JP4236036B2 - Organochlorine compound decomposition equipment - Google Patents

Organochlorine compound decomposition equipment Download PDF

Info

Publication number
JP4236036B2
JP4236036B2 JP2003357341A JP2003357341A JP4236036B2 JP 4236036 B2 JP4236036 B2 JP 4236036B2 JP 2003357341 A JP2003357341 A JP 2003357341A JP 2003357341 A JP2003357341 A JP 2003357341A JP 4236036 B2 JP4236036 B2 JP 4236036B2
Authority
JP
Japan
Prior art keywords
decomposition reaction
decomposition
container
reaction vessel
plastic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003357341A
Other languages
Japanese (ja)
Other versions
JP2005120252A (en
Inventor
利夫 小倉
厳 梅木
真澄 久我
三郎 森脇
英機 立本
Original Assignee
日立協和エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立協和エンジニアリング株式会社 filed Critical 日立協和エンジニアリング株式会社
Priority to JP2003357341A priority Critical patent/JP4236036B2/en
Publication of JP2005120252A publication Critical patent/JP2005120252A/en
Application granted granted Critical
Publication of JP4236036B2 publication Critical patent/JP4236036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、マイクロ波を用いた塩化ビニル等の有機塩素化合物を含む廃棄物を焼却前に塩素成分を分解処理させる有機塩素化合物の分解装置に係り、特にプラスチック廃棄物に含有する有機塩素化合物から塩素成分を分解除去させる有機塩素化合物の分解装置に関するものである。   The present invention relates to an organic chlorine compound decomposing apparatus that decomposes a chlorine component before incineration of waste containing an organic chlorine compound such as vinyl chloride using a microwave, and particularly from an organic chlorine compound contained in plastic waste. The present invention relates to an organic chlorine compound decomposition apparatus for decomposing and removing chlorine components.

有機塩素化合物を含有する廃棄物として例えばプラスチック廃棄物の再利用技術の障害となる塩化ビニル等の有機塩素化合物を含むプラスチック廃棄物から塩化水素を除去することは極めて重要である。一般に約800℃以上の温度で燃焼処理することによって脱塩化水素処理が可能であるが、処理設備が大型化となったり、処理時間が長くなったり、あるいは加熱処理においては、プラスチックを構成する骨格物質の分解処理物が多量に発生する等の不利益がある。   It is extremely important to remove hydrogen chloride from plastic waste containing organic chlorine compounds such as vinyl chloride, which is an obstacle to the recycling technology of plastic waste, for example, as waste containing organic chlorine compounds. In general, dehydrochlorination treatment is possible by performing a combustion treatment at a temperature of about 800 ° C. or higher. However, the processing equipment becomes larger, the treatment time becomes longer, or the skeleton constituting the plastic in the heat treatment. There are disadvantages such as a large amount of decomposition products of substances.

また、これらのプラスチックを加熱処理あるいは加熱処理に引き続き分解する場合、骨格物質の分解を伴うとき、有害性を示すハロゲン系有機塩素化合物が生成される可能性が極めて高い。特に分解温度が高温度となったり、触媒物質が混入してときにはこれらの有害有機塩素化合物が生成し易くなり、脱塩化水素化工程から有害物質が大量に生成される。   In addition, when these plastics are decomposed by heat treatment or subsequent heat treatment, there is a very high possibility that halogenated organic chlorine compounds exhibiting harmfulness are generated when the skeleton substance is decomposed. In particular, when the decomposition temperature becomes high or when a catalyst substance is mixed, these toxic organochlorine compounds are easily generated, and a large amount of toxic substances are generated from the dehydrochlorination step.

勿論、塩素を含むプラスチック類を燃焼した場合には、それらの有機塩素化合物、例えばダイオキシン、フラン類などが燃焼装置から排出されるため、それらの分解あるいは吸着等による除去が必要となる。なお、この種の従来技術に関しては、例えば下記特許文献1および非特許文献1を挙げることができる。
特開平9−71683号公報
Of course, when plastics containing chlorine are burned, those organic chlorine compounds, such as dioxins and furans, are discharged from the combustion apparatus, so that they must be removed by decomposition or adsorption. In addition, regarding this type of prior art, for example, the following Patent Document 1 and Non-Patent Document 1 can be cited.
JP-A-9-71683

しかしながら、有機塩素化合物を含有するプラスチック廃棄物を分解処理して再利用する際、その前処理段階として有機塩素化合物に対してマイクロ波を照射してそれらの物質の分解処理にあたり、一般に有機塩素化合物に代表されるプラスチック材は、誘電損が低く、単純な加熱処理に比較してエネルギー変換効率が低いことから、マイクロ波の吸収が困難であるため、実際にはマイクロ波によるこれらの物質の分解処理が行われていなかった。このために有機塩素化合物から塩素成分を除去することができず、プラスチック廃棄物の再利用が促進され難いという課題があった。   However, when plastic waste containing organic chlorine compounds is decomposed and reused, as a pre-treatment stage, the organic chlorine compounds are irradiated with microwaves to decompose these substances. The plastic materials represented by (2) have low dielectric loss and low energy conversion efficiency compared to simple heat treatment, so it is difficult to absorb microwaves. Processing was not done. For this reason, the chlorine component cannot be removed from the organic chlorine compound, and there is a problem that it is difficult to promote the reuse of plastic waste.

したがって、本発明は前述した従来の課題を解決するためになされたものであり、その目的は、有機塩素化合物を含むプラスチック廃棄物にマイクロ波を照射させることにより、有機塩素化合物を分解させ、塩化水素を除去することにより、簡単且つ低温度でしかも短時間で脱塩化水素を実現可能とする有機塩素化合物の分解装置を提供することにある。   Therefore, the present invention has been made to solve the above-described conventional problems, and its purpose is to decompose a chlorinated organic compound by irradiating a plastic waste containing the chlorinated organic compound with microwaves, thereby chlorinating. An object of the present invention is to provide an organic chlorine compound decomposing apparatus that can realize dehydrochlorination in a short time in a short time by removing hydrogen.

また、本発明の他の目的は、有機塩素化合物を含むプラスチック廃棄物にマイクロ波を照射させることにより、有機塩素化合物を分解させ、塩化水素を除去することにより、塩化水素を含む産業廃棄物の焼却時に発生するダイオキシン(塩素化合物)を低減させ、延いては有機化合物を含むプラスチック廃棄物の再利用が容易且つ低コストで実現可能とする有機塩素化合物の分解装置を提供することにある。   Another object of the present invention is to irradiate a plastic waste containing an organic chlorine compound with microwaves, thereby decomposing the organic chlorine compound and removing hydrogen chloride, thereby removing industrial waste containing hydrogen chloride. An object of the present invention is to provide an organic chlorine compound decomposing apparatus that reduces dioxins (chlorine compounds) generated during incineration and that can easily recycle plastic waste containing organic compounds at low cost.

このような目的を達成するために本発明による有機塩素化合物の分解装置は、開閉自在な容器蓋を有する金属性部材からなり、且つ内部に有機塩素化合物及び高誘電損物質を収容する分解反応容器と、この分解反応容器に連結され、かつ分解反応容器内に収容された有機塩素化合物及び高誘電損物質を攪拌させる容器駆動モータと、分解反応容器の近傍に設置され、且つ有機塩素化合物の分解残渣物を収容する残渣回収容器と、分解反応容器に導波管を介して結合され、かつ分解反応容器内にマイクロ波を照射する少なくとも1個のマイクロ波発生装置と、容器蓋の内側に設置され、且つ分解反応容器内に照射されたマイクロ波を攪拌させるスタラーと、分解反応容器に結合され、かつ分解反応容器内で発生した排気および脱ガス処理を行う排気ガス吸収処理装置とから構成される。   In order to achieve such an object, an organic chlorine compound decomposition apparatus according to the present invention comprises a metal member having an openable / closable container lid, and contains an organic chlorine compound and a high dielectric loss substance inside. A container driving motor connected to the decomposition reaction vessel and stirring the organochlorine compound and the high dielectric loss substance housed in the decomposition reaction vessel; and installed in the vicinity of the decomposition reaction vessel and decomposing the organic chlorine compound A residue collection container for storing residue, at least one microwave generator coupled to the decomposition reaction container via a waveguide and irradiating the decomposition reaction container with microwaves, and installed inside the container lid And a stirrer that stirs the microwave irradiated in the decomposition reaction vessel, and an exhaust and degassing treatment that is coupled to the decomposition reaction vessel and generated in the decomposition reaction vessel. Consisting of a gas-gas absorption processing apparatus.

また、本発明による他の有機塩素化合物の分解装置は、開閉自在な容器蓋を有する金属性部材からなり、且つ内部に有機塩素化合物を収容する分解反応容器と、この分解反応容器の内部に設置され、且つ底部に収納された高誘電損物質と隔離して有機塩素化合物を保持する網状の隔壁と、分解反応容器に連結され、かつ分解反応容器内に収容された有機塩素化合物を攪拌させる容器駆動モータと、分解反応容器の近傍に設置され、且つ有機塩素化合物の分解残渣物を収容する残渣回収容器と、分解反応容器に導波管を介して結合され、かつ分解反応容器内にマイクロ波を照射させる少なくとも1個のマイクロ波発生装置と、容器蓋の内側に設置され、且つ分解反応容器内に照射された前記マイクロ波を攪拌させるスタラーと、分解反応容器に結合され、かつ分解反応容器内で発生した排気および脱ガス処理を行う排気ガス吸収処理装置とから構成される。   Further, another organic chlorine compound decomposition apparatus according to the present invention comprises a decomposition reaction container that is composed of a metallic member having an openable / closable container lid, and contains the organic chlorine compound therein, and is installed inside the decomposition reaction container. And a reticulated partition that holds the organochlorine compound in isolation from the high dielectric loss material housed in the bottom, and a vessel that is connected to the decomposition reaction vessel and stirs the organochlorine compound contained in the decomposition reaction vessel A drive motor, a residue collection container installed in the vicinity of the decomposition reaction container and containing the decomposition residue of the organochlorine compound, coupled to the decomposition reaction container via a waveguide, and a microwave in the decomposition reaction container At least one microwave generator that irradiates the microwave, a stirrer that is installed inside the container lid and that stirs the microwave irradiated in the decomposition reaction container, and a decomposition reaction container. The combined, and composed to have occurred in the decomposition reaction vessel evacuated and the exhaust gas absorption treatment apparatus for performing a degassing treatment.

さらに本発明による他の有機塩素化合物の分解装置は、開閉自在な容器蓋を有する金属性部材からなり、且つ内部に有機塩素化合物及び高誘電損物質を収容する分解反応容器と、この分解反応容器に連結され、かつ分解反応容器内に収容された有機塩素化合物及び高誘電損物質を攪拌させる容器駆動モータと、分解反応容器の近傍に設置され、且つ有機塩素化合物の分解残渣物を収容する残渣回収容器と、分解反応容器に導波管を介して結合され、かつ分解反応容器内にマイクロ波を照射する少なくとも1個のマイクロ波発生装置と、容器蓋の内側に設置され、且つ分解反応容器内に照射された前記マイクロ波を攪拌させるスタラーと、分解反応容器に結合され、かつこの分解反応容器内で発生した排気および脱ガス処理を行う排気ガス吸収処理装置と、分解反応容器内の予備加熱を行う低温ガス体を供給する供給手段とから構成される。   Furthermore, another organochlorine compound decomposition apparatus according to the present invention comprises a decomposition reaction container comprising a metallic member having an openable / closable container lid, and containing an organic chlorine compound and a high dielectric loss substance inside the decomposition reaction container. And a container drive motor that stirs the organochlorine compound and the high dielectric loss substance contained in the decomposition reaction vessel, and a residue that is installed in the vicinity of the decomposition reaction vessel and contains the decomposition residue of the organic chlorine compound A recovery container, at least one microwave generator coupled to the decomposition reaction container via a waveguide and irradiating the decomposition reaction container with microwaves; and disposed inside the container lid; and the decomposition reaction container A stirrer that stirs the microwave irradiated inside, and an exhaust gas absorption unit that is coupled to the decomposition reaction vessel and performs exhaust and degassing treatment generated in the decomposition reaction vessel And management apparatus, and the supply means for supplying a cryogenic gas body the preliminary heating of the decomposition reaction vessel.

また、本発明による他の有機塩化化合物の分解装置は、開閉自在な容器蓋を有する金属性部材からなり、且つ内部に有機塩素化合物を収容する分解反応容器と、この分解反応容器の内部に設置され、且つ有機塩素化合物を保持する高誘電損部材からなる保持容器と、分解反応容器に連結され、かつ分解反応容器内に収容された有機塩素化合物を攪拌させる容器駆動モータと、分解反応容器の近傍に設置され、且つ有機塩素化合物の分解残渣物を収容する残渣回収容器と、分解反応容器に導波管を介して結合され、かつ分解反応容器内にマイクロ波を照射させる少なくとも1個のマイクロ波発生装置と、容器蓋の内側に設置され、且つ分解反応容器内に照射された前記マイクロ波を攪拌させるスタラーと、分解反応容器に結合され、かつ分解反応容器内で発生した排気および脱ガス処理を行う排気ガス吸収処理装置とから構成される。   In addition, another organic chloride compound decomposition apparatus according to the present invention is composed of a metal member having an openable / closable container lid, and contains a decomposition reaction container containing the organic chlorine compound therein, and is installed in the decomposition reaction container. And a holding container made of a high dielectric loss member for holding the organic chlorine compound, a container drive motor connected to the decomposition reaction container and stirring the organic chlorine compound contained in the decomposition reaction container, and a decomposition reaction container A residue collection container installed in the vicinity and containing a decomposition residue of an organochlorine compound, and at least one micro wave coupled to the decomposition reaction container via a waveguide and irradiating the decomposition reaction container with microwaves A wave generator, a stirrer that is installed inside the container lid and stirs the microwave irradiated in the decomposition reaction container, and is coupled to the decomposition reaction container and Composed of the exhaust gas absorption processing apparatus for exhaust and degassing occurs in the container.

さらに本発明による有機塩素化合物の分解装置は、上記構成において、好ましくは高誘電損物質を活性炭としたものである。   Furthermore, the organochlorine compound decomposition apparatus according to the present invention preferably has activated carbon as the high dielectric loss material in the above configuration.

また、本発明による有機塩素化合物に分解装置は、上記構成において、好ましくは高誘電損物質をフェライト材としたものである。   In the above-described structure, the organochlorine compound decomposition apparatus according to the present invention is preferably one in which a high dielectric loss material is a ferrite material.

マイクロ波発生装置から出力されるマイクロ波エネルギーは、最初に高誘電損物質に吸収され、これらを加熱する。高温度に加熱された高誘電損物質は有機塩素化合物に伝熱され、有機塩素化合物が高温度に加熱される。これによって加熱が困難であった低誘電損である有機塩素化合物を容易にマイクロ波加熱させることにより、前述した背景の技術が解決される。   The microwave energy output from the microwave generator is first absorbed by the high dielectric loss material and heats it. The high dielectric loss material heated to a high temperature is transferred to the organic chlorine compound, and the organic chlorine compound is heated to a high temperature. Thus, the background technology described above can be solved by easily microwave-heating the organic chlorine compound having a low dielectric loss, which has been difficult to heat.

また、マイクロ波発生装置から出力されるマイクロ波エネルギーは、最初に高誘電損部材からなる保持容器に吸収され、これらを加熱する。高温度に加熱された保持容器は有機塩素化合物に伝熱され、有機塩素化合物が高温度に加熱される。これによって加熱が困難であった低誘電損である有機塩素化合物を容易にマイクロ波加熱させることにより、前述した背景の技術が解決される。   Moreover, the microwave energy output from the microwave generator is first absorbed by a holding container made of a high dielectric loss member and heats them. The holding container heated to a high temperature is transferred to the organic chlorine compound, and the organic chlorine compound is heated to a high temperature. Thus, the background technology described above can be solved by easily microwave-heating the organic chlorine compound having a low dielectric loss, which has been difficult to heat.

なお、本発明は、上記各構成及び後述する実施の形態に記載される構成に限定されるものではなく、本発明の技術思想を逸脱することなく、種々の変更が可能であることは言うまでもない。   It should be noted that the present invention is not limited to the configurations described in the above-described configurations and the embodiments described later, and it goes without saying that various modifications can be made without departing from the technical idea of the present invention. .

本発明による有機塩素化合物の分解装置によれば、プラスチック廃棄物等に含有される有機塩素化合物にマイクロ波を照射することにより、高誘電損物質を介して有機塩素化合物の全体に迅速且つ均一にマイクロ波加熱されるので、有機化合物中の脱塩化水素が簡単、且つ低温度でしかも短時間で実現可能となり、塩化ビニルを含むプラスチック廃棄物の再利用が容易、且つ低コストで実現可能となる。また、有機塩化水素を含む産業廃棄物の処理は、焼却時に発生するダイオキシンが大きな課題となっているが、本発明による有機塩素化合物の分解装置を用いることによって低コストでダイオキシン処理が可能となるなどの極めて優れた効果が得られる。   According to the organochlorine compound decomposition apparatus of the present invention, by irradiating the organochlorine compound contained in plastic waste or the like with microwaves, the entire organochlorine compound can be rapidly and uniformly distributed through the high dielectric loss material. Because it is heated by microwaves, dehydrochlorination in organic compounds can be realized easily and at a low temperature in a short time, and plastic waste containing vinyl chloride can be easily reused at low cost. . In addition, in the treatment of industrial waste containing organic hydrogen chloride, dioxins generated during incineration have become a major issue, but dioxins can be treated at low cost by using the organochlorine compound decomposition apparatus according to the present invention. An extremely excellent effect such as can be obtained.

以下、本発明の具体的な実施の形態について、実施例の図面を参照して詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings of the examples.

図1は、本発明による有機塩素化合物の分解装置の一実施例による構成を模式的に説明する断面図である。図1において、1は内部に常温付近において誘電損が低い塩化ビニルを含むプラスチック廃棄物に代表される分解物質2及び高誘電損物質として例えば活性炭3を収容する分解反応容器であり、この分解反応容器1は、その内壁面はマイクロ波の照射に対してこのマイクロ波が吸収し難い(反射し易い)表面加工処理が施された金属性部材により略釜状に形成されている。   FIG. 1 is a cross-sectional view schematically illustrating a configuration of an organic chlorine compound decomposition apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a decomposition reaction container 2 containing, for example, activated carbon 3 as a decomposition substance 2 typified by plastic waste containing vinyl chloride having a low dielectric loss near normal temperature and a high dielectric loss substance. The inner wall surface of the container 1 is formed in a substantially pot shape by a metallic member that has been subjected to a surface processing process in which the microwave is difficult to absorb (is easily reflected) by microwave irradiation.

また、この分解反応容器1の上部には密閉可能な容器蓋4が遠隔操作により開閉自在に取り付けられている。なお、この容器蓋4の内面にもマイクロ波の照射に対してこのマイクロ波が吸収し難く、反射し易い表面加工処理が施された金属性部材により形成されている。また、この容器蓋4には分解反応容器1の内部の雰囲気調整が可能なフレキシブルホース5及び反応排気ガス回収ホース6が夫々結合されている。この反応排気ガス回収ホース6には分解反応容器1内において加熱分解に伴って発生する排気ガスを吸収処理させる排気ガス吸収処理装置7が結合されている。また、この容器蓋4には分解反応容器1内に照射される後述するマイクロ波を攪拌させるスタラー8が設置され、マイクロ波が導入されたときに外部より駆動される構造となっている。   Further, a sealable container lid 4 is attached to the upper part of the decomposition reaction container 1 so as to be opened and closed by remote control. Note that the inner surface of the container lid 4 is also formed of a metallic member that has been subjected to a surface processing treatment that makes it difficult for the microwave to be absorbed by the microwave irradiation and reflects it easily. A flexible hose 5 and a reaction exhaust gas recovery hose 6 capable of adjusting the atmosphere inside the decomposition reaction vessel 1 are coupled to the vessel lid 4. The reaction exhaust gas recovery hose 6 is coupled with an exhaust gas absorption processing device 7 for absorbing exhaust gas generated in the decomposition reaction vessel 1 due to thermal decomposition. Further, the container lid 4 is provided with a stirrer 8 for stirring a microwave to be described later that is irradiated into the decomposition reaction container 1, and is structured to be driven from the outside when the microwave is introduced.

なお、ここで用いられる高誘電損物質は、加熱されることによって発生したガスや加熱中の雰囲気ガスと反応して変質し、低誘電損物質化することがないような物質が選択される。これらの高誘電損物質は、経済性は勿論、その廃棄に関して安全性が充分に確保できることが必要である。具体的には、塩化ビニルの脱塩化水素反応にマイクロ波を用いた場合に高誘電損物質として活性炭3などの炭材が最適であり、雰囲気として不活性雰囲気が活性炭3の表面からの酸化による劣化を防止することができる。   As the high dielectric loss material used here, a material that does not change into a low dielectric loss material by reacting with the gas generated by heating or the atmospheric gas being heated is selected. These high dielectric loss materials are required to be sufficiently safe for disposal as well as economical. Specifically, when microwaves are used for the dehydrochlorination reaction of vinyl chloride, a carbon material such as activated carbon 3 is optimal as a high dielectric loss material, and an inert atmosphere is formed by oxidation from the surface of activated carbon 3 as an atmosphere. Deterioration can be prevented.

また、この分解反応容器1の側壁には2組のマイクロ波発生装置9a,9bが夫々導波管10a,10bを介して結合されて設置されている。さらにこの分解反応容器1には、分解反応容器1の内部に収容された分解物質2及び活性炭3を周方向に回転駆動させて混合させる容器駆動モータ11が回転軸12よびこの回転軸12に結合する複数組の伝動歯車13を介して歯合されて連結されている。   In addition, two sets of microwave generators 9a and 9b are connected to the side wall of the decomposition reaction vessel 1 through waveguides 10a and 10b, respectively. Further, in this decomposition reaction container 1, a container drive motor 11 for rotating and mixing the decomposition substance 2 and activated carbon 3 contained in the decomposition reaction container 1 in the circumferential direction is coupled to the rotation shaft 12 and the rotation shaft 12. The plurality of sets of transmission gears 13 are engaged and connected.

また、これらの分解反応容器1は台座14を介して設置面15上に排気ガス吸収処理装置7とともに設置され、この設置面15の分解反応容器1の下部側には凹部16が設けられ、この凹部16内には分解反応容器1内で分解処理された分解物質2の分解残渣物を収容する残渣回収容器17が配設されている。   In addition, these decomposition reaction containers 1 are installed together with the exhaust gas absorption processing device 7 on the installation surface 15 via the pedestal 14, and a recess 16 is provided on the lower side of the decomposition reaction container 1 on the installation surface 15. In the recess 16, a residue collection container 17 is disposed that stores a decomposition residue of the decomposition substance 2 decomposed in the decomposition reaction container 1.

次にこのように構成された有機塩素化合物の分解装置を用いて有機塩素化合物を含有するプラスチック廃棄物から塩素水素を除去する方法について図1を参照して説明する。   Next, a method for removing chlorine hydrogen from plastic waste containing an organic chlorine compound using the organic chlorine compound decomposition apparatus configured as described above will be described with reference to FIG.

まず、分解反応容器1を用いてプラスチック廃棄物の塩素除去処理を行う以前に形状が大きい有機塩素化合物を含むプラスチック廃棄物を予め粒状乃至は約10mm角に粉砕処理し、この粉砕処理工程を経た後に行う。なお、ここでプラスチック廃棄物を予め粒状乃至は約10mm角に粉砕処理する理由は、後述する分解物質3とマイクロ波エネルギーを容易に吸収する高誘電損物質としての活性炭3の添加または後述する伝熱性に優れた隔壁を介して配設される活性炭3から発生する熱が伝熱し易い形状とするためであるが、必ずしも10mm角以下に限定されるものではない。   First, plastic waste containing an organic chlorine compound having a large shape was pulverized into a granular shape or about 10 mm square before the chlorine removal treatment of the plastic waste using the decomposition reaction vessel 1, and this pulverization treatment step was performed. To do later. Here, the reason why the plastic waste is preliminarily pulverized into a granular shape or about 10 mm square is that the decomposition material 3 described later and activated carbon 3 as a high dielectric loss material that easily absorbs microwave energy are added or the transmission described later. Although it is for making it the shape which the heat | fever generate | occur | produced from the activated carbon 3 arrange | positioned through the partition excellent in heat property is easy to heat-transfer, it is not necessarily limited to 10 mm square or less.

図1に示すように分解反応容器1の容器蓋4を開いてこの分解反応容器1の内部に予め粉砕処理を完了したプラスチック廃棄物としての分解物質2と、高誘電損物質としての活性炭3とを収容した後、容器駆動モータ11により分解反応容器1を周方向に回転駆動させ、活性炭3を適宜分散させ、混在させる。次に容器蓋4を閉じた後、この分解反応容器1に結合された2組のマイクロ波発生装置9a,9bを交互に動作させ、それぞれ導波管10a,10bから分解反応容器1内にマイクロ波を導入させ、容器駆動モータ11による反応分解容器1の周方向の回転及びスタラー8の回転により、分解物質2及び活性炭3に均一にマイクロ波を照射する。   As shown in FIG. 1, the decomposition lid 2 of the decomposition reaction container 1 is opened, and the decomposition substance 2 as plastic waste that has been previously crushed in the decomposition reaction container 1, and activated carbon 3 as a high dielectric loss substance, Then, the decomposition reaction vessel 1 is rotationally driven in the circumferential direction by the vessel drive motor 11, and the activated carbon 3 is appropriately dispersed and mixed. Next, after closing the container lid 4, the two sets of microwave generators 9 a and 9 b coupled to the decomposition reaction container 1 are operated alternately, and microwaves are introduced into the decomposition reaction container 1 from the waveguides 10 a and 10 b, respectively. A wave is introduced, and the decomposition substance 2 and the activated carbon 3 are uniformly irradiated with microwaves by the circumferential rotation of the reaction decomposition vessel 1 by the vessel drive motor 11 and the rotation of the stirrer 8.

これによって活性炭3がマイクロ波エネルギーを吸収し、約100℃以上の高温度に加熱され、発生した高熱が活性炭3から低誘電損物質である分解物質2に伝熱され、分解物質2が分解ガス(塩化水素ガス)を発生させながら、局所的に温度上昇し、順次その周辺部へ熱伝導され、分解物質2の全体が約100℃以上の高温度に加熱される。これによってマイクロ波吸収による加熱が困難であった低誘電体物質である分解物質2を容易にマイクロ波加熱させることができる。   As a result, the activated carbon 3 absorbs microwave energy and is heated to a high temperature of about 100 ° C. or higher. The generated high heat is transferred from the activated carbon 3 to the decomposition material 2 which is a low dielectric loss material, and the decomposition material 2 is decomposed gas. While generating (hydrogen chloride gas), the temperature rises locally, and heat conduction is sequentially conducted to the periphery thereof, and the entire decomposition substance 2 is heated to a high temperature of about 100 ° C. or higher. As a result, the decomposition substance 2 which is a low dielectric substance that has been difficult to heat by microwave absorption can be easily heated by microwaves.

ここで、低誘電損物質である塩化ビニルを含む分解物質2は、常温付近において誘電損失が低く、略100℃〜300℃の範囲に温度上昇させると、急激に誘電損失が高くなるので、マイクロ波照射によって分解物質2の全体にわたって迅速、且つ均一に加熱されることになる。   Here, the decomposition substance 2 containing vinyl chloride, which is a low dielectric loss substance, has a low dielectric loss near room temperature. When the temperature is raised to a range of about 100 ° C. to 300 ° C., the dielectric loss increases rapidly. By the wave irradiation, the entire decomposed substance 2 is heated quickly and uniformly.

マイクロ波照射により発生した分解ガスは、開閉蓋4に結合された反応排気ガス回収ホース6を経由して排気ガス吸収処理装置7内に導入される。この排気ガス吸収処理装置7内には酸性排気ガスに対しては石灰石及び苛性ソーダなどを含む水溶液が収容されており、導入された排気ガスはこの水溶液によって排気ガス中の酸性ガス成分が吸着されて除去される。また、一部発生する低温度で揮発する塩化ビニルの骨格成分の分解ガス(塩化水素ガス)成分も排気ガス吸収処理装置7により同時に分離されて捕捉される。   The decomposition gas generated by the microwave irradiation is introduced into the exhaust gas absorption processing device 7 via the reaction exhaust gas recovery hose 6 coupled to the open / close lid 4. In this exhaust gas absorption processing device 7, an aqueous solution containing limestone and caustic soda is accommodated for the acidic exhaust gas, and the introduced exhaust gas is adsorbed with the acidic gas component in the exhaust gas by this aqueous solution. Removed. In addition, a decomposition gas (hydrogen chloride gas) component of the skeleton component of vinyl chloride that is partially generated and volatilized at a low temperature is simultaneously separated and captured by the exhaust gas absorption processing device 7.

図2は、高誘電損物質として活性炭3を使用したときのマイクロ波エネルギー吸収(=(マイクロ波照射入射エネルギー−反射エネルギー)×照射時間)と、分解物質2として塩化ビニルの脱塩化水素率(分解残渣中に塩化水素/分解前の塩化ビニル中の塩素(塩化水素換算))との関係を示したものである。同図から明らかなように活性炭3の添加量を分解物質2の全体量に対して約25%以上とすることにより短時間にて塩素水素の分解を行うことができることを発明者らの実験の結果、明らかとなった。   FIG. 2 shows the microwave energy absorption (= (microwave irradiation incident energy−reflected energy) × irradiation time) when activated carbon 3 is used as the high dielectric loss material, and the dehydrochlorination rate of vinyl chloride as the decomposition material 2 ( The relationship between hydrogen chloride in the decomposition residue and chlorine in vinyl chloride before decomposition (in terms of hydrogen chloride) is shown. As is clear from the figure, the inventors have experimented that chlorine hydrogen can be decomposed in a short time by making the addition amount of the activated carbon 3 approximately 25% or more with respect to the total amount of the decomposition substance 2. As a result, it became clear.

このような構成によれば、分解しようとする分解物質2に活性炭3を添加してマイクロ波を照射させて活性炭3を約100℃〜300℃の高温度に昇温させることにより、活性炭3に接触する分解物質2の温度を局所的に上昇させ、順次その周辺部へ迅速に熱伝導が行われるので、分解物質2の全体のマイクロ波照射による加熱が迅速、且つ均一に加熱することができる。   According to such a configuration, the activated carbon 3 is added to the decomposition substance 2 to be decomposed and irradiated with microwaves to raise the temperature of the activated carbon 3 to a high temperature of about 100 ° C. to 300 ° C. Since the temperature of the decomposed substance 2 that is in contact is locally increased and heat conduction is performed quickly to the periphery thereof, heating of the entire decomposed substance 2 by microwave irradiation can be performed quickly and uniformly. .

図3は、本発明による有機塩素化合物の分解装置の他の実施例による構成を模式的に説明する分解反応容器の要部断面図であり、前述した図と同一部分には同一符号を付し、その説明は省略する。図3において、図1と異なる点は、分解反応容器1の底部には、その底面と隔離する伝熱性の高い溶融シリカガラスなどからなる隔壁18が配設され、この隔壁18の下部側には高誘電損物質である活性炭3が収納されている。したがって、この隔壁17の上部側には分解物質2が収容される。   FIG. 3 is a cross-sectional view of an essential part of a decomposition reaction vessel schematically illustrating the constitution of another embodiment of the apparatus for decomposing an organic chlorine compound according to the present invention. The description is omitted. In FIG. 3, the difference from FIG. 1 is that a partition wall 18 made of fused silica glass having high heat conductivity and isolated from the bottom surface is disposed at the bottom of the decomposition reaction vessel 1. The activated carbon 3 which is a high dielectric loss material is accommodated. Therefore, the decomposition substance 2 is accommodated on the upper side of the partition wall 17.

このような構成において、マイクロ波の照射により、分解反応容器1の底部に収納された活性炭3がまず最初に加熱され、隔壁18を通して活性炭3の熱が分解物質2側に移動することにより、活性炭3と分解物質2とを混合させることなく、分解物質2の温度を上昇させ、熱分解させ、マイクロ波照射による塩化ビニルの脱塩化水素が可能となる。これによって活性炭3が分解物質2とともに残渣回収容器17内に廃棄されることなく、再利用が可能となる。   In such a configuration, activated carbon 3 stored in the bottom of the decomposition reaction vessel 1 is first heated by microwave irradiation, and the heat of the activated carbon 3 moves to the decomposition substance 2 side through the partition wall 18, thereby Without mixing 3 and the decomposed substance 2, the temperature of the decomposed substance 2 is raised and thermally decomposed, and dehydrochlorination of vinyl chloride by microwave irradiation becomes possible. As a result, the activated carbon 3 can be reused together with the decomposition substance 2 without being discarded in the residue collection container 17.

図4は、本発明による有機塩素化合物の分解装置のさらに他の実施例による構成を模式的に説明する要部断面図であり、前述した図1と同一部分には同一符号を付し、その説明は省略する。図4において、図1と異なる点は、容器蓋4には排気ガス吸収処理装置7から排出される排気ガス等の熱エネルギーを有する気体(廃熱ガス)を導入するガス導入管20及びその廃熱排気ガスを排出するガス排出管21が夫々結合され、これらのガス導入管20及びガス排出管21には夫々遮断弁22a及び遮断弁22bが連結されている。   FIG. 4 is a cross-sectional view of an essential part for schematically explaining the structure of still another embodiment of the organochlorine compound decomposition apparatus according to the present invention. The same parts as those in FIG. Description is omitted. 4 is different from FIG. 1 in that a gas introduction pipe 20 for introducing a gas (waste heat gas) having thermal energy such as exhaust gas discharged from the exhaust gas absorption processing device 7 into the container lid 4 and its waste. A gas discharge pipe 21 for discharging the hot exhaust gas is connected to each other, and a shutoff valve 22a and a shutoff valve 22b are connected to the gas introduction pipe 20 and the gas discharge pipe 21, respectively.

次にこのように構成された有機塩素化合物の分解装置を用いて有機塩素化合物を含有するプラスチック廃棄物から塩素を除去する方法について図4を参照して説明する。   Next, a method for removing chlorine from a plastic waste containing an organochlorine compound using the organochlorine compound decomposition apparatus constructed as described above will be described with reference to FIG.

図4に示すように分解反応容器1の容器蓋4を開いてこの分解反応容器1の内部に予め粉砕処理を完了した分解物質2と活性炭3とを適宜分散させ、混在させて収容する。次に容器蓋4を閉じた後、遮断弁22a,22bを開いて分解反応容器1内に排気ガス吸収処理装置7で発生する廃熱ガスとしての排気ガス等の熱エネルギーを有する気体を供給し、分解物質2を誘電体損失が所定のレベルに達する約100℃程度まで加熱する。この目的は、分解物質2の予備加熱であり、熱エネルギーを有するガス体であれば良いので、排気ガス吸収処理装置7で発生する廃熱ガスに限定されない。   As shown in FIG. 4, the container lid 4 of the decomposition reaction container 1 is opened, and the decomposition substance 2 and the activated carbon 3 that have been previously pulverized in the decomposition reaction container 1 are appropriately dispersed and mixed and accommodated. Next, after closing the container lid 4, the shutoff valves 22 a and 22 b are opened, and a gas having thermal energy such as exhaust gas as waste heat gas generated in the exhaust gas absorption treatment device 7 is supplied into the decomposition reaction container 1. The decomposition substance 2 is heated to about 100 ° C. at which the dielectric loss reaches a predetermined level. The purpose is to preheat the decomposed substance 2 and any gas body having thermal energy may be used. Therefore, the present invention is not limited to the waste heat gas generated in the exhaust gas absorption processing device 7.

次に分解物質2の加熱を中断して遮断弁22a,22bを閉じた後、この分解反応容器1に結合された2組のマイクロ波発生装置9a,9bを交互に動作させ、それぞれ導波管10a,10bから分解反応容器1内にマイクロ波を導入させ、容器駆動モータ11による反応分解容器1の周方向の回転及びスタラー8の回転により、分解物質2及び活性炭3に均一にマイクロ波を照射する。   Next, heating of the decomposition substance 2 is interrupted and the shut-off valves 22a and 22b are closed, and then two sets of microwave generators 9a and 9b coupled to the decomposition reaction vessel 1 are operated alternately, respectively, Microwaves are introduced into the decomposition reaction vessel 1 from 10a and 10b, and the decomposition substance 2 and the activated carbon 3 are uniformly irradiated by the rotation of the reaction decomposition vessel 1 in the circumferential direction by the vessel drive motor 11 and the rotation of the stirrer 8. To do.

マイクロ波照射によって発生した分解ガス(塩化水素ガス)は、容器蓋4に結合された反応排気ガス回収ホース6を経由して排気ガス吸収処理装置7に導入される。この排ガス吸収処理装置7内には酸性排気ガスに対しては石灰石及び苛性ソーダなどを含む水溶液が収容されており、導入された排気ガスはこの水溶液によって排気ガス中の酸性ガス成分が吸着されて除去される。また、一部発生する低温度で揮発する塩化ビニルの骨格成分の分解ガス(塩化水素ガス)成分も排ガス吸収装置7により同時に分離されて捕捉される。   The cracked gas (hydrogen chloride gas) generated by the microwave irradiation is introduced into the exhaust gas absorption processing device 7 via the reaction exhaust gas recovery hose 6 coupled to the container lid 4. This exhaust gas absorption treatment device 7 contains an aqueous solution containing limestone and caustic soda for the acidic exhaust gas, and the introduced exhaust gas is adsorbed and removed by the acidic gas component in the exhaust gas by this aqueous solution. Is done. In addition, a decomposition gas (hydrogen chloride gas) component of a skeleton component of vinyl chloride that is partially generated and volatilized at a low temperature is simultaneously separated and captured by the exhaust gas absorption device 7.

最後に所定時間,所定温度で処理した分解物質2は、マイクロ波照射を中止し、容器蓋4を開けて分解反応容器1内の分解残渣を取り出し、残渣回収容器17内に移して分解が完了する。   Finally, the decomposition substance 2 treated at a predetermined temperature for a predetermined time is stopped by microwave irradiation, the container lid 4 is opened, the decomposition residue in the decomposition reaction container 1 is taken out, and transferred to the residue collection container 17 to complete the decomposition. To do.

このような構成においては、常温付近において、低誘電損を示すプラスチック廃棄物としての分解物質2を再利用する際に障害となる塩化ビニルは、常温付近では誘電損が低く、約100℃以上から急激に誘電損が高くなり、マイクロ波照射によって容易に加熱することができる。このような特性を有する分解物質2の分解において、マイクロ波照射前に排気ガス吸収装置7から排出される廃熱ガスとしての低温度排気ガスを分解反応容器1内に導入し、約100℃近傍まで予備加熱し、その後にマイクロ波を照射することによって分解物質2のマイクロ波エネルギーの吸収率を高めることができる。これによって低温度で効率良くマイクロ波照射による熱分解を行うことができるので、   In such a configuration, vinyl chloride, which becomes an obstacle when reusing the decomposed material 2 as plastic waste exhibiting low dielectric loss near room temperature, has a low dielectric loss near room temperature, from about 100 ° C. or more. The dielectric loss increases rapidly and can be easily heated by microwave irradiation. In the decomposition of the decomposition substance 2 having such characteristics, a low-temperature exhaust gas as waste heat gas discharged from the exhaust gas absorption device 7 before microwave irradiation is introduced into the decomposition reaction vessel 1 and about 100 ° C. It is possible to increase the absorption rate of the microwave energy of the decomposition substance 2 by preheating up to and then irradiating with microwaves. This enables efficient thermal decomposition by microwave irradiation at low temperatures,

図5は、本発明による有機塩素化合物の分解装置の他の実施例による構成を模式的に説明する分解反応容器の要部断面図であり、前述した図1と同一部分には同一符号を付し、その説明は省略する。図5において、図1と異なる点は、分解反応容器1の底部には、高誘電損部材として例えばフェライト材からなる保持容器23が配設され、この保持容器23上部には低誘電損である分解物質2´が収容されている。この場合、分解物質2´としては、形状が大きい有機塩素化合物を含むプラスチック廃棄物を粉砕することなく、そのままの形状を保持した状態で容器蓋4を開放して保持容器23の上部に収容する。   FIG. 5 is a cross-sectional view of an essential part of a decomposition reaction vessel for schematically explaining the constitution of another embodiment of the apparatus for decomposing an organic chlorine compound according to the present invention. The same parts as those in FIG. The description is omitted. In FIG. 5, a difference from FIG. 1 is that a holding container 23 made of, for example, a ferrite material is disposed as a high dielectric loss member at the bottom of the decomposition reaction container 1, and the upper part of the holding container 23 has a low dielectric loss. Decomposed material 2 'is accommodated. In this case, as the decomposition substance 2 ′, the plastic waste containing the organic chlorine compound having a large shape is not crushed, and the container lid 4 is opened and stored in the upper part of the holding container 23 while maintaining the shape as it is. .

このような構成においては、マイクロ波の照射により、分解反応容器1の底部に配設された保持容器23がまず最初に加熱され、この保持容器23の熱が直接分解物質2´に伝熱することにより、分解物質2´に前述した活性炭を混合させることなく、分解物質2´の温度を上昇させ、熱分解させ、マイクロ波照射による塩化ビニルの脱塩化水素が可能となる。   In such a configuration, the holding container 23 disposed at the bottom of the decomposition reaction container 1 is first heated by microwave irradiation, and the heat of the holding container 23 is directly transferred to the decomposition substance 2 ′. Thus, without mixing the above-described activated carbon with the decomposition substance 2 ′, the temperature of the decomposition substance 2 ′ is increased and thermally decomposed, and dehydrochlorination of vinyl chloride by microwave irradiation becomes possible.

このような構成によれば、分解物質2´を予め粉砕することなく、形状の大きい状態で収容させて脱塩化水素が可能となり、脱塩化水素処置した分解物質2´の分解残渣物を直接取り出すことができるので、事前に行われていた分解物質2´の粉砕工程を不要とすることができる。   According to such a configuration, the decomposing substance 2 ′ can be accommodated in a large shape without being pulverized in advance and dehydrochlorinated, and the decomposing residue of the decomposing substance 2 ′ subjected to dehydrochlorination is directly taken out. Therefore, the pulverizing step of the decomposed substance 2 ′ that has been performed in advance can be made unnecessary.

図6は、通常の塩化ビニルからの熱分解による脱塩化水素法,単純なマイクロ波照射法,高誘電損物質を添加したマイクロ波照射法及び予備加熱を行ったマイクロ波照射法における塩化ビニルの骨格物質の分解量について示した図である。図6において、加熱法は通常の塩化ビニルからの熱分解、マイクロ波照射法単独照射法は単純なマイクロ波照射法、高誘電損物質使用法は高誘電損物質を添加したマイクロ波照射法、予備過熱法は予備加熱を行ったマイクロ波照射法を示す。この説明は、以下の図7、図8においても同様である。図6から明らかなようにマイクロ波照射により、同様の脱塩化水素率でも骨格物質分解量マイクロ波照射により低減させることができる。


Fig. 6 shows the dehydrochlorination method by thermal decomposition from ordinary vinyl chloride, simple microwave irradiation method, microwave irradiation method with high dielectric loss substance added, and microwave irradiation method with preheating microwave irradiation method. It is the figure shown about the decomposition amount of frame | skeleton material. In FIG. 6, the heating method is thermal decomposition from ordinary vinyl chloride, the microwave irradiation method alone irradiation method is a simple microwave irradiation method, the high dielectric loss material usage method is a microwave irradiation method with a high dielectric loss material added, The preheating method indicates a microwave irradiation method in which preheating is performed. The same applies to FIGS. 7 and 8 below. As is apparent from FIG. 6, the amount of decomposition of the skeletal material can be reduced by microwave irradiation even with the same dehydrochlorination rate by microwave irradiation.


図7は、前述の図6で説明した4種類の脱塩化水素技術に対する使用エネルギーの比較を示したものである。図7から明らかように特に事前予熱方式のマイクロ波照射は、事前予備加熱法が低温度の排気ガスを使用するため、実質的に必要なエネルギーは無視できる(分解エネルギーとしてのコストがかからない)ため、他の脱塩化水素技術に比べて低いエネルギーで処理することができる。   FIG. 7 shows a comparison of energy used for the four types of dehydrochlorination techniques described in FIG. As is clear from FIG. 7, especially in the pre-heating type microwave irradiation, since the pre-heating method uses low-temperature exhaust gas, substantially necessary energy can be ignored (no cost as decomposition energy). It can be processed with lower energy compared to other dehydrochlorination techniques.

図8は、前述した4種類の脱塩化水素方法における分解時間の比較を示したものである。図8から明らかなようにここでも事前予備加熱方式が極めて有利であることが判る。   FIG. 8 shows a comparison of decomposition times in the four types of dehydrochlorination methods described above. As can be seen from FIG. 8, the pre-preheating method is also very advantageous here.

なお、前述した各実施例において、高誘電損物質として活性炭を用いた場合について説明したが、本発明はこれに限定されるものではなぃ、活性炭に代えてフェライト材を用いても前述と全く同様の効果が得られる。   In each of the above-described embodiments, the case where activated carbon is used as the high dielectric loss material has been described. However, the present invention is not limited to this, and a ferrite material may be used instead of activated carbon. Similar effects can be obtained.

本発明による有機塩素化合物の分解装置の一実施例による構成を模式的に説明する断面図である。It is sectional drawing which illustrates typically the structure by one Example of the decomposition | disassembly apparatus of the organochlorine compound by this invention. 本発明による有機塩素化合物の分解装置のマイクロ波吸収エネルギーと塩化水素の分解率との関係を説明する図である。It is a figure explaining the relationship between the microwave absorption energy of the decomposition | disassembly apparatus of the organic chlorine compound by this invention, and the decomposition rate of hydrogen chloride. 本発明による有機塩素化合物に分解装置の他の実施例による分解反応容器の構成を模式的に説明する要部断面図である。It is principal part sectional drawing which illustrates typically the structure of the decomposition reaction container by other Examples of the decomposition apparatus to the organochlorine compound by this invention. 本発明による有機塩素化合物の分解装置の他の実施例による構成を模式的に説明する断面図である。It is sectional drawing which illustrates typically the structure by the other Example of the decomposition | disassembly apparatus of the organochlorine compound by this invention. 本発明による有機塩素化合物に分解装置の他の実施例による分解反応容器の構成を模式的に説明する要部断面図である。It is principal part sectional drawing which illustrates typically the structure of the decomposition reaction container by other Examples of the decomposition apparatus to the organochlorine compound by this invention. 通常の塩化ビニルからの熱分解による脱塩化水素法,単純なマイクロ波照射法, 高誘電損物質を添加したマイクロ波照射法及び予備加熱を行ったマイクロ波照射法における塩化ビニルの骨格物質の分解量について示した図である Decomposition of vinyl chloride skeleton by conventional dehydrochlorination method from vinyl chloride, simple microwave irradiation method, microwave irradiation method with high dielectric loss material added, and microwave irradiation method with preheating It is the figure shown about quantity . 図6で説明した4種類の脱塩化水素技術に対する使用エネルギーを比較した図でA comparison of the energy used for the four types of dehydrochlorination technologies described in FIG. ある。is there. 図6で説明した4種類の脱塩化水素方法における分解時間の比較を示した図であFIG. 7 is a diagram showing a comparison of decomposition times in the four types of dehydrochlorination methods described in FIG. る。The

符号の説明Explanation of symbols

1・・・分解反応容器、2・・・分解物質、2´・・・分解物質、3・・・活性炭、4・・・容器蓋、5・・・フレキシブルホース、6・・・反応排気ガス回収ホース、7・・・排気ガス吸収処理装置、8・・・スタラー、9a・・・マイクロ波発生装置、9b・・・マイクロ波発生装置、10a・・・導波管、10b・・・導波管、11・・・容器駆動モータ、12・・・回転軸、13・・・伝動歯車、14・・・台座、15・・・設置面、16・・・凹部、17・・・残渣回収容器、18・・・隔壁、20・・・ガス導入管、21・・・ガス排出管、22a・・・遮断弁、22b・・・遮断弁、23・・・保持容器。
DESCRIPTION OF SYMBOLS 1 ... Decomposition reaction container, 2 ... Decomposition substance, 2 '... Decomposition substance, 3 ... Activated carbon, 4 ... Container lid, 5 ... Flexible hose, 6 ... Reaction exhaust gas Recovery hose, 7 ... exhaust gas absorption treatment device, 8 ... staller, 9a ... microwave generator, 9b ... microwave generator, 10a ... waveguide, 10b ... lead Wave tube, 11 ... container drive motor, 12 ... rotating shaft, 13 ... transmission gear, 14 ... pedestal, 15 ... installation surface, 16 ... recess, 17 ... residue collection A container, 18 ... partition wall, 20 ... gas introduction pipe, 21 ... gas discharge pipe, 22a ... shut-off valve, 22b ... shut-off valve, 23 ... holding container.

Claims (2)

開閉自在な容器蓋を有する金属性部材からなり、且つ内部に有機塩素化合物を含むプラスチック廃棄物を収容する分解反応容器と、
前記分解反応容器の内部に設置され、且つ底部に収納された高誘電損物質と隔離して前記有機塩素化合物を含むプラスチック廃棄物を保持する網状の隔壁と、
前記分解反応容器に連結され、かつ前記分解反応容器内に収容された前記有機塩素化合物を含むプラスチック廃棄物を攪拌させる容器駆動モータと、
前記分解反応容器の近傍に設置され、且つ前記有機塩素化合物を含むプラスチック廃棄物の分解残渣物を収容する残渣回収容器と、
前記分解反応容器に導波管を介して結合され、かつ前記分解反応容器内にマイクロ波を照射する少なくとも1個のマイクロ波発生装置と、
前記容器蓋の内側に設置され、且つ前記分解反応容器内に照射された前記マイクロ波を攪拌させるスタラーと、
前記分解反応容器に結合され、かつ前記分解反応容器内で発生した排気および脱ガス処理を行う排気ガス吸収処理装置と、
を備えたことを特徴とする有機塩素化合物の分解装置。
A decomposition reaction container made of a metallic member having an openable and closable container lid, and containing plastic waste containing an organic chlorine compound therein;
A reticulated partition installed inside the decomposition reaction vessel and holding plastic waste containing the organochlorine compound isolated from a high dielectric loss material housed in the bottom;
A container drive motor connected to the decomposition reaction container and stirring the plastic waste containing the organochlorine compound housed in the decomposition reaction container;
A residue collection container installed in the vicinity of the decomposition reaction container and containing a decomposition residue of plastic waste containing the organochlorine compound ;
At least one microwave generator coupled to the decomposition reaction vessel via a waveguide and irradiating the decomposition reaction vessel with microwaves;
A stirrer that is installed inside the container lid and that stirs the microwave irradiated in the decomposition reaction container;
An exhaust gas absorption treatment device coupled to the decomposition reaction vessel and performing exhaust and degassing treatment generated in the decomposition reaction vessel;
An apparatus for decomposing organochlorine compounds, comprising:
開閉自在な容器蓋を有する金属性部材からなり、且つ内部に有機塩素化合物を含むプラスチック廃棄物及び高誘電損物質を収容する分解反応容器と、
前記分解反応容器に連結され、かつ前記分解反応容器内に収容された前記有機塩素化合物を含むプラスチック廃棄物及び高誘電損物質を攪拌させる容器駆動モータと、
前記分解反応容器の近傍に設置され、且つ前記有機塩素化合物を含むプラスチック廃棄物の分解残渣物を収容する残渣回収容器と、
前記分解反応容器に導波管を介して結合され、かつ前記分解反応容器内にマイクロ波を照射する少なくとも1個のマイクロ波発生装置と、
前記容器蓋の内側に設置され、且つ前記分解反応容器内に照射された前記マイクロ波を攪拌させるスタラーと、
前記分解反応容器に結合され、かつ前記分解反応容器内で発生した排気および脱ガス処理を行う排気ガス吸収処理装置と、
前記分解反応容器内の予備加熱を行う低温ガス体を供給する供給手段と、
を備えたことを特徴とする有機塩素化合物の分解装置。
A decomposition reaction container made of a metallic member having an openable and closable container lid, and containing plastic waste containing an organic chlorine compound and a high dielectric loss material inside;
A container driving motor connected to the decomposition reaction vessel and stirring the plastic waste and the high dielectric loss material containing the organochlorine compound housed in the decomposition reaction vessel;
A residue collection container installed in the vicinity of the decomposition reaction container and containing a decomposition residue of plastic waste containing the organochlorine compound ;
At least one microwave generator coupled to the decomposition reaction vessel via a waveguide and irradiating the decomposition reaction vessel with microwaves;
A stirrer that is installed inside the container lid and that stirs the microwave irradiated into the decomposition reaction container;
An exhaust gas absorption treatment device coupled to the decomposition reaction vessel and performing exhaust and degassing treatment generated in the decomposition reaction vessel;
Supply means for supplying a low-temperature gas body for preheating in the decomposition reaction vessel;
An apparatus for decomposing organochlorine compounds, comprising:
JP2003357341A 2003-10-17 2003-10-17 Organochlorine compound decomposition equipment Expired - Fee Related JP4236036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357341A JP4236036B2 (en) 2003-10-17 2003-10-17 Organochlorine compound decomposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357341A JP4236036B2 (en) 2003-10-17 2003-10-17 Organochlorine compound decomposition equipment

Publications (2)

Publication Number Publication Date
JP2005120252A JP2005120252A (en) 2005-05-12
JP4236036B2 true JP4236036B2 (en) 2009-03-11

Family

ID=34614256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357341A Expired - Fee Related JP4236036B2 (en) 2003-10-17 2003-10-17 Organochlorine compound decomposition equipment

Country Status (1)

Country Link
JP (1) JP4236036B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143773A (en) * 2004-11-16 2006-06-08 Kobe Steel Ltd Method for dechlorination treatment of waste plastic
CN101342475B (en) * 2007-07-10 2011-12-07 北京安南科技有限公司 Refrigeration and microwave irradiation integrated microwave chemical reaction apparatus
TWI785445B (en) * 2020-12-25 2022-12-01 柯世苑 Waste treatment incinerator and treatment equipment including the same

Also Published As

Publication number Publication date
JP2005120252A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4210222B2 (en) Waste plastic oil reduction equipment
CN108064191B (en) Remediation of contaminated soil and water using improved activators
US7491861B2 (en) In-drum pyrolysis
JP6487438B2 (en) Method and apparatus for incineration, melting and vitrification of organic and metal waste
CN101461990A (en) Method for analyzing and processing persistent organic pollutants by microwave assisted base catalysis
CN101513643A (en) In situ microwave repairing method and apparatus of contaminated soil
JP2009240862A (en) Gas purifying apparatus
JP2007222698A (en) Melting method and apparatus for mineral fiber
JP4236036B2 (en) Organochlorine compound decomposition equipment
JPH07197032A (en) Thermal decomposition apparatus for waste plastic
JP2007216204A (en) Pyrolysis apparatus for waste product
US20220145184A1 (en) Waste processing system
JP2004182837A (en) Apparatus for decomposing plastic
CN112811782A (en) Method for carbonizing and treating sludge by microwave heating
Oda Dielectric Processing of Hazardous Materials-Present and Future Opportunities
JP2006036886A (en) Thermal decomposition treatment system
JP2005169293A (en) Method for oxidizing or decomposing organic material
JPH0971683A (en) Treatment of chlorine-containing plastic waste and treating device therefor
KR102552603B1 (en) A Multi-Cylinder Type Reactor of Radioactive Waste Treatment Equipment using Microwave Heating
JP3949662B2 (en) PCB processing method and PCB processing apparatus
JP2005205353A (en) Pcb removal method and decomposition method
JP2005152859A (en) Purification method of contaminated soil
JPH10185140A (en) Method and apparatus for dechlorinating chlorine-containing plastic waste
JP2008200547A (en) Treatment method and apparatus for solid containing harmful substance such as organic halogen compound
US20060161038A1 (en) Device and method for converting solid waste to gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees