cは、反射特性が偏光状態に依存せずに入射光を反射する。非選択反射部11cは、光選択反射フィルム層に対して、レーザ照射、感熱ヘッド等によって加熱して、光選択反射性が消失するように変質させられて形成されている。このようにすることで、文字、絵柄等の形状を自在に形成することができる。
【0030】
光回折構造形成部12は、光選択反射層11の左円偏光選択反射部11a及び右円偏光選択反射部11bの裏面に形成されている。光回折構造形成部12は、光選択反射層11が選択的に反射する偏光状態の反射光に対して光回折現象を発生する。すなわち、照射光に、左円偏光選択反射部11a及び右円偏光選択反射部11bで反射可能な特定偏光が含まれている場合に、光回折像が視認可能になる。
このような光回折構造形成部としては、例えば、ホログラムや回折格子などがある。
光回折構造形成部12がないと、特に、光選択反射層11の下から反射光が返ってくる場合に(例えば、白地の基材に貼付した場合など)、光選択反射層11からの反射光と基材からの反射光との識別が困難である。しかし、光回折構造形成部12を光選択反射層11の左円偏光選択反射部11a及び右円偏光選択反射部11bの裏面に形成すると、光選択反射層11の左円偏光選択反射部11a及び右円偏光選択反射部11bからの反射光はそれぞれの反射特性に応じた円偏光(左円偏光又は右円偏光)であって、光回折構造形成部12による光回折現象によって光回折像を呈するので、照射光の偏光状態の変化に対する左円偏光選択反射部11a及び右円偏光選択反射部11bの可視、不可視の変化を容易に識別することができることとなる。また、意匠性、偽造防止効果の向上が実現できる。
【0031】
図8は、第2実施形態の特定偏光照射装置を示す模式図である。
特定偏光照射装置20は、光源21と、円偏光形成部24と、回転モータ25とを備える。
円偏光形成部24は、左円偏光形成部24aと、右円偏光形成部24bとを有し、それらを円形フレーム26に交互に配置している。
左円偏光形成部24aは、光源21の光を左円偏光にする部分であり、偏光層及び複屈折層を積層している。この偏光層及び複屈折層は、上記第1実施形態と同様であり、複屈折層は、光源21の光を左円偏光にすることが可能な厚さに調整されている。
また、右円偏光形成部24bは、光源21の光を右円偏光にする部分であり、偏光層及び複屈折層を積層している。この複屈折層は、光源21の光を右円偏光にすることが可能な厚さに調整されている。
回転モータ25は、円形フレーム26を一定方向に回転させる。
また、この特定偏光照射装置20は、例えば、電気スタンドとし、光選択反射ラベル10をパスポートや金券類等の被真正判定体40に貼付して使用する。
【0032】
(真正判定方法)
図9は、真正判定時の光選択反射ラベルの状態を示す図である。
光選択反射ラベル10は、第1実施形態と同様に、例えば、パスポートや金券類等の被真正判定体40に貼付して使用する。
光選択反射ラベル10の貼付された金券類が真正品であるか否かを判定するときは、特定偏光照射装置20で光選択反射ラベル10を照らす。
このとき、図9(A)(B)に示すように、「○」「×」が交互に点滅するように見えるときは、真正品であると判定することができる。
このように、入国管理や店頭で、そのパスポートや金券類が真正品であるか否かが一目瞭然である。また、この特定偏光照射装置20を、例えば、倉庫の天井に設置し、光選択反射ラベル10を商品タグとして使用すれば、その倉庫内の商品が真正品であるか否かが一目瞭然である。
【0033】
本実施形態によれば、第1実施形態の効果に加えて、「○」「×」が交互に点滅するように見えるので、さらに容易に、真正品であるか否かを判定することができる。
また、光回折構造形成部12が光選択反射層11の左円偏光選択反射部11a及び右円偏光選択反射部11bの裏面に形成されているので、光選択反射層11の左円偏光選択反射部11a及び右円偏光選択反射部11bからの反射光はそれぞれの反射特性に応じた円偏光(左円偏光又は右円偏光)であって、光回折構造形成部12による光回折現象によって光回折像を呈するので、照射光の偏光状態の変化に対する左円偏光選択反射部11a及び右円偏光選択反射部11bの可視、不可視の変化光回折像によってより容易に識別することができる。
さらに、光回折像を呈するので、意匠性、偽造防止効果の向上が実現できる。
【0034】
(第3実施形態)
図10は、本発明による光選択反射ラベルの第3実施形態を示す図である。
本実施形態の光選択反射ラベル10は、第2実施形態の光選択反射ラベル10に対して、光吸収層13を、さらに備える。
光吸収層13は、光選択反射層11の裏面に形成されている。光吸収層13は、例えば、黒色等に着色されており、光選択反射層11を通過した光を吸収して、この光が反射することを抑止する。これにより、光選択反射体からの反射光は、光選択反射層11からの反射光のみとなり、識別が容易になる。この光吸収層13は、例えば、粘着剤を塗布して形成するとよい。このようにすれば、光選択反射ラベル10を、商品券等の被真正判定体に貼付可能になるからである。
【0035】
本実施形態によれば、光選択反射層11を通過した光が光吸収層13で吸収され、光選択反射層11からの反射光のみとなるので、識別が容易になる。
【0036】
(変形形態)
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の均等の範囲内である。
例えば、第1実施形態の光選択反射層11の下面に光吸収層13を設けてもよい。このとき、左円偏光を照射すると、その光は、光選択反射層11を透過して、光吸収層13で吸収されて、光選択反射ラベル10が黒色に見えて、真正品か否かの判定を容易に行うことができる。
また、上記第2実施形態では、円偏光選択反射部11a,11bは、異なるねじれ構造を有していたが、同じねじれ構造を持つものを使用してもよい。そのようにすれば、円偏光選択反射部11a,11bが同時に点滅する。このように点滅したときに、真正品であると判定する。
さらに、円偏光選択反射部を1カ所だけ有する構造であっても、同様の効果を得ることができる。
さらにまた、特定偏光照射装置に空間変調素子を用いて、所望の偏光を得てもよい。
また、特定偏光照射装置は、自然光と特定偏光とを交互に照射させることによっても本発明の効果を生じさせることができる。
【0037】
【発明の効果】
以上詳しく説明したように、本発明によれば、以下の効果がある。
(1)被真正判定品が真正品であるか否かを容易に判定することができる。
(2)自然光の下では、他人に真正判定手段の存在を悟られることがない。
(3)特定偏光照射装置は、複屈折層及び偏光層によって、形成することができるので、安価に製造可能である。
(4)光選択反射層がコレステリック液晶フィルムで形成されているので、反射光が、非常にきれいで、意匠性に優れる。
【図面の簡単な説明】
【図1】本発明による光選択反射ラベルの第1実施形態を示す図である。
【図2】反射層のコレステリック液晶の構造を示す模式図である。
【図3】円偏光選択反射性について説明する図である。
【図4】第1実施形態の特定偏光照射装置を示す模式図である。
【図5】真正判定方法を説明する図である。
【図6】真正判定時の光選択反射ラベルの状態を示す図である。
【図7】本発明による光選択反射ラベルの第2実施形態を示す図である。
【図8】第2実施形態の特定偏光照射装置を示す模式図である。
【図9】真正判定時の光選択反射ラベルの状態を示す図である。
【図10】本発明による光選択反射ラベルの第3実施形態を示す図である。
【符号の説明】
10 光選択反射ラベル
11 光選択反射層
11a 左円偏光選択反射部
11b 右円偏光選択反射部
12 光回折構造形成部
13 光吸収層
20 特定偏光照射装置
21 光源
22 偏光層
23 複屈折層
24 円偏光形成部
24a 左円偏光形成部
24b 右円偏光形成部
25 回転モータ
26 円形フレーム
40 被真正判定体
[0001]
BACKGROUND OF THE INVENTION
The present invention card, gift certificates, cash vouchers, tickets, paper money, passport, identity card, securities, about the true positive determination system object you determine whether or not it is genuine, such as public sports betting ticket .
[0002]
[Prior art]
Conventionally, as a method for preventing counterfeiting of credit cards, certificates, and vouchers, there has been known a method in which an authenticity judgment body that is difficult to forge is pasted on an anti-counterfeit object and the authenticity is visually or mechanically determined. It has been. Examples of such authenticity determination bodies include those using holograms, which include machine-recognition using characters and pictures as hologram images and visual discrimination, numerical codes and specific patterns as hologram images. And combinations of both. Hologram images have become widespread because they cannot be duplicated by a normal color copying apparatus or the like, are effective in preventing forgery, have high designability, and are difficult to manufacture.
[0003]
[Problems to be solved by the invention]
However, with the popularization of hologram manufacturing technology in recent years, it has become possible to manufacture counterfeit products, the effect of preventing forgery has been reduced, and a new method of preventing forgery has been demanded.
[0004]
An object of the present invention, anti-counterfeiting effect is high, and the presence of anti-counterfeiting means to provide a leucine positive determination system of Satoraru it to others.
[0005]
[Means for Solving the Problems]
The present invention solves the above problems by the following means. In addition, in order to make an understanding easy, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this .
[0015]
In order to solve the above problems, the invention of claim 1 is formed of a liquid crystal layer in which a cholesteric phase is fixed, reflects light (L1) in a first polarization state out of incident light, and The first light selective reflection part (11a) that transmits the light (L2) in the polarization state and the liquid crystal layer in which the cholesteric phase is fixed, and reflects the light (L2) in the second polarization state. The second light selective reflection part (11b) that transmits the light (L1) in the polarization state and the liquid crystal layer in which the cholesteric phase is fixed are heated to have reflection characteristics that do not depend on the polarization state. A non-selective reflection portion (11c) disposed in a region other than the first light selective reflection portion (11a) and the second light selective reflection portion (11b), and the first light selective reflection portion ( 11a) and is formed on the second light selective reflection portion (11b), before Light in which the first light selective reflection section (11a) and the second light selective reflection section (11b) selectively reflect light having the same polarization state as the reflected light to generate a light diffraction phenomenon. An authenticity determination system for determining authenticity using a light selective reflector (10) comprising a diffractive structure forming part (12), wherein light from a light source (21) is converted to light in a first polarization state The light converted by the first polarization forming means (24a) for conversion and the light from the light source (21) converted by the second polarization formation means (24b) for converting light into the second polarization state light When the first light selective reflection part (11a) and the second light selective reflection part (11b) of the light selective reflector (10) are alternately irradiating with light, and are not visible. The light selective reflector (10) is determined to be genuine. It is a positive determination system.
According to a second aspect of the present invention, in the authenticity determination system according to the first aspect, the first polarization forming means (24a) and the second circular polarization means (24b) convert light (L3) into linearly polarized light (L4). And a linear polarization means (22) for converting the linear polarization (L4) into a circular polarization (L5), and circularly polarized light (L5) having a specific polarization state. ) Is converted into a genuineness determination system.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
(First embodiment)
FIG. 1 is a view showing a first embodiment of a light selective reflection label according to the present invention, FIG. 1 (A) is a plan view, and FIG. 1 (B) is a sectional view taken along line BB in FIG. 1 (A). .
The light selective reflection label 10 is a light selective reflector including a light selective reflection layer 11.
[0017]
The light selective reflection layer 11 is a light selective reflection film layer that selectively reflects or transmits incident circularly polarized light. The light selective reflection layer 11 of this embodiment is formed of a cholesteric liquid crystal liquid crystal film having a right twist structure. At this time, the light selective reflection layer 11 transmits the left circularly polarized light and reflects the right circularly polarized light.
[0018]
Next, the cholesteric liquid crystal will be described.
FIG. 2 is a schematic diagram showing the structure of the cholesteric liquid crystal in the reflective layer.
The cholesteric liquid crystal C has a regular twist so that the alignment structure of the liquid crystal molecules draws a spiral in the film thickness direction (FIG. 2). A cholesteric liquid crystal has two optical properties, wavelength selective reflectivity and circular polarization selectivity, when the pitch P (the film thickness necessary for the liquid crystal molecules to rotate 360 °) and the wavelength λ of incident light are substantially equal. Show properties.
[0019]
Here, the wavelength selective reflectivity is a property of strongly reflecting light within a specific wavelength band and transmitting other light among incident light. Since this wavelength selective reflectivity is limitedly expressed within a specific wavelength band, the reflected light becomes a chromatic color with high color purity by appropriately selecting the pitch P of the cholesteric liquid crystal. Λs the center wavelength of the band, if the bandwidth [Delta] [lambda], these are the pitch P of the optical medium (= λ / n m) and the average refractive index n m (= √ ((n e 2 + n o 2) / 2)) and the following equations (1) and (2). Here, [Delta] n is the difference between the extraordinary ray refractive index n e and ordinary index n o in the plane of the optical medium (Δn = n e -n o) .
λs = n m · P (1)
Δλ = Δn · P / n m (2)
[0020]
The center wavelength λs and the wavelength bandwidth Δλ shown in the expressions (1) and (2) are the cases where the incident light to the cholesteric liquid crystal layer is perpendicularly incident (0 ° incidence, on-axis incidence). In the case of oblique incidence (off-axis incidence), since the pitch P apparently decreases, the center wavelength λs shifts to the short wavelength side, and the bandwidth Δλ decreases. This phenomenon is called blue shift because λs shifts to the short wavelength side, and the shift amount depends on the incident angle, but can be easily identified visually. For example, the reflected color of a cholesteric liquid crystal that displays red when viewed from the vertical (0 ° incident position) changes in order of orange, yellow, green, blue-green, and blue as the viewing angle increases. Looks like.
[0021]
FIG. 3 is a diagram for explaining circularly polarized light selective reflectivity.
The circularly polarized light selective reflection property is a property of reflecting only circularly polarized light in a specific rotation direction and transmitting circularly polarized light having the opposite rotation direction. Of the incident light, it reflects the circularly polarized light component in the same direction as the twist direction of the alignment structure of the cholesteric liquid crystal and transmits the circularly polarized light component that rotates in the opposite direction. At this time, the rotation direction of the reflected light is also the same direction.
For example, the light selective reflection layer 11 of the cholesteric liquid crystal having a right twist structure reflects the right circularly polarized light L1, and the reflected light L1 remains the right circularly polarized light (FIG. 3A), but the left circularly polarized light. L2 is transmitted (FIG. 3B).
[0022]
FIG. 4 is a schematic diagram illustrating the specific polarized light irradiation device of the first embodiment.
The specific polarized light irradiation device 20 includes a light source 21, a polarizing layer 22, and a birefringent layer 23.
The light source 21 is, for example, a 100 W white light.
The polarizing layer 22 is a linearly polarizing film that transmits only the linearly polarized light L4 having a specific polarization direction in the light L3 of the light source 21. The polarizing layer 22 can be formed of a polarizing film or sheet in which a stretched film such as polyvinyl alcohol (PVAL) is absorbed with a dye such as a dichroic dye.
[0023]
The birefringent layer 23 is a so-called λ / 4 retardation film that birefringes incident light, and is formed on the polarizing layer 22.
Here, birefringence is a phenomenon that occurs because the refractive index of a medium is not uniform depending on the polarization direction, and the phase difference σ of light transmitted through such a medium is
σ = 2π (n e -n o ) d / λ
n e : ordinary ray refractive index n o : extraordinary ray refractive index d: thickness of medium λ: given by wavelength of light. As is apparent from this equation, the phase difference σ depends on the thickness d of the medium. Therefore, the phase difference σ can be changed by changing the thickness d of the medium.
In the present embodiment, the birefringent layer 23 receives the linearly polarized light L4 transmitted through the polarizing layer 22 and emits the circularly polarized light L5 having the phase difference σ. Thus, the polarizing layer 22 and the birefringent layer 23 act as polarization forming means for converting the light L3 emitted from the light source into circularly polarized light L5. As described above, the rotation direction of the circularly polarized light can be freely determined by adjusting the thickness d of the medium. In this embodiment, the thickness d is adjusted so as to emit left circularly polarized light.
[0024]
The birefringent layer 23 can be formed of a plastic film produced by a stretching process. Stretching is a method for producing a film by stretching a plastic at an appropriate temperature not higher than the melting point and not lower than the glass transition point, and includes uniaxial stretching and biaxial stretching depending on the stretching direction. In the present invention, since it is sufficient that the refractive index anisotropy exists, a film produced by any one of the uniaxial stretching method and the biaxial stretching method can be used.
Specifically, the birefringent layer 23 is made of cellophane, polyester, polyethylene (PE), polypropylene (PP), polyvinyl alcohol (PVAL), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polystyrene (PS), It can be formed using a stretched film made of polyethylene terephthalate (PET), polycarbonate (PC), nylon or the like.
[0025]
The birefringent layer 23 is formed by adhering to the polarizing layer 22. In FIG. 4, the birefringent layer 23 is drawn separately from the polarizing layer 22 for easy understanding. For this bonding, thermosetting resins (for example, phenol resins, furan resins, urea resins, melamine resins, polyester resins, polyurethane resins, epoxy resins and other resins), thermosetting resins (for example, , Polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride resin, polyvinyl butyral resin, poly (meth) acrylic resin, nitrocellulose, polyamide and other resins), rubber (for example, butadiene-acrylonitrile rubber, neoprene rubber and other rubber), Nikawa Adhesives composed mainly of one or more of natural resin, casein, sodium silicate, dextrin, starch, gum arabic and the like can be used. These adhesives may be any of a solution type, an emulsion type, a powder type, or a film type. Furthermore, these adhesives may be any of a room temperature solidification type, a solvent volatile solidification type, or a melt solidification type.
[0026]
(Authentication method)
FIG. 5 is a diagram for explaining the authenticity determination method, and FIG. 6 is a diagram showing the state of the light selective reflection label at the time of authenticity determination.
As shown in FIG. 5, the light selective reflection label 10 performs authenticity determination by irradiating light from the specific polarized light irradiation device 20.
Under natural light, the light selective reflection layer 11 reflects specific circularly polarized light with a specific wavelength included in the natural light, so that the judge looks that the light selective reflection label 10 is colored (FIG. 6A). Further, in this state, the light selective reflection label 10 looks like an ordinary film, so that it is not recognized by others that it is authenticity determination means.
Others will not realize the existence of authenticity judgment means.
Next, the light selective reflection label 10 is placed under the specific polarized light irradiation device 20 and irradiated with left circularly polarized light.
Then, since the irradiated left circularly polarized light passes through the light selective reflection label 10 (light selective reflection layer 11), the determiner cannot see the light selective reflection label 10 (FIG. 6B). Thereby, the determiner can determine that the light selective reflection label 10 is genuine.
[0027]
According to the present embodiment, it is possible to easily determine whether or not the light selective reflection label 10 is genuine by simply irradiating the light of the specific polarized light irradiation device 20 to the light selective reflection label 10. .
In addition, under the natural light, the light selective reflection label 10 looks like an ordinary film, so that other people cannot realize that it is an authenticity determination means.
Furthermore, since a cholesteric liquid crystal film is used for the light selective reflection layer 11, the reflected light is very clean and excellent in design.
Furthermore, since the specific polarized light irradiation device 20 can be formed by the polarizing layer 22 and the birefringent layer 23, it can be manufactured at low cost.
[0028]
(Second Embodiment)
FIG. 7 is a view showing a second embodiment of the light selective reflection label according to the present invention.
In each of the embodiments described below, the same reference numerals or the same reference numerals are given to the portions that perform the same functions as those in the first embodiment described above, and redundant description will be omitted as appropriate.
The light selective reflection label 10 of this embodiment includes a light selective reflection layer 11 and a light diffraction structure forming unit 12.
The light selective reflection layer 11 is a light selective reflection film layer including a left circularly polarized light selective reflection part 11a, a right circularly polarized light selective reflection part 11b, and a non-selective reflection part 11c.
[0029]
The left circularly polarized light selective reflection unit 11a transmits right circularly polarized light and reflects left circularly polarized light in incident light. The left circularly polarized light selective reflection portion 11a is formed of a cholesteric liquid crystal having a left twisted structure.
Right circular polarization selective reflection portion 11b, the incident light passes through the left-handed circularly polarized light and reflects the right circularly polarized light. The right circularly polarized light selective reflection portion 11b is formed of a cholesteric liquid crystal having a right twist structure.
The non-selective reflection unit 11c reflects incident light without reflecting reflection characteristics depending on the polarization state. The non-selective reflection portion 11c is formed by changing the quality of the light selective reflection film layer so that the light selective reflectivity disappears by heating with a laser irradiation, a thermal head or the like. By doing in this way, shapes, such as a character and a picture, can be formed freely.
[0030]
The light diffraction structure forming unit 12 is formed on the back surfaces of the left circularly polarized light selective reflecting portion 11 a and the right circularly polarized light selective reflecting portion 11 b of the light selective reflection layer 11. The light diffraction structure forming unit 12 generates a light diffraction phenomenon with respect to reflected light in a polarization state that is selectively reflected by the light selective reflection layer 11. That is, when the irradiated light includes specific polarized light that can be reflected by the left circularly polarized light selective reflection unit 11a and the right circularly polarized light selective reflection unit 11b, the light diffraction image becomes visible.
Examples of such a light diffraction structure forming unit include a hologram and a diffraction grating.
Without the light diffractive structure forming portion 12, particularly when the reflected light returns from under the light selective reflection layer 11 (for example, when pasted on a white base material), the reflection from the light selective reflection layer 11 It is difficult to distinguish between light and reflected light from the substrate. However, when the light diffraction structure forming unit 12 is formed on the back surface of the left circularly polarized light selective reflecting portion 11a and the right circularly polarized light selective reflecting portion 11b of the light selective reflection layer 11 , the left circular polarization selective reflection portion 11a of the light selective reflection layer 11 and The reflected light from the right circularly polarized light selective reflecting portion 11b is circularly polarized light (left circularly polarized light or right circularly polarized light) corresponding to each reflection characteristic, and exhibits a light diffraction image by the light diffraction phenomenon by the light diffraction structure forming unit 12. because, it becomes possible to easily identify visible left circularly light selective reflection portion 11a and the right circularly polarized light selective reflection portion 11b with respect to changes in the polarization state of illumination light, the invisible change. Moreover, the improvement of design property and the forgery prevention effect is realizable.
[0031]
FIG. 8 is a schematic diagram showing the specific polarized light irradiation device of the second embodiment.
The specific polarized light irradiation device 20 includes a light source 21, a circularly polarized light forming unit 24, and a rotation motor 25.
The circularly polarized light forming unit 24 includes a left circularly polarized light forming unit 24 a and a right circularly polarized light forming unit 24 b, which are alternately arranged on the circular frame 26.
The left circularly polarized light forming portion 24a is a portion that changes the light of the light source 21 to left circularly polarized light, and includes a polarizing layer and a birefringent layer. The polarizing layer and the birefringent layer are the same as those in the first embodiment, and the birefringent layer is adjusted to a thickness that allows the light from the light source 21 to be left circularly polarized.
The right circularly polarized light forming portion 24b is a portion that changes the light from the light source 21 to right circularly polarized light, and is formed by laminating a polarizing layer and a birefringent layer. The birefringent layer is adjusted to a thickness that allows the light from the light source 21 to be right circularly polarized light.
The rotation motor 25 rotates the circular frame 26 in a certain direction.
In addition, the specific polarized light irradiation device 20 is, for example, a desk lamp, and the light selective reflection label 10 is used by being attached to an authenticity determination body 40 such as a passport or a voucher.
[0032]
(Authentication method)
FIG. 9 is a diagram illustrating a state of the light selective reflection label at the time of authenticity determination.
As in the first embodiment, the light selective reflection label 10 is used by being affixed to an authenticity determination body 40 such as a passport or a voucher.
When it is determined whether or not the voucher with the light selective reflection label 10 attached is genuine, the light selective reflection label 10 is illuminated with the specific polarized light irradiation device 20.
At this time, as shown in FIGS. 9A and 9B, when “O” and “X” appear to blink alternately, it can be determined that the product is genuine.
In this way, it is obvious whether the passport or the voucher is genuine at immigration or storefront. Moreover, if this specific polarized light irradiation apparatus 20 is installed on the ceiling of a warehouse, for example, and the light selective reflection label 10 is used as a product tag, it is obvious whether or not the product in the warehouse is a genuine product.
[0033]
According to the present embodiment, in addition to the effects of the first embodiment, since “○” and “×” appear to blink alternately, it is possible to more easily determine whether or not the product is genuine. .
Further, since the light diffraction structure forming part 12 is formed on the back surfaces of the left circularly polarized light selective reflecting part 11 a and the right circularly polarized light selective reflecting part 11 b of the light selective reflection layer 11 , the left circularly polarized light selective reflection of the light selective reflection layer 11. The reflected light from the part 11a and the right circularly polarized light selective reflection part 11b is circularly polarized light (left circularly polarized light or right circularly polarized light) corresponding to the respective reflection characteristics, and is light diffracted by the light diffraction phenomenon by the light diffraction structure forming part 12. since presenting an image, it is possible to more easily identify left circularly light selective reflection portion 11a and the right circularly polarized light selective reflection portion 11b of the visible to the change in the polarization state of the illumination light, the invisible changes by light diffraction image.
Furthermore, since a light diffraction image is exhibited, it is possible to improve the design and anti-counterfeit effect.
[0034]
(Third embodiment)
FIG. 10 is a diagram showing a third embodiment of the light selective reflection label according to the present invention.
The light selective reflection label 10 of this embodiment further includes a light absorption layer 13 with respect to the light selective reflection label 10 of the second embodiment.
The light absorption layer 13 is formed on the back surface of the light selective reflection layer 11. The light absorption layer 13 is colored, for example, black, and absorbs light that has passed through the light selective reflection layer 11 and suppresses reflection of this light. As a result, the reflected light from the light selective reflector is only the reflected light from the light selective reflection layer 11, and identification is facilitated. For example, the light absorption layer 13 may be formed by applying an adhesive. This is because the light selective reflection label 10 can be attached to an authenticity determination body such as a gift certificate.
[0035]
According to the present embodiment, light that has passed through the light selective reflection layer 11 is absorbed by the light absorption layer 13 and becomes only reflected light from the light selective reflection layer 11, so that identification is facilitated.
[0036]
(Deformation)
The present invention is not limited to the embodiment described above, and various modifications and changes are possible, and these are also within the equivalent scope of the present invention.
For example, the light absorption layer 13 may be provided on the lower surface of the light selective reflection layer 11 of the first embodiment. At this time, when the left circularly polarized light is irradiated, the light passes through the light selective reflection layer 11 and is absorbed by the light absorption layer 13 so that the light selective reflection label 10 looks black and whether or not it is genuine. Judgment can be made easily.
In the second embodiment, the circularly polarized light selective reflection portions 11a and 11b have different twist structures, but those having the same twist structure may be used. By doing so, the circularly polarized light selective reflection portions 11a and 11b blink simultaneously. When blinking in this way, it is determined that the product is genuine.
Furthermore, the same effect can be obtained even with a structure having only one circularly polarized light selective reflection portion.
Furthermore, a desired polarized light may be obtained by using a spatial modulation element in the specific polarized light irradiation device.
The specific polarized light irradiation device can also produce the effect of the present invention by alternately irradiating natural light and specific polarized light.
[0037]
【The invention's effect】
As described above in detail, the present invention has the following effects.
(1) It is possible to easily determine whether or not the authenticity determination product is a genuine product.
(2) Under natural light, others will not realize the existence of authenticity determination means.
(3) Since the specific polarized light irradiation device can be formed by the birefringent layer and the polarizing layer, it can be manufactured at low cost.
(4) Since the light selective reflection layer is formed of a cholesteric liquid crystal film, the reflected light is very clean and excellent in design.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a light selective reflection label according to the present invention.
FIG. 2 is a schematic diagram showing the structure of a cholesteric liquid crystal in a reflective layer.
FIG. 3 is a diagram for explaining circularly polarized light selective reflectivity.
FIG. 4 is a schematic diagram showing the specific polarized light irradiation device of the first embodiment.
FIG. 5 is a diagram for explaining an authenticity determination method.
FIG. 6 is a diagram showing a state of a light selective reflection label at the time of authenticity determination.
FIG. 7 is a view showing a second embodiment of the light selective reflection label according to the present invention.
FIG. 8 is a schematic view showing a specific polarized light irradiation device of a second embodiment.
FIG. 9 is a diagram showing a state of a light selective reflection label at the time of authenticity determination.
FIG. 10 is a diagram showing a third embodiment of the light selective reflection label according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Light selective reflection label 11 Light selective reflection layer 11a Left circular polarization selective reflection part 11b Right circular polarization selective reflection part 12 Light diffraction structure formation part 13 Light absorption layer 20 Specific polarized light irradiation apparatus 21 Light source 22 Polarization layer 23 Birefringence layer 24 Circle Polarization forming unit 24a Left circular polarization forming unit 24b Right circular polarization forming unit 25 Rotating motor 26 Circular frame 40 True judgment object

Claims (2)

コレステリック相を固定化した液晶層により形成され、入射した光のうち、第1の偏光状態の光を反射し、第2の偏光状態の光を透過する第1の光選択反射部と、
コレステリック相を固定化した液晶層により形成され、第2の偏光状態の光を反射し、第1の偏光状態の光を透過する第2の光選択反射部と、
コレステリック相を固定化した液晶層を加熱して形成され、偏光状態に依存することのない反射特性を有し、前記第1の光選択反射部及び前記第2の光選択反射部以外の領域に配置される非選択反射部と、
前記第1の光選択反射部及び前記第2の光選択反射部に形成され、前記第1の光選択反射部及び前記第2の光選択反射部が選択的に反射するそれぞれの反射光と同一の偏光状態の光を反射して光回折現象が発生する光回折構造形成部と、
を備える光選択反射体を使用して真正品を判定する真正判定システムであって、
光源からの光を第1の偏光状態の光に変換する第1の偏光形成手段により変換された光と、前記光源からの光を第2の偏光状態の光に変換する第2の偏光形成手段により変換された光とを交互に照射して、前記光選択反射体の第1の光選択反射部及び第2の光選択反射部が、交互に、目視できなくなったときは、その光選択反射体が真正品であると判定する
ことを特徴とする真正判定システム。
A first light selective reflection unit that is formed of a liquid crystal layer in which a cholesteric phase is fixed and reflects light in a first polarization state and transmits light in a second polarization state among incident light;
A second light selective reflection portion that is formed of a liquid crystal layer in which a cholesteric phase is fixed, reflects light in the second polarization state, and transmits light in the first polarization state;
A liquid crystal layer in which a cholesteric phase is fixed is heated to have a reflection characteristic that does not depend on the polarization state, and is provided in a region other than the first light selective reflection portion and the second light selective reflection portion. A non-selective reflection portion to be disposed;
Same as the respective reflected lights that are formed in the first light selective reflection part and the second light selective reflection part and selectively reflected by the first light selective reflection part and the second light selective reflection part. A light diffractive structure forming part that reflects light in the polarization state and generates a light diffraction phenomenon;
An authenticity determination system for determining authenticity using a light selective reflector comprising:
Light converted by first polarization forming means for converting light from the light source into light in the first polarization state, and second polarization forming means for converting light from the light source into light in the second polarization state When the first light selective reflection portion and the second light selective reflection portion of the light selective reflector become alternately invisible, the light selective reflection is performed. An authenticity determination system characterized by determining that the body is genuine.
請求項1に記載の真正判定システムにおいて、
前記第1の偏光形成手段及び前記第2の偏光形成手段は、光を直線偏光にする直線偏光化手段と、その直線偏光を円偏光に変換する円偏光化手段とを有し、光を特定の偏光状態の円偏光に変換する
ことを特徴とする真正判定システム。
The authenticity determination system according to claim 1,
The first polarization forming means and the second polarization forming means have linear polarization means for converting light into linearly polarized light and circular polarization means for converting the linearly polarized light into circularly polarized light, and specify light. Authenticity determination system characterized by converting into circularly polarized light having a polarization state of.
JP2002063911A 2002-03-08 2002-03-08 Authenticity judgment system Expired - Fee Related JP4236853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063911A JP4236853B2 (en) 2002-03-08 2002-03-08 Authenticity judgment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063911A JP4236853B2 (en) 2002-03-08 2002-03-08 Authenticity judgment system

Publications (2)

Publication Number Publication Date
JP2003262724A JP2003262724A (en) 2003-09-19
JP4236853B2 true JP4236853B2 (en) 2009-03-11

Family

ID=29196954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063911A Expired - Fee Related JP4236853B2 (en) 2002-03-08 2002-03-08 Authenticity judgment system

Country Status (1)

Country Link
JP (1) JP4236853B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018171A2 (en) * 2004-08-12 2006-02-23 Giesecke & Devrient Gmbh Security element comprising a support
CN101080748A (en) * 2004-12-17 2007-11-28 皇家飞利浦电子股份有限公司 Optical identifier comprising randomly oriented partial faces
JP5028643B2 (en) * 2006-11-30 2012-09-19 凸版印刷株式会社 Laminated body, adhesive label, recording medium, labeled article and discrimination method
JP5028642B2 (en) * 2006-11-30 2012-09-19 凸版印刷株式会社 Laminated body, adhesive label, recording medium, labeled article and discrimination method
EP2203903B1 (en) 2007-10-09 2015-06-10 Sicpa Holding Sa Security marking authentication device
JP5278651B2 (en) * 2007-12-27 2013-09-04 凸版印刷株式会社 Anti-counterfeit media
JP5338177B2 (en) * 2008-07-31 2013-11-13 凸版印刷株式会社 Display and labeled goods
JP2010079308A (en) * 2009-11-30 2010-04-08 Dainippon Printing Co Ltd Medium for determining authenticity, medium label for determining authenticity, medium transfer sheet for determining authenticity, sheet determining authenticity, and information recording medium determining authenticity
JP5460819B2 (en) * 2012-10-30 2014-04-02 シクパ ホルディング ソシエテ アノニム Security marking authentication device
JP2013226835A (en) * 2013-04-26 2013-11-07 Dainippon Printing Co Ltd Medium for determining authenticity, medium label for determining authenticity, medium transfer sheet for determining authenticity, sheet capable of determining authenticity, and information recording body capable of determining authenticity
WO2014177375A1 (en) * 2013-05-01 2014-11-06 Sicpa Holding Sa Security elements exhibiting a dynamic visual motion

Also Published As

Publication number Publication date
JP2003262724A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP4268336B2 (en) Authenticity identification system and method of using authenticity identification film
JP4335352B2 (en) Anti-counterfeit body and forgery discrimination method
JP4257903B2 (en) Identification medium, identification medium identification method, identification target article, and identification apparatus
JP4392826B2 (en) Object identification medium and identification method
US7667894B2 (en) Security element and process for producing the same
JP4875003B2 (en) Identification medium and manufacturing method thereof
EP2302425B1 (en) Optical element
JP5211474B2 (en) Laminated body, adhesive label, recording medium, and labeled article
WO2006038561A1 (en) Discrimination medium and discrimination method thereof
WO2006068180A1 (en) Identification medium, article equipped with identification medium, identifying method and device
CN102179966A (en) Anti-counterfeiting element and anti-counterfeiting product
JP2003231380A (en) Discrimination medium for object and discrimination method
JP4236853B2 (en) Authenticity judgment system
JP4290797B2 (en) Authenticity identification method and authenticity identifier
CN103676261B (en) Optically variable anti-counterfeiting element and preparation method thereof, anti-fake product
JP2008132611A (en) Biaxially oriented multilayer polypropylene film and identification medium
JP2009098568A (en) Forgery prevention body, method for authenticity determination of forgery prevention body, forgery prevention label, and forgery prevention printed matter
JP5181567B2 (en) Marking element, labeling article, and discrimination method
JP3984470B2 (en) Authenticity discriminator, authenticity discrimination tool, and combinations thereof, and authenticity discrimination method
JP4550235B2 (en) Authenticator
JP2008139509A (en) Layered body, adhesive label, recording medium, article with label and discrimination method
JP4669545B2 (en) Authenticity discriminator, authenticity discrimination method, and authenticity discriminator manufacturing method
JP2009216722A (en) Security device and labeled article
JP2008203557A (en) Authenticity determination tool
JP5245473B2 (en) Security devices and labeled items

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4236853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees