JP4235936B2 - Power supply aging test equipment - Google Patents

Power supply aging test equipment Download PDF

Info

Publication number
JP4235936B2
JP4235936B2 JP2002142805A JP2002142805A JP4235936B2 JP 4235936 B2 JP4235936 B2 JP 4235936B2 JP 2002142805 A JP2002142805 A JP 2002142805A JP 2002142805 A JP2002142805 A JP 2002142805A JP 4235936 B2 JP4235936 B2 JP 4235936B2
Authority
JP
Japan
Prior art keywords
power supply
input
dummy
aging test
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142805A
Other languages
Japanese (ja)
Other versions
JP2003337160A (en
Inventor
巧 笠原
Original Assignee
Tdkラムダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdkラムダ株式会社 filed Critical Tdkラムダ株式会社
Priority to JP2002142805A priority Critical patent/JP4235936B2/en
Publication of JP2003337160A publication Critical patent/JP2003337160A/en
Application granted granted Critical
Publication of JP4235936B2 publication Critical patent/JP4235936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばパワーモジュールなどの一乃至複数の電源装置に対し、エージング試験を行なうのに好適な電源エージング試験装置に関する。
【0002】
【発明が解決しようとする課題】
一般に、この種の電源装置においては、製品出荷前に負荷電流を流した状態でのエージング試験を行ない、品質確保のための各種検査を実行している。図3は、こうした従来の電源エージング装置の一例を示すものであるが、同図において、1A,1B…はエージングされるべき一乃至複数の電源装置、2は各電源装置1A,1B…に共通して設けられる入力電源であり、この入力電源2からの直流入力電圧Viが、各電源装置1A,1B…の入力端子3,4に供給されるようになっている。各電源装置1A,1B…は、入力端子3,4に印加される例えば直流48Vの入力電圧Viを、安定化した直流5Vの出力電圧VoA,VoBに変換して、これを出力端子5,6に各々接続した負荷装置7に供給するもので、これにより負荷電流IoA,IoBを流した状態でのエージング試験が行われる。なお、負荷装置7を接続してエージング試験を行なう理由は、無負荷でのエージングでは、必要なストレスを加えられない部品が電源装置1A,1B…内で出てくるためである。
【0003】
ところが上記構成において、例えば出力電圧Voが5Vで、出力電流が100A程度の比較的容量の大きな電源装置1A,1B…をエージング試験する場合は、単独の電源装置1Aであっても入力電源2の容量は多少の余裕を見越して600W〜700W程度のものを用意する必要がある。そのため、複数台の電源装置1A,1B…を同時にエージング試験する場合である程、台数の増加に比例して大容量の入力電源2を用意しなければならず、大掛かりな設備を必要とする。さらに、各電源装置1A,1B…毎に試験用の負荷装置7が必要で、しかも負荷装置7からは大きな電力を消費するため、設備がさらに大掛かりなものとなる上に、負荷装置7で熱に変換され、無駄に廃棄されるという問題を有していた。
【0004】
そこで、本発明は上記問題点に鑑み、出力電流を有効に利用しつつも、少ない容量の入力電源によって、電源装置のエージング試験を行なうことが可能な電源エージング試験装置を提供することをその目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の電源エージング試験装置は、一乃至複数の電源装置をエージング試験する電源エージング試験装置において、出力電流を所定値に制限する電流制限手段を備えたダミー電源と、前記入力電源からの入力電圧を監視して入力電源の投入を検出すると一定時間後にスイッチをオフからオンに切換える遅延回路を有する入力検出部とを備え、前記電源装置とダミー電源の出力側を直列接続して得られる合計出力電圧を、前記電源装置とダミー電源の入力側に前記スイッチを介してフィードバックさせ、前記ダミー電源は前記電源装置とダミー電源からの出力電流が該電源装置とダミー電源の入力側に流れ込むように、前記合計出力電圧を調整する構成を有している。また、請求項2記載の電源エージング試験装置は、前記電源装置の過電流保護回路による電流制限値より小さな電流に制限する電流制限手段を有している。
【0006】
この場合、エージングされるべき電源装置とダミー電源から共通して送り出される出力電流がフィードバックされて、電源装置とダミー電源の入力側に流れ込むと共に、その電流値が電流制限手段により所定値に制限される。そのため電源装置は、出力電流をある程度流した状態でのエージング試験を、負荷装置なしに行なうことが可能になる。しかも、電源装置とダミー電源の出力電力がフィードバックされるため、その分だけ入力電源の容量を小さくできる。
【0007】
【発明の実施形態】
以下、本発明における好ましい実施例について、添付図面を参照して詳細に説明する。なお、従来例で示す図3と同一部分には同一符号を付し、その共通する箇所の詳細な説明は重複するため省略する。
【0008】
電源エージング試験装置の全体構成を示す図1の回路図において、1A,1B,1C…はエージングされるべき一乃至複数の電源装置、2は直流入力電圧Viを供給する入力電源である。電源装置1A,1B,1C…は、その各々が安定化した出力電圧VoA,VoB,VoC…を供給する機能を有するが、入力端子3,4に同じ電圧(入力電圧Vi若しくは合計出力電圧Vo)を印加でき、しかも個々の電源装置1A,1B,1C…は、入力端子3,4に印加される電圧よりも低い出力電圧VoA,VoB,VoC…に変換できるものを選定する。一例として、本実施例では入力端子3,4に印加する電圧が直流48Vで、出力電圧VoA,VoB,VoCの定格が直流12Vの電源装置1A,1B,1Cを3台選定する。また、各電源装置1A,1B,1C…は、同一特性の過電流保護回路8を備えている。この過電流保護回路8は、自身の出力端子5,6からの出力電流Ioが過電流状態となったときに、これを制限して内部回路を保護するものである。
【0009】
11は、各電源装置1A,1B,1Cとは別個に用意され,安定化した出力電圧Vo’を供給する調整用のダミー電源である。このダミー電源11の入力側は、他の電源装置1A,1B,1Cと共に並列接続され、電源装置1A,1B,1Cと同じ電圧が入力端子13,14間に印加されるようになっている。これに対して、各電源装置1A,1B,1Cとダミー電源11の出力側は直列接続され、出力端子15,16から得られるダミー電源11の出力電圧Vo’と、他の電源装置1A,1B,1Cの各出力端子5,6から得られる出力電圧VoA,VoB,VoCとを加えた合計出力電圧Vo(=Vo’+VoA+VoB+VoC)が、各電源装置1A,1B,1Cとダミー電源11の入力側にフィードバックされるように構成される。そして、この合計出力電圧Voが入力電源2からの入力電圧Viよりも僅かに高くなるように、すなわち、出力電流Ioが各電源装置1A,1B,1Cとダミー電源11の入力側に流れ込むように、ダミー電源11は自身の出力電圧Vo’引いては合計出力電圧Voを調整する機能を有する。ちなみに本実施例では、入力電源2からの入力電圧Viは直流48V未満となっており、出力電圧Vo’が直流12V(合計出力電圧Voは直流48V)となるようなダミー電源11が選定される。
【0010】
また、このダミー電源11は、出力端子15,16からの出力電流Ioが過電流状態となったときに、出力電流Ioを制限して内部回路を保護する過電流保護回路21を備えている。ダミー電源11の過電流保護回路21は、エージング試験を行なう各電源装置1A,1B,1Cの過電流保護回路8とは異なる過電流保護特性を有しており、その過電流保護設定値(動作点)は各電源装置1A,1B,1Cの電流値(通常は各電源装置1A,1B,1Cの定格出力電流)に設定される。これに対して、各電源装置1A,1B,1Cの過電流保護回路8は、その過電流保護設定値が通常、定格出力電流の105%から150%の範囲内で設定される。ダミー電源11と各電源装置1A,1B,1Cの出力側は直列に接続されるため、出力電流Ioが増加すると過電流保護設定値の小さいダミー電源11の過電流保護回路21が先に動作して出力電流Ioが制限される。こうしてダミー電源11は、各電源装置1A,1B,1Cからの出力電流Ioを、過電流保護回路21の過電流保護設定値で設定される所望の電流値に制御すると同時に、直列接続された電源装置1A,1B,1Cとダミー電源11との合計出力電圧Voが、入力電源2からの入力電圧Viとほぼ等しくなるように制御して、電源装置1A,1B,1Cとダミー電源11の入力側にフィードバックさせる機能を有する。
【0011】
24は、入力電源2からの入力電圧Viを監視して、この入力電源2の投入を検出する入力検出部である。また25は、電源装置1A,1B,1Cとダミー電源11の入力側に合計出力電圧Voを供給する合計出力電圧供給ラインの一方に挿入接続される開閉素子としてのスイッチである。入力検出部24は遅延回路(図示せず)を内蔵しており、入力電源2の投入を検出すると、遅延回路で設定された一定時間後に、スイッチ25をオフからオンに切換える。このように、入力検出部24とスイッチ25からなる遅延回路を備えた起動回路により、入力電源2が投入されてから一定時間後に、電源装置1A,1B,1Cとダミー電源11の入力側を合計出力電圧供給ラインに接続させる理由は、入力電源2の投入時に無負荷状態で各電源装置1A,1B,1Cとダミー電源11を起動させることにある。なお、仮に遅延回路がない場合には、入力電源2の投入と同時に各電源装置1A,1B,1Cとダミー電源11が全負荷状態となり、入力電源2はこの全負荷状態での起動ができるような容量が求められる。換言すれば、本実施例で入力電源2に求められる容量は、各電源装置1A,1B,1Cとダミー電源11を無負荷で起動させるのに必要な電力、あるいは全負荷時に各電源装置1A,1B,1Cとダミー電源11で消費される電力のいずれか大きい方となる。
【0012】
次に、上記構成について、その作用を図2の波形図を参照しながら説明する。なお図2は、線材の電圧降下を無視した場合の理論上の出力電流Ioと合計出力電圧Voとの特性を示したものである。
【0013】
各電源装置1A,1B,1Cのエージングを行なうに際しては、ダミー電源11の調整が予め必要となる。具体的には、各電源装置1A,1B,1Cとダミー電源11を直列接続した時の合計出力電圧値Voが、入力電圧Viよりも若干高くなるように、ダミー電源11の出力電圧Vo’を調整する。これは、複数のダミー電源11のなかから、出力電圧Vo’の適合するダミー電源11を選定し、このダミー電源11の出力電圧可変機能を利用することで行なう。また、選定したダミー電源11の過電流保護回路21も、その過電流保護設定値を各電源装置1A,1B,1Cの定格出力電流に調整する。
【0014】
こうした調整が完了した後で、入力電源2を投入すると、入力電源2からの入力電圧Viが各電源装置1A,1B,1Cとダミー電源11の入力側に共通して印加される。同時に入力電源2から入力電圧Viを供給したことが入力検出部24により検出されるが、内蔵する遅延回路により一定時間内はスイッチ25をオフに維持しているので、これらの電源装置1A,1B,1Cおよびダミー電源11は無負荷状態で起動する。したがって、小さな容量の入力電源2でも、各電源装置1A,1B,1Cとダミー電源11を確実に起動できる。このときの出力電流Ioと合計出力電圧Voとの関係は、図2に示す動作点P1の位置にある。
【0015】
各電源装置1A,1B,1Cとダミー電源11が起動してから一定時間が経過すると、入力検出部24はスイッチ25をオフからオンに切換える。すると、各電源装置1A,1B,1Cとダミー電源11からの合計出力電圧Voが、入力電源2からの入力電圧Viよりも僅かに高くなっているので、各電源装置1A,1B,1Cとダミー電源11からも自身の入力側に対し電力供給が行われる。この場合、合計出力電圧Voは各電源装置1A,1B,1Cとダミー電源11の出力電圧安定化動作により略一定の値に保たれるが、出力電流Ioは零(無負荷状態)から各電源装置1A,1B,1Cの定格出力電流と同じ値にまで増加する。すなわち、図2に示すように、出力電流Ioと合計出力電圧Voとの関係は、動作点P1から動作点P2に移行する。出力電流Ioがダミー電源11の過電流保護回路21による過電流保護設定値に達すると、そこで制限されてそれ以上流れなくなり、各電源装置1A,1B,1Cは全負荷状態での運転が継続する。したがって、各電源装置1A,1B,1Cの出力電力を入力側にフィードバックさせることで、従来よりも容量の小さな入力電源2で、各電源装置1A,1B,1Cのエージング試験を行なうことが可能になると共に、従来の負荷装置を各電源装置1A,1B,1C毎に接続する必要もない。
【0016】
以上のように上記実施例によれば、複数の電源装置1A,1B,1Cをエージング試験する電源エージング試験装置において、出力電流Ioを所定値に制限する電流制限手段としての過電流保護回路21を備えたダミー電源11と、電源装置1A,1B,1Cおよびダミー電源11の入力側に共通の入力電圧Viを供給する入力電源2とを備え、電源装置1A,1B,1Cとダミー電源11の出力側を直列接続して得られる合計出力電圧Voを、この電源装置1A,1B,1Cとダミー電源11の入力側にフィードバックさせると共に、ダミー電源11は、電源装置1A,1B,1Cとダミー電源11から共通して送り出される出力電流Ioが、電源装置1A,1B,1Cとダミー電源11の入力側に流れ込むように、合計出力電圧Voを調整する構成を有している。
【0017】
このようにすると、電源装置1A,1B,1Cとダミー電源11から共通して送り出される出力電流Ioがフィードバックされて、電源装置1A,1B,1Cとダミー電源11の入力側に流れ込むと共に、その電流値が過電流保護回路21により所定値に制限される。そのため、各電源装置1A,1B,1Cは、出力電流Ioをある程度流した状態でのエージング試験を、負荷装置なしに行なうことが可能になる。しかも、電源装置1A,1B,1Cとダミー電源11の出力電力がフィードバックされるため、その分だけ入力電源2の容量を小さくできる。こうして、出力電流Ioを有効に利用しつつも、少ない容量の入力電源2によって、電源装置1A,1B,1Cのエージング試験を行なうことが可能になる。
【0018】
なお、エージング試験を行う電源装置1A,1B,1Cの数は一つでもよい。また、本実施例では電流制限手段としてダミー電源11に内蔵する過電流保護回路21を利用したが、ダミー電源11とは独立した電流制限手段を利用してもよい。本実施例のように、各電源装置1A,1B,1Cの定格出力電流に出力電流Ioを制限するように、過電流保護回路21の過電流保護設定値を設定すれば、負荷装置が存在しないにも拘らず、各電源装置1A,1B,1Cを全負荷状態でエージング試験することができる。また、この過電流保護設定値を調整できるように過電流保護回路21を構成すれば、任意の負荷状態でのエージング試験も可能になる。
【0019】
また本実施例では、入力電源2が投入されてから一定時間後に、電源装置1A,1B,1Cとダミー電源11の出力電流Ioを入力側にフィードバックさせる開閉素子としてのスイッチ25を備えている。これにより、入力電源2の投入時に無負荷状態で各電源装置1A,1B,1Cとダミー電源11を起動させることができ、小さな容量の入力電源2でも、各電源装置1A,1B,1Cとダミー電源11を確実に起動できる。
【0020】
本発明は前記実施例に限定されるものではなく、種々の変形実施が可能である。電源装置とダミー電源の内部構成については特に限定されない。
【0021】
【発明の効果】
本発明の電源エージング試験装置によれば、出力電流を有効に利用しつつも、少ない容量の入力電源によって、電源装置のエージング試験を行なうことが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例における電源エージング試験装置の回路図である。
【図2】本発明の第1実施例における理論上の出力電流Ioと合計出力電圧Voとの特性を示した波形図である。
【図3】従来例における電源エージング試験装置の回路図である。
【符号の説明】
1A,1B,1C 電源装置
2 入力電源
11 ダミー電源
21 過電流保護回路(電流制限手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply aging test apparatus suitable for performing an aging test on one or a plurality of power supply apparatuses such as a power module.
[0002]
[Problems to be solved by the invention]
Generally, in this type of power supply device, an aging test is performed in a state where a load current is applied before product shipment, and various inspections for quality assurance are performed. FIG. 3 shows an example of such a conventional power supply aging device. In FIG. 3, 1A, 1B... Is one or more power supply devices to be aged, and 2 is common to each power supply device 1A, 1B. The DC input voltage Vi from the input power supply 2 is supplied to the input terminals 3 and 4 of the power supply devices 1A, 1B. Each of the power supply devices 1A, 1B,... Converts, for example, a DC 48V input voltage Vi applied to the input terminals 3 and 4 into stabilized DC 5V output voltages VoA and VoB, and converts them to output terminals 5 and 6. The aging test is performed in the state where the load currents IoA and IoB are passed. The reason why the aging test is performed by connecting the load device 7 is that components that cannot be subjected to necessary stress appear in the power supply devices 1A, 1B.
[0003]
However, in the above configuration, for example, when performing an aging test on the power supply devices 1A, 1B,... Having a relatively large capacity with an output voltage Vo of 5V and an output current of about 100A, It is necessary to prepare a capacity of about 600 W to 700 W in anticipation of some margin. For this reason, the larger the number of power supply devices 1A, 1B,..., The aging test is, the larger the capacity of the input power supply 2 must be prepared in proportion to the increase in the number of units. Further, each of the power supply devices 1A, 1B,... Requires a test load device 7 and consumes a large amount of power from the load device 7, so that the equipment becomes larger and the load device 7 generates heat. It has a problem that it is converted into a waste and is wasted.
[0004]
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a power supply aging test apparatus capable of performing an aging test of a power supply apparatus with an input power supply having a small capacity while effectively using an output current. And
[0005]
[Means for Solving the Problems]
The power supply aging test apparatus according to claim 1 is a power supply aging test apparatus for performing an aging test on one or a plurality of power supply apparatuses, a dummy power supply including current limiting means for limiting an output current to a predetermined value, and a power supply aging test apparatus from the input power supply. An input detection unit having a delay circuit that switches the switch from OFF to ON after a certain period of time when the input voltage is detected by monitoring the input voltage, and obtained by connecting the power supply device and the output side of the dummy power supply in series the total output voltage, the power supply and is fed back through the switch to the input side of the dummy power supply, the dummy power supply so that the output current from the power supply and the dummy power supply flows into the input side of the power supply device and the dummy power supply In addition, the total output voltage is adjusted. According to a second aspect of the present invention, there is provided a power aging test apparatus having a current limiting means for limiting the current to a value smaller than a current limit value by the overcurrent protection circuit of the power supply apparatus.
[0006]
In this case, the output current that is commonly sent from the power supply to be aged and the dummy power supply is fed back and flows into the input side of the power supply and dummy power supply, and the current value is limited to a predetermined value by the current limiting means. The Therefore, the power supply device can perform an aging test in a state where an output current flows to some extent without a load device. In addition, since the output power of the power supply device and the dummy power supply is fed back, the capacity of the input power supply can be reduced accordingly.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same parts as those in FIG. 3 shown in the conventional example are denoted by the same reference numerals, and detailed description of common parts is omitted because it is duplicated.
[0008]
In the circuit diagram of FIG. 1 showing the overall configuration of the power supply aging test apparatus, 1A, 1B, 1C... Are one or more power supply apparatuses to be aged, and 2 is an input power supply for supplying a DC input voltage Vi. Each of the power supply devices 1A, 1B, 1C... Has a function of supplying stabilized output voltages VoA, VoB, VoC..., But the same voltage (input voltage Vi or total output voltage Vo) is applied to the input terminals 3 and 4. Are selected, and the individual power supply devices 1A, 1B, 1C... Can be converted to output voltages VoA, VoB, VoC... Lower than the voltages applied to the input terminals 3, 4. As an example, in this embodiment, three power supply devices 1A, 1B, and 1C having a DC voltage of 48V applied to the input terminals 3 and 4 and an output voltage VoA, VoB, and VoC rated of DC 12V are selected. Moreover, each power supply device 1A, 1B, 1C ... is provided with the overcurrent protection circuit 8 of the same characteristic. The overcurrent protection circuit 8 protects the internal circuit by limiting the output current Io from its output terminals 5 and 6 when it is in an overcurrent state.
[0009]
11 is a dummy power supply for adjustment that is prepared separately from each of the power supply apparatuses 1A, 1B, and 1C and supplies a stabilized output voltage Vo ′. The input side of the dummy power supply 11 is connected in parallel with the other power supply apparatuses 1A, 1B, and 1C, and the same voltage as that of the power supply apparatuses 1A, 1B, and 1C is applied between the input terminals 13 and 14. On the other hand, the output side of each power supply device 1A, 1B, 1C and the dummy power supply 11 is connected in series, the output voltage Vo ′ of the dummy power supply 11 obtained from the output terminals 15 and 16, and the other power supply devices 1A, 1B. The total output voltage Vo (= Vo '+ VoA + VoB + VoC) obtained by adding the output voltages VoA, VoB, and VoC obtained from the output terminals 5 and 6 of 1C is the input side of each power supply device 1A, 1B, 1C and the dummy power supply 11 It is configured to be fed back. The total output voltage Vo is slightly higher than the input voltage Vi from the input power supply 2, that is, the output current Io flows into the input side of each power supply device 1 A, 1 B, 1 C and the dummy power supply 11. The dummy power supply 11 has a function of adjusting its total output voltage Vo by subtracting its output voltage Vo ′. Incidentally, in this embodiment, the dummy power supply 11 is selected such that the input voltage Vi from the input power supply 2 is less than DC 48V and the output voltage Vo ′ is DC 12V (the total output voltage Vo is DC 48V). .
[0010]
The dummy power supply 11 includes an overcurrent protection circuit 21 that limits the output current Io and protects the internal circuit when the output current Io from the output terminals 15 and 16 is in an overcurrent state. The overcurrent protection circuit 21 of the dummy power supply 11 has an overcurrent protection characteristic different from that of the overcurrent protection circuit 8 of each of the power supply devices 1A, 1B, and 1C that performs the aging test. The point) is set to the current value of each power supply device 1A, 1B, 1C (usually the rated output current of each power supply device 1A, 1B, 1C). On the other hand, the overcurrent protection circuit 8 of each power supply device 1A, 1B, 1C has its overcurrent protection set value normally set within the range of 105% to 150% of the rated output current. Since the dummy power supply 11 and the output side of each power supply device 1A, 1B, 1C are connected in series, the overcurrent protection circuit 21 of the dummy power supply 11 having a small overcurrent protection setting value operates first when the output current Io increases. Thus, the output current Io is limited. In this way, the dummy power supply 11 controls the output current Io from each of the power supply devices 1A, 1B, and 1C to a desired current value set by the overcurrent protection setting value of the overcurrent protection circuit 21, and at the same time, the power supplies connected in series. The total output voltage Vo of the devices 1A, 1B, 1C and the dummy power supply 11 is controlled so as to be substantially equal to the input voltage Vi from the input power supply 2, and the input side of the power supplies 1A, 1B, 1C and the dummy power supply 11 is controlled. It has a function to feed back.
[0011]
An input detection unit 24 monitors the input voltage Vi from the input power supply 2 and detects the input power supply 2 being turned on. Reference numeral 25 denotes a switch as an opening / closing element inserted and connected to one of the total output voltage supply lines for supplying the total output voltage Vo to the input side of the power supply devices 1A, 1B, 1C and the dummy power supply 11. The input detection unit 24 includes a delay circuit (not shown), and when the input power supply 2 is detected, the input detection unit 24 switches the switch 25 from OFF to ON after a predetermined time set by the delay circuit. As described above, the start-up circuit including the delay circuit composed of the input detection unit 24 and the switch 25 adds up the input side of the power supply devices 1A, 1B, 1C and the dummy power supply 11 after a certain time from the input power supply 2 being turned on. The reason for connecting to the output voltage supply line is to start each power supply device 1A, 1B, 1C and the dummy power supply 11 in a no-load state when the input power supply 2 is turned on. If there is no delay circuit, the power supply devices 1A, 1B, 1C and the dummy power supply 11 are fully loaded at the same time as the input power supply 2 is turned on, and the input power supply 2 can be activated in this full load condition. Large capacity is required. In other words, the capacity required for the input power supply 2 in this embodiment is the power required to start each power supply device 1A, 1B, 1C and the dummy power supply 11 with no load, or each power supply device 1A, at full load. The power consumed by 1B, 1C or the dummy power supply 11 is the larger one.
[0012]
Next, the operation of the above configuration will be described with reference to the waveform diagram of FIG. FIG. 2 shows characteristics of the theoretical output current Io and the total output voltage Vo when the voltage drop of the wire is ignored.
[0013]
Adjustment of the dummy power supply 11 is required in advance when aging each of the power supply apparatuses 1A, 1B, and 1C. Specifically, the output voltage Vo ′ of the dummy power supply 11 is set so that the total output voltage value Vo when the power supply devices 1A, 1B, 1C and the dummy power supply 11 are connected in series is slightly higher than the input voltage Vi. adjust. This is done by selecting a dummy power supply 11 that matches the output voltage Vo ′ from among the plurality of dummy power supplies 11 and utilizing the output voltage variable function of the dummy power supply 11. The overcurrent protection circuit 21 of the selected dummy power supply 11 also adjusts the overcurrent protection set value to the rated output current of each power supply device 1A, 1B, 1C.
[0014]
When the input power supply 2 is turned on after such adjustment is completed, the input voltage Vi from the input power supply 2 is commonly applied to the input side of each power supply device 1A, 1B, 1C and the dummy power supply 11. At the same time, the input detection unit 24 detects that the input voltage Vi has been supplied from the input power supply 2. However, since the switch 25 is kept off for a certain time by the built-in delay circuit, these power supply devices 1A and 1B , 1C and the dummy power source 11 are started in a no-load state. Therefore, the power supply devices 1A, 1B, 1C and the dummy power supply 11 can be reliably activated even with an input power supply 2 having a small capacity. The relationship between the output current Io and the total output voltage Vo at this time is at the operating point P1 shown in FIG.
[0015]
When a predetermined time elapses after the power supply devices 1A, 1B, 1C and the dummy power supply 11 are activated, the input detection unit 24 switches the switch 25 from OFF to ON. Then, since the total output voltage Vo from each power supply device 1A, 1B, 1C and the dummy power supply 11 is slightly higher than the input voltage Vi from the input power supply 2, each power supply device 1A, 1B, 1C and dummy The power supply 11 also supplies power to its own input side. In this case, the total output voltage Vo is maintained at a substantially constant value by the output voltage stabilization operation of each power supply device 1A, 1B, 1C and the dummy power supply 11, but the output current Io is zero (no load state) from each power supply. It increases to the same value as the rated output current of the devices 1A, 1B, 1C. That is, as shown in FIG. 2, the relationship between the output current Io and the total output voltage Vo shifts from the operating point P1 to the operating point P2. When the output current Io reaches the overcurrent protection set value by the overcurrent protection circuit 21 of the dummy power supply 11, the output current Io is restricted and no longer flows, and each power supply device 1A, 1B, 1C continues to operate in the full load state. . Therefore, by feeding back the output power of each power supply device 1A, 1B, 1C to the input side, it becomes possible to perform the aging test of each power supply device 1A, 1B, 1C with the input power supply 2 having a smaller capacity than the conventional one. In addition, it is not necessary to connect a conventional load device for each power supply 1A, 1B, 1C.
[0016]
As described above, according to the above-described embodiment, in the power supply aging test apparatus for performing the aging test on the plurality of power supply apparatuses 1A, 1B, and 1C, the overcurrent protection circuit 21 as the current limiting means for limiting the output current Io to a predetermined value is provided. A dummy power source 11 provided; and an input power source 2 for supplying a common input voltage Vi to the input side of the power source devices 1A, 1B, 1C and the dummy power source 11, and outputs of the power source devices 1A, 1B, 1C and the dummy power source 11 The total output voltage Vo obtained by connecting the sides in series is fed back to the input side of the power supply devices 1A, 1B, 1C and the dummy power supply 11, and the dummy power supply 11 is connected to the power supply devices 1A, 1B, 1C and the dummy power supply 11 The total output voltage Vo is adjusted so that the output current Io sent in common from the power supply devices 1A, 1B, 1C and the dummy power supply 11 flows into the input side. .
[0017]
In this way, the output current Io sent in common from the power supply devices 1A, 1B, 1C and the dummy power supply 11 is fed back and flows into the input side of the power supply devices 1A, 1B, 1C and the dummy power supply 11, and the current The value is limited to a predetermined value by the overcurrent protection circuit 21. Therefore, each power supply device 1A, 1B, 1C can perform an aging test in a state where the output current Io flows to some extent without a load device. In addition, since the output power of the power supply devices 1A, 1B, 1C and the dummy power supply 11 is fed back, the capacity of the input power supply 2 can be reduced accordingly. Thus, the aging test of the power supply devices 1A, 1B, and 1C can be performed with the input power supply 2 having a small capacity while effectively using the output current Io.
[0018]
Note that the number of power supply devices 1A, 1B, and 1C for performing the aging test may be one. In this embodiment, the overcurrent protection circuit 21 built in the dummy power supply 11 is used as the current limiting means. However, a current limiting means independent of the dummy power supply 11 may be used. If the overcurrent protection set value of the overcurrent protection circuit 21 is set so as to limit the output current Io to the rated output current of each power supply device 1A, 1B, 1C as in this embodiment, there is no load device. Nevertheless, it is possible to perform an aging test on each power supply device 1A, 1B, 1C in a full load state. Further, if the overcurrent protection circuit 21 is configured so that the overcurrent protection set value can be adjusted, an aging test can be performed in an arbitrary load state.
[0019]
Further, in this embodiment, a switch 25 is provided as an opening / closing element that feeds back the output current Io of the power supply devices 1A, 1B, 1C and the dummy power supply 11 to the input side after a certain time from the input power supply 2 being turned on. As a result, when the input power source 2 is turned on, the power source devices 1A, 1B, 1C and the dummy power source 11 can be activated in a no-load state. The power supply 11 can be started reliably.
[0020]
The present invention is not limited to the above-described embodiments, and various modifications can be made. The internal configuration of the power supply device and the dummy power supply is not particularly limited.
[0021]
【The invention's effect】
According to the power supply aging test apparatus of the present invention, it is possible to perform an aging test of a power supply apparatus with an input power supply having a small capacity while effectively using an output current.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a power source aging test apparatus according to an embodiment of the present invention.
FIG. 2 is a waveform diagram showing characteristics of a theoretical output current Io and a total output voltage Vo in the first embodiment of the present invention.
FIG. 3 is a circuit diagram of a power source aging test apparatus in a conventional example.
[Explanation of symbols]
1A, 1B, 1C Power supply 2 Input power supply
11 Dummy power supply
21 Overcurrent protection circuit (current limiting means)

Claims (2)

一乃至複数の電源装置をエージング試験する電源エージング試験装置において、出力電流を所定値に制限する電流制限手段を備えたダミー電源と、前記電源装置およびダミー電源の入力側に共通の入力電圧を供給する入力電源と、前記入力電源からの入力電圧を監視して入力電源の投入を検出すると一定時間後にスイッチをオフからオンに切換える遅延回路を有する入力検出部とを備え、前記電源装置とダミー電源の出力側を直列接続して得られる合計出力電圧を、前記電源装置とダミー電源の入力側に前記スイッチを介してフィードバックさせ、前記ダミー電源は前記電源装置とダミー電源からの出力電流が該電源装置とダミー電源の入力側に流れ込むように、前記合計出力電圧を調整する構成を有していることを特徴とする電源エージング試験装置。In a power supply aging test apparatus for performing an aging test on one or a plurality of power supply apparatuses, a dummy power supply having a current limiting means for limiting an output current to a predetermined value and a common input voltage are supplied to the input sides of the power supply apparatus and the dummy power supply And an input detection unit having a delay circuit that switches the switch from OFF to ON after a predetermined time when the input power supply is detected by monitoring the input voltage from the input power supply. the the output-side total output voltage obtained by serially connected, is fed back through the switch to the input side of the power supply device and the dummy power supply, the dummy power supply power supply output current from the power supply and the dummy power supply A power supply agent having a configuration for adjusting the total output voltage so as to flow into an input side of the apparatus and the dummy power supply Test equipment. 前記電流制限手段は、前記電源装置の過電流保護回路による電流制限値より小さな電流に制限することを特徴とする請求項1記載の電源エージング試験装置。2. The power aging test apparatus according to claim 1, wherein the current limiting means limits a current smaller than a current limit value by an overcurrent protection circuit of the power supply apparatus.
JP2002142805A 2002-05-17 2002-05-17 Power supply aging test equipment Expired - Fee Related JP4235936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142805A JP4235936B2 (en) 2002-05-17 2002-05-17 Power supply aging test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142805A JP4235936B2 (en) 2002-05-17 2002-05-17 Power supply aging test equipment

Publications (2)

Publication Number Publication Date
JP2003337160A JP2003337160A (en) 2003-11-28
JP4235936B2 true JP4235936B2 (en) 2009-03-11

Family

ID=29702982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142805A Expired - Fee Related JP4235936B2 (en) 2002-05-17 2002-05-17 Power supply aging test equipment

Country Status (1)

Country Link
JP (1) JP4235936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709493A4 (en) * 2017-11-10 2020-12-23 Mitsubishi Electric Corporation Test system and test method for power conversion device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069470A1 (en) * 2004-01-14 2005-07-28 Euicheol Nho Sag-swell and outage generator for performance test of custom power devices
CN100369345C (en) * 2006-05-26 2008-02-13 华北电力大学 Series-type voltage quality disturbing generating device
HK1147389A2 (en) * 2010-06-04 2011-08-05 Wong Hon Ki A power supply burn-in system
CN106199295B (en) * 2016-09-05 2023-08-22 东莞市旺达富自动化设备有限公司 Tandem quick-charging aging control system
JP6456578B1 (en) * 2017-11-10 2019-01-23 三菱電機株式会社 Test system and test method for power converter
CN111025062A (en) * 2019-12-17 2020-04-17 特变电工西安电气科技有限公司 SVG power module test system and method
CN112965003B (en) * 2021-02-01 2024-04-30 佛山市博顿光电科技有限公司 Power supply aging load circuit
CN115700392B (en) * 2022-10-28 2023-06-02 深圳市恒运昌真空技术有限公司 Power supply aging test circuit and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709493A4 (en) * 2017-11-10 2020-12-23 Mitsubishi Electric Corporation Test system and test method for power conversion device
US11428748B2 (en) 2017-11-10 2022-08-30 Mitsubishi Electric Corporation System and method for testing power conversion device

Also Published As

Publication number Publication date
JP2003337160A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
EP3301772B1 (en) Power supply including logic circuit
JP7030993B2 (en) Connection of battery system to distribution bus
US7170194B2 (en) Configurable multiple power source system
JP5121850B2 (en) DC high power distribution assembly
US20110304206A1 (en) Dc-dc switching cell modules for on-board power systems
TWI530068B (en) Systems and methods for power management
JP4235936B2 (en) Power supply aging test equipment
TWI385497B (en) Method for starting a voltage-mode switching power supply into a biased load
JP2011030426A (en) Compensated droop method for paralleling of power supplies (c-droop method)
TW201407919A (en) Power system with combination of active current sharing and droop current sharing and power system assembly using the same
US20150227154A1 (en) Controller
JPH08111934A (en) Power supply apparatus
JP2004336972A (en) Power supply and power supply control device
US20090001813A1 (en) Configurable input high power dc-dc converter
JP2009075882A (en) Variable voltage regulator
US20090091191A1 (en) Electric power supply system
US9148138B2 (en) Connection apparatus
JP5259941B2 (en) Inverter device and air conditioner
JP7255249B2 (en) Power supply circuit and electronic device
US8937819B2 (en) Integrated control circuit of setting brown-in voltage and compensating output power and method for operating the same
JP2004185406A (en) Excess current protecting apparatus
EP3410591B1 (en) Energy supply system and energy supply method
JP5793903B2 (en) Electronic equipment
JP5196986B2 (en) Power supply
JP7179129B1 (en) Power supply control method and power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees