JP4235505B2 - Quenching method of inner surface of outer ring of constant velocity universal joint - Google Patents

Quenching method of inner surface of outer ring of constant velocity universal joint Download PDF

Info

Publication number
JP4235505B2
JP4235505B2 JP2003206718A JP2003206718A JP4235505B2 JP 4235505 B2 JP4235505 B2 JP 4235505B2 JP 2003206718 A JP2003206718 A JP 2003206718A JP 2003206718 A JP2003206718 A JP 2003206718A JP 4235505 B2 JP4235505 B2 JP 4235505B2
Authority
JP
Japan
Prior art keywords
quenching
section
outer ring
universal joint
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206718A
Other languages
Japanese (ja)
Other versions
JP2005054213A (en
Inventor
嘉昌 田中
武宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2003206718A priority Critical patent/JP4235505B2/en
Publication of JP2005054213A publication Critical patent/JP2005054213A/en
Application granted granted Critical
Publication of JP4235505B2 publication Critical patent/JP4235505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、底つき筒体の筒部の内表面の焼入れ、たとえば自動車の動力伝達機構に使用される等速自在継手の外輪の内表面の焼入れに関するものである。
【0002】
【従来の技術】
自動車の変速機から車輪に至る動力伝達機構においては、操舵装置や車輪の懸架装置の動きに追従して動力を伝達するために等速自在継手が使用されている。等速自在継手は内輪と外輪との間でボールが転動するようになっているが、外輪は例えば図1に示すような外観になっている。この外輪1の内面2は必要な表面硬さを得るため高周波による表面焼入れが行なわれる。
【0003】
図1に示したような筒状の等速自在継手外輪の場合、すなわち軸方向で断面形状が変化しない場合は高周波焼入れは通常は図2に示すような移動焼入れによって行なわれる。すなわち図2は等速自在継手外輪の軸方向に平行な断面を示しているが、焼入れすべき内面2に沿った形状のコイル3を焼入れすべき区間の下端から上方に向かって矢印のように順次一定速度で移動して加熱を行なう。そして散水装置4がコイルの下側に隣接した状態で移動するようになっており、加熱された部分に順次水を掛けて焼入れする。なおボールが転動するのは等速自在継手外輪の内面全体ではなくレース部だけであるが、上記のようなコイルの配置のため焼入れは内表面の全周に亘ってなされる。
【0004】
本発明の焼入れ方法が対象とする底つき筒体は上記のような等速自在継手外輪を典型的な例とするものであり、以下の説明は原則として等速自在継手外輪を対象として行なう。なお等速自在継手外輪の例でも見るように、本発明でいうところの底つき筒体において底部は必ずしも塞がった底を形成している必要は無く、筒部の一端の周囲と連続して底面が形成されておれば、その底面の中央部に穴が開いていたり、さらに小径の円筒が接続していたりしても良い。
【0005】
このようにして等速自在継手外輪のレース部の表面を通常の方法で移動焼入れした場合、側面の周方向位置によって焼入れ深さは異なるが、軸方向の焼入れ区間全長にわたって表面から一定の深さの硬化層が生ずる。このとき焼入れ歪が通常必ず発生するが、軸方向の位置によって変形量が相違するような複雑な変形が発生することが多い。たとえば図6は従来から通常行なわれているの移動焼入れの方法で行なった場合の変形の例を示すグラフであって、横軸は焼入れ前後の寸法差すなわち焼入れによる変形量、縦軸は底面と反対側の端部からの軸方向位置すなわち図2における下端からの距離を示している。測定個所は図5に示す等速自在継手外輪の軸方向と直角な断面図(図1のものとは形状がやや異なっている)において3つある溝5における対向する面間の距離、すなわちトラック径6について測定し、3つの溝の測定値を平均している。これを見ると上部では変形量がややマイナスすなわち縮んでいるが、全体的には下方に行くに従ってプラスすなわち広がる形に変形している。
【0006】
【発明が解決しようとする課題】
上記のような表面焼入れのさいに生ずる材料の変形については、大きい場合には研磨量を大きくして修正しなければならないなど、使用にさいして障害になるので制限を設けている。現在行なわれている表面焼入れの方法においては、変形量が制限の限界ぎりぎりのことが多く、個々の材料のばらつきによっては変形が制限量を超えることもある。したがって本発明においては等速自在継手外輪の内面の表面焼入れなどにおいて、焼入れに伴う変形をできるだけ小さくすることを目的とする。
【0007】
【課題を解決するための手段】
本発明は前記課題を解決するものであって、高周波加熱コイルと冷却手段とを軸方向に移動しつつ加熱して水冷する移動焼入れによる等速自在継手の外輪の内表面の焼入れにおいて、焼入れする区間のうち、等速自在継手の外輪の底面側の端から焼入れする区間の全長に対して10%以上50%までの長さの区間における前記移動の速度を、残りの長さの区間における移動の速度より20%以上大きくすると共に、前記移動の速度の変化に対応して高周波加熱コイルへの供給電力を変化させることにより、焼入れ硬化層の深さを焼入れする区間内において同じに維持することを特徴とする等速自在継手の外輪の内表面の焼入れ方法である。
【0008】
【発明の実施の形態】
本発明者は等速自在継手外輪などの底つき筒体の筒部の内表面を移動焼入れするときの条件を変えて種々試験し、焼入れに伴う変形をできるだけ小さくすることを検討した。焼入れにより歪が発生する機構としては素材の残留応力による歪、焼入れ時に熱応力による歪、変態応力による歪が考えられる。残留応力による歪に関しては、先に例として示した等速自在継手外輪は鍛造によって製造されたものであるから、鍛造によって材料が延伸された時の残留応力が内在している。これが表面焼入れのときの温度上昇によってその部分の残留応力が開放され、材料内部の応力のバランスが変化して歪を発生させる。
【0009】
熱応力による歪については、たとえば薄い板の全厚を加熱して冷却するような場合であれば、加熱時に自由に膨張し、冷却時に自由に収縮するので熱応力による歪は発生しない。しかし等速自在継手外輪の内表面の焼入れにおいては焼入れ温度への加熱により内面は膨張し内径が広がる変形をするが、高温になると材料は軟化して強度が無いので表面以外の部分による拘束力のため熱膨張に見合う量の変形は生じない。しかし冷却されると熱膨張すべきであった分も含めての収縮が起きるので最終的には内面寸法が縮まる変形をする。また変態応力による歪については、焼入れされて内面がマルテンサイト変態すると体積が膨張するので内面寸法が広がる変形をする。
【0010】
実際の焼入れによる歪は上記の残留応力、熱応力、変態による歪が合成された状態で発生することになる。そこで本発明が対象とする等速自在継手の外輪などの内表面の焼入れにおいて、これらの歪発生原因がどのように関わっているかが問題になるが、残留応力の開放による歪の影響が大きいと考えられる。すなわち図6に焼入れによる変形量を示した例の場合、焼入れ条件そのものは移動焼入れされた区間全体に亘って同じであるから、熱応力、変態による歪は焼入れされた区間に全体に亘って同様に働いている筈である。しかし図6のように焼入れ区間の位置によって寸法が広がる個所と縮む個所とがあるのは残留応力による歪の影響が大きいものと考えられる。残留応力による歪が膨張方向に働くか収縮方向に働くかは、焼入れ区間の位置によって変わることがあり得るからである。さらに歪の大きさに関しては素材の形態による拘束力の影響が大きいと考えられる。すなわち等速自在継手外輪などの底つき筒体の筒部の焼入れにおいては、底部による拘束力が働くので同じ歪応力が働いても底部に近い個所では変形量が小さくなる。
【0011】
そこで本発明者は等速自在継手外輪の内表面の焼入れのさい、加熱条件によって歪の発生がどのように変化するか種々調査した。その結果、加熱条件としてはコイルの移動速度が影響を及ぼすことが判明した。図7は加熱コイルの移動の速度を図6より大きくしたときの変形量を示したものであって、測定個所は図6の場合と同じである。この場合移動速度を大きくすることにより距離当たりの加熱電力が減少するので、高周波加熱コイルへの供給電力を増大して焼入れ硬化層の厚さを同等に維持した。この場合は歪のパターンすなわち軸方向位置による膨張変形、収縮変形の状況は基本的に図6の場合と変わり無いが、その程度が変化し変形量が全体的に減少している。一方改めて図示しないが、加熱コイルの移動の速度を図6の場合より小さくした場合は、軸方向位置による膨張変形、収縮変形の状況は図6の場合と変わり無いが変形量は全体に増大する。
【0012】
ここでさらに焼入れする区間内で加熱コイルの移動速度を変化させることを試み、歪の発生状況について調査した。図4は先に示した図6の場合において、焼入れする区間のうち底面に至る一部分の区間7における移動の速度を大きくしたときの変形量を示したものであって、測定個所は図6の場合と同じである。この場合移動速度を大きくした区間7においては距離当たりの加熱電力が減少するので、高周波加熱コイルへの供給電力を増大して焼入れ硬化層の深さを焼入れする全区間内において同等に維持した。図4の例で注目されるのは、移動速度を大きくした底面に近い区間7では以前に収縮していたのが膨張すなわちプラスの変形に転じていることである。このようにコイルの移動の速度を焼入れする区間内の位置に対応して変化させると、焼入れする区間全体で変えた場合と異なり変形のパターンすなわち膨張、収縮の位置関係が変化することが判明した。
【0013】
上記のようなことから本発明は、加熱コイルの移動の速度を焼入れする区間内の位置に対応して変化させると共に、前記移動の速度の変化に対応して高周波加熱コイルへの供給電力を変化させることにより、焼入れ硬化層の厚さを焼入れする区間内において同等に維持するものである。これにより底つき筒体に筒部の内表面の移動焼入れにおいて、歪の発生状況を有効に変化させて全体の歪量を小さくできる。このような加熱コイルの移動の速度を変えると区間位置における膨張、収縮のパターンが変化する理由であるが、残留応力の開放状況の変化が関係していると推定される。焼入れする区間全体についてコイルの移動速度を変えても区間位置における膨張、収縮のパターンがあまり変化せず、たとえば収縮していた個所がコイルの移動速度の変化により膨張に転ずるといったことがないことから、先に述べたように熱歪や変態歪に対するコイルの移動速度の影響は比較的少ないものと考えられる。すなわち焼入れする区間全体に亘って熱歪や変態歪の比率が変化した場合、焼入れする区間全体に亘って膨張か収縮のいずれかの傾向が一様に加重されて現われる筈である。しかし現実にはそうならないことから、残留歪の影響が大きいと考えられる。
【0014】
そこで焼入れ区間のうちの一部の区間についてコイルの移動速度を速くすると、この区間では残留応力の開放が少なくなるので、その区間における歪の発生自体が少なくなる。このため図6に示したようにこの区間8が収縮歪の発生傾向にあるとき、焼入れによる収縮が少なくなる。このため隣接する膨張歪の個所に引きずられて図4に示した区間7のように最終的にはやや膨張するようになると考えられる。また本発明は焼入れの対象物として底つき筒体としているが、底の部分は隣接する円筒部分に拘束力を及ぼし、焼入れ歪を減少するように作用する。また底つき筒体は通常は鍛造によって製造されるが、複雑な変形過程を経ることになるので残留応力も円筒部分の長さ方向について一様でない。本発明はこのような素材を焼入れするのに有効な技術である。
【0015】
ところで上記のように焼入れ区間のうちの一部の個所でコイルの移動速度を速くすると、その個所では移動距離当たりの投入される電力量が減少する。このためそのままではその個所の焼入れ深さが浅くなる。これを補償するためには、コイルの移動速度の変化に対応して、高周波加熱コイルへの供給電力を変化させることにより移動距離当たりの加熱エネルギーを同等に維持すれば良い。この場合においてコイルの電力の変化による歪の発生状況の変化は少ない。したがって焼入れ区間のうちの一部の個所でコイルの移動速度を変化させることによって歪の発生状況を変化させつつ、これによる焼入れ硬化層の深さの変化を回避できる。
【0016】
上記のように加熱コイルの移動の速度の変化に対応して高周波加熱コイルへの供給電力を変化させることにより焼入れ硬化層の深さは同じに維持するにも拘らず、歪の発生状況が加熱コイルの移動の速度に依存する理由であるが、熱サイクルの時間の要因が歪の発生に大きく影響するためと考えられる。すなわち加熱された材料はコイルと一緒に移動する水噴射ノズルにより冷却されるが、コイルの移動速度が遅くなれば冷却開始の時間も遅くなるため、その間に熱拡散が進行し広い範囲に熱が及ぶことになる。これに対しコイルの電力を大きくした場合には急速に焼入れ温度に加熱されてその温度範囲も広がり焼入れ硬化層の深さも大きくなるが、冷却開始の時間は早いので熱拡散の範囲はコイルの移動速度を遅くした場合より狭くなる。このため加熱コイルの移動距離当たりの投入電力が増大してもコイルの電力による場合は歪の量が増大しないものと考えられる。つまり材料内において焼入れ温度よりも低い温度に加熱された部分においても残留応力の開放は進行するため、熱サイクルの時間が長い条件では残留応力の開放がより進行するものと推定される。
【0017】
上記のように加熱コイルの移動の速度と高周波加熱コイルへの供給電力を焼入れする区間内の位置に対応して変化させる具体的な方法であるが、焼入れする区間の全長を2以上に分割し、それぞれの区間において、前記移動の速度と高周波加熱コイルへの供給電力が隣接する区間における移動の速度および供給電力と異なるようにすると良い。先に図4に示した例においては焼入れする区間の全長を2分割しており、筒体の底面側の端から34%の長さの区間における移動の速度を残りの長さの区間における移動の速度より60%大きくしている。等速自在継手外輪等の内表面の焼入れについては、焼入れする区間の全長に対して筒体の底面側の端から10%以上50%の位置で2分割し、底面側の区間の移動速度を残りの長さの区間における移動の速度より20%以上大きくすれば良い。区間の分割位置が底面側から10%以上50%の位置より外れると充分な効果が得られず、また底面側の区間の移動速度を大きくする割合が残りの長さの区間における移動の速度の20%未満では充分な効果が得られない。なお前記移動速度を大きくする割合の上限は2.5倍迄で充分である。なお加熱コイルの移動速度および供給電力の変更は先の例のようには急変させず、連続的に変化させても良い。
【0018】
【実施例】
等速自在継手外輪の内表面の焼入れを行なった。図2に示したよう方法で移動焼入れにより行なったが、焼入れする部分の軸方向の距離は50mmであって、底部と反対側の端部から16mm入った位置から奥の部分について焼入れをした。なお部材の材質はS45Cで、コイル電源の周波数は60kHzである。図5の等速自在継手外輪の横断面において示したトラック径6が表面焼入れによってどのように変化するかを調べたが、図3のグラフは横軸が焼入れ前のトラック径の平均値、縦軸が底面と反対側の端部からの軸方向位置を示している。1つの部材での3つのトラック径間のばらつき、さらには複数の部材間でのばらつきはあるが、傾向はほとんど同じであって図3はこれらの平均値である。これを見ると焼入れ前においても軸方向位置についてトラック径が均等では無く、底部に近い位置ではやや寸法が大きくなっている。
【0019】
先に示した図4は本発明の方法によって焼入れしたときのトラック径の寸法の変化量を部材の軸方向の位置によって示しており、焼入れ後の実寸法は図3に示したような焼入れ前の寸法に図4に示す変化量を加えたものになる。図4の例においては、底面がある側から17mmの区間(焼入れする区間の長さ50mmの34%)のコイルの移動速度を14mm/秒、残りの区間のコイルの移動速度を8.75mm/秒とした(底面がある側の区間の速度が60%増し)。すなわち底面がある側に向かって焼入れを進行するに当たり、移動の速度を途中から速くした。また焼入れ硬化層の深さを硬度450HV以上の範囲とし(焼入れ前の硬度約300HV)、焼入れした全区間において硬化層が表面から1.9mmに維持されるように加熱コイルの電圧を調節した。すなわちコイル移動速度を大きくした区間のコイル電圧が180Vに対し残りの区間のコイル電圧は120Vである。
【0020】
一方、先に示した図6は従来の方法である比較例であって、焼入れしたときのトラック径の寸法の変化量を部材の軸方向の位置によって示している。コイルの移動速度およびコイル電圧は焼入れする全区間に亘って一定で、それぞれ7.5mm/秒、100Vである。部材の種類などその他の条件は図4のものと同じであって、硬化層の深さも同じである。また先に示した図7も比較例であってコイルの移動速度、コイル電圧を全区間に亘って一定のまま変えたものである。すなわちコイルの移動速度およびコイル電圧はそれぞれ12mm/秒、150Vである。その他の条件は図4や図6の場合と同じであって、硬化層の深さも同じである。
【0021】
図4の本発明の例においては表面焼入れによる寸法変化は全区間において膨張方向になっているが、その量の変動は比較的小さい。これに対して図6の比較例においては表面焼入れによる寸法変化は膨張方向の区間と収縮方向の区間とがあり、寸法変化の量とその区間位置による変動が大きい。また図7の比較例においてはコイルの移動速度を全区間で大きくしたため寸法変化の量は小さくなっているが、膨張方向の区間と収縮方向の区間がある点は図6の例と変わり無く、その結果区間位置による寸法変化の量の変動がかなり大きい。
【0022】
【発明の効果】
以上述べたように本発明は等速自在継手外輪など底つき筒体の筒部の内表面を移動焼入れするにあたり、コイルの移動の速度と高周波加熱コイルへの供給電力を焼入れする区間内の位置に対応して変化させることにより、焼入れ硬化層の厚さを焼入れする区間内において同等に維持しつつ、焼入れに伴う変形をできるだけ小さくすることができる。これにより大量生産品において個々の部材間の寸法のばらつきを減少し、寸法修正のための研磨量の減少などにより生産能率を向上できる。
【図面の簡単な説明】
【図1】等速自在継手外輪の外観図
【図2】移動焼入れによる高周波焼入れを説明する断面図
【図3】焼入れ前のトラック径の平均値を示すグラフ
【図4】本発明の方法によって焼入れしたときのトラック径の寸法の変化量を示すグラフ
【図5】等速自在継手外輪の軸方向と直角な断面図
【図6】比較例の方法によって焼入れしたときのトラック径の寸法の変化量を示すグラフ
【図7】比較例の方法によって焼入れしたときのトラック径の寸法の変化量を示すグラフ
【符号の説明】
1 等速自在継手外輪
2 内面
3 コイル
4 散水装置
5 溝
6 トラック径
7、8 区間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to quenching of the inner surface of a cylindrical portion of a bottomed cylinder, for example, quenching of the inner surface of an outer ring of a constant velocity universal joint used in a power transmission mechanism of an automobile.
[0002]
[Prior art]
In a power transmission mechanism from a transmission of a vehicle to a wheel, a constant velocity universal joint is used to transmit power following the movement of a steering device or a suspension device of the wheel. In the constant velocity universal joint, a ball rolls between an inner ring and an outer ring, and the outer ring has an appearance as shown in FIG. The inner surface 2 of the outer ring 1 is subjected to surface hardening by high frequency in order to obtain a required surface hardness.
[0003]
In the case of a cylindrical constant velocity universal joint outer ring as shown in FIG. 1, that is, when the cross-sectional shape does not change in the axial direction, induction hardening is usually performed by moving quenching as shown in FIG. 2 shows a cross section parallel to the axial direction of the outer ring of the constant velocity universal joint, but the coil 3 having a shape along the inner surface 2 to be quenched is as indicated by an arrow upward from the lower end of the section to be quenched. Heating is performed by sequentially moving at a constant speed. The watering device 4 moves in a state adjacent to the lower side of the coil, and the heated portions are sequentially filled with water and quenched. The ball rolls not only on the entire inner surface of the outer ring of the constant velocity universal joint, but only on the race portion. However, due to the arrangement of the coil as described above, quenching is performed over the entire inner surface.
[0004]
The bottomed cylindrical body targeted by the quenching method of the present invention is a typical example of the constant velocity universal joint outer ring as described above, and the following description will be made in principle for the constant velocity universal joint outer ring. In addition, as seen in the example of the constant velocity universal joint outer ring, in the bottomed cylindrical body referred to in the present invention, the bottom portion does not necessarily need to form a closed bottom, and the bottom surface is continuous with the periphery of one end of the cylindrical portion. Is formed, a hole may be formed in the center of the bottom surface, or a small-diameter cylinder may be connected.
[0005]
In this way, when the surface of the race portion of the constant velocity universal joint outer ring is moved and quenched by a normal method, the quenching depth differs depending on the circumferential position of the side surface, but the constant depth from the surface over the entire length of the quenching section in the axial direction. Resulting in a hardened layer. At this time, quenching distortion usually occurs, but complex deformations with different deformation amounts depending on the position in the axial direction often occur. For example, FIG. 6 is a graph showing an example of deformation when the conventional moving quenching method is used, where the horizontal axis is the dimensional difference before and after quenching, that is, the amount of deformation due to quenching, and the vertical axis is the bottom surface. It shows the axial position from the opposite end, that is, the distance from the lower end in FIG. The measurement point is the distance between the opposing surfaces of the three grooves 5 in the cross-sectional view perpendicular to the axial direction of the outer ring of the constant velocity universal joint shown in FIG. 5 (the shape is slightly different from that of FIG. 1), that is, the track The diameter 6 is measured, and the measured values of the three grooves are averaged. Looking at this, the amount of deformation at the top is slightly negative, that is, contracted, but as a whole, it is deformed to become positive, that is, widen as it goes downward.
[0006]
[Problems to be solved by the invention]
The deformation of the material that occurs during the surface hardening as described above is limited because it becomes an obstacle in use, such as if the amount is large, the amount of polishing must be increased and corrected. In the method of surface hardening currently performed, the deformation amount is almost the limit of the limit, and depending on the variation of individual materials, the deformation may exceed the limit amount. Therefore, an object of the present invention is to minimize the deformation accompanying quenching in the surface quenching of the inner surface of the constant velocity universal joint outer ring.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, the hardening of the inner surface of the moving quenching by the constant velocity universal joint outer ring water cooling and heating while moving the high-frequency heating coil cooling means in the axial direction, quenching Among the sections, the moving speed in the section having a length of 10% to 50% with respect to the entire length of the section to be quenched from the end of the bottom surface of the outer ring of the constant velocity universal joint is moved in the remaining length section. The depth of the hardened and hardened layer should be kept the same in the quenching section by changing the power supplied to the high-frequency heating coil in response to the change in the speed of movement, and at least 20% larger than the speed of And quenching the inner surface of the outer ring of the constant velocity universal joint .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor conducted various tests while changing the conditions when moving and quenching the inner surface of the cylindrical portion of the bottomed cylindrical body such as the outer ring of the constant velocity universal joint, and studied to minimize the deformation caused by the quenching. Possible mechanisms for generating strain by quenching include strain due to residual stress of the material, strain due to thermal stress during quenching, and strain due to transformation stress. Regarding the strain due to the residual stress, the constant velocity universal joint outer ring described above as an example is manufactured by forging, and therefore the residual stress when the material is stretched by forging is inherent. This is because the residual stress in the portion is released due to the temperature rise during the surface quenching, and the balance of the stress inside the material changes to generate strain.
[0009]
As for the strain due to thermal stress, for example, if the entire thickness of a thin plate is heated and cooled, it expands freely during heating and contracts freely during cooling, so that strain due to thermal stress does not occur. However, in the quenching of the inner surface of the constant velocity universal joint outer ring, the inner surface expands due to heating to the quenching temperature and the inner diameter expands, but at higher temperatures, the material softens and does not have strength, so the restraining force by parts other than the surface Therefore, the deformation corresponding to the thermal expansion does not occur. However, when it is cooled, the shrinkage including the amount that should have been thermally expanded occurs, so that the inner surface dimension is finally reduced. As for the strain due to transformation stress, when the inner surface is martensitic transformed by quenching, the volume expands, so that the inner surface dimension is expanded.
[0010]
Strain due to actual quenching occurs in a state where the above-described residual stress, thermal stress, and strain due to transformation are combined. Therefore, in the quenching of the inner surface such as the outer ring of the constant velocity universal joint which is the subject of the present invention, it becomes a problem how these strains are related, but if the influence of strain due to release of residual stress is large, Conceivable. That is, in the example shown in FIG. 6, the amount of deformation due to quenching is the same for the entire quenching condition, so the thermal stress and distortion due to transformation are the same throughout the quenched zone.筈 who is working for. However, it is considered that the influence of the strain due to the residual stress is large because there are a portion where the size is expanded and a portion where the size is shrunk depending on the position of the quenching section as shown in FIG. This is because whether the strain due to the residual stress acts in the expansion direction or the shrinkage direction may vary depending on the position of the quenching section. Furthermore, regarding the magnitude of the distortion, it is considered that the influence of the restraining force due to the form of the material is large. That is, in quenching of a cylindrical portion of a bottomed cylindrical body such as a constant velocity universal joint outer ring, a restraining force is exerted by the bottom portion. Therefore, even when the same strain stress is applied, the deformation amount is small at a location near the bottom portion.
[0011]
Therefore, the present inventor conducted various investigations on how the generation of strain changes depending on heating conditions during quenching of the inner surface of the constant velocity universal joint outer ring. As a result, it has been found that the moving speed of the coil affects the heating conditions. FIG. 7 shows the amount of deformation when the moving speed of the heating coil is made larger than that in FIG. 6, and the measurement points are the same as in FIG. In this case, since the heating power per distance is decreased by increasing the moving speed, the power supplied to the high-frequency heating coil is increased to maintain the thickness of the hardened hardening layer equal. In this case, the strain pattern, that is, the state of expansion deformation and contraction deformation depending on the axial position is basically the same as in the case of FIG. 6, but the degree is changed and the deformation amount is reduced as a whole. On the other hand, although not shown again, when the speed of movement of the heating coil is made smaller than in the case of FIG. 6, the state of expansion deformation and contraction deformation by the axial position is the same as in FIG. 6, but the deformation amount increases as a whole. .
[0012]
Here, an attempt was made to change the moving speed of the heating coil in the section to be further quenched, and the occurrence of distortion was investigated. FIG. 4 shows the amount of deformation when the moving speed is increased in a part of the section 7 reaching the bottom surface in the case of FIG. 6 in the case of FIG. Same as the case. In this case, since the heating power per distance decreases in the section 7 in which the moving speed is increased, the power supplied to the high-frequency heating coil is increased to maintain the same depth in the entire section where the depth of the hardened layer is quenched. In the example of FIG. 4, attention is paid to the fact that in the section 7 near the bottom surface where the moving speed is increased, what has been contracted before has turned into expansion, that is, positive deformation. Thus, it was found that when the coil moving speed is changed corresponding to the position in the quenching section, the deformation pattern, that is, the positional relationship between expansion and contraction changes, unlike the case of changing the entire quenching section. .
[0013]
As described above, the present invention changes the speed of movement of the heating coil in accordance with the position in the quenching section, and changes the power supplied to the high-frequency heating coil in response to the change in the speed of movement. By doing so, the thickness of the hardened and hardened layer is equally maintained within the quenching section. As a result, in the moving quenching of the inner surface of the cylinder portion to the bottomed cylinder, the amount of distortion can be reduced by effectively changing the distortion occurrence state. It is presumed that the change of the release state of the residual stress is related to the reason that the pattern of expansion and contraction at the section position changes when the moving speed of the heating coil is changed. Even if the moving speed of the coil is changed for the entire quenching section, the pattern of expansion and contraction in the section position does not change so much. For example, the contracted portion does not turn into expansion due to a change in the moving speed of the coil. As described above, the influence of the moving speed of the coil on the thermal strain and transformation strain is considered to be relatively small. That is, when the ratio of thermal strain or transformation strain changes over the entire quenching section, the tendency of either expansion or contraction should appear uniformly weighted over the entire quenching section. However, since this is not the case in reality, the effect of residual strain is considered to be large.
[0014]
Accordingly, when the moving speed of the coil is increased in a part of the quenching section, the release of the residual stress is reduced in this section, so that the occurrence of distortion in the section is reduced. Therefore, as shown in FIG. 6, when this section 8 tends to generate shrinkage strain, shrinkage due to quenching is reduced. For this reason, it is considered that it eventually drags to the location of the adjacent expansion strain and finally expands slightly as in the section 7 shown in FIG. In the present invention, a bottomed cylindrical body is used as an object to be quenched, but the bottom portion exerts a restraining force on the adjacent cylindrical portion and acts to reduce quenching strain. Although the bottomed cylinder is usually manufactured by forging, it undergoes a complicated deformation process, so that the residual stress is not uniform in the length direction of the cylindrical portion. The present invention is an effective technique for quenching such materials.
[0015]
By the way, if the moving speed of the coil is increased at a part of the quenching section as described above, the amount of power input per moving distance is reduced at that part. For this reason, the quenching depth of the part becomes shallow as it is. In order to compensate for this, the heating energy per moving distance may be kept equal by changing the power supplied to the high-frequency heating coil in response to changes in the moving speed of the coil. In this case, there is little change in the state of occurrence of distortion due to the change in power of the coil. Therefore, it is possible to avoid a change in the depth of the hardened hardened layer by changing the state of occurrence of distortion by changing the moving speed of the coil in a part of the quenching section.
[0016]
Although the depth of the hardened hardened layer is kept the same by changing the power supplied to the high frequency heating coil in response to the change in the moving speed of the heating coil as described above, the occurrence of strain is heated. The reason depends on the speed of movement of the coil, but it is considered that the time factor of the thermal cycle greatly affects the generation of distortion. In other words, the heated material is cooled by the water jet nozzle that moves with the coil, but if the moving speed of the coil is slowed down, the cooling start time is also slowed down. It will reach. On the other hand, when the power of the coil is increased, the coil is rapidly heated to the quenching temperature and the temperature range widens and the depth of the hardened hardened layer increases. Narrower than when the speed is reduced. For this reason, even if the input power per moving distance of the heating coil is increased, it is considered that the amount of distortion does not increase when the power of the coil is used. That is, since the release of the residual stress proceeds even in the portion heated to a temperature lower than the quenching temperature in the material, it is estimated that the release of the residual stress further proceeds under the condition where the heat cycle time is long.
[0017]
As described above, this is a specific method of changing the heating coil moving speed and the power supplied to the high frequency heating coil in accordance with the position in the quenching section. However, the entire length of the quenching section is divided into two or more. In each section, the speed of movement and the power supplied to the high-frequency heating coil may be different from the speed of movement and power supplied in adjacent sections. In the example shown in FIG. 4, the entire length of the quenching section is divided into two, and the moving speed in the section of 34% length from the end on the bottom surface side of the cylinder is moved in the remaining length section. It is 60% larger than the speed. For the quenching of the inner surface of the constant velocity universal joint outer ring, etc., it is divided into two at a position of 10% to 50% from the bottom side end of the cylinder relative to the total length of the quenching zone, and the moving speed of the bottom side zone is set. What is necessary is just to make it 20% or more larger than the moving speed in the remaining length section. If the division position of the section deviates from the position of 10% to 50% from the bottom side, a sufficient effect cannot be obtained, and the rate of increasing the movement speed of the section on the bottom side is the speed of movement in the remaining length section. If it is less than 20%, a sufficient effect cannot be obtained. Note that the upper limit of the rate of increasing the moving speed is sufficient up to 2.5 times. In addition, the moving speed of the heating coil and the change of the supplied power may not be changed suddenly as in the previous example, but may be changed continuously.
[0018]
【Example】
The inner surface of the constant velocity universal joint outer ring was quenched. Although the method shown in FIG. 2 was performed by moving quenching, the distance in the axial direction of the portion to be quenched was 50 mm, and the portion at the back from the position 16 mm from the end opposite to the bottom portion was quenched. The material of the member is S45C, and the frequency of the coil power supply is 60 kHz. The track diameter 6 shown in the cross section of the constant velocity universal joint outer ring in FIG. 5 was examined by the surface quenching. In the graph of FIG. 3, the horizontal axis represents the average value of the track diameter before quenching and the vertical axis. The axis | shaft has shown the axial direction position from the edge part on the opposite side to a bottom face. Although there are variations among the three track diameters of a single member, and variations among a plurality of members, the tendency is almost the same, and FIG. 3 shows an average value of these. As seen from this, the track diameter is not uniform in the axial position even before quenching, and the size is slightly larger at the position near the bottom.
[0019]
FIG. 4 shown above shows the amount of change in the track diameter when quenched by the method of the present invention, depending on the position of the member in the axial direction. The actual dimensions after quenching are as shown in FIG. 4 is added to the dimension shown in FIG. In the example of FIG. 4, the moving speed of the coil in the section 17 mm from the side where the bottom is located (34% of the length of the quenching section of 50 mm) is 14 mm / sec, and the moving speed of the coil in the remaining section is 8.75 mm / sec. Seconds (the speed of the section with the bottom increased by 60%). That is, as the quenching progressed toward the side with the bottom, the moving speed was increased from the middle. The depth of the hardened layer was set to a range of 450 HV or higher (hardness before quenching was about 300 HV), and the voltage of the heating coil was adjusted so that the hardened layer was maintained at 1.9 mm from the surface in the entire hardened zone. That is, the coil voltage in the section where the coil moving speed is increased is 180V, and the coil voltage in the remaining section is 120V.
[0020]
On the other hand, FIG. 6 shown above is a comparative example which is a conventional method, and shows the amount of change in the track diameter when quenched, by the position in the axial direction of the member. The moving speed of the coil and the coil voltage are constant throughout the entire quenching period, and are 7.5 mm / second and 100 V, respectively. Other conditions such as the type of member are the same as those in FIG. 4, and the depth of the hardened layer is also the same. FIG. 7 shown above is also a comparative example, in which the moving speed of the coil and the coil voltage are changed constant throughout the entire section. That is, the moving speed of the coil and the coil voltage are 12 mm / second and 150 V, respectively. Other conditions are the same as those in FIGS. 4 and 6, and the depth of the hardened layer is also the same.
[0021]
In the example of the present invention shown in FIG. 4, the dimensional change due to surface quenching is in the expansion direction in the entire section, but the variation in the amount is relatively small. On the other hand, in the comparative example of FIG. 6, the dimensional change due to surface quenching has a section in the expansion direction and a section in the contraction direction, and the variation due to the amount of dimensional change and the position of the section is large. In the comparative example of FIG. 7, the amount of dimensional change is small because the moving speed of the coil is increased in all the sections, but there is no difference from the example of FIG. 6 in that there are a section in the expansion direction and a section in the contraction direction. As a result, the variation in the amount of dimensional change due to the section position is considerably large.
[0022]
【The invention's effect】
As described above, the present invention moves and quenches the inner surface of the cylindrical portion of the bottomed cylinder such as the constant velocity universal joint outer ring, and the position within the section where the power supplied to the high frequency heating coil is quenched. By changing the thickness of the hardened layer in accordance with the thickness of the hardened layer, it is possible to keep the thickness of the hardened and hardened layer equal in the quenching section and to minimize the deformation caused by the quenching. As a result, in a mass-produced product, variation in dimensions between individual members can be reduced, and production efficiency can be improved by reducing the amount of polishing for dimensional correction.
[Brief description of the drawings]
FIG. 1 is an external view of a constant velocity universal joint outer ring. FIG. 2 is a cross-sectional view illustrating induction quenching by moving quenching. FIG. 3 is a graph showing an average value of track diameters before quenching. Fig. 5 is a cross-sectional view perpendicular to the axial direction of the constant velocity universal joint outer ring. Fig. 6 is a graph showing the change in track diameter when quenched by the method of the comparative example. Graph showing amount [FIG. 7] Graph showing amount of change in track diameter when quenched by the method of the comparative example [Explanation of symbols]
1 Constant velocity universal joint outer ring 2 Inner surface 3 Coil 4 Sprinkler 5 Groove 6 Track diameter 7, 8 Section

Claims (1)

高周波加熱コイルと冷却手段とを軸方向に移動しつつ加熱して水冷する移動焼入れによる等速自在継手の外輪の内表面の焼入れにおいて、焼入れする区間のうち、等速自在継手の外輪の底面側の端から焼入れする区間の全長に対して10%以上50%までの長さの区間における前記移動の速度を、残りの長さの区間における移動の速度より20%以上大きくすると共に、前記移動の速度の変化に対応して高周波加熱コイルへの供給電力を変化させることにより、焼入れ硬化層の深さを焼入れする区間内において同じに維持することを特徴とする等速自在継手の外輪の内表面の焼入れ方法。In quenching of the inner surface of the outer ring of the constant velocity universal joint by moving quenching in which the high-frequency heating coil and the cooling means are moved in the axial direction while heating and water cooling , the bottom side of the outer ring of the constant velocity universal joint in the quenching section The movement speed in the section having a length of 10% to 50% with respect to the entire length of the section to be quenched from the end of the edge is made 20% or more larger than the movement speed in the remaining length section , and The inner surface of the outer ring of the constant velocity universal joint is characterized in that the power supplied to the high-frequency heating coil is changed in response to the change in the speed so that the depth of the hardened and hardened layer is kept the same in the quenching section. Quenching method.
JP2003206718A 2003-08-08 2003-08-08 Quenching method of inner surface of outer ring of constant velocity universal joint Expired - Fee Related JP4235505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206718A JP4235505B2 (en) 2003-08-08 2003-08-08 Quenching method of inner surface of outer ring of constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206718A JP4235505B2 (en) 2003-08-08 2003-08-08 Quenching method of inner surface of outer ring of constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2005054213A JP2005054213A (en) 2005-03-03
JP4235505B2 true JP4235505B2 (en) 2009-03-11

Family

ID=34363475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206718A Expired - Fee Related JP4235505B2 (en) 2003-08-08 2003-08-08 Quenching method of inner surface of outer ring of constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP4235505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752788B2 (en) * 2007-02-19 2011-08-17 日立電線株式会社 Manufacturing method of tape carrier for semiconductor device
MX2011004125A (en) * 2008-10-21 2011-05-19 Metabolex Inc Aryl gpr120 receptor agonists and uses thereof.
JP7161710B2 (en) * 2019-03-29 2022-10-27 株式会社アイシン Quenching method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153833A (en) * 1983-02-19 1984-09-01 High Frequency Heattreat Co Ltd Process and device for low strain hardening of inside wall of cylindrical body having closed face
JPS6050112A (en) * 1983-08-26 1985-03-19 Nissan Motor Co Ltd Method for induction hardening member
JP2574869B2 (en) * 1988-05-31 1997-01-22 中部電力株式会社 Surface treatment of long shaft material
JPH04218621A (en) * 1990-05-14 1992-08-10 Chubu Electric Power Co Inc Surface heat treatment for long shaft material
JPH0533041A (en) * 1991-07-25 1993-02-09 Meidensha Corp Method for heat-treating surface of long shaft material
JPH108130A (en) * 1996-06-21 1998-01-13 Fuji Denshi Kogyo Kk Method for controlling quenching depth
JP3309954B2 (en) * 1997-05-23 2002-07-29 有限会社フジ技研 Induction hardening device and method for induction hardening of bottomed cylindrical work
JP3642665B2 (en) * 1997-10-28 2005-04-27 高周波熱錬株式会社 Hardening jig and quenching method
JP3490331B2 (en) * 1999-03-19 2004-01-26 富士電子工業株式会社 Induction quenching apparatus and quenching control method used therein
JP2001020012A (en) * 1999-07-08 2001-01-23 Fuji Electronics Industry Co Ltd Heat treatment apparatus for long work and method for controlling heat treatment for long work used in this apparatus
JP3582783B2 (en) * 2000-09-08 2004-10-27 電気興業株式会社 High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method

Also Published As

Publication number Publication date
JP2005054213A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP5568235B2 (en) Method of manufacturing a metal component including adjacent portions having various material properties
CN102427898B (en) The method of metal parts and the application of this metal parts is manufactured by hot extrusion raw material
JP2008542031A5 (en)
MX2013000222A (en) Tailored properties by post hot forming processing.
CN104805276B (en) Whole induction heating temperature control method for support rollers
JP6940509B2 (en) Heat treatment method and heat treatment equipment
JP4235505B2 (en) Quenching method of inner surface of outer ring of constant velocity universal joint
CN103572033A (en) Thermal treatment method of wide and thick plate supporting roll
CN103061195A (en) Heat-conducting roller and manufacturing method thereof
JP3522343B2 (en) Crowning surface forming method
JPH0526250A (en) Outer ring of constant velocity universal coupling
JPH0217607B2 (en)
JPH0819469B2 (en) Heat treatment method for cylindrical wear resistant parts
JP2975367B2 (en) Rail heat treatment method and apparatus
JP2011140697A (en) Method for hardening steel product
JPH03292418A (en) Manufacture of outer member of constant velocity universal joint
JP2589715B2 (en) Method and apparatus for manufacturing high-strength spring material
JP5749916B2 (en) Heat treated cylindrical metal member and method for producing the heat treated cylindrical metal member
KR20190083442A (en) Hub of Worm Wheel and Method for Manufacturing Hub of Worm Wheel Using Cold Drawing
JP2942692B2 (en) Continuous heat treatment equipment with variable crown roll
RU2659501C1 (en) Method of producing the rolled rings with regular microstructure
KR101376563B1 (en) Hot rolling method using small size roll
WO2023175663A1 (en) Railway wheel, and wheel and axle for railway vehicle
JPH03274225A (en) Production of wide flange shape with thin-walled web
Xiong et al. Hot-stamping Application for Lightweight Torsion Beam of Passengers Vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4235505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees