JP4235337B2 - Inkjet recording sheet filler - Google Patents

Inkjet recording sheet filler Download PDF

Info

Publication number
JP4235337B2
JP4235337B2 JP2000056836A JP2000056836A JP4235337B2 JP 4235337 B2 JP4235337 B2 JP 4235337B2 JP 2000056836 A JP2000056836 A JP 2000056836A JP 2000056836 A JP2000056836 A JP 2000056836A JP 4235337 B2 JP4235337 B2 JP 4235337B2
Authority
JP
Japan
Prior art keywords
silica
amorphous silica
dispersion
coating
recording sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000056836A
Other languages
Japanese (ja)
Other versions
JP2001239749A (en
Inventor
優一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Tosoh Silica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Silica Corp filed Critical Tosoh Silica Corp
Priority to JP2000056836A priority Critical patent/JP4235337B2/en
Publication of JP2001239749A publication Critical patent/JP2001239749A/en
Application granted granted Critical
Publication of JP4235337B2 publication Critical patent/JP4235337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はインクジェット記録シートの製造に用いられる塗工液の填料に関し、詳しくはインクジェット用紙やフィルム等の塗工層(記録面の層)を形成する塗工液の填料として用いられ、バインダー添加前の分散液あるいはバインダー添加後の塗工液を経時しても、沈澱あるいはハードケークを作らない新規な非晶質シリカよりなるインクジェット記録シート用填料に関するものである。
【0002】
【従来の技術】
添加剤や填料の水分散液にバインダー水溶液を加えて調製した塗工液を基質シートにコート(塗布)することで製造されるインクジェット記録シートでは、塗工液用填料として非晶質シリカが従来から使用されている。
【0004】
また、近年急速に普及したインクジェットプリンタ用のインクジェット用シートでは、シート表面に付着したインク液を速やかに紙内に吸収させ、またシート表面上のインク滴の広がりや滲みの抑制、良好な真円性の確保や印字濃度のある鮮明な画像の形成という要求に応えるために、インク受容体として非晶質シリカが填料として加えられている。
【0005】
なお、一般に非晶質シリカは、乾式製造法によって得られる乾式法シリカ(無水ケイ酸)と、湿式製造法によって得られる湿式法シリカ(含水ケイ酸)とに分類され、さらに湿式法シリカに属するシリカは製法によって沈降法シリカとゲル法シリカに分類されるが、製造条件によりシリカの多孔構造、比表面積、表面状態等を様々にコントロールできるので、使用目的に合った物性を有するものが使用できる。例えば、塗工液をシート表面上に塗布する際には塗工液の粘度も重要な因子の1つであり、塗工シート用填料として使用される非晶質シリカには粘度上昇の少ないものが好ましく用いられる。
【0006】
【発明が解決しようとする課題】
ところで、上記の塗工液を塗布してインクジェット記録シートを製造する場合、分散液や塗工液を製造後にそのままの状態で保存しておくと、たとえ撹拌(一般的には弱い攪拌)等を行っていても、填料濃度とは関係なしに、填料等、特に非晶質シリカが沈澱して、最悪の場合ではハードケークを作ってしまうという問題がしばしば発生する。
【0007】
そして、実際の製造工程では、填料を分散させた分散液の製造直後にバインダーを加えて塗工液とする場合もあるが、それだけでなく、分散液を製造後、数時間かけて抜き出したりあるいは数日後にバインダー水溶液を加えて塗工液とすることも珍しくないことや、塗工液は調製直後に使用されるのが好ましいが、所定量のインクジェット記録シートを製造する場合には、数時間にも及ぶ塗工作業の初期と終期では塗工液が経時に変化することが避けられないし、塗工液調製から数日後に塗工作業を行うこともあるので、経時的に上述のシリカ沈澱を招くという問題は避けられない。
【0008】
なお、非晶質シリカのような顔料スラリーを分散含有させた分散液における沈降現象を静置分散液で観察すると、比較的大きめの粒子が沈澱する沈澱層と、小さめの粒子からなる沈降(懸濁)層、及び粒子のない(あるいはほとんど無い)上澄み層に分離するのが普通である。以下沈澱(層)、沈降(層)、上澄み(層)という場合はこれらのことを意味する。
【0009】
上記のシリカの沈降や沈澱の問題は、インクジェット記録シートを製造する場合の大きな課題となっており、例えば、分散液が一度ハードケークを作ってしまうと、再分散を行ってもなかなか元の状態には戻らず、最終的には分散液を廃棄しなければならないばかりか、容器に付着したハードケークの除去は難しく多くの困難を要する。また、わずかな沈降現象であっても塗工ムラを招き、印字濃度のばらつきの原因となる。
【0010】
これらの問題があるため、インクジェット記録シートの塗工層に添加される非晶質シリカとしては、分散液や塗工液にした場合でも沈澱の起こりにくいものが従来より求められている。
【0011】
本発明者は上記課題を解決するために鋭意研究を進めて本発明をなすに至ったものである。
【0012】
すなわち、一般に沈澱は主に粒度分布や平均粒子径に依存すると考えられているが、同じ粒度分布を持つ非晶質シリカを分散含有した分散液や塗工液のなかには沈澱や沈降の状態が著しく異なって現れる例を本発明者は知見し、この知見した事実によれば、沈澱等は必ずしも粒度分布にのみ一義的に依存するものでないと理解されたのである。
【0013】
本発明者は、かかる知見、すなわち粒度分布等が同じであっても上記のような異なる沈澱状態が現れることの原因について更に研究を進めたところ、分散液が経時したときの沈澱等の現われかたが上記のように違う非晶質シリカは、その製造工程における水洗の操作が同じでないことが分かり、したがってこのような製造工程の違いが影響しているものと推定された。そこで本発明者は、上述した分散液,塗工液における填料の沈澱性等の現われ方の違いと、シリカ製造工程の操作条件の違いに由来する非晶質シリカの物性の関係を詳細に調べたところ、非晶質シリカを4%の水懸濁液としたときに測定される電気伝導度が特定範囲にあるときには、これを填料として用いても、この範囲を外れた非晶質シリカを用いた場合に比べて沈澱,沈降が起こり難いことを見出し、かかる物性と他の物性を所定の関係に定めることでインクジェット記録シート用として優れた填料を提供できる本発明を完成するに至った。なお、本発明において特定される物性を有する非晶質シリカは、分散液の粘度上昇を招かないないという特徴的な性質も示し、この点においてもインクジェット記録シート用の填料として優れている。
【0014】
【課題を解決するための手段】
本発明のインクジェット記録シート用填料として用いられる非晶質シリカは、BET比表面積が270m2/g以上、320m2/g未満であり、かつ4%水懸濁液のろ液の電気伝導度が100〜250μS/cm、好ましくは150〜230μS/cmであり、かつコールターカウンター法による平均粒子径が1.0μm以上、8.0μm未満であり、かつ吸油量が200ml/100g以上、350ml/100g未満であることを特徴とする。
【0015】
【発明の実施の形態】
本発明の用途に用いる非晶質シリカは、BET比表面積が270m2 /g未満であると、インクの吸収性能が低下してしまうという問題を招く。反対にBET比表面積が320m2 /g以上であると、インクの吸収性能が低下する。これらのことから、本発明の非晶質シリカのBET比表面積は上記の範囲のものとされる。
【0016】
しかし、BET比表面積が270m2 /g以上、320m2 /g未満の場合であっても、4%水懸濁液のろ液の電気伝導度が100μS/cm以下の場合には、分散液の粘度は低く良好であるが、例えば数時間、或いは数日間保管しておくと、例え弱い撹拌を続けていても非晶質シリカが沈澱してしまい、最悪の場合ではハードケークを作ってしまう。
【0017】
また、4%水懸濁液のろ液の電気伝導度が250μS/cm以上の場合、分散液粘度の急激な上昇や粘度のばらつきが観察され、塗工液を製造すること自体が困難になってしまう。
【0018】
とくに、定着剤等の各種添加剤を添加して分散液のpHが高い場合や非晶質シリカを高濃度配合した場合ではこの現象は顕著に観察される。
【0019】
これらのことから非晶質シリカの4%水懸濁液のろ液の電気伝導度は上記範囲とされる。
【0020】
なお上記において4%水懸濁液のろ液の電気伝導度というのは、非晶質シリカ4.0g(通常105℃で2時間乾燥したときの加熱減量が6%以下)に蒸留水50mlを加えて数分間煮沸し、冷却後さらに蒸留水を加えて全体を100mlとした後、該懸濁液をろ過したろ液の電気伝導度(測定温度25℃)をいう。
【0021】
上記した物性が特定された数値範囲内である場合と、この範囲を外れた場合とで現れる現象に違いが起こる理由については定かではないが、4%水懸濁液のろ液の電気伝導度は非晶質シリカを製造する際に残留する水溶性のアルカリイオン、酸性イオン、塩類等の不純物の総量に相関しており、水溶性不純物が分散液中に多く溶出するとシリカ粒子との間で何らかの相互作用が発生して結果として分散液粘度が上昇し、逆にこれらの水溶性不純物が分散液中にほとんど溶出しないとシリカ粒子間で相互作用が働かず、経時的に沈降や沈澱の現象が現れるのではないかと推定される。
【0022】
また、上記の現象は分散液のままでも、バインダーを添加した塗工液でも、同様に起こることを本発明者は実験により確認している。
【0023】
また本発明の非晶質シリカは、上記の物性に加えて、コールターカウンター法による平均粒子径が1.0μm以上8.0μm未満、吸油量は200ml/100g以上350ml/100g未満、好ましくは220ml/100g以上300ml/100g未満、より好ましくは240ml/100g以上280ml/100g未満であることがよい。
【0024】
平均粒子径は、写真画質向け、汎用向け或いはアンダーコート向けの用紙やマットフィルム,グロスフィルム,バックライトフィルム等目的に応じてそれぞれ選択でき、一般には、高画質向け用途には平均粒子径の小さいものが用いられ、汎用向けや筆記性を重視するものには平均粒子径の大きいものが用いられる。
【0025】
平均粒子径が1.0μmよりも小さいと、製造が非常に困難かつ作業性やハンドリング性能が悪くなり、実用上の使用には適していないばかりか平均粒子径が1.0μmよりも小さな非晶質シリカは分散液粘度が高く不安定になってしまうので適当でない。
【0026】
反対に平均粒子径が8.0μmよりも大きいと、分散液中で非晶質シリカが沈澱し易くなるために適当でない。
【0027】
吸油量が200ml/100g未満であると、填料としての役割を果たさないばかりかインクの吸収性を悪化させ、ドットの真円性が保てなくなり、コート層表面の滲みや裏抜けの原因になる。反対に吸油量が350ml/100g以上であると、分散液や塗工液の粘度が高くなりすぎて適当でない。
【0028】
本発明の非晶質シリカは、窒素吸着法による細孔分布における細孔直径のピークが100〜300Åであるのが好ましく、この細孔分布は、例えば特開平9−30809号に記載されているような公知の技術によりコントロールすることができる。
【0029】
なお、コールターカウンター法による平均粒子径の測定法、BET比表面積は、非晶質シリカの物性を示す上記パラメーターを測定する適切な方法として当業界において広く用いられている方法である。
【0030】
本発明の非晶質シリカは上記範囲を満足するものであれば他の物性は特に限定されず、例えば105℃で2時間乾燥したときの加熱減量(水分)は通常の6%以下であれば良く、4%水懸濁液pHは通常の4〜11、好ましくは5〜8のものであればよい。嵩比重は通常の30〜300g/リットル、好ましくは50〜150g/リットルであればよい。
【0031】
本発明のシリカの製造方法も特に限定されるものではなく、上述の湿式製造法による製造方法を好ましく適用して製造することができる。
【0032】
湿式製造法のうち、沈降法シリカの製造方法は、例えば、あらかじめ一定量の温水を張り込んだ反応槽中に、一定のpHと温度を保ちながら珪酸アルカリ水溶液と鉱酸とを一定時間添加する同時滴下方法と、一定濃度にあらかじめ調整して反応槽中に張り込んだ珪酸アルカリ水溶液(または鉱酸)に対して鉱酸(または珪酸アルカリ水溶液)を一定時間滴下する片側滴下方式等が利用できる。
【0033】
ただし、このような方法で析出した非晶質シリカの水洗は本発明の目的を考えて反応スラリー(シリカスラリー)中に残留するアルカリイオン、酸性イオン、塩類などを除去する量をコントロールすることが望ましい。コントロールが困難な場合は一度充分な水洗を行った後に後から必要量の塩類を添加する方法も採用できる。
【0034】
水洗後は乾燥、粉砕し必要に応じて分級することで最終的に目的とする非晶質シリカが製造できる。
【0035】
また、ゲル法シリカも用いることができ、その製造方法としては、例えば、珪酸ソーダ水溶液と鉱酸とをノズルを用いて急速に剪断、混合することにより、シリカヒドロゾルが形成され、このシリカヒドロゾルを数時間放置する事によりシリカヒドロゲルを得る方法が利用できる。このシリカヒドロゲルをアルカリイオン、酸性イオン、塩類などを除去するための中和等を含めた水洗を本発明の目的を考えて必要量行い、その後BET比表面積や細孔を調節するための水熱処理等を行ったのち、乾燥、粉砕し、必要に応じて分級することで最終的に目的とする非晶質シリカを製造してもよい。
【0036】
沈降法シリカとゲル法シリカを比較した場合、本発明者らの経験則によれば、本発明が示すところによる物性を有する非晶質シリカであれば、いずれの方法の非晶質シリカも同様の傾向にある。また、最終製品中にアルミを含有するような処方を採用すれば、非晶質シリカの製造工程における電気伝導度のコントロールが容易になる傾向も認められる。
【0037】
本発明の非晶質シリカを用いて基質シート上に塗工する方法も特に限定されない。
【0039】
般的には非晶質シリカのほかに常法に従って他の填料、定着剤、耐水性付与剤等の添加剤等を加えてpHが中性〜アルカリ性の分散液とした後、バインダー水溶液を加えて塗工液として用いることができる。
【0040】
バインダーとしては、限定されるものではないが、ポリビニルアルコール(PVA)、澱粉、ポリアクリルアミド(PAM)、水溶性セルロース類等の水溶性樹脂等を使用でき、塗工液中のバインダー濃度は一般に1〜20%、非晶質シリカ濃度は5〜30%の範囲内で必要に応じて調整して、使用することができる。
【0041】
これらの塗工液は、通常は、基質シート上に固形分重量として1〜50g/m2 の割合で一層あるいは二層以上塗工され、乾燥後、カレンダリングを行い、そのまま或いは光沢層を設けてインクジェット記録シートとなる。
【0042】
【実施例】
以下本発明を具体的に説明するために実施例および比較例を挙げて説明する。なお各物性値等の測定は次に示す方法により実施し、実施例及び比較例で得られた非晶質シリカの物性値等は下記表1に示した。
・4%水懸濁液のろ液の電気伝導度
50ml蒸留水中に4gの非晶質シリカ(105℃、2時間乾燥後の加熱減量が6%以下)を添加し、よく混合した後5分間煮沸処理した。その後蒸留水を用いて全容量を100mlに調整した後ろ別し、このろ液について、電気伝導度計(堀場製作所製:型式DS−15)を用いて測定した(測定温度25℃)。
・平均粒子径
コールターマルチサイザー−II(Coulter Elctronics Ltd.製)を用いて測定した。
【0043】
粒子の最大粒径が30μm以内(平均粒径でおよそ1〜7μm)のものは50μmのアパーチャーチューブを用い、粒子の最大粒径が42μm以内(平均粒径でおよそ4〜13μm)のものは70μmのアパーチャーチューブを用いた(アパーチャーチューブの大きさにより最適測定範囲、及び測定限界があるため)。
【0044】
なお、試料の分散は40秒間の超音波分散を行い、分散は付属のIsoton-II 液を使用した。
・BET比表面積測定
カンターソープ(米国Quantachrome社製)を用いて1点法により測定した。
・吸油量測定
JIS K5101(顔料試験法)による吸油量測定法に準じて測定を行った。
・紙への塗工方法
0.01N (規定)の水酸化ナトリウム水溶液220gに非晶質シリカ48gを投入し、デイスパーで1500rpm,5分間攪拌して分散液とした。この分散液の2分の1量(134g)をポリビニルアルコール((株)クラレ社製PVA 117)の14%水溶液70gを入れた容器中に投入し、調整水として蒸留水を20g加え、デイスパーで700rpm,10分間攪拌を行い塗工液とした。
【0045】
この塗工液を秤量66g/m2 のPPC用紙にNo.30バーコーターを用いて塗工(塗工量:約8g/m2 )し、風乾した。風乾後、線圧20kg/cmでカレンダリングを行ない塗工紙を得た。
・分散液の沈澱テストと粘度測定
前項記載の分散液の残りを目盛り50mlのメスシリンダに50ml入れた(A)。
【0046】
この分散液について24時間静置後、ガラス棒(8mmφ、長さ21cm、重量約24g)をこれ以上ガラス棒が沈まなくなるまで静かにメスシリンダー中に入れ沈澱層の容量を測定した(B)。
【0047】
ここで、24時間静置後の沈澱層の容量(B)が分散液の目盛(A)に対してB/A=0.06(3cc)以内なら、沈澱層は弱い攪拌等を行うことでほとんど無くなると判断して「○」、0.06より大きい場合は沈澱層を形成し、ハードケークを作っている(またはハードケークを作る可能性がある)として「×」とした。また、分散液の粘度が高すぎてガラス棒が沈まず測定出来ないものも塗工液として実用上適さないと判断して「×」とした。
【0048】
参考値として分散直後の塗工液の残りを50mlのトールビーカーに入れ、B型粘度計((株)東京計器社製)でNo.3ローター、60rpmの条件で60秒後に測定した粘度を記載した。
・インクジェット記録方法
エプソン社製のMJ−800Cプリンタを用いて印字した。印字パターンはブラック、イエロー、シアン、マゼンタの各単色のベタ塗り(4cm×4cm)と、階調をつけたブラック、イエロー、シアン、マゼンタの各単色ドット、及びこれら4色を混合したドットについて印字した。
【0049】
このように印字した画像について次の項目の評価を行った。
(a)インクの吸収性と滲み
印字画像についてドットをビデオマイクロスコープ(スカラ(株)社製 VMS 70A)による肉眼観察と写真撮影を行い次のような評価基準で評価を行った。
【0050】
○・・・ドットが重なった場合でもインクが流れ出したり滲んでいない。
【0051】
△・・・特定の色と色が重なった場合、滲むことがある。
【0052】
×・・・全体的に滲んでいる。
(b)印字濃度(参考値)
ブラック、イエロー、シアン、マゼンタの各単色ベタ塗りの印字濃度測定をグレタグマクベス濃度計RD918を用いて行った。
【0053】
実施例1
SiO2 濃度25wt%、SiO2 /Na2 O モル比3.3の珪酸ソーダ水溶液と、40wt%の硫酸水溶液を過剰硫酸が0.6Nになるように混合させシリカヒドロゾルを得た。
【0054】
このシリカヒドロゾルをしばらく放置し、シリカヒドロゲルを得たのち、さらに75℃、pH9.5の条件で16時間の水熱処理後、製品の4%水懸濁液のろ液の電気伝導度が150μS/cmになるような水洗を行い、純粋なシリカヒドロゲルを得た。
【0055】
このシリカヒドロゲルを過熱蒸気を用いたジェットミルにより平均粒子径2.2μmになるように粉砕および最終乾燥を行ってゲル法シリカを得た。
【0056】
実施例2
実施例1で得られたのと同じ純粋なシリカヒドロゲルを乾燥後、ジェットミルにより平均粒子径4.0μmになるように粉砕および最終乾燥を行ってゲル法シリカを得た。
【0057】
実施例3
実施例1で得られたのと同じ原料、処方に基づいてシリカヒドロゲルを得た後、さらに75℃、pH9.5の条件で16時間の水熱処理後、製品の4%水懸濁液のろ液の電気伝導度が200μS/cmになるような水洗を行い、純粋なシリカヒドロゲルを得た。
【0058】
このシリカヒドロゲルを過熱蒸気を用いたジェットミルにより平均粒子径6.0μmになるように粉砕および最終乾燥を行ってゲル法シリカを得た。
【0059】
実施例4
SiO2 濃度13.1wt%、SiO2 /Na2 O モル比3.5の珪酸ソーダ水溶液0.7リットルと温水145リットルを仕込み、これを58℃に加温し充分に攪拌を行った。
【0060】
次いで珪酸ソーダ水溶液73リットルと濃度49%の硫酸5.6リットルとを攪拌を行いながら200分間にわたり同時に添加して中和反応を行った。その後、さらに硫酸を添加して含水珪酸スラリーのpHを3.5にして全反応を終了した。
【0061】
このようにしてできたシリカスラリーをフィルタープレスでろ過し、製品の4%水懸濁液のろ液の電気伝導度が150μS/cmになるような水洗を行い、シリカケークを得た。
【0062】
水洗後は静置乾燥を行い乾燥後は平均粒子径が4.0μmになるようにバンタムミル(ホソカワミクロン(株)社製)で粉砕し、スペディック風力分級機((株)セイシン企業社製)で分級を行い沈降法シリカを得た。
【0063】
比較例1
実施例1で得られたのと同じ原料、処方に基づいてシリカヒドロゲルを得た後、さらに75℃、pH9.5の条件で16時間の水熱処理後、製品の4%水懸濁液のろ液の電気伝導度が60μS/cmになるように水洗を行い、純粋なシリカヒドロゲルを得た。
【0064】
このシリカヒドロゲルを過熱蒸気を用いたジェットミルにより平均粒子径4.0μmになるように粉砕および最終乾燥を行ってゲル法シリカを得た。
【0065】
比較例2
実施例1で得られたのと同じ原料、処方に基づいてシリカヒドロゲルを得た後、さらに75℃、pH9.5の条件で16時間の水熱処理後、製品の4%水懸濁液のろ液の電気伝導度が400μS/cmになるように水洗を行い、純粋なシリカヒドロゲルを得た。
【0066】
このシリカヒドロゲルを過熱蒸気を用いたジェットミルにより平均粒子径4.0μmになるように粉砕および最終乾燥を行ってゲル法シリカを得た。
【0067】
比較例3
実施例1で得られたのと同じ原料、処方に基づいてシリカヒドロゲルを得た後、さらに90℃、pH8.0の条件で10時間の水熱処理後、製品の4%水懸濁液のろ液の電気伝導度が約150μS/cmになるような水洗を行い、純粋なシリカヒドロゲルを得た。
【0068】
このシリカヒドロゲルを過熱蒸気を用いたジェットミルにより平均粒子径が約4.0μmになるように粉砕および最終乾燥を行ってゲル法シリカを得た。
【0069】
比較例4
SiO2 濃度13.1wt%、SiO2 /Na2 O モル比3.5の珪酸ソーダ水溶液0.7リットルと温水145リットルを仕込み、これを80℃に加温し充分に攪拌を行った。次いで珪酸ソーダ水溶液72リットルと濃度49%の硫酸5.6リットルとを攪拌を行いながら110分間にわたり同時に添加して中和反応を行った。その後、さらに硫酸を添加して含水珪酸スラリーのpHを3.5にして全反応を終了した。
【0070】
このようにしてできたシリカスラリーをフィルタープレスでろ過し、製品の4%水懸濁液のろ液の電気伝導度が150μS/cmになるような水洗を行い、シリカケークを得た。
【0071】
水洗後は静置乾燥を行い乾燥後は平均粒子径が4.0μmになるようにバンタムミル(前出)で粉砕し、スペディック風力分級機(前出)で分級を行い沈降法シリカを得た。
【0072】
比較例5
市販の非晶質シリカ(ゲル法)として、ミズカシルP−78A(水澤化学(株)社製)を用いた。
【0073】
比較例6
市販の非晶質シリカ(ゲル法)として、ミズカシルP−50(水澤化学(株)社製)を用いた。
【0074】
比較例7
市販の非晶質シリカ(ゲル法)として、SYLOID ED−5(GRACE DAVISON 社製)を用いた。
【0075】
比較例8
市販の非晶質シリカ(沈降法)として、NIPSIL NS-T(日本シリカ工業(株)社製)を用いた。
【0076】
【表1】

Figure 0004235337
【0077】
【発明の効果】
以上の説明より分かるように、本発明のインクジェット記録シート用填料として用いられる非晶質シリカは、塗工層に使用される塗工液を製造する際の分散液や塗工液を経時させても、沈澱、あるいはハードケークを作らず、填料の沈降現象が起こり難いという特徴を有する。
【0078】
特に分散液のpHが高い場合や填料濃度が高い場合でも、数日間分散液を保存しておいても、沈澱せずハードケークをつくらないために塗工シートの製造工程上の作業性が良くなるという効果がある。
【0079】
また、上記の製造工程上の作業性に優れていながら、インクジェット記録シートでは印字濃度が高く、鮮明な画像を形成することが出来るという効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filler of the coating liquid used for producing the ink jet recording sheet, more information is used as a filler of the coating liquid for forming the coating layer, such as Lee inkjet paper or film (layer of the recording surface), a binder The present invention relates to a filler for an ink jet recording sheet comprising a novel amorphous silica which does not form a precipitate or a hard cake even if the dispersion liquid before addition or the coating liquid after addition of the binder is aged.
[0002]
[Prior art]
In an inkjet recording sheet manufactured by coating (coating) a coating liquid prepared by adding a binder aqueous solution to an aqueous dispersion of additives and fillers, amorphous silica has conventionally been used as a filler for the coating liquid. Has been used from.
[0004]
In addition, in an ink jet sheet for an ink jet printer that has rapidly spread in recent years, the ink liquid adhering to the sheet surface is quickly absorbed into the paper, and ink droplets on the sheet surface are prevented from spreading and bleeding, and a good roundness is obtained. In order to meet the demands of ensuring the property and forming a clear image with a print density, amorphous silica is added as a filler as an ink receiver.
[0005]
In general, amorphous silica is classified into dry process silica (anhydrous silicic acid) obtained by a dry process and wet process silica (hydrous silicic acid) obtained by a wet process, and further belongs to wet process silica. Silica is classified into precipitated silica and gel silica depending on the production method, but since the porous structure, specific surface area, surface state, etc. of silica can be controlled variously according to the production conditions, those having physical properties suitable for the purpose of use can be used. . For example, when the coating liquid is applied on the sheet surface, the viscosity of the coating liquid is also an important factor, and amorphous silica used as a filler for the coating sheet has a small increase in viscosity. Is preferably used.
[0006]
[Problems to be solved by the invention]
By the way, when manufacturing the inkjet recording sheet by applying the above coating liquid, if the dispersion liquid or coating liquid is stored as it is after the manufacturing, even if stirring (generally weak stirring) or the like is performed. Even if it is carried out, the problem that the filler or the like, in particular, amorphous silica precipitates, regardless of the filler concentration, often causes a hard cake in the worst case.
[0007]
In the actual production process, a binder may be added immediately after production of the dispersion in which the filler is dispersed to form a coating solution. It is not uncommon to add a binder aqueous solution after a few days to make a coating solution, and the coating solution is preferably used immediately after preparation, but in the case of producing a predetermined amount of an ink jet recording sheet, several hours are required. In the initial and final stages of the coating operation, it is unavoidable that the coating solution changes over time, and the coating operation may be performed several days after the preparation of the coating solution. The problem of incurring is inevitable.
[0008]
When the sedimentation phenomenon in a dispersion containing a pigment slurry such as amorphous silica is observed with a stationary dispersion, a sedimentation layer in which relatively large particles settle and a sedimentation (suspension of small particles). It is common to separate into a turbid) layer and a supernatant layer free of (or almost free of) particles. Hereinafter, the terms precipitation (layer), sedimentation (layer), and supernatant (layer) mean these.
[0009]
The above-mentioned problems of sedimentation and precipitation of silica have become a major issue when producing an ink jet recording sheet. For example, once the dispersion has made a hard cake, it is quite easy to re-disperse the original state. However, it is difficult to remove the hard cake adhering to the container. Moreover, even slight sedimentation leads to uneven coating, causes variation of Printout concentration.
[0010]
Because of these problems, as the amorphous silica added to the coating layer of the ink jet recording sheet, there has been a demand for an amorphous silica that does not easily precipitate even when used as a dispersion or coating solution.
[0011]
In order to solve the above-mentioned problems, the present inventor has intensively researched and made the present invention.
[0012]
In other words, precipitation is generally considered to depend mainly on the particle size distribution and average particle size, but the state of precipitation and sedimentation is remarkably present in dispersions and coating liquids containing dispersed amorphous silica having the same particle size distribution. The present inventors have found examples that appear differently, and according to the facts found, it has been understood that precipitation and the like do not necessarily depend solely on the particle size distribution.
[0013]
The present inventor conducted further research on the cause of the appearance of such different precipitation states as described above, even when the particle size distribution and the like are the same. However, it was found that the different amorphous silica as described above was not subjected to the same washing operation in the production process, and thus it was estimated that such a difference in the production process had an effect. Therefore, the present inventor investigated in detail the relationship between the difference in appearance of the precipitating property of the filler in the dispersion liquid and coating liquid described above and the physical properties of amorphous silica resulting from the difference in the operating conditions of the silica production process. As a result, when the electrical conductivity measured when the amorphous silica was made into a 4% aqueous suspension was in a specific range, even if this was used as a filler, amorphous silica out of this range was used. As a result, it was found that precipitation and sedimentation are less likely to occur than when used, and the present invention that can provide an excellent filler for an ink jet recording sheet by setting such physical properties and other physical properties to a predetermined relationship has been completed. The amorphous silica having the physical properties specified in the present invention also exhibits a characteristic property that does not cause an increase in the viscosity of the dispersion, and in this respect as well, is excellent as a filler for an ink jet recording sheet.
[0014]
[Means for Solving the Problems]
The amorphous silica used as a filler for an inkjet recording sheet of the present invention has a BET specific surface area of 270 m 2 / g or more and less than 320 m 2 / g, and the electric conductivity of a 4% aqueous suspension filtrate. 100~250μS / cm, Ri preferably 150~230μS / cm der, and an average particle diameter of 1.0μm or more by Coulter counter method, is less than 8.0 .mu.m, and an oil absorption of 200 ml / 100 g or more, 350 ml / 100 g It is characterized by being less than .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Amorphous silica used in applications of the present invention, the BET specific surface area is less than 270 meters 2 / g, rather invited a problem that absorption performance of Lee ink is lowered. When the BET specific surface area in opposition is 320 m 2 / g or more, the absorption performance of Lee ink drops. From these facts, the BET specific surface area of the amorphous silica of the present invention is in the above range.
[0016]
However, even when the BET specific surface area is 270 m 2 / g or more and less than 320 m 2 / g, when the electric conductivity of the filtrate of 4% aqueous suspension is 100 μS / cm or less, the dispersion liquid Although the viscosity is low and good, for example, if it is stored for several hours or days, amorphous silica precipitates even if weak stirring is continued, and in the worst case, a hard cake is formed.
[0017]
In addition, when the electric conductivity of the filtrate of 4% aqueous suspension is 250 μS / cm or more, a sudden increase in dispersion viscosity and variation in viscosity are observed, making it difficult to produce the coating liquid itself. End up.
[0018]
In particular, this phenomenon is remarkably observed when various additives such as a fixing agent are added and the pH of the dispersion is high, or when amorphous silica is blended at a high concentration.
[0019]
For these reasons, the electrical conductivity of the filtrate of the 4% aqueous suspension of amorphous silica is within the above range.
[0020]
In the above, the electric conductivity of the filtrate of the 4% aqueous suspension is obtained by adding 50 ml of distilled water to 4.0 g of amorphous silica (normally the loss on heating is 6% or less when dried at 105 ° C. for 2 hours). In addition, the mixture is boiled for several minutes, and after cooling, distilled water is further added to make the whole 100 ml, and then the electric conductivity (measurement temperature 25 ° C.) of the filtrate obtained by filtering the suspension.
[0021]
Although it is not clear why the above-mentioned physical properties are within the specified numerical range and when the physical properties are outside this range, the electrical conductivity of the 4% aqueous suspension filtrate is not clear. Correlates with the total amount of water-soluble alkali ions, acid ions, salts, and other impurities remaining in the production of amorphous silica. When a large amount of water-soluble impurities are eluted in the dispersion, Some kind of interaction occurs, resulting in an increase in the viscosity of the dispersion. Conversely, if these water-soluble impurities are hardly eluted in the dispersion, the interaction between the silica particles does not work, and precipitation and precipitation occur over time. Is presumed to appear.
[0022]
In addition, the present inventors have confirmed through experiments that the above phenomenon occurs in the same manner in the dispersion liquid or in the coating liquid to which the binder is added.
[0023]
In addition to the above physical properties, the amorphous silica of the present invention has an average particle size of 1.0 μm or more and less than 8.0 μm by the Coulter counter method, and the oil absorption is 200 ml / 100 g or more and less than 350 ml / 100 g, preferably 220 ml / 100 g or more and less than 300 ml / 100 g, more preferably 240 ml / 100 g or more and less than 280 ml / 100 g.
[0024]
The average particle size, photograph image quality for the paper and matte film of the generic-friendly or for undercoat, gloss film, each can be selected according to the backlight films such purposes, in general, an average particle size in high quality for applications Smaller ones are used, and those having a larger average particle diameter are used for general purpose and those that emphasize writing performance.
[0025]
If the average particle size is smaller than 1.0 μm, it is very difficult to produce and the workability and handling performance are deteriorated, and it is not suitable for practical use, and the amorphous particle size is smaller than 1.0 μm. Silica is not suitable because it has a high dispersion viscosity and becomes unstable.
[0026]
On the other hand, if the average particle size is larger than 8.0 μm, amorphous silica tends to precipitate in the dispersion, which is not suitable.
[0027]
When the oil absorption is less than 200ml / 100g, exacerbating the absorption of just how i link does not play a role as a filler, will not be maintained roundness of dots, the cause of bleeding and strike-through of the coating layer surface that Do not. On the other hand, if the oil absorption is 350 ml / 100 g or more, the viscosity of the dispersion or coating solution becomes too high, which is not suitable.
[0028]
The amorphous silica of the present invention preferably has a pore diameter peak of 100 to 300 mm in the pore distribution by the nitrogen adsorption method, and this pore distribution is described in, for example, JP-A-9-30809. Such a known technique can be used for control.
[0029]
The average particle diameter measurement method by the Coulter counter method and the BET specific surface area are methods widely used in the art as appropriate methods for measuring the above parameters indicating the physical properties of amorphous silica.
[0030]
If the amorphous silica of the present invention satisfies the above range, the other physical properties are not particularly limited. For example, the loss on heating (moisture) when dried at 105 ° C. for 2 hours is 6% or less of the usual value. The pH of the 4% aqueous suspension may be normal 4 to 11, preferably 5 to 8. The bulk specific gravity may be a usual 30 to 300 g / liter, preferably 50 to 150 g / liter.
[0031]
The method for producing the silica of the present invention is not particularly limited, and can be produced by preferably applying the production method by the above-described wet production method.
[0032]
Among the wet production methods, the method for producing precipitated silica is, for example, adding an aqueous alkali silicate solution and a mineral acid for a certain period of time while maintaining a certain pH and temperature in a reaction tank previously filled with a certain amount of warm water. A simultaneous dripping method and a one-side dripping method in which a mineral acid (or alkali silicate aqueous solution) is dripped for a certain period of time to an alkali silicate aqueous solution (or mineral acid) that has been adjusted to a certain concentration and placed in the reaction tank can be used. .
[0033]
However, the washing of the amorphous silica precipitated by such a method can control the amount of alkali ions, acidic ions, salts, etc. remaining in the reaction slurry (silica slurry) in view of the object of the present invention. desirable. If the control is difficult, a method of adding a necessary amount of salts later after sufficient washing with water can be employed.
[0034]
After washing with water, the desired amorphous silica can be finally produced by drying, pulverizing, and classifying as necessary.
[0035]
In addition, gel method silica can be used. For example, a silica hydrosol is formed by rapidly shearing and mixing a sodium silicate aqueous solution and a mineral acid using a nozzle. A method of obtaining a silica hydrogel by leaving the sol for several hours can be used. The silica hydrogel is subjected to water washing including neutralization for removing alkali ions, acidic ions, salts and the like in consideration of the purpose of the present invention, and then hydrothermal treatment for adjusting the BET specific surface area and pores. After the above, the target amorphous silica may be finally produced by drying, pulverizing, and classifying as necessary.
[0036]
When the precipitated silica and the gel silica are compared, according to the rule of thumb of the present inventors, the amorphous silica of any method is the same as long as it is an amorphous silica having physical properties according to the present invention. Tend to. In addition, if a formulation that contains aluminum in the final product is adopted, it tends to be easier to control the electrical conductivity in the amorphous silica production process.
[0037]
The method of coating on the substrate sheet using the amorphous silica of the present invention is not particularly limited.
[0039]
Other fillers according to a conventional method in addition to the amorphous silica is one general, fixing agent, after which pH by adding an additive such as water resistance imparting agent is a neutral to alkaline dispersion, the binder solution In addition, it can be used as a coating solution.
[0040]
The binder is not limited, but water-soluble resins such as polyvinyl alcohol (PVA), starch, polyacrylamide (PAM), and water-soluble cellulose can be used. The binder concentration in the coating liquid is generally 1 The concentration of amorphous silica can be adjusted and used as necessary within the range of 5 to 30%.
[0041]
These coating liquid, typically is coated over a more or two layers as a solids weight onto the substrate sheet at a rate of 1 to 50 g / m 2, dried and subjected to calendering, remains or gloss layer of its To provide an ink jet recording sheet.
[0042]
【Example】
Hereinafter, the present invention will be described in detail by way of examples and comparative examples. The physical property values and the like were measured by the following methods, and the physical property values and the like of the amorphous silica obtained in the examples and comparative examples are shown in Table 1 below.
-Conductivity of the filtrate of 4% water suspension 50ml After adding 4g of amorphous silica (less than 6% heat loss after drying at 105 ° C for 2 hours) in distilled water, mix well for 5 minutes Boiled. Thereafter, the total volume was adjusted to 100 ml using distilled water, and the filtrate was measured using an electric conductivity meter (manufactured by Horiba: Model DS-15) (measurement temperature 25 ° C.).
-Average particle diameter It measured using Coulter Multisizer-II (Coulter Elctronics Ltd. make).
[0043]
A 50 μm aperture tube is used when the maximum particle size is within 30 μm (average particle size is approximately 1 to 7 μm), and 70 μm when the maximum particle size is within 42 μm (average particle size is approximately 4 to 13 μm). (Because there is an optimum measurement range and measurement limit depending on the size of the aperture tube).
[0044]
The sample was dispersed by ultrasonic dispersion for 40 seconds, and the attached Isoton-II liquid was used for dispersion.
-BET specific surface area measurement Measured by a one-point method using a canter soap (manufactured by Quantachrome, USA).
-Oil absorption measurement It measured according to the oil absorption measuring method by JISK5101 (pigment test method).
-Coating method on paper 48 g of amorphous silica was added to 220 g of 0.01N (regular) aqueous sodium hydroxide solution and stirred with a disperser at 1500 rpm for 5 minutes to obtain a dispersion. A half amount (134 g) of this dispersion was put into a container containing 70 g of a 14% aqueous solution of polyvinyl alcohol (PVA 117 manufactured by Kuraray Co., Ltd.), and 20 g of distilled water was added as adjusted water. The mixture was stirred at 700 rpm for 10 minutes to obtain a coating solution.
[0045]
This coating solution was applied to PPC paper weighing 66 g / m 2 with No. Coating was performed using a 30 bar coater (coating amount: about 8 g / m 2 ) and air-dried. After air drying, calendering was performed at a linear pressure of 20 kg / cm to obtain a coated paper.
-Dispersion Precipitation Test and Viscosity Measurement 50 ml of the remainder of the dispersion described in the previous paragraph was placed in a 50 ml graduated cylinder (A).
[0046]
After allowing this dispersion to stand for 24 hours, a glass rod (8 mmφ, length 21 cm, weight about 24 g) was gently placed in a measuring cylinder until the glass rod no longer sinks, and the volume of the precipitated layer was measured (B).
[0047]
Here, if the volume (B) of the precipitate layer after standing for 24 hours is within B / A = 0.06 (3 cc) with respect to the scale (A) of the dispersion, the precipitate layer is subjected to weak stirring or the like. Judging from the fact that it almost disappeared, it was judged as “◯”, and when it was larger than 0.06, a precipitate layer was formed, and “×” was assigned as a hard cake was produced (or there was a possibility of making a hard cake). Moreover, it was judged that the dispersion liquid whose viscosity was too high and the glass rod did not sag and could not be measured was judged to be practically unsuitable as a coating liquid, and was evaluated as “x”.
[0048]
As a reference value, the remainder of the coating solution immediately after dispersion was placed in a 50 ml tall beaker and No. was measured with a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.). The viscosity measured after 60 seconds under the conditions of 3 rotors and 60 rpm is described.
Inkjet recording method Printing was carried out using an Epson MJ-800C printer. Black, yellow, cyan and magenta single color solid coating (4cm x 4cm), gradation black, yellow, cyan and magenta single color dots, and mixed dots of these four colors did.
[0049]
The following items were evaluated for images printed in this way.
(A) The ink absorptivity and the bleed print image were evaluated with the following evaluation criteria by observing the dots with a video microscope (VMS 70A manufactured by SCARA Co., Ltd.) and taking photographs.
[0050]
○: Even if the dots overlap, the ink does not flow or blur.
[0051]
Δ: When a color overlaps with a specific color, it may blur.
[0052]
X: The entire surface is blurred.
(B) Print density (reference value)
The black, yellow, cyan, and magenta single-color solid print density measurements were performed using a Gretag Macbeth densitometer RD918.
[0053]
Example 1
A silica hydrosol was obtained by mixing a sodium silicate aqueous solution having a SiO 2 concentration of 25 wt% and a SiO 2 / Na 2 O molar ratio of 3.3 with a 40 wt% sulfuric acid aqueous solution so that the excess sulfuric acid was 0.6 N.
[0054]
This silica hydrosol was allowed to stand for a while to obtain a silica hydrogel, and after further hydrothermal treatment for 16 hours at 75 ° C. and pH 9.5, the electric conductivity of the filtrate of the 4% aqueous suspension of the product was 150 μS. A pure silica hydrogel was obtained by washing with water so as to be / cm.
[0055]
This silica hydrogel was pulverized by a jet mill using superheated steam so as to have an average particle diameter of 2.2 μm and finally dried to obtain gel silica.
[0056]
Example 2
The same pure silica hydrogel as obtained in Example 1 was dried, and then pulverized and finally dried to a mean particle size of 4.0 μm by a jet mill to obtain gel silica.
[0057]
Example 3
After obtaining a silica hydrogel based on the same raw materials and formulation as obtained in Example 1, it was further subjected to hydrothermal treatment for 16 hours at 75 ° C. and pH 9.5, followed by filtration of a 4% aqueous suspension of the product. Water washing was performed so that the electric conductivity of the liquid was 200 μS / cm to obtain a pure silica hydrogel.
[0058]
This silica hydrogel was pulverized and finally dried to a mean particle size of 6.0 μm by a jet mill using superheated steam to obtain a gel silica.
[0059]
Example 4
A 0.7 liter sodium silicate aqueous solution having a SiO 2 concentration of 13.1 wt% and a SiO 2 / Na 2 O molar ratio of 3.5 and 145 liters of warm water were charged, and this was heated to 58 ° C. and sufficiently stirred.
[0060]
Subsequently, 73 liters of sodium silicate aqueous solution and 5.6 liters of sulfuric acid with a concentration of 49% were simultaneously added over 200 minutes while stirring to carry out a neutralization reaction. Thereafter, sulfuric acid was further added to adjust the pH of the hydrous silicic acid slurry to 3.5 to complete the entire reaction.
[0061]
The silica slurry thus formed was filtered with a filter press, and washed with water so that the electrical conductivity of the filtrate of the 4% aqueous suspension of the product was 150 μS / cm, to obtain a silica cake.
[0062]
After washing with water, it is left to dry, and after drying, it is pulverized with a bantam mill (manufactured by Hosokawa Micron Co., Ltd.) so that the average particle size becomes 4.0 μm, and then with a pedic air classifier (manufactured by Seisin Enterprise Co., Ltd.). Classification was performed to obtain precipitated silica.
[0063]
Comparative Example 1
After obtaining a silica hydrogel based on the same raw materials and formulation as obtained in Example 1, it was further subjected to hydrothermal treatment for 16 hours at 75 ° C. and pH 9.5, followed by filtration of a 4% aqueous suspension of the product. The solution was washed with water so that the electric conductivity of the solution was 60 μS / cm to obtain a pure silica hydrogel.
[0064]
This silica hydrogel was pulverized by a jet mill using superheated steam so as to have an average particle diameter of 4.0 μm and finally dried to obtain gel silica.
[0065]
Comparative Example 2
After obtaining a silica hydrogel based on the same raw materials and formulation as obtained in Example 1, it was further subjected to hydrothermal treatment for 16 hours at 75 ° C. and pH 9.5, followed by filtration of a 4% aqueous suspension of the product. The solution was washed with water so that the electric conductivity of the solution was 400 μS / cm to obtain a pure silica hydrogel.
[0066]
This silica hydrogel was pulverized by a jet mill using superheated steam so as to have an average particle diameter of 4.0 μm and finally dried to obtain gel silica.
[0067]
Comparative Example 3
After obtaining a silica hydrogel based on the same raw materials and formulation as obtained in Example 1, it was further subjected to hydrothermal treatment for 10 hours at 90 ° C. and pH 8.0, followed by filtration of a 4% aqueous suspension of the product. Water washing was performed so that the electric conductivity of the liquid was about 150 μS / cm to obtain a pure silica hydrogel.
[0068]
This silica hydrogel was pulverized and finally dried by a jet mill using superheated steam so as to have an average particle diameter of about 4.0 μm to obtain a gel silica.
[0069]
Comparative Example 4
0.7 liter of sodium silicate aqueous solution having a SiO 2 concentration of 13.1 wt% and a SiO 2 / Na 2 O molar ratio of 3.5 and 145 liters of warm water were charged, and this was heated to 80 ° C. and sufficiently stirred. Next, 72 liters of sodium silicate aqueous solution and 5.6 liters of sulfuric acid having a concentration of 49% were simultaneously added over 110 minutes with stirring to carry out a neutralization reaction. Thereafter, sulfuric acid was further added to adjust the pH of the hydrous silicic acid slurry to 3.5 to complete the entire reaction.
[0070]
The silica slurry thus formed was filtered with a filter press, and washed with water so that the electrical conductivity of the filtrate of the 4% aqueous suspension of the product was 150 μS / cm, to obtain a silica cake.
[0071]
After washing with water, it was left to dry, and after drying, it was pulverized with a bantam mill (supra) so that the average particle size was 4.0 μm, and classified with a spedic wind classifier (supra) to obtain precipitated silica. .
[0072]
Comparative Example 5
Mizukacil P-78A (manufactured by Mizusawa Chemical Co., Ltd.) was used as commercially available amorphous silica (gel method).
[0073]
Comparative Example 6
Mizukasil P-50 (manufactured by Mizusawa Chemical Co., Ltd.) was used as commercially available amorphous silica (gel method).
[0074]
Comparative Example 7
As commercially available amorphous silica (gel method), SYLOID ED-5 (manufactured by GRACE DAVISON) was used.
[0075]
Comparative Example 8
NIPSIL NS-T (manufactured by Nippon Silica Industry Co., Ltd.) was used as commercially available amorphous silica (precipitation method).
[0076]
[Table 1]
Figure 0004235337
[0077]
【The invention's effect】
As understood from the above description, the amorphous silica used as an ink jet recording sheet for filler of the present invention, by aging a dispersion or a coating liquid in the production of the coating liquid used in the coating layer However, it does not form a sediment or hard cake, and the sedimentation phenomenon of the filler hardly occurs.
[0078]
Even when the pH of the dispersion is high or the filler concentration is high, even if the dispersion is stored for several days, it does not precipitate and does not form a hard cake, so the workability in the manufacturing process of the coated sheet is good. There is an effect of becoming.
[0079]
Further, while excellent in workability on the manufacturing process, in Lee inkjet recording sheet high print density, the effect of being able to form a sharp image can be obtained.

Claims (1)

BET比表面積が270m 2 /以上、320m 2 /g未満であり、かつ4%水懸濁液のろ液の電気伝導度が100μS/cm以上、250μS/cm未満であり、かつコールターカウンター法による平均粒子径が1.0μm以上、8.0μm未満であり、かつ吸油量が200ml/100g以上、350ml/100g未満であることを特徴とする非晶質シリカよりなるインクジェット記録シート用填料。 The BET specific surface area is 270 m 2 / more and less than 320 m 2 / g, and the electrical conductivity of the filtrate of 4% aqueous suspension is 100 μS / cm or more and less than 250 μS / cm, and the average by the Coulter counter method particle size 1.0μm or more and less than 8.0 .mu.m, and an oil absorption of 200 ml / 100 g or more, an ink jet recording sheet for filler consisting amorphous silica you and less than 350 ml / 100 g.
JP2000056836A 2000-03-02 2000-03-02 Inkjet recording sheet filler Expired - Fee Related JP4235337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056836A JP4235337B2 (en) 2000-03-02 2000-03-02 Inkjet recording sheet filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056836A JP4235337B2 (en) 2000-03-02 2000-03-02 Inkjet recording sheet filler

Publications (2)

Publication Number Publication Date
JP2001239749A JP2001239749A (en) 2001-09-04
JP4235337B2 true JP4235337B2 (en) 2009-03-11

Family

ID=18577716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056836A Expired - Fee Related JP4235337B2 (en) 2000-03-02 2000-03-02 Inkjet recording sheet filler

Country Status (1)

Country Link
JP (1) JP4235337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590179B2 (en) * 2003-10-23 2010-12-01 東ソー・シリカ株式会社 Amorphous silica

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639845A1 (en) * 1986-11-21 1988-06-01 Degussa FELLING SILICS, METHOD FOR THE PRODUCTION AND USE THEREOF
FR2649089B1 (en) * 1989-07-03 1991-12-13 Rhone Poulenc Chimie CONTROLLED POROSITY SILICA AND PROCESS FOR OBTAINING SAME
JP2919558B2 (en) * 1990-06-06 1999-07-12 水澤化学工業株式会社 Amorphous silica filler
JP2891822B2 (en) * 1992-06-22 1999-05-17 日本シリカ工業株式会社 Hydrous silica for silicone rubber filler
JPH06171922A (en) * 1992-12-08 1994-06-21 Nippon Shirika Kogyo Kk Hydrous silicate for silicone rubber-reinforced filler
JP3442119B2 (en) * 1993-12-24 2003-09-02 日本シリカ工業株式会社 Method for cleaning silica hydrogel
DE4424044A1 (en) * 1994-07-11 1996-01-18 Heraeus Quarzglas Process for the preparation of silica granules and use of the granules thus produced
JP2908253B2 (en) * 1994-09-26 1999-06-21 日本化学工業株式会社 Hydrated silica and its production method
JP3311882B2 (en) * 1994-12-20 2002-08-05 日本シリカ工業株式会社 Silica gel having high specific surface area and controlled low structure and method for producing the same
JP3107735B2 (en) * 1995-09-29 2000-11-13 株式会社トクヤマ Inkjet recording paper
JP3324937B2 (en) * 1996-08-27 2002-09-17 株式会社トクヤマ Filler for inkjet recording paper
JPH10329412A (en) * 1997-06-02 1998-12-15 Tokuyama Corp Filler for ink jet recording sheet and its manufacture

Also Published As

Publication number Publication date
JP2001239749A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP2877740B2 (en) Recording medium, image forming method using the same, and printed matter
US20030191226A1 (en) Formulation suitable for ink receptive coatings
US5720806A (en) Filler for ink jet recording paper
DE102006039269A1 (en) Dispersion of alumina, coating composition and ink receiving medium
DE10152745A1 (en) Alumina dispersion
JP2005280341A (en) Ink jet recording sheet
JP2007099586A (en) Method for producing silica particulate-dispersed liquid, silica particulate-dispersed liquid and ink jet recording sheet
CN102414026B (en) Coated print media and method for making the same
JP3046060B2 (en) Fine powdery alumina-based composite oxide, method for producing the same, and filler for inkjet recording paper
JP4235337B2 (en) Inkjet recording sheet filler
JP4199885B2 (en) Amorphous silica for inkjet recording sheet and method for producing the same
JP2006232592A (en) Method for manufacturing silica fine particle dispersion liquid
JP2005520719A (en) Colloidal silica-containing coating composition and glossy inkjet recording sheet produced therefrom
JP3797796B2 (en) Recording sheet with ink receiving layer and coating liquid for forming ink receiving layer
JP3324937B2 (en) Filler for inkjet recording paper
JP2005528996A (en) Colloidal silica-containing coating composition and glossy inkjet recording sheet produced therefrom
JP4580072B2 (en) Amorphous silica for inkjet recording sheets
JP4085883B2 (en) Inkjet recording sheet
JP2005255457A (en) Silica minute particle dispersion and its manufacturing method
JP3880736B2 (en) Inkjet recording paper filler and recording paper using the same
JP4590179B2 (en) Amorphous silica
WO2010113808A1 (en) Inkjet recording medium
JP4326096B2 (en) Method for producing silica-alumina composite sol
JP2005138406A (en) Sheet for ink jet recording
JP4279228B2 (en) Method for producing coating liquid for ink jet recording paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4235337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees