JP4235208B2 - Gas turbine tail tube structure - Google Patents

Gas turbine tail tube structure Download PDF

Info

Publication number
JP4235208B2
JP4235208B2 JP2006030935A JP2006030935A JP4235208B2 JP 4235208 B2 JP4235208 B2 JP 4235208B2 JP 2006030935 A JP2006030935 A JP 2006030935A JP 2006030935 A JP2006030935 A JP 2006030935A JP 4235208 B2 JP4235208 B2 JP 4235208B2
Authority
JP
Japan
Prior art keywords
cooling
tail
downstream end
cooling cover
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006030935A
Other languages
Japanese (ja)
Other versions
JP2007211643A (en
Inventor
英和 岩崎
智子 葉狩
康裕 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2006030935A priority Critical patent/JP4235208B2/en
Publication of JP2007211643A publication Critical patent/JP2007211643A/en
Application granted granted Critical
Publication of JP4235208B2 publication Critical patent/JP4235208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃焼器からの高温高圧の燃焼ガスをタービンに導く複数の尾筒を冷却カバーで覆ったガスタービンの尾筒構造に関するものである。   The present invention relates to a transition structure of a gas turbine in which a plurality of transition cylinders that guide high-temperature and high-pressure combustion gas from a combustor to a turbine are covered with a cooling cover.

ガスタービンの尾筒は、燃焼器からの高温高圧の燃焼ガスをタービンに導くための流路であって高温となるから、効果的に冷却する必要がある。その尾筒の冷却構造としては、図11に示すように、尾筒80の上流端80aから下流端80bまでのほぼ全体を覆うことのできるフルカバータイプの冷却カバー81を、尾筒80の外周面全体に対し所要の間隙を有する配置で設けて、圧縮機からの圧縮空気Aを、冷却カバー81に設けた多数のインピンジ冷却孔81aから導入して尾筒80の外周面に衝突させることにより、尾筒80をインピンジ冷却するものが知られている(特許文献1参照)。   The transition piece of the gas turbine is a flow path for guiding the high-temperature and high-pressure combustion gas from the combustor to the turbine and has a high temperature, and therefore needs to be effectively cooled. As the cooling structure of the transition piece, as shown in FIG. 11, a full cover type cooling cover 81 that can cover almost the entire portion from the upstream end 80 a to the downstream end 80 b of the transition piece 80 is used. By providing the entire surface with a required gap, and introducing compressed air A from the compressor through a number of impingement cooling holes 81a provided in the cooling cover 81 to collide with the outer peripheral surface of the tail cylinder 80. In addition, one that impinges the tail cylinder 80 is known (see Patent Document 1).

また、他の尾筒の冷却構造として、図11の冷却カバー81における上流側のほぼ半分程度の長さLを有する形状のハーフカバータイプの冷却カバーを、尾筒の上流端から中間部あたりまでの上流側部分の外周面に対し所要の間隙を有する配置で設けて、圧縮機からの圧縮空気Aを、冷却カバーの下流端から冷却カバーと尾筒との間隙に導入して対流冷却するとともに、冷却カバーに設けた多数のインピンジ冷却孔を利用したインピンジ冷却を行うものも知られている。この冷却構造では、前記構成に加えて、冷却カバーで覆われていない尾筒下流側内面を、この部分に形成した多数の小径の空気導入孔から尾筒の内部に噴出させた圧縮空気により形成される空気膜によって、フィルム冷却する。   As another cooling structure for the transition piece, a half-cover type cooling cover having a length L that is approximately half of the upstream side of the cooling cover 81 in FIG. 11 is provided from the upstream end of the transition piece to the middle portion. Provided with a required gap with respect to the outer peripheral surface of the upstream portion of the compressor, and the compressed air A from the compressor is introduced into the gap between the cooling cover and the tail tube from the downstream end of the cooling cover to convectively cool. In addition, there is also known one that performs impingement cooling using a number of impingement cooling holes provided in the cooling cover. In this cooling structure, in addition to the above configuration, the inner surface on the downstream side of the transition piece that is not covered by the cooling cover is formed by compressed air that is ejected into the interior of the transition piece from a large number of small-diameter air introduction holes formed in this portion. The film is cooled by the air film.

特公平5−24337号公報Japanese Patent Publication No. 5-24337

しかしながら、前記フルカバータイプの冷却カバー81を用いた冷却構造では、冷却カバー81によって尾筒80の外周面全体をインピンジ冷却できることから、尾筒80をそのメタル温度分布が全体にわたりほぼ一様となるように効果的に冷却できる利点がある反面、図8に示すように、複数の尾筒80のそれぞれについて、下流端の扇形をしたガス出口をタービンの初段タービンノズルに対応して円周上に配列するに際して、それら尾筒80の下流端出口の周囲に冷却カバーの下流端部が存在して互いに干渉することのないように、各冷却カバー81の各々の下流端部を、圧縮空気による熱膨張分を吸収して互いの干渉を回避できるだけの間隙C1を設けて配列する必要があり、この間隙C1を設けるのに伴って、隣接する各尾筒80の下流端出口の間隔C2がさらに大きくなってしまう。   However, in the cooling structure using the full cover type cooling cover 81, the entire outer peripheral surface of the tail tube 80 can be impingement cooled by the cooling cover 81, so that the metal temperature distribution of the tail tube 80 is substantially uniform over the entire surface. On the other hand, as shown in FIG. 8, for each of the plurality of tail cylinders 80, the downstream-side fan-shaped gas outlets are arranged on the circumference corresponding to the first stage turbine nozzle of the turbine. When arranging the downstream ends of the cooling covers 81, the downstream ends of the cooling covers 81 do not interfere with each other so that the downstream ends of the cooling covers exist around the outlets of the downstream ends of the tail cylinders 80. It is necessary to provide and arrange a gap C1 that can absorb the expansion and avoid mutual interference. As this gap C1 is provided, each of the adjacent tail cylinders 80 is arranged. Interval C2 in the upstream end outlet becomes larger.

そのため、隣接する各尾筒80の間にそれぞれ存在する比較的大きな間隙C2に相当するスペースからは、燃焼ガスが尾筒80の下流端出口を通過してそのままタービンに流入することはないので、図10に示すように、初段タービンノズル入口における燃焼ガスの温度および流速は、共に上述した間隙C2に対応する箇所においてそれぞれ低下する不均一な周方向分布となる。このように燃焼ガスの温度および流速の周方向の分布が不均一になると、タービン効率が下がってエンジン性能が低下するとともに、初段タービンノズルを形成する周方向に並んだ各ノズル片の耐熱寿命にばらつきが発生する。   Therefore, from the space corresponding to the relatively large gap C2 existing between each adjacent tail cylinder 80, the combustion gas does not flow through the downstream end outlet of the tail cylinder 80 and flow into the turbine as it is. As shown in FIG. 10, the temperature and flow velocity of the combustion gas at the inlet of the first stage turbine nozzle both have non-uniform circumferential distributions that decrease at locations corresponding to the above-described gap C2. If the distribution of the combustion gas temperature and flow velocity in the circumferential direction is not uniform, the turbine efficiency is lowered, the engine performance is lowered, and the heat resistance life of the nozzle pieces arranged in the circumferential direction forming the first stage turbine nozzle is reduced. Variation occurs.

一方、前記ハーフカバータイプの冷却カバーを用いた冷却構造では、尾筒の下流端出口付近に冷却カバーが存在しないので、図9に示すように、複数の各尾筒の各下流端部の扇形の出口を、燃焼ガスによる熱膨張分を吸収できるだけの小さな間隙C3で近接させた配置とすることができるので、初段タービンノズル入口における燃焼ガスの温度および流速は、共にほぼ均一化された周方向分布となる利点がある。ところが、この冷却構造では、尾筒の下流側のほぼ半分が冷却カバーで覆われていないことから、尾筒を効果的に冷却することができないので、尾筒のメタル温度が高くなりがちとなり、尾筒の耐熱寿命を十分に確保できない。そのために、燃焼ガスの温度が高いタイプのガスタービンには不向きである。   On the other hand, in the cooling structure using the half cover type cooling cover, since there is no cooling cover near the downstream end outlet of the tail tube, as shown in FIG. Can be disposed close to each other with a small gap C3 that can absorb the thermal expansion due to the combustion gas, so that the temperature and flow velocity of the combustion gas at the inlet of the first stage turbine nozzle are both substantially uniform in the circumferential direction. There is an advantage of distribution. However, in this cooling structure, since almost half of the downstream side of the transition piece is not covered with the cooling cover, the transition piece cannot be cooled effectively, so the metal temperature of the transition piece tends to be high, The heat resistant life of the tail tube cannot be secured sufficiently. Therefore, it is not suitable for a gas turbine of a type where the temperature of the combustion gas is high.

なお、ハーフカバータイプの冷却カバーを用いた冷却構造を燃焼ガスの温度が高いタイプのガスタービンに採用するに際しては、上述したように、尾筒の下流側半部の全域にフィルム冷却用の小径の空気導入孔を多数形成することで対応可能である。しかしながら、このフィルム冷却を用いた冷却構造は、製造コストが高くなるだけでなく、多数の空気導入孔から尾筒内に導入した圧縮空気が燃焼ガスと混ざって燃焼ガスの温度を低下させるので、タービンに所要温度の燃焼ガスを流入させるためには、燃焼器での燃焼ガスの温度をフィルム冷却による温度低下分を見込んだ高目の温度に設定する必要がある。これにより、燃焼器およびそれに続く尾筒は、熱負荷が大きくなるのに伴って寿命が短くなるだけでなく、燃焼ガスの温度の上昇に伴ってNOx値が上昇する傾向がある。   When adopting a cooling structure using a half cover type cooling cover for a gas turbine of a type having a high combustion gas temperature, as described above, a small diameter for film cooling is provided in the entire area of the downstream half of the tail tube. This is possible by forming a large number of air introduction holes. However, this cooling structure using film cooling not only increases the manufacturing cost, but also the compressed air introduced into the tail cylinder from a large number of air introduction holes mixes with the combustion gas and lowers the temperature of the combustion gas. In order for the combustion gas of the required temperature to flow into the turbine, it is necessary to set the temperature of the combustion gas in the combustor to a higher temperature that allows for a temperature drop due to film cooling. As a result, the combustor and the transition piece following it tend not only to have a shorter life as the thermal load increases, but also to increase the NOx value as the temperature of the combustion gas increases.

そこで、本発明は、燃焼ガスを温度および流速が共に均一な周方向分布となる状態に維持してタービンに流入させることができ、コスト高を抑えた構造としながらも燃焼器、尾筒および初段タービンノズルの寿命を十分に確保し、さらにNOx値の上昇を抑制することができるガスタービンの尾筒構造を提供することを目的としている。   Therefore, the present invention can maintain the temperature and flow velocity of the combustion gas in a uniform circumferential distribution so that the combustion gas can flow into the turbine. An object of the present invention is to provide a tail tube structure of a gas turbine that can sufficiently ensure the life of a turbine nozzle and further suppress an increase in NOx value.

前記目的を達成するために、本発明に係るガスタービンの尾筒構造は、燃焼器からの燃焼ガスをタービンに導入する、周方向に並んだ複数の尾筒と、前記尾筒の下流端部の外径側と内径側とにそれぞれ、前記タービンの初段タービンノズルとの間をシールするシール材が固定されており、前記冷却カバーにおける前記尾筒の下流端部近傍の両側部に、下流端縁から上流側へ向かって凹入する切り欠き部が形成されており、前記冷却カバーの下流端部における各側部外面の周方向位置、および前記外径側および内径側のシール材の周方向端部の位置が、前記切り欠き部により露出した前記尾筒の下流端部における各側部外面の周方向位置にほぼ合致しており、前記各尾筒の下流端部が、隣接する尾筒の下流端部に対し、燃焼ガスによる熱膨張分に相当する周方向の隙間のみを介して、近接して配置されている。 In order to achieve the above object, a transition structure of a gas turbine according to the present invention includes a plurality of transition tubes arranged in a circumferential direction for introducing combustion gas from a combustor into a turbine, and a downstream end portion of the transition tube. Sealing materials for sealing between the first stage turbine nozzles of the turbine are respectively fixed to the outer diameter side and the inner diameter side of the turbine, and downstream ends of the cooling cover in the vicinity of the downstream end of the tail tube A notch that is recessed from the edge toward the upstream side is formed, the circumferential position of the outer surface of each side at the downstream end of the cooling cover , and the circumferential direction of the sealing material on the outer diameter side and inner diameter side The position of the end portion substantially coincides with the circumferential position of the outer surface of each side portion at the downstream end portion of the tail tube exposed by the notch, and the downstream end portion of each tail tube is adjacent to the adjacent tail tube. The thermal expansion due to combustion gas with respect to the downstream end of Only through the corresponding circumferential gap, they are arranged close to.

この構成によれば、冷却カバーを尾筒の外周面のほぼ全体を覆うことのできるフルカバータイプの形状とした場合であっても、冷却カバー下流端部の両側部に切り欠き部を設けたことにより、尾筒の下流端部における周方向の両側部に冷却カバーが存在しないことから、各冷却カバーの各々の下流端部が互いに干渉することなしに各尾筒の下流端部を互いに近接させて配置することができるので、各尾筒のガス出口を燃焼ガスによる熱膨張分を吸収できるだけの小さな間隙を設けて互いに近接させて配置することができる。これにより、初段タービンノズル入口の燃焼ガスの温度および流速を共にほぼ均一な周方向分布とすることができるから、高いタービン効率を得ることができる。また、尾筒と冷却カバーとの間隙に圧縮空気を導入して尾筒のほぼ全体を冷却できるから、尾筒にフィルム冷却用の空気導入孔を設ける必要がなくなるので、コストを抑制しながら燃焼器、尾筒および初段タービンノズルの耐熱寿命を十分に確保できるとともに、NOx値の上昇を抑制することができる。   According to this configuration, even when the cooling cover has a full cover type shape that can cover almost the entire outer peripheral surface of the transition piece, the notches are provided on both sides of the downstream end of the cooling cover. As a result, there is no cooling cover on both sides in the circumferential direction at the downstream end of the transition piece, so the downstream ends of the transition pieces are close to each other without interfering with each other. Therefore, the gas outlets of the tail pipes can be arranged close to each other with a small gap that can absorb the thermal expansion due to the combustion gas. Thereby, since both the temperature and flow velocity of the combustion gas at the inlet of the first stage turbine nozzle can be made to have a substantially uniform circumferential distribution, high turbine efficiency can be obtained. In addition, since compressed air can be introduced into the gap between the transition piece and the cooling cover to cool almost the entire transition piece, there is no need to provide air introduction holes for film cooling in the transition piece. The heat resistance life of the vessel, the transition piece and the first stage turbine nozzle can be sufficiently secured, and an increase in the NOx value can be suppressed.

しかも、各冷却カバーの各々の下流端部が互いに干渉することなしに隣接する尾筒の下流端部を可及的に近接させることができるので、初段タービンノズル入口の温度および流速が効果的に周方向に均一化される。 In addition, since the downstream ends of the adjacent tail cylinders can be brought as close as possible without the downstream ends of the cooling covers interfering with each other, the temperature and flow velocity at the inlet of the first stage turbine nozzle are effectively reduced. Uniform in the circumferential direction.

本発明において、好ましくは、前記冷却カバーに、前記圧縮空気を導入して前記尾筒の外周面に衝突させてインピンジ冷却を行う多数の冷却孔を設ける。この構成によれば、尾筒の外周面のほぼ全体を覆う冷却カバーに設けた多数の冷却孔から導入された圧縮空気によるインピンジ冷却によって尾筒を効果的に冷却することができる。   In the present invention, preferably, the cooling cover is provided with a plurality of cooling holes for introducing impingement cooling by introducing the compressed air and causing it to collide with the outer peripheral surface of the tail tube. According to this configuration, the tail cylinder can be effectively cooled by impingement cooling with compressed air introduced from a large number of cooling holes provided in the cooling cover that covers substantially the entire outer peripheral surface of the tail cylinder.

本発明のガスタービンの尾筒構造によれば、冷却カバーにおける下流端部の両側に切り欠き部を設けたことにより、冷却カバーを尾筒のほぼ全体を覆うことのできるフルカバータイプと同等の形状としながらも、複数の尾筒の下流端部を所要の小さな間隙で互いに近接させて配置できるので、初段タービンノズル入口の燃焼ガスの温度および流速を共に均一な周方向分布とすることができ、これによってタービン効率を高く維持できる。さらに、コストを抑制しながら尾筒のほぼ全体を効果的に冷却して、燃焼器、尾筒および初段タービンノズルの寿命を十分に確保できるとともに、NOx値の上昇を抑制することができる。   According to the transition structure of the gas turbine of the present invention, by providing the notches on both sides of the downstream end of the cooling cover, the cooling cover is equivalent to the full cover type that can cover almost the entire transition piece. Even though it is shaped, the downstream ends of the plurality of transition pieces can be arranged close to each other with a required small gap, so that the temperature and flow velocity of the combustion gas at the inlet of the first stage turbine nozzle can both have a uniform circumferential distribution. As a result, the turbine efficiency can be kept high. Furthermore, it is possible to effectively cool the entire transition of the transition piece while suppressing costs, and to sufficiently ensure the lives of the combustor, transition piece and first stage turbine nozzle, and to suppress an increase in the NOx value.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は、本発明の一実施形態に係る尾筒構造を用いたガスタービンを示す一部破断した側面図である。同図において、ガスタービン1は、空気1Aを圧縮機2で圧縮してその圧縮空気Aを燃焼器3に導くとともに、ガスまたは液体燃料Fを燃焼器3内に噴射して燃焼させ、その高温高圧の燃焼ガスGを尾筒26を通じてタービン4に導くことにより、燃焼ガスGのエネルギによってタービン4を駆動する。このタービン4は圧縮機2を駆動するとともに、例えば発電機(図示せず)のような負荷を駆動する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway side view showing a gas turbine using a transition piece structure according to an embodiment of the present invention. In the figure, a gas turbine 1 compresses air 1A by a compressor 2 and guides the compressed air A to a combustor 3, and injects gas or liquid fuel F into the combustor 3 for combustion, and the high temperature thereof. By introducing the high-pressure combustion gas G to the turbine 4 through the tail cylinder 26, the turbine 4 is driven by the energy of the combustion gas G. The turbine 4 drives the compressor 2 and also drives a load such as a generator (not shown).

この実施形態では、前記圧縮機2として軸流圧縮機を備えたガスタービン1を例示してある。この軸流圧縮機2は、回転軸12の外周に配置された多数個の動翼13と、圧縮機ハウジング14の内周面に複数段に配置された静翼15との組み合わせにより、吸気ダクト16から吸入した空気1Aを圧縮する。圧縮機ハウジング14の下流側にはメインハウジング60が連結されており、圧縮機2からの圧縮空気Aはメインハウジング60内に形成された環状の高圧空気室17に送給される。   In this embodiment, the gas turbine 1 provided with the axial flow compressor as the said compressor 2 is illustrated. This axial flow compressor 2 includes an intake duct by a combination of a large number of moving blades 13 disposed on the outer periphery of the rotating shaft 12 and stationary blades 15 disposed in a plurality of stages on the inner peripheral surface of the compressor housing 14. The air 1A sucked from 16 is compressed. A main housing 60 is connected to the downstream side of the compressor housing 14, and the compressed air A from the compressor 2 is supplied to an annular high-pressure air chamber 17 formed in the main housing 60.

燃焼器3は、環状の高圧空気室17にその周方向に沿って複数個(この実施形態においては8個)が等間隔に配置されており、高圧空気室17に送給された圧縮空気Aは、矢印a,bで示すように、燃焼筒21の内部の燃焼室22内に導入される。一方、燃焼器3の燃料ノズル23から燃料Fが燃焼室22内に噴射されて圧縮空気Aと混合して燃焼し、その高温高圧の燃焼ガスGが、燃焼筒21の下流側(燃焼ガスGの流れ方向の下流側)に接続された尾筒26を通ってタービン4に流入する。   A plurality of combustors 3 (eight in this embodiment) are arranged in the annular high-pressure air chamber 17 along the circumferential direction at equal intervals, and the compressed air A supplied to the high-pressure air chamber 17 is disposed. Is introduced into the combustion chamber 22 inside the combustion cylinder 21 as indicated by arrows a and b. On the other hand, the fuel F is injected into the combustion chamber 22 from the fuel nozzle 23 of the combustor 3 and mixed with the compressed air A and combusted. It flows into the turbine 4 through the transition piece 26 connected to the downstream side in the flow direction.

図2は、図1における尾筒構造の部分の拡大縦断面図である。前記尾筒26は、上流端部26aが燃焼器3の燃焼筒21に、かつ、下流端部26bがタービン4の初段タービンノズル18にそれぞれ接続されている。この尾筒26は、外周面のほぼ全体が所要の間隙27を存して冷却カバー7で覆われており、前記間隙27には、圧縮機2のディフューザ24の出口から高圧空気室17に送給された圧縮空気Aが、後述する冷却カバー7の多数の冷却孔から噴出され、この噴出された高速空気流が尾筒26の外周面に衝突して、尾筒26をインピンジ冷却する。このインピンジ冷却の詳細については後述する。前記間隙27に導入された圧縮空気Aは、間隙27を通って燃焼器3の上流側に向け流れたのち、燃焼筒21の内部の燃焼室22内に導入される。   FIG. 2 is an enlarged vertical sectional view of a portion of the tail tube structure in FIG. The tail cylinder 26 has an upstream end portion 26 a connected to the combustion cylinder 21 of the combustor 3 and a downstream end portion 26 b connected to the first stage turbine nozzle 18 of the turbine 4. The tail cylinder 26 is covered with a cooling cover 7 with a required gap 27 almost entirely on the outer peripheral surface, and the gap 27 is fed from the outlet of the diffuser 24 of the compressor 2 to the high-pressure air chamber 17. The supplied compressed air A is ejected from a large number of cooling holes of the cooling cover 7 described later, and the ejected high-speed air flow collides with the outer peripheral surface of the tail cylinder 26 to impinge cool the tail cylinder 26. Details of the impingement cooling will be described later. The compressed air A introduced into the gap 27 flows toward the upstream side of the combustor 3 through the gap 27 and is then introduced into the combustion chamber 22 inside the combustion cylinder 21.

各尾筒26は、金属製の一体成形品であって、尾筒26と冷却カバー7との平面図である図4に示すように、上流端部26aの開口部が燃焼筒21(図2)に対応した円筒形状に形成されており、尾筒26と冷却カバー7の斜視図である図6に示すように、下流端部26bの開口部であるガス出口が、環状の初段タービルノズル18に対応した円環を複数割り(この実施形態では8分割)した扇形に形成されている。   Each tail tube 26 is an integrally formed product made of metal, and as shown in FIG. 4 which is a plan view of the tail tube 26 and the cooling cover 7, the opening of the upstream end portion 26a is the combustion tube 21 (FIG. 2). ), And the gas outlet, which is the opening of the downstream end portion 26b, is an annular first-stage turville nozzle, as shown in FIG. 6 which is a perspective view of the transition piece 26 and the cooling cover 7. 18 is formed in a sector shape obtained by dividing a ring corresponding to 18 into a plurality of divisions (in this embodiment, eight divisions).

一方、冷却カバー7は、図2に明示するように、その上流端部7aが尾筒26の上流端部26aと燃焼ガスGの流れ方向においてほぼ同一位置にあり、下流端部7bが尾筒26の下流端部26bよりも若干上流側に位置しており、尾筒26の外周における下流端部26bの一部を除くほぼ全体を覆うことのできるフルカバータイプと同等の形状を有している。底面図である図5に明示するように、冷却カバー7における尾筒26の下流端部26b近傍を覆う下流端部7bの両側に、下流端縁7bbから上流側に向かって凹入する形状の切り欠き部8が形成されている。この切り欠き部8は、冷却カバー7の下流端部7bの周方向の最大幅W1が当該切り欠き部8によって露出した尾筒26の下流端部26bの周方向の最大幅W2にほぼ等しくなる形状に設定されている。換言すれば、切り欠き部8は、冷却カバー7における尾筒26の下流端部26bよりも周方向外方へはみ出る部分のみを切断して除外した形状に形成されている。   On the other hand, as clearly shown in FIG. 2, the cooling cover 7 has an upstream end 7 a at the substantially same position as the upstream end 26 a of the tail cylinder 26 in the flow direction of the combustion gas G, and a downstream end 7 b of the tail cover 26. 26 is located slightly upstream from the downstream end portion 26b, and has the same shape as the full cover type that can cover almost the entire outer surface of the tail tube 26 except for a part of the downstream end portion 26b. Yes. As clearly shown in FIG. 5 that is a bottom view, the cooling cover 7 has a shape that is recessed toward the upstream side from the downstream end edge 7bb on both sides of the downstream end portion 7b that covers the vicinity of the downstream end portion 26b of the tail tube 26. A notch 8 is formed. The notch 8 has a maximum circumferential width W1 of the downstream end 7b of the cooling cover 7 substantially equal to a maximum circumferential width W2 of the downstream end 26b of the tail tube 26 exposed by the notch 8. The shape is set. In other words, the cutout portion 8 is formed in a shape that is cut out and excluded only from a portion of the cooling cover 7 that protrudes outward in the circumferential direction from the downstream end portion 26 b of the tail tube 26.

図2に示すように、前記尾筒26の上流端部26aは、僅かに拡径して大径に形成された連結筒部28の内側に燃焼筒21の下流端部が嵌合されることにより、燃焼筒21に連結されている。一方、尾筒26の下流端部26bは、以下に説明する連結構造によってタービン4の初段タービンノズル(静翼)18に連結されている。   As shown in FIG. 2, the upstream end portion 26 a of the tail cylinder 26 is fitted with the downstream end portion of the combustion cylinder 21 inside a connecting cylinder portion 28 that is slightly enlarged in diameter and formed in a large diameter. Thus, it is connected to the combustion cylinder 21. On the other hand, the downstream end portion 26b of the transition piece 26 is connected to the first stage turbine nozzle (static blade) 18 of the turbine 4 by a connection structure described below.

すなわち、図6に示すように、尾筒26の下流端部26bには、扇形に開口するガス出口26eの外径側(図の上方側)に円弧状のアウターシール材10が、ガス出口26eの内径側(図の下方側)に円弧状のインナーシール材11が、それぞれ後述する構造で固定されている。また、尾筒26の外側面には、冷却カバー7の下流端部7bよりも下流側に位置する連結フランジ部9が一体に突設されている。   That is, as shown in FIG. 6, an arc-shaped outer seal material 10 is provided at the downstream end portion 26b of the tail tube 26 on the outer diameter side (upper side in the figure) of the gas outlet 26e that opens in a fan shape. Arc-shaped inner seal materials 11 are fixed to the inner diameter side (lower side in the figure) of each of them with a structure to be described later. In addition, a connecting flange portion 9 that is located on the downstream side of the downstream end portion 7 b of the cooling cover 7 is integrally projected on the outer surface of the tail tube 26.

前記連結フランジ部9には周方向の中央部に単一のピン挿入孔19が形成され、そのピン挿入孔19の両側位置にねじ挿通孔20が形成されている。また、前記アウターシール材10にはガスタービンの外径側に突出する二つの第1ボス30,30と、これらの間に位置する一つの第2ボス32とが一体形成され、インナーシール材11にも同様に、ガスタービンの内径側に突出する二つの第1ボス31,31と、これらの間に位置する一つの第2ボス33とが一体形成されている。第1ボス30,31にねじ孔34,37が設けられ、第2ボス32,33にピン挿入孔38,39が設けられている。さらに、尾筒26には、アウターシール材10およびインナーシール材11の各々の二つの第1ボス30,31に対しそれぞれ同形状を有して互いに重ね合わされる取付ボス41,42が一体形成されているとともに、インナーシール材11の第2ボス33に対し同形状を有して互いに重ね合わされる位置決めボス40が一体形成されている。   A single pin insertion hole 19 is formed in the central portion of the connection flange portion 9 in the circumferential direction, and screw insertion holes 20 are formed at both sides of the pin insertion hole 19. Further, the outer seal material 10 is integrally formed with two first bosses 30, 30 projecting to the outer diameter side of the gas turbine and one second boss 32 positioned between them. Similarly, two first bosses 31, 31 projecting to the inner diameter side of the gas turbine and one second boss 33 positioned therebetween are integrally formed. The first bosses 30 and 31 are provided with screw holes 34 and 37, and the second bosses 32 and 33 are provided with pin insertion holes 38 and 39. Further, the tail tube 26 is integrally formed with mounting bosses 41 and 42 which have the same shape with respect to the two first bosses 30 and 31 of the outer seal material 10 and the inner seal material 11 and are overlapped with each other. In addition, a positioning boss 40 having the same shape as that of the second boss 33 of the inner seal material 11 and overlapping each other is integrally formed.

図2のIII 部の拡大図である図3に示すように、アウターシール材10およびインナーシール材11は、尾筒26の下流端部26bの外径側および内径側に対してそれぞれ、ピン挿入孔38,39に尾筒26の連結フランジ部9および位置決めボス40に取り付けた位置決めピン29,47が挿入されることにより、尾筒26に対して位置決めされた状態で、それぞれ2本のボルト44,45が、図6に示す尾筒26の取付ボス41,42のねじ挿通孔(図示せず)を介して各々の第1ボス30,31のねじ孔34,37にねじ込んで締結されることにより、尾筒26の下流端部26bにおける外径側および内径側に固定されている。こうして、アウターシール材10およびインナーシール材11は、尾筒26の下流端部26bに対し周方向にはみ出ない正確な位置決め状態で尾筒26に固着されている。   As shown in FIG. 3, which is an enlarged view of the portion III in FIG. 2, the outer seal material 10 and the inner seal material 11 are inserted into the outer diameter side and the inner diameter side of the downstream end portion 26 b of the tail tube 26, respectively. When the positioning pins 29 and 47 attached to the connecting flange portion 9 of the tail tube 26 and the positioning boss 40 are inserted into the holes 38 and 39, the two bolts 44 are respectively positioned in a state of being positioned with respect to the tail tube 26. , 45 are screwed into the screw holes 34, 37 of the first bosses 30, 31 via the screw insertion holes (not shown) of the mounting bosses 41, 42 of the tail cylinder 26 shown in FIG. Thus, the downstream end portion 26b of the tail tube 26 is fixed to the outer diameter side and the inner diameter side. Thus, the outer seal material 10 and the inner seal material 11 are fixed to the tail cylinder 26 in an accurate positioning state that does not protrude in the circumferential direction with respect to the downstream end portion 26b of the tail cylinder 26.

さらに、図3に示すようにタービンノズルサポート部材43から突出した位置決めピン48が尾筒26の連結フランジ部9のピン挿入孔19に挿入された位置決め状態で、ボルト49が連結フランジ部9のねじ挿通孔20(図6)を介しタービンノズルサポート部材43のねじ孔(図示せず)にねじ込まれることにより、連結フランジ部9がタービンノズルサポート部材43に固定され、尾筒26の下流端部26bが連結フランジ部9を介してタービンノズルサポート部材43に支持されている。タービンノズルサポート部材43は、図1のメインハウジング60に支持されている。この状態で、タービン4の初段タービンノズル18の上流端部がアウターシール材10およびインナーシール材11に嵌め込まれることで、初段タービンノズル18と尾筒26との間が気密にシールされている。   Further, as shown in FIG. 3, the positioning pin 48 protruding from the turbine nozzle support member 43 is inserted into the pin insertion hole 19 of the connecting flange portion 9 of the tail cylinder 26, and the bolt 49 is a screw of the connecting flange portion 9. The connecting flange portion 9 is fixed to the turbine nozzle support member 43 by being screwed into a screw hole (not shown) of the turbine nozzle support member 43 through the insertion hole 20 (FIG. 6), and the downstream end portion 26 b of the tail tube 26. Is supported by the turbine nozzle support member 43 via the connecting flange portion 9. The turbine nozzle support member 43 is supported by the main housing 60 of FIG. In this state, the upstream end of the first stage turbine nozzle 18 of the turbine 4 is fitted into the outer seal material 10 and the inner seal material 11, so that the space between the first stage turbine nozzle 18 and the tail cylinder 26 is hermetically sealed.

一方、前記冷却カバー7は、図4に示すように左右二つ割りされたカバー半体7A,7Bを互いに合体して構成されている。図5にも示すように、冷却カバー7の上流端部7aは、各カバー半体7A,7Bにおける上流端の周方向の上下両端部に外方に向けて突設された各一対の連結片50,51を重ね合わせた状態で、ボルト52が一方の連結片51の挿通孔を介して他方の連結片50のねじ孔にねじ込まれることにより、両カバー半体7A,7Bの上流端部が外径側および内径側において相互に連結されている。また、冷却カバー7の中間部は、各カバー半体7A,7Bの中間部の外径側の各端部に外方に向けて突設された各一つの連結片53,54を互いに重ね合わせた状態でボルト57とナット58とでねじ結合されて、両カバー半体7A,7Bの中間部が相互に連結されている。冷却カバー7の下流端部7bにおける両カバー半体7A,7Bの結合構造については後述する。   On the other hand, as shown in FIG. 4, the cooling cover 7 is formed by combining two cover halves 7A and 7B divided into left and right parts. As shown in FIG. 5, the upstream end portion 7a of the cooling cover 7 has a pair of connecting pieces projecting outward at both upper and lower end portions in the circumferential direction of the upstream ends of the cover halves 7A and 7B. When the bolts 52 are screwed into the screw holes of the other connecting piece 50 through the insertion holes of the one connecting piece 51 in a state where the 50 and 51 are overlapped, the upstream ends of the cover halves 7A and 7B are The outer diameter side and the inner diameter side are connected to each other. In addition, the intermediate portion of the cooling cover 7 is formed by superimposing one connecting piece 53, 54 projecting outward from each end on the outer diameter side of the intermediate portion of each cover half body 7A, 7B. In this state, the cover 57 and the nut 58 are screwed together so that the intermediate portions of the cover halves 7A and 7B are connected to each other. The connection structure of the cover halves 7A and 7B at the downstream end 7b of the cooling cover 7 will be described later.

図2に示すように、前記冷却カバー7のフロースリーブ62は上流端部にフランジを持つ円筒体であり、そのフランジがボルト61によりメインハウジング60に支持され、下流端部が冷却カバー7の上流端部7aの開口近傍の内周面を拡径して形成された開口凹所59の内側に嵌合されて、冷却カバー7の上流端部7aを支持している。上流端部7aは、フロースリーブ62を介してメインハウジング60に支持されている。また、冷却カバー7の開口凹所59には、尾筒26の上流端部の外面から外径側へ向けて90°の等間隔で一体に突設された4本の位置決めピン63の各先端が軽く接触している。これにより、尾筒26の上流端部26aは、冷却カバー7に対し所定の間隙27を維持する相対位置に位置決めされている。   As shown in FIG. 2, the flow sleeve 62 of the cooling cover 7 is a cylindrical body having a flange at the upstream end, the flange is supported by the main housing 60 by the bolt 61, and the downstream end is upstream of the cooling cover 7. The upstream end portion 7 a of the cooling cover 7 is supported by being fitted inside an opening recess 59 formed by expanding the inner peripheral surface of the end portion 7 a in the vicinity of the opening. The upstream end 7 a is supported by the main housing 60 via the flow sleeve 62. Further, in the opening recess 59 of the cooling cover 7, the tips of the four positioning pins 63 that are integrally projected at equal intervals of 90 ° from the outer surface of the upstream end portion of the transition piece 26 toward the outer diameter side. Is touching lightly. Thus, the upstream end portion 26 a of the tail tube 26 is positioned at a relative position that maintains a predetermined gap 27 with respect to the cooling cover 7.

冷却カバー7の下流端部7bは、尾筒26の連結フランジ部9に近接する箇所まで延びて、連結フランジ部9との間に小さな隙間64を形成している。この冷却カバー7の下流端近傍箇所の外径側および内径側の2箇所に設けられた挿通孔67には、尾筒26の外径側および内径側に突設された二つの取付ブロック片68がそれぞれ挿通されている。一方、図4に示すように、冷却カバー7の両カバー半体7A,7Bの外径側端部の挿通孔67の近傍に突設された連結ブロック片69,69が、前記取付ブロック片68に対し両側から挟み込む配置で重ね合わされて、これらがボルト70とナット71とでねじ結合されている。また、図5の底面図に示すように、冷却カバー7の両カバー半体7A,7Bの内径側端部も同様に、挿通孔67の近傍に突設された連結ブロック片69,69が、取付ブロック片68に対し両側から挟み込む配置で重ね合わされて、これらがボルト70とナット71とでねじ結合されている。これにより、冷却カバー7の下流端部7bが尾筒26に支持されている。   The downstream end portion 7 b of the cooling cover 7 extends to a location in the vicinity of the connecting flange portion 9 of the tail cylinder 26, and forms a small gap 64 with the connecting flange portion 9. Two mounting block pieces 68 projecting from the outer diameter side and the inner diameter side of the tail cylinder 26 are inserted into two insertion holes 67 provided on the outer diameter side and the inner diameter side near the downstream end of the cooling cover 7. Are respectively inserted. On the other hand, as shown in FIG. 4, connecting block pieces 69, 69 projecting in the vicinity of the insertion holes 67 at the outer diameter side ends of the cover halves 7 A, 7 B of the cooling cover 7 are the mounting block pieces 68. Are overlapped with each other so as to be sandwiched from both sides, and these are screwed together by bolts 70 and nuts 71. Further, as shown in the bottom view of FIG. 5, the connecting block pieces 69, 69 projecting in the vicinity of the insertion hole 67 are also provided on the inner diameter side ends of both cover halves 7 </ b> A, 7 </ b> B of the cooling cover 7. The mounting block pieces 68 are overlapped with each other so as to be sandwiched from both sides, and these are screwed together by bolts 70 and nuts 71. Thereby, the downstream end 7 b of the cooling cover 7 is supported by the tail tube 26.

前記冷却カバー7には、図4ないし図6にそれぞれ示すように、ほぼ全体にわたり多数の冷却孔72が形成されている。これら冷却孔72から、図2の高圧空気室17の圧縮空気Aを冷却カバー7の内部に導入して尾筒26の外周面に衝突させることにより、尾筒26をインピンジ冷却する。   As shown in FIGS. 4 to 6, the cooling cover 7 is formed with a large number of cooling holes 72 almost entirely. The compressed air A in the high-pressure air chamber 17 in FIG. 2 is introduced into the cooling cover 7 through these cooling holes 72 and collides with the outer peripheral surface of the tail tube 26, whereby the tail tube 26 is impinged.

図7に示すように、この実施形態では、8つの尾筒26を有するガスタービン1を例示してあり、尾筒26の下流端部26bのガス出口26eは、ほぼ1/8円周に対応する扇形に形成されている。これら各尾筒26は、各々の下流端部26bのガス出口26eを周方向に並べることにより初段タービンノズル18(図2)の環状の入口開口に対応する環状に配列されている。   As shown in FIG. 7, in this embodiment, the gas turbine 1 having eight tail cylinders 26 is illustrated, and the gas outlet 26e at the downstream end portion 26b of the tail cylinder 26 corresponds to approximately 1/8 circumference. It is formed into a fan shape. These tail cylinders 26 are arranged in an annular shape corresponding to the annular inlet openings of the first stage turbine nozzle 18 (FIG. 2) by arranging the gas outlets 26e of the respective downstream end portions 26b in the circumferential direction.

図6に示す冷却カバー7は、尾筒26の外周面における下流端の連結フランジ部9を除くほぼ全体を覆うことのできるフルカバータイプと同等の形状を有しているが、尾筒26の下流端部26bの両側に位置して、下流端縁7bbから上流側へ向かって凹入する左右一対の切り欠き部8が形成されており、この切り欠き部8は、冷却カバー7の左右両側端の周方向位置P1(この場合は切り欠き部8の上縁)が当該切り欠き部8によって露出した尾筒26の両側端の周方向位置P2にほぼ合致する形状に設定されている。こうして、隣接する各2つの冷却カバー7の各々の下流端部7bが互いに接触する干渉を避けながら、冷却カバー7における尾筒26を覆うことのできる面積を可及的に大きくしている。   The cooling cover 7 shown in FIG. 6 has the same shape as a full cover type that can cover almost the entire outer surface of the transition piece 26 except the connecting flange portion 9 at the downstream end. A pair of left and right cutout portions 8 are formed on both sides of the downstream end portion 26b and recessed from the downstream end edge 7bb toward the upstream side. The cutout portions 8 are formed on the left and right sides of the cooling cover 7. The circumferential position P1 of the end (in this case, the upper edge of the notch 8) is set to a shape that substantially matches the circumferential position P2 of the both ends of the tail tube 26 exposed by the notch 8. In this way, the area that can cover the tail tube 26 in the cooling cover 7 is made as large as possible while avoiding interference in which the downstream end portions 7b of the two adjacent cooling covers 7 contact each other.

これにより、図7に明示するように、各尾筒26は、各冷却カバー7の各々の下流端部が互いに接触する干渉を考慮することなく各々の下流端部26bのガス出口26eを可及的に近接させることができるから、各尾筒26の各々のガス出口26eを、燃焼ガスGによる熱膨張分を吸収できるだけの小さな間隙C3、つまりハーフカバータイプの冷却カバーの場合(図9)と同等の間隙C3を残して互いに近接させた配置で環状に配列することができる。したがって、この尾筒構造では、図3の初段タービンノズル18の入口における燃焼ガスGの温度および流速を共に、図10の二点鎖線TTおよびVVでそれぞれ示すように、より均一な周方向分布とすることができる。これにより、タービン4の効率の低下を抑制できるとともに、初段タービンノズル18を形成する周方向に並んだ各ノズル片の耐熱寿命のばらつきを抑制して、初段タービンノズル18の寿命を長くできる。   Accordingly, as clearly shown in FIG. 7, each tail tube 26 allows the gas outlets 26 e of the respective downstream end portions 26 b as much as possible without considering the interference between the respective downstream end portions of the respective cooling covers 7. Since each gas outlet 26e of each tail tube 26 can be made close to each other, the gap C3 that can absorb the thermal expansion due to the combustion gas G, that is, a half-cover type cooling cover (FIG. 9), They can be arranged annularly in an arrangement close to each other, leaving an equivalent gap C3. Therefore, in this tail tube structure, the temperature and flow velocity of the combustion gas G at the inlet of the first stage turbine nozzle 18 of FIG. 3 are both more uniform in the circumferential distribution as indicated by the two-dot chain lines TT and VV in FIG. can do. Thereby, while the fall of the efficiency of the turbine 4 can be suppressed, the dispersion | variation in the heat-resistant lifetime of each nozzle piece located in the circumferential direction which forms the first stage turbine nozzle 18 is suppressed, and the life of the first stage turbine nozzle 18 can be lengthened.

また、前記尾筒構造では、図6に示す尾筒26の外周面のほぼ全体を覆う冷却カバー7に設けた多数の冷却孔72から、図2に示す間隙27内に導入した圧縮空気Aを尾筒26の外面に衝突させてインピンジ冷却を行うことにより、尾筒26の外周面を効果的に冷却することができる。また、尾筒26における両側の二つの切り欠き部8によって露出された部分は、矢印で示すように、圧縮機2のディフューザ24の出口から高圧空気室17に向けて流れる圧縮空気Aによって対流冷却される。つまり、この尾筒構造では、フィルム冷却などのコスト高となる冷却構造を尾筒26に設けることなしに、尾筒26の外周面のほぼ全体を効果的に冷却して尾筒26の寿命を十分に確保できる。さらに、尾筒26にフィルム冷却用の空気導入孔を設けるものではないので、製造コストの高騰を抑制できるとともに、フィルム冷却用の空気が燃焼ガスに混入されて初段タービンノズル入口の燃焼ガス温度を低下させることはないので、燃焼器での燃焼ガスの温度を高目に設定する必要がなくなる。それにより、燃焼器およびそれに続く尾筒の熱負荷が大きくなることがないので、燃焼器および尾筒の寿命を長くでき、さらにNOx値の上昇を抑制することができる。   Further, in the transition piece structure, the compressed air A introduced into the gap 27 shown in FIG. 2 from a number of cooling holes 72 provided in the cooling cover 7 covering almost the entire outer peripheral surface of the transition piece 26 shown in FIG. By impinging on the outer surface of the tail tube 26 and performing impingement cooling, the outer peripheral surface of the tail tube 26 can be effectively cooled. The portion exposed by the two notches 8 on both sides of the tail tube 26 is convectively cooled by the compressed air A flowing from the outlet of the diffuser 24 of the compressor 2 toward the high-pressure air chamber 17 as indicated by arrows. Is done. In other words, this tail tube structure effectively cools the entire outer peripheral surface of the tail tube 26 without providing a costly cooling structure such as film cooling in the tail tube 26, thereby extending the life of the tail tube 26. Enough can be secured. Furthermore, since the air inlet hole for film cooling is not provided in the tail cylinder 26, it is possible to suppress an increase in manufacturing cost, and the air for film cooling is mixed into the combustion gas so that the combustion gas temperature at the inlet of the first stage turbine nozzle is reduced. Since it does not decrease, it is not necessary to set the temperature of the combustion gas in the combustor to a high level. Thereby, since the thermal load of the combustor and the subsequent transition piece does not increase, the life of the combustor and the transition piece can be extended, and further the increase in the NOx value can be suppressed.

なお、冷却カバー7に多数の冷却孔72を設けてインピンジ冷却を行うのに代えて、尾筒26と冷却カバー7との間隙27に圧縮空気Aを導入して尾筒26を対流冷却する冷却構造を採用しても、冷却カバー7が尾筒26のほぼ全体を覆っていることから、尾筒26をインピンジ冷却する前記実施形態と同様に尾筒26のほぼ全体を効果的に冷却することができる。   In addition, instead of providing a large number of cooling holes 72 in the cooling cover 7 and performing impingement cooling, cooling in which the tail cylinder 26 is convectively cooled by introducing compressed air A into the gap 27 between the tail cylinder 26 and the cooling cover 7. Even if the structure is adopted, since the cooling cover 7 covers almost the whole of the tail tube 26, substantially the whole of the tail tube 26 can be effectively cooled in the same manner as the above-described embodiment in which the tail tube 26 is impinged. Can do.

本発明の一実施形態に係る尾筒構造を用いたガスタービンを示す一部破断した側面図である。It is a partially broken side view showing a gas turbine using a tail tube structure according to an embodiment of the present invention. 図1における尾筒構造の部分の拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a portion of a tail tube structure in FIG. 1. 図2のIII 部の拡大図である。FIG. 3 is an enlarged view of part III in FIG. 2. 同上のガスタービンにおける尾筒と冷却カバーとを示す平面図である。It is a top view which shows the transition piece and cooling cover in a gas turbine same as the above. 図4の底面図である。FIG. 5 is a bottom view of FIG. 4. 同上の尾筒と冷却カバーとを示す斜視図である。It is a perspective view which shows the transition piece and cooling cover same as the above. 同上の尾筒を複数組み合わせたときの各々の下流端部のガス出口26eの配列状態を下流側から見た図である。It is the figure which looked at the arrangement | sequence state of the gas outlet 26e of each downstream end when a plurality of above-mentioned tail pipes were combined from the downstream side. 従来のフルカバータイプの冷却カバーを用いた場合の複数の尾筒の各々の下流端部のガス出口の配列状態を下流側から見た一部分の図である。It is the figure of the part which looked at the arrangement state of the gas outlet of each downstream end of each of a plurality of transition pipes from the downstream side at the time of using the conventional full cover type cooling cover. 従来のハーフカバータイプの冷却カバーを用いた場合の複数の尾筒の各々の下流端部のガス出口の配列状態を下流側から見た一部分の図である。It is the figure of the part which looked at the arrangement state of the gas outlet of the downstream end of each of a plurality of transition pipes at the time of using the conventional half cover type cooling cover from the downstream side. 図8の構成を用いたガスタービンのタービン入口箇所の燃焼ガスの温度と流速の周方向分布を示す図である。It is a figure which shows the circumferential direction distribution of the temperature and flow velocity of the combustion gas of the turbine inlet_port | entrance part of the gas turbine using the structure of FIG. 従来のフルカバータイプの冷却カバーを用いたガスタービンの一部の断面図である。It is sectional drawing of a part of gas turbine using the conventional full cover type cooling cover.

符号の説明Explanation of symbols

1 ガスタービン
2 圧縮機
3 燃焼器
4 タービン
7 冷却カバー
7b 冷却カバーの下流端部
7bb 下流端縁
8 切り欠き部
26 尾筒
26b 尾筒の下流端部
72 冷却孔
G 燃焼ガス
A 圧縮空気
P1,P2 周方向位置
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Compressor 3 Combustor 4 Turbine 7 Cooling cover 7b Downstream end portion of cooling cover 7bb Downstream end edge 8 Notch portion 26 Tail tube 26b Downstream end portion of tail tube 72 Cooling hole G Combustion gas A Compressed air P1, P2 circumferential position

Claims (2)

燃焼器からの燃焼ガスをタービンに導入する、周方向に並んだ複数の尾筒と、
前記尾筒の外周を覆って前記尾筒との間に圧縮機からの圧縮空気を導入する冷却カバーとを備え、
前記尾筒の下流端部の外径側と内径側とにそれぞれ、前記タービンの初段タービンノズルとの間をシールするシール材が固定されており、
前記冷却カバーにおける前記尾筒の下流端部近傍の両側部に、下流端縁から上流側へ向かって凹入する切り欠き部が形成されており、
前記冷却カバーの下流端部における各側部外面の周方向位置、および前記外径側および内径側のシール材の周方向端部の位置が、前記切り欠き部により露出した前記尾筒の下流端部における各側部外面の周方向位置にほぼ合致しており、
前記各尾筒の下流端部が、隣接する尾筒の下流端部に対し、燃焼ガスによる熱膨張分に相当する周方向の隙間のみを介して、近接して配置されているガスタービンの尾筒構造。
A plurality of circumferentially arranged tail cylinders for introducing combustion gas from the combustor into the turbine;
A cooling cover that covers the outer periphery of the transition piece and introduces compressed air from the compressor between the transition piece and the transition piece;
A sealing material for sealing between the first stage turbine nozzle of the turbine is fixed to the outer diameter side and the inner diameter side of the downstream end portion of the tail cylinder,
Notches that are recessed from the downstream edge toward the upstream side are formed on both sides of the cooling cover in the vicinity of the downstream end of the tail tube,
The circumferential position of the outer surface of each side at the downstream end of the cooling cover , and the position of the circumferential end of the sealing material on the outer diameter side and the inner diameter side are exposed at the downstream end of the tail tube. Almost matches the circumferential position of the outer surface of each side of the part,
The tail end of the gas turbine in which the downstream end portion of each transition piece is disposed close to the downstream end portion of the adjacent transition piece only through a circumferential gap corresponding to the thermal expansion due to the combustion gas. Tube structure.
請求項1において、前記冷却カバーに、前記圧縮空気を導入して前記尾筒の外周面に衝突させてインピンジ冷却を行う多数の冷却孔が形成されているガスタービンの尾筒構造。   2. The gas turbine tail cylinder structure according to claim 1, wherein a plurality of cooling holes are formed in the cooling cover to introduce impingement cooling by introducing the compressed air into the cooling cover and causing it to collide with the outer peripheral surface of the tail cylinder.
JP2006030935A 2006-02-08 2006-02-08 Gas turbine tail tube structure Active JP4235208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030935A JP4235208B2 (en) 2006-02-08 2006-02-08 Gas turbine tail tube structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030935A JP4235208B2 (en) 2006-02-08 2006-02-08 Gas turbine tail tube structure

Publications (2)

Publication Number Publication Date
JP2007211643A JP2007211643A (en) 2007-08-23
JP4235208B2 true JP4235208B2 (en) 2009-03-11

Family

ID=38490312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030935A Active JP4235208B2 (en) 2006-02-08 2006-02-08 Gas turbine tail tube structure

Country Status (1)

Country Link
JP (1) JP4235208B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088691B1 (en) 2015-04-27 2019-06-19 Ansaldo Energia Switzerland AG Gas turbine disassembly method

Also Published As

Publication number Publication date
JP2007211643A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP6176723B2 (en) Combustor cap assembly
US6494044B1 (en) Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
US10551067B2 (en) Combustor liner with dual wall cooling structure
EP2378200B1 (en) Combustor liner cooling at transition duct interface and related method
US7958734B2 (en) Cover assembly for gas turbine engine rotor
US8544277B2 (en) Turbulated aft-end liner assembly and cooling method
US6860108B2 (en) Gas turbine tail tube seal and gas turbine using the same
US10513987B2 (en) System for dissipating fuel egress in fuel supply conduit assemblies
US8505304B2 (en) Fuel nozzle detachable burner tube with baffle plate assembly
JP6324548B2 (en) Gas turbine engine with a rotor centering cooling system in the exhaust diffuser
US20090120093A1 (en) Turbulated aft-end liner assembly and cooling method
US20110120132A1 (en) Dual walled combustors with impingement cooled igniters
JP6625410B2 (en) Transition structure
US20170254539A1 (en) Bundled Tube Fuel Nozzle with Internal Cooling
JP2010169093A (en) Turbulated combustor rear-end liner assembly and related cooling method
JP2008032014A (en) Shroud hanger assembly and gas turbine engine
US20090252593A1 (en) Cooling apparatus for combustor transition piece
US10670272B2 (en) Fuel injector guide(s) for a turbine engine combustor
CN107796015B (en) Beam tube fuel nozzle assembly, combustor and gas turbine
US20100170258A1 (en) Cooling apparatus for combustor transition piece
CN102356278A (en) Gas turbine combustion system
US20190170001A1 (en) Impingement cooling of a blade platform
US20120031099A1 (en) Combustor assembly for use in a turbine engine and methods of assembling same
CN105972637B (en) Combustion chamber with double walls
JP4235208B2 (en) Gas turbine tail tube structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4235208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250