JP4234461B2 - Immobilized Lewis acid catalyst - Google Patents

Immobilized Lewis acid catalyst Download PDF

Info

Publication number
JP4234461B2
JP4234461B2 JP2003037165A JP2003037165A JP4234461B2 JP 4234461 B2 JP4234461 B2 JP 4234461B2 JP 2003037165 A JP2003037165 A JP 2003037165A JP 2003037165 A JP2003037165 A JP 2003037165A JP 4234461 B2 JP4234461 B2 JP 4234461B2
Authority
JP
Japan
Prior art keywords
lewis acid
acid catalyst
group
reaction
immobilized lewis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037165A
Other languages
Japanese (ja)
Other versions
JP2004243247A (en
Inventor
條二 錦戸
長武 山崎
秀花 カク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Inst
Original Assignee
Asahi Kasei Corp
Noguchi Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Inst filed Critical Asahi Kasei Corp
Priority to JP2003037165A priority Critical patent/JP4234461B2/en
Publication of JP2004243247A publication Critical patent/JP2004243247A/en
Application granted granted Critical
Publication of JP4234461B2 publication Critical patent/JP4234461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物に固定化されたルイス酸触媒及びその固定化されたルイス酸触媒を用いる反応方法に関する。
【0002】
【従来の技術】
化学式(1)で表されるスルホン酸金属塩、化学式(2)で表されるスルホニルイミド金属塩及び化学式(3)で表されるスルホニルメチド金属塩は、ルイス酸性を示す。
【0003】
【化6】

Figure 0004234461
【0004】
【化7】
Figure 0004234461
【0005】
【化8】
Figure 0004234461
【0006】
(式(1)〜(3)において、Rf1〜Rf3は、各々独立に、酸素原子及び窒素原子から選ばれた少なくとも一種のヘテロ原子を骨格に有する、C4〜C20の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(α)、又はヘテロ原子を有していない、C1〜C16の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(β)であり、置換基(α)及び(β)のそれぞれの部分置換体は、置換基(α)及び(β)の飽和若しくは不飽和の全フッ素化炭化水素基のフッ素原子の一部が、フッ素原子以外のハロゲン原子及び水素原子から選ばれた少なくとも一種で置換されたものであり、但し、置換基(α)及び(β)において、−SO2基に直接結合する炭素原子に結合しているフッ素原子の一部は水素原子では置換されておらず、Mは、希土類を含む遷移金属、ガリウム、インジウム、タリウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン及びビスマスから選ばれた元素、nは、Mの原子価と同数の整数を表す。)
【0007】
しかしながら、これらの金属塩は、水や含水有機溶媒を用いる水系媒体中では溶解又は一部溶解したり、オイル状又はゲル状になる。さらに、吸湿性があるために、ルイス酸触媒として使用する際に、反応系からの分離や再使用に困難を伴う。水系媒体中では、有機化合物は難溶性のために反応が遅く、工業的実用性の面で問題があった。
一方、有機溶媒を用いた反応は、有機溶媒の毒性等の環境面での問題、可燃性、爆発性といった安全面での問題を抱えていた。これら金属塩をシクロデキストリン−エピクロロヒドリン共重合体に担持して用いる、水系媒体中での反応が知られているが(特許文献1参照)、共重合体の強度の問題から、工業的には長時間の反応を繰り返し行う方法には適さない場合があった。
【0008】
また、多フッ素置換された炭化水素基を有する、シリカゲル、ポリスチレン、ポリアミド‐ポリエチレングリコール共重合体等のプラスチックビーズに、イリジウム、ロジウム、パラジウム等の遷移金属錯体を担持して触媒反応を行う方法(特許文献2参照)が知られているが、触媒のリサイクル使用の具体的な記載は無い。
さらに、多フッ素置換された炭化水素基を有するシリカゲルにパラジウム錯体を担持して、触媒のリサイクルを行う方法(非特許文献1参照)も知られているが、触媒をリサイクル使用すると活性の低下が見られる場合が多く、汎用性が無い。しかも、これら特許文献2及び非特許文献1に記載の方法は、いずれも有機媒体とフッ素化化合物媒体からなる二相系媒体中、及び有機媒体中で行われる方法であり、水や含水有機溶媒を用いる水系媒体中での反応方法については全く記載がない。
【0009】
【特許文献1】
特開2001−213836号公報
【特許文献2】
国際公開第02/04120号パンフレット
【非特許文献1】
Angewandte Chemie International Edition, 2002, Vol. 41, No.23, p4500-4503.
【0010】
【発明が解決しようとする課題】
本発明は、固定化ルイス酸触媒及びその固定化ルイス酸触媒を用いる反応方法、特に水系媒体中での反応方法を提供すること、さらには該反応方法において、ルイス酸触媒の分離及び再使用が容易な反応方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者らは、水系媒体中での反応方法、さらにはルイス酸の分離、再使用が容易な反応方法を鋭意検討した結果、直鎖状、環状又は分枝状構造からなるC1〜C40の全フッ素化炭化水素化合物、該全フッ素化炭化水素基のフッ素原子の一部がフッ素原子以外のハロゲン原子及び水素原子からなる群より選ばれた少なくとも一種で置換された化合物、さらにはケイ素、窒素、リン、酸素及び硫黄から選ばれた少なくとも一種の原子を骨格に有する、全フッ素化炭化水素化合物及び部分置換体を化学的に結合させたシリカ、アルミナ、シリカアルミナ、チタニア、ジルコニア等の金属酸化物に、前記化学式(1)で表されるスルホン酸金属塩、化学式(2)で表されるスルホニルイミド金属塩、及び化学式(3)で表されるスルホニルメチド金属塩から選ばれた少なくとも一種を包含するルイス酸触媒を固定化してなる固定化ルイス酸触媒を、水中、又は水と有機溶媒からなる水系媒体中で使用して反応を行うことにより、水系媒体中での反応が促進され、かつ、ルイス酸触媒の分離、再使用が容易であることを見出し、本発明を完成させるに至った。
【0012】
すなわち、本発明は、以下のとおりである。
[1] 水酸基と反応して結合しうる官能基を備えたC1〜C40のフッ素化炭化水素化合物の前記官能基が、水酸基を有する金属酸化物中の水酸基と化学結合してなる金属酸化物に、化学式(1)、(2)及び(3)から選ばれた少なくとも一種のルイス酸触媒が担持されている固定化ルイス酸触媒。
【0013】
【化9】
Figure 0004234461
【0014】
【化10】
Figure 0004234461
【0015】
【化11】
Figure 0004234461
【0016】
(式(1)〜(3)において、Rf1〜Rf3は、各々独立に、酸素原子及び窒素原子から選ばれた少なくとも一種のヘテロ原子を骨格に有する、C4〜C20の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(α)、又はヘテロ原子を有していない、C1〜C16の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(β)であり、置換基(α)及び(β)のそれぞれの部分置換体は、置換基(α)及び(β)の飽和若しくは不飽和の全フッ素化炭化水素基のフッ素原子の一部が、フッ素原子以外のハロゲン原子及び水素原子から選ばれた少なくとも一種で置換されたものであり、但し、置換基(α)及び(β)において、−SO2基に直接結合する炭素原子に結合しているフッ素原子の一部は水素原子では置換されておらず、Mは、希土類を含む遷移金属、ガリウム、インジウム、タリウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン及びビスマスから選ばれた元素、nは、Mの原子価と同数の整数を表す。)
【0017】
[2] 水酸基と反応して結合しうる官能基を備えたC1〜C40のフッ素化炭化水素化合物の前記官能基と、水酸基を有する金属酸化物中の水酸基との化学結合が、エーテル結合及び/又はエステル結合であることを特徴とする[1]に記載の固定化ルイス酸触媒。
[3] 化学式(1)、(2)及び(3)において、Rf1〜Rf3の置換基(α)が、各々独立に、化学式(4)及び(5)から選ばれた少なくとも一種の置換基であることを特徴とする[1]に記載の固定化ルイス酸触媒。
【0018】
【化12】
Figure 0004234461
【0019】
【化13】
Figure 0004234461
【0020】
(式中、X1及びX2は、各々独立に、ハロゲン原子及び水素原子から選ばれた少なくとも一種の原子であり、tは、1〜4の整数であり、uは、1〜4の整数である。)
[4] [1]に記載の固定化ルイス酸触媒を用いた酸触媒反応方法。
[5] 水系媒体を用いることを特徴とする[4]に記載の酸触媒反応方法。
以下、本発明を詳細に説明する。
本発明の固定化ルイス酸触媒におけるルイス酸触媒は、化学式式(1)、(2)及び(3)で示されるものである。
【0021】
【化14】
Figure 0004234461
【0022】
【化15】
Figure 0004234461
【0023】
【化16】
Figure 0004234461
【0024】
(式(1)〜(3)において、Rf1〜Rf3は、各々独立に、酸素原子及び窒素原子から選ばれた少なくとも一種のヘテロ原子を骨格に有する、C4〜C20の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(α)、又はヘテロ原子を有していないC1〜C16の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(β)であり、置換基(α)及び(β)のそれぞれの部分置換体は、置換基(α)及び(β)の飽和若しくは不飽和の全フッ素化炭化水素基のフッ素原子の一部が、フッ素原子以外のハロゲン原子及び水素原子から選ばれた少なくとも一種で置換されたものであり、但し、置換基(α)及び(β)において、−SO2基に直接結合する炭素原子に結合しているフッ素原子の一部は水素原子では置換されておらず、Mは、希土類を含む遷移金属、ガリウム、インジウム、タリウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン及びビスマスから選ばれた元素、nは、Mの原子価と同数の整数を表す。)
【0025】
化学式(1)、(2)及び(3)で表されるルイス酸触媒のRf1〜Rf3は、各々独立に、置換基(α)又は(β)である。一つの化学式中に複数のRf1、Rf2又はRf3が存在する場合(化学式中のnが2以上の場合)、一つの化学式中のRf1、Rf2又はRf3は、同じであっても異なっていてもよい。
置換基(α)の炭素数はC4〜C20であり、下限はC5が好ましく、より好ましくはC6、最も好ましくはC7である。上限はC18が好ましく、より好ましくはC16、最も好ましくはC14である。さらに、置換基(α)は、化学式(4)及び(5)から選ばれた少なくとも一種の置換基が好ましい。
【0026】
【化17】
Figure 0004234461
【0027】
【化18】
Figure 0004234461
【0028】
(式中、X1及びX2は、各々独立に、ハロゲン原子及び水素原子から選ばれた少なくとも一種の原子であり、tは、1〜4の整数であり、uは、1〜4の整数であり、好ましくは2〜4の整数、より好ましくは2〜3の整数である。)
置換基(β) の炭素数は、C1〜C16であるが、下限はC2が好ましく、より好ましくはC3、最も好ましくはC4である。上限はC14が好ましく、より好ましくはC12、最も好ましくはC10である。
【0029】
置換基(α)及び(β)において、部分置換に用いるフッ素以外のハロゲン原子としては、塩素原子、臭素原子及びヨウ素原子が挙げられ、塩素原子及び臭素原子が好ましく、塩素原子がより好ましい。置換されているフッ素原子以外の、ハロゲン原子及び水素原子の数の割合は、飽和の全フッ素化炭化水素基に含まれるフッ素原子の数に対して、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下、最も好ましくは10%以下である。
【0030】
置換基(α)及び(β)が不飽和の全フッ化炭化水素基である場合には、炭素−炭素二重結合の数は、飽和の全フッ素化炭化水素基に含まれるフッ素原子の数に対して、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下、最も好ましくは10%以下である。
置換基(α)の具体例としては、−C2F4OC2F5、−C2F4OC4F9、−CF2CHFCF2OC4F9、−C4F8N(C4F92、−CF2CF2OCF(CF3)CF2OCF=CF2、−CF2CF2OCF(CF3)CF2OCF(CF3)CF2OCF=CF2、−CF2CF2OCF(CF3)CF2OCHFCF3、−CF2CF2OCF(CF3)CF2OCF(CF3)CF2OCHFCF3、−CF2CF2O−CF(CF3)−CF2−OCF(CF3)−CF2OCF2CF3、−CF2CF2OCF(CF3)CF2OCFClCF3、−CF2CF2OCF(CF3)CF2OCFClCF2Cl等を挙げることができる。
【0031】
置換基(β)の具体例としては、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、パーフルオロトリデシル基、パーフルオロテトラデシル基、パーフルオロペンタデシル基、パーフルオロヘキサデシル基等を挙げることができる。
【0032】
本発明の固定化ルイス酸触媒に含まれるルイス酸触媒が化学式(1)で表される化合物である場合には、置換基(β)の炭素数は、好ましくはC4〜C16、より好ましくはC6〜C12である。ルイス酸触媒が化学式(2)で表される化合物である場合には、Rf1とRf2の炭素数の合計は、好ましくはC7〜C32であり、より好ましくはC9〜C28、最も好ましくはC11〜C24である。ルイス酸触媒が化学式(3)で表される化合物である場合には、Rf1〜Rf3の炭素数の合計は、好ましくはC9〜C48、より好ましくはC12〜C42、最も好ましくはC15〜C36である。Rf1〜Rf3の炭素数が上記の範囲内であると、ルイス酸触媒は金属酸化物に固定化されて、反応媒体中に移動しない。したがって、反応後のルイス酸触媒の回収、再使用が容易となる。
【0033】
Mは、希土類を含む遷移金属、ガリウム、インジウム、タリウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン及びビスマスから選ばれる元素を表し、好ましくは希土類、ハフニウム、ジルコニウム、ガリウム、スズ及びビスマスであり、より好ましくはスカンジウム、イットリウム、ランタン、イッテルビウム、ハフニウム、ジルコニウム、ガリウム、スズ及びビスマスである。nは、Mの原子価と同数の整数を表す。
【0034】
次に、本発明の固定化ルイス酸触媒の担体であるフッ素化炭化水素基を有する金属酸化物について説明する。
本発明の金属酸化物としては、水酸基を有するシリカ、アルミナ、シリカアルミナ、チタニア、ジルコニア等が用いられ、その粒子径は制限されないが、好ましくは0.00002〜1mm、より好ましくは0.001〜0.5mmである。
金属酸化物の水酸基は、好ましくはエーテル結合及び/又はエステル結合、より好ましくはエーテル結合により、水酸基と反応して結合しうる官能基を備えたC1〜C40のフッ素化炭化水素化合物の前記官能基と化学結合している。
【0035】
金属酸化物に化学結合するフッ素化炭化水素化合物は、水酸基と反応して結合しうる官能基を有するC1〜C40のフッ素化炭化水素化合物である。好ましくは直鎖状、環状、又は分枝状構造からなるC1〜C40の全フッ素化炭化水素化合物、前記の全フッ素化炭化水素基のフッ素原子の一部がフッ素原子以外のハロゲン原子及び水素原子から選ばれた少なくとも1種で置換された化合物であり、さらに該フッ素化炭化水素基は、ケイ素、窒素、リン、酸素及び硫黄から選ばれた少なくとも1種の原子を骨格に有するものであってもよい。
【0036】
本発明のフッ素化炭化水素化合物の炭素数はC1〜C40であり、下限はC4が好ましく、より好ましくはC6、最も好ましくはC8である。上限はC30が好ましく、より好ましくはC20、最も好ましくはC15である。具体的には、-C4F9, -C5F11, -C6F13, -C7F15, -C8F17, -C9F19, -C10F21, -C11F23, -C12F25, -C13F27, -C14F29, -CH2CH2C4F9, -CH2CH2C5F11, -CH2CH2C6F13, -CH2CH2C7F15, -CH2CH2C8F17, -C6H4-C6F13, -C6H3(C6F13)2, -CH2CH2N(C8F17)2, -CH2CH2OC6F13, -CH2CH2Si(CH2CH2C6F13)3等の基を含有する化合物である。
【0037】
本発明のフッ素化炭化水素化合物中に存在する、水酸基と反応して結合しうる官能基としては、例えば、アルコキシシリル基、エポキシ基、ハロゲン基等が挙げられる。ハロゲン基としては、好ましくは塩素、臭素、ヨウ素があげられる。これらの官能基は、フッ素化炭化水素化合物の末端または骨格の中に存在してもよい。
本発明のフッ素化炭化水素化合物中に存在する水酸基と反応して結合しうる官能基と、水酸基を有する金属酸化物との反応は、例えば、無水トルエン等の媒体中、場合によっては塩基存在下で、加熱還流することによって行われる。
【0038】
本発明の固定化ルイス酸触媒は、C1〜C40のフッ素化炭化水素化合物が金属酸化物中の水酸基と化学結合してなる金属酸化物と、化学式(1)、(2)及び(3)から選ばれた少なくとも一種ルイス酸触媒とを、金属酸化物:ルイス酸の重量比が好ましくは10000:1〜1:1の割合になるよう調整したものであり、より好ましくは1000:1〜2:1であり、最も好ましくは100:1〜3:1である。
【0039】
本発明の固定化ルイス酸触媒の製造方法としては、例えば、前記金属酸化物を水中で激しく攪拌しながら、前記ルイス酸触媒を添加し、不溶性である金属酸化物に固定化したルイス酸触媒を濾過して取得したのち、水で洗浄後、減圧下で乾燥して得ることができる。
別法としては、前記ルイス酸触媒を、エタノール、アセトニトリル等の有機媒体、又はパーフルオロヘプタン、パーフルオロオクタン、パーフルオロメチルシクロヘキサン、パーフルオロデカリン等のフッ素化化合物媒体に溶解させた溶液中に、前記金属酸化物を添加し、有機媒体又はフッ素化化合物媒体を減圧下で留去し、減圧下で乾燥して得ることができる。
【0040】
このようにして得られた固定化ルイス酸触媒を水系媒体中で用いる反応は、ルイス酸触媒を単独で用いた場合よりも反応が促進される。この効果は、特定のルイス酸触媒と特定の金属酸化物により達成されるものであり、水に難溶性の化合物が反応基質であってもよい。
固定化ルイス酸触媒は、上記の特定の化学構造のため、以下の特徴を有する。すなわち、前記ルイス酸触媒が、特定の金属酸化物に固定化されているので、水や低極性の有機溶媒に不溶の取り扱いやすい粉末状固体となっている。したがって、固定化ルイス酸触媒を触媒として使用する場合、反応後に簡単な濾過操作による反応系からの分離、再使用が可能となる。
【0041】
本発明の固定化ルイス酸触媒を用いる反応の反応基質としては、求核性を有する化合物であることが好ましい。本発明において「求核性を有する化合物」とは、ルイス酸の元素Mと親和性を有し、配位を形成する化合物をいう。このような化合物としては、例えば、酸素、窒素等の元素を有する化合物が挙げられる。具体的には、ケトン、アルデヒド、ニトリル、ケテン、酸無水物、酸ハロゲン化物、エステル、チオエステル、ラクトン、エーテル、アルコール、フェノール、カルボン酸、ニトロ化合物等である。その他、ルイス酸のM元素と親和性があり、配位できる求核性のオレフィン等の不飽和化合物も挙げられる。
【0042】
本発明の固定化ルイス酸触媒を用いた上記のような反応基質の反応例としては、例えば、炭素−炭素結合反応、酸化反応、還元反応、脱水反応、エステル化反応、及びエステル交換が挙げられる。より詳細には、ディールス−アルダー反応、マイケル反応、フリーデル−クラフツ反応、シッフ塩基の合成、フリース転位、ベンゼン環のメチロール化反応、メアバイン−ポンドルフ−バーレー還元、アルドール反応、エステル化反応、エステル交換反応、マンニッヒ反応、過酸化水素、有機過酸化物又は分子状酸素による酸化反応、さらにはアルコールの脱水反応、O−グリコシル化反応等が挙げられ、オレフィン類の重合反応等への応用も可能である。
【0043】
本発明の固定化ルイス酸触媒を触媒として使用する際には、通常の固体触媒を用いる形態の液相反応と同様に使用できる。液相となる反応媒体としては、水、水と有機溶媒の混合媒体、又は有機溶媒が使用される。反応媒体の使用量は、固定化ルイス酸触媒に対して重量比で1以上が好ましく、より好ましくは2〜1000である。
本発明の固定化ルイス酸触媒の添加量は、反応基質に対して、固定化ルイス酸触媒中のルイス酸として0.0001〜10倍モル、好ましくは0.01倍〜2倍モルである。本発明の触媒を用いた反応において、反応温度は200℃以下が多用され、好ましくは−80℃〜170℃、より好ましくは0℃〜100℃である。反応時間は、固定化ルイス酸触媒の添加量、固定化ルイス酸触媒中のルイス酸含有量、反応温度等により異なるが、通常、数分〜72時間が好ましく用いられる。
【0044】
【発明の実施の形態】
以下に実施例等を挙げて本発明を具体的に説明するが、本発明はこれらによって何等限定されるものではない。
【0045】
【実施例1】
80℃で5時間真空乾燥したシリカゲルSilica gel 100(商標) (粒径0.063-0.200mm) (Merck社製)5gに脱水トルエン20mlを加え、さらに3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシルトリエトキシシラン5gを添加して、窒素雰囲気下で24時間加熱還流した。得られた混合物を濾取し、トルエン、メタノールで洗浄後、80℃、0.2kPaで5時間真空乾燥し、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲル6gを得た。元素分析値(炭素:14.1%、フッ素:6.8%)(元素分析値は重量%である。以下の実施例、比較例においても同じ。)
【0046】
【実施例2】
実施例1の方法で合成した3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲル1.69gに水10mlを加え、激しく攪拌しながらハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミド168mgを添加し、室温で14時間攪拌を続けた。固体を濾取し、水で洗浄した後、80℃、0.2kPaで5時間真空乾燥して、ハフニウム塩と3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルからなる固定化ルイス酸触媒1.81gを得た。元素分析値(ハフニウム:0.23%)
【0047】
【実施例3】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(商標)(粒径) (Fluorous Technologies, Inc.製)1.68gに、ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミド168mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、ハフニウム塩とFluorous silica 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒1.75gを得た。元素分析値(ハフニウム:0.22%)
【0048】
【実施例4】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)4.01gに、ジルコニウム(IV)ビス(パーフルオロオクタンスルホニル)アミド401mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、ジルコニウム塩とFluorous silica 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒4.39gを得た。元素分析値(ジルコニウム:0.20%)
【0049】
【実施例5】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)4.02gに、スズ(IV)ビス(パーフルオロオクタンスルホニル)アミド400mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、スズ塩とFluorous silica gel40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒4.34gを得た。元素分析値(スズ:0.27%)
【0050】
【実施例6】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)2.78gに、イッテルビウム(III)ビス(パーフルオロオクタンスルホニル)アミド283mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、イッテルビウム塩とFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒3.00gを得た。元素分析値(イッテルビウム:0.51%)
【0051】
【実施例7】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)3.11gに、スカンジウム(III)ビス(パーフルオロオクタンスルホニル)アミド316mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、スカンジウム塩とFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒3.40gを得た。元素分析値(スカンジウム:0.16%)
【0052】
【実施例8】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)5.35gに、ハフニウム(IV)ビスC10アミド537mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた(ここでは、(CF3CFHOCF2CF(CF3)OCF2CF(CF3)OCF2CF2SO22N基を、ビスC10アミド、と略称する。以下の実施例も同じ。)。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、ハフニウム塩とFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒5.79gを得た。元素分析値(ハフニウム:0.31%)
【0053】
【実施例9】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)3.89gに、イッテルビウム(III)ビスC10アミド389mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、イッテルビウム塩とFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒4.25gを得た。元素分析値(イッテルビウム:0.40%)
【0054】
【実施例10】
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)3.77gに、スカンジウム(III)ビスC10アミド380mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、固体を水で洗浄し、80℃、0.2kPaで5時間真空乾燥して、スカンジウム塩とFluorous silica gel 40mm(粒径) (Fluorous Technologies, Inc.製)からなる固定化ルイス酸触媒4.11gを得た。元素分析値(スカンジウム:0.11%)
【0055】
【実施例11】
実施例1の方法で合成した3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲル1.21gに水10mlを加え、激しく攪拌しながらスカンジウム(III)トリス(パーフルオロブタンスルホニル)メチド121mgを添加し、室温で14時間攪拌を続けた。固体を濾取し水で洗浄した後、80℃、0.2kPaで5時間真空乾燥して、スカンジウム塩と3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルからなる固定化ルイス酸触媒1.30gを得た。元素分析値(スカンジウム:0.17%)
【0056】
【実施例12】
実施例1の方法で合成した3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲル2.77gに水10mlを加え、激しく攪拌しながらイッテルビウム(III)トリス(パーフルオロブタンスルホニル)メチド276mgを添加し、室温で14時間攪拌を続けた。固体を濾取し水で洗浄した後、80℃、0.2kPaで5時間真空乾燥して、イッテルビウム塩と3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐ヘプタデカフルオロデシル基を有するシリカゲルからなる固定化ルイス酸触媒3.02gを得た。元素分析値(イッテルビウム:0.57%)
【0057】
【比較例1】
シリカゲルSilica gel 100 (粒径0.063-0.200mm) (Merck社製)1.68gに、ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミド168mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、80℃、0.2kPaで5時間真空乾燥して、ハフニウム塩とSilica gel 100 (粒径0.063-0.200mm) (Merck社製)からなるルイス酸触媒組成物1.84gを得た。元素分析値(ハフニウム:0.50%)
【0058】
【比較例2】
オクタデシル基を有するシリカゲルであるワコーゲル100C18(商標)(和光純薬社製)4.03gに、ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミド403mgを溶解した脱水エタノール10mlを加え、室温で1時間攪拌を続けた。溶媒を減圧下で留去した後、80℃、0.2kPaで5時間真空乾燥して、ハフニウム塩とワコーゲル100C18からなるルイス酸触媒組成物4.35gを得た。元素分析値(ハフニウム:0.20%)
【0059】
【実施例13】
2−アダマンタノン75mgと実施例2の方法で合成した固定化ルイス酸触媒1.55g(ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌した。ジクロロメタン2mlを加えて10分攪拌した後、吸引ろ過して、固体を水3ml、ジクロロメタン12mlで洗浄した。濾液を元素分析したところ、ハフニウムの溶出量は水相に3ppm未満、ジクロロメタン相に3ppm未満であった。
【0060】
濾液のジクロロメタン相をガスクロマトグラフで分析したところ、転化率97%、収率87%で目的のラクトン体が得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒と2−アダマンタノン75mgを、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌したところ、転化率94%、収率89%で目的のラクトン体が得られた。
【0061】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率93%、収率87%で目的のラクトン体が得られた。
以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0062】
【比較例3】
2−アダマンタノン75mgと比較例1の方法で合成したルイス酸触媒組成物1.13g(ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌した。ジクロロメタン2mlを加えて10分攪拌した後、吸引ろ過して、固体をジクロロメタン18mlで洗浄した。濾液を元素分析したところ、ハフニウムの溶出量は水相に13ppm、ジクロロメタン相に3ppm未満であった。
【0063】
濾液のジクロロメタン相をガスクロマトグラフで分析したところ、転化率76%、収率62%で目的のラクトン体が得られた。また濾取した組成物は、80℃、0.2kPaで5時間真空乾燥した。回収した組成物と2−アダマンタノン75mgを、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌したところ、転化率70%、収率56%で目的のラクトン体が得られた。
さらに再び回収した組成物を使用して、同様に3回目の反応を行ったところ、転化率78%、収率50%で目的のラクトン体が得られた。上記のように、触媒を再使用すると収率の低下が見られた。
【0064】
【比較例4】
2−アダマンタノン38mgと比較例2の方法で合成したルイス酸触媒組成物603mg(ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌した。ジクロロエタン2mlを加えて10分攪拌した後、吸引ろ過して、固体を水2ml、ジクロロエタン12mlで洗浄した。
【0065】
濾液のジクロロエタン相をガスクロマトグラフで分析したところ、転化率82%、収率72%で目的のラクトン体が得られた。また濾取した組成物は、80℃、0.2kPaで5時間真空乾燥した。回収した組成物と2−アダマンタノン38mgを、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌したところ、転化率72%、収率61%で目的のラクトン体が得られた。
さらに再び回収した組成物を使用して、同様に3回目の反応を行ったところ、転化率62%、収率51%で目的のラクトン体が得られた。上記のように、触媒を再使用すると転化率及び収率の低下が見られた。
【0066】
【比較例5】
2−アダマンタノン75mgと反応基質に対して0.05倍モルのハフニウム(IV)トリフラートを、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌した。ジクロロメタン14mlを添加し、ジクロロメタン相をガスクロマトグラフで分析したところ、転化率8%、収率6%という極めて低い収率で目的のラクトン体が得られた。
【0067】
【実施例14】
2−アダマンタノン38mgと実施例4の方法で合成した固定化ルイス酸触媒552mg(ジルコニウム(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌した。ジクロロエタン2mlを加えて10分攪拌した後、吸引ろ過して、固体を水2ml、ジクロロエタン12mlで洗浄した。
【0068】
濾液のジクロロエタン相をガスクロマトグラフで分析したところ、転化率95%、収率85%で目的のラクトン体が得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒と2−アダマンタノン38mgを、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌したところ、転化率94%、収率83%で目的のラクトン体が得られた。
【0069】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率93%、収率85%で目的のラクトン体が得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0070】
【実施例15】
2−アダマンタノン38mgと実施例5の方法で合成した固定化ルイス酸触媒670mg(スズ(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌した。ジクロロエタン2mlを加えて10分攪拌した後、吸引ろ過して、固体を水2ml、ジクロロエタン12mlで洗浄した。
【0071】
濾液のジクロロエタン相をガスクロマトグラフで分析したところ、転化率98%、収率87%で目的のラクトン体が得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒と2−アダマンタノン38mgを、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌したところ、転化率97%、収率89%で目的のラクトン体が得られた。
【0072】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率96%、収率86%で目的のラクトン体が得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0073】
【実施例16】
2−アダマンタノン38mgと実施例10の方法で合成した固定化ルイス酸触媒510mg(スカンジウム(III)ビスC10アミドは反応基質に対して0.05倍モル)を、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌した。ジクロロエタン2mlを加えて10分攪拌した後、吸引ろ過して、固体を水2ml、ジクロロエタン12mlで洗浄した。
【0074】
濾液のジクロロエタン相をガスクロマトグラフで分析したところ、転化率82%、収率77%で目的のラクトン体が得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒と2−アダマンタノン38mgを、4%過酸化水素水2.2mlに加えて、25℃で16時間攪拌したところ、転化率81%、収率76%で目的のラクトン体が得られた。
【0075】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率80%、収率76%で目的のラクトン体が得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0076】
【実施例17】
2−アダマンタノン75mgと実施例11の方法で合成した固定化ルイス酸触媒1・00g(スカンジウム(III)トリス(パーフルオロブタンスルホニル)メチドは反応基質に対して0.05倍モル)を、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌した。ジクロロメタン2mlを加えて10分攪拌した後、吸引ろ過して、固体を水3ml、ジクロロメタン12mlで洗浄した。
【0077】
濾液の水相を元素分析したところ、スカンジウムの溶出量は1ppmであった。濾液のジクロロメタン相をガスクロマトグラフで分析したところ、転化率74%、収率68%で目的のラクトン体が得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒と2−アダマンタノン75mgを、4%過酸化水素水4.4mlに加えて、25℃で16時間攪拌したところ、転化率78%、収率64%で目的のラクトン体が得られた。
【0078】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率73%、収率72%で目的のラクトン体が得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0079】
【実施例18】
メタクリル酸43mg、及びメタクリル酸に対して6倍モルのメタノールを1.5mlのジクロロエタンに溶解し、実施例3の方法で合成した固定化ルイス酸触媒1.14g(ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を溶液に加えた。反応溶液を60℃で16時間攪拌したのち、
吸引濾過して固体を2.5mlのジクロロエタンで洗浄し、濾液をガスクロマトグラフで分析したところ、転化率95%、収率86%でメタクリル酸メチルが得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。メタクリル酸43mg、及びメタクリル酸に対して6倍molのメタノールを1.5mlのジクロロエタンに溶解し、回収した固定化ルイス酸触媒を加えて反応を行ったところ、転化率97%、収率93%でメタクリル酸メチルが得られた。
【0080】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率95%、収率94%でメタクリル酸メチルが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0081】
【実施例19】
メタクリル酸43mg、メタクリル酸に対して6倍モルのメタノール、及びメタクリル酸に対して1.6倍モルの水を1.5mlのジクロロエタンに溶解し、実施例3の方法で合成した固定化ルイス酸触媒1.14g(ハフニウム(IV)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)を溶液に加えた。反応溶液を70℃で16時間攪拌したのち、
吸引濾過して固体を2.5mlのジクロロエタンで洗浄し、濾液をガスクロマトグラフで分析したところ、転化率92%、収率89%でメタクリル酸メチルが得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。メタクリル酸43mg、メタクリル酸に対して6倍molのメタノール、及びメタクリル酸に対して1.6倍モルの水を1.5mlのジクロロエタンに溶解し、回収した固定化ルイス酸触媒を加えて反応を行ったところ、転化率97%、収率91%でメタクリル酸メチルが得られた。
【0082】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率92%、収率88%でメタクリル酸メチルが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0083】
【実施例20】
メタクリル酸43mg、及びメタクリル酸に対して6倍モルのメタノールを1.5mlのジクロロエタンに溶解し、実施例8の方法で合成した固定化ルイス酸触媒1.41g(ハフニウム(IV)ビスC10アミドは反応基質に対して0.05倍モル)を溶液に加えた。反応溶液を60℃で16時間攪拌したのち、
吸引濾過して固体を2.5mlのジクロロエタンで洗浄し、濾液をガスクロマトグラフで分析したところ、転化率95%、収率87%でメタクリル酸メチルが得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。メタクリル酸43mg、及びメタクリル酸に対して6倍molのメタノールを1.5mlのジクロロエタンに溶解し、回収した固定化ルイス酸触媒を加えて反応を行ったところ、転化率96%、収率93%でメタクリル酸メチルが得られた。
【0084】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率94%、収率93%でメタクリル酸メチルが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0085】
【実施例21】
実施例7の方法で合成した固定化ルイス酸触媒883mg(スカンジウム(III)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)にジクロロエタン1.5mlを添加し、さらに2,3−ジメチルブタジエン58μlとメチルビニルケトン50μlを添加して、25℃で16時間攪拌した。
【0086】
反応後、混合物を吸引濾過して固体を3.5mlのジクロロエタンで洗浄し、濾液をガスクロマトグラフで分析したところ、目的の1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが転化率96%、収率91%で得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒にジクロロエタン1.5mlを添加し、さらに2,3−ジメチルブタジエン58μlとメチルビニルケトン50μlを添加して、25℃で16時間攪拌したところ、目的の1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが転化率95%、収率92%で得られた。
【0087】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率95%、収率90%で1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0088】
【実施例22】
実施例7の方法で合成した固定化ルイス酸触媒883mg(スカンジウム(III)ビス(パーフルオロオクタンスルホニル)アミドは反応基質に対して0.05倍モル)に水1.5mlを添加し、さらに2,3−ジメチルブタジエン58μlとメチルビニルケトン50μlを添加して、25℃で16時間攪拌した。
反応後、ジクロロエタン2mlを加えて10分攪拌して、混合物を吸引濾過して固体を水1ml、ジクロロエタン3mlで洗浄し、濾液をガスクロマトグラフで分析したところ、目的の1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが転化率88%、収率80%で得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒に水1.5mlを添加し、さらに2,3−ジメチルブタジエン58μlとメチルビニルケトン50μlを添加して、25℃で16時間攪拌したところ、目的の1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが転化率88%、収率79%で得られた。
【0089】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率86%、収率79%で1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0090】
【実施例23】
実施例10の方法で合成した固定化ルイス酸触媒1.02g(スカンジウム(III)ビスC10アミドは反応基質に対して0.05倍モル)に水1.5mlを添加し、さらに2,3−ジメチルブタジエン58μlとメチルビニルケトン50μlを添加して、25℃で16時間攪拌した。
反応後、ジクロロエタン2mlを加えて10分攪拌して、混合物を吸引濾過して固体を水1ml、ジクロロエタン3mlで洗浄し、濾液をガスクロマトグラフで分析したところ、目的の1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが転化率92%、収率80%で得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒に水1.5mlを添加し、さらに2,3−ジメチルブタジエン58μlとメチルビニルケトン50μlを添加して、25℃で16時間攪拌したところ、目的の1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが転化率90%、収率82%で得られた。
【0091】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率89%、収率80%で1‐(3,4‐ジメチルシクロヘキサ‐3‐エニル)‐エタノンが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0092】
【実施例24】
実施例9の方法で合成した固定化ルイス酸触媒1.06g(イッテルビウム(III)ビスC10アミドは反応基質に対して0.05倍モル)にジクロロエタン1.5mlを添加し、さらにシクロヘキサノール50mgと無水酢酸51mgを添加して、25℃で3時間攪拌した。
反応後、混合物を吸引濾過して固体をジクロロエタン3mlで洗浄し、濾液をガスクロマトグラフで分析したところ、目的の酢酸シクロヘキシルが転化率99%、収率99%で得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒にジクロロエタン1.5mlを添加し、さらにシクロヘキサノール50mgと無水酢酸51mgを添加して、25℃で16時間攪拌したところ、目的の酢酸シクロヘキシルが転化率99%、収率99%で得られた。
【0093】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率99%、収率98%で酢酸シクロヘキシルが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0094】
【実施例25】
実施例11の方法で合成した固定化ルイス酸触媒1.00g(スカンジウム(III)トリス(パーフルオロブタンスルホニル)メチドは反応基質に対して0.05倍モル)にジクロロエタン1.5mlを添加し、さらにシクロヘキサノール50mgと無水酢酸51mgを添加して、25℃で3時間攪拌した。
反応後、混合物を吸引濾過して固体をジクロロエタン3mlで洗浄し、濾液をガスクロマトグラフで分析したところ、目的の酢酸シクロヘキシルが転化率99%、収率99%で得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒にジクロロエタン1.5mlを添加し、さらにシクロヘキサノール50mgと無水酢酸51mgを添加して、25℃で16時間攪拌したところ、目的の酢酸シクロヘキシルが転化率99%、収率98%で得られた。
【0095】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率99%、収率98%で酢酸シクロヘキシルが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0096】
【実施例26】
実施例12の方法で合成した固定化ルイス酸触媒754mg(イッテルビウム(III)トリス(パーフルオロブタンスルホニル)メチドは反応基質に対して0.05倍モル)にジクロロエタン1.5mlを添加し、さらにシクロヘキサノール50mgと無水酢酸51mgを添加して、25℃で3時間攪拌した。
反応後、混合物を吸引濾過して固体をジクロロエタン3mlで洗浄し、濾液をガスクロマトグラフで分析したところ、目的の酢酸シクロヘキシルが転化率99%、収率98%で得られた。また濾取した固定化ルイス酸触媒は、80℃、0.2kPaで5時間真空乾燥した。回収した固定化ルイス酸触媒にジクロロエタン1.5mlを添加し、さらにシクロヘキサノール50mgと無水酢酸51mgを添加して、25℃で16時間攪拌したところ、目的の酢酸シクロヘキシルが転化率99%、収率98%で得られた。
【0097】
さらに再び回収した固定化ルイス酸触媒を使用して、同様に3回目の反応を行ったところ、転化率98%、収率98%で酢酸シクロヘキシルが得られた。以上のように、固定化ルイス酸触媒を再使用した際に、転化率及び収率の低下は見られなかった。
【0098】
【発明の効果】
本発明の固定化ルイス酸触媒を用いて水系媒体中で反応を行うことにより、特定のルイス酸と特定の金属酸化物の効果により反応が促進され、反応後は、簡単な濾過操作によって容易に触媒を回収、再使用することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Lewis acid catalyst immobilized on a metal oxide and a reaction method using the immobilized Lewis acid catalyst.
[0002]
[Prior art]
The sulfonic acid metal salt represented by the chemical formula (1), the sulfonylimide metal salt represented by the chemical formula (2), and the sulfonylmethide metal salt represented by the chemical formula (3) exhibit Lewis acidity.
[0003]
[Chemical 6]
Figure 0004234461
[0004]
[Chemical 7]
Figure 0004234461
[0005]
[Chemical 8]
Figure 0004234461
[0006]
(In the formulas (1) to (3), Rf 1 ~ Rf Three Each independently has at least one heteroatom selected from an oxygen atom and a nitrogen atom in the skeleton, Four ~ C 20 A saturated or unsaturated perfluorinated hydrocarbon group, and at least one substituent (α) selected from the partially substituted products thereof, or a heteroatom, C 1 ~ C 16 A saturated or unsaturated perfluorinated hydrocarbon group and at least one substituent (β) selected from the partial substituents thereof, and the partial substituents of the substituents (α) and (β) are: A part of the fluorine atoms of the saturated or unsaturated perfluorinated hydrocarbon group of the substituents (α) and (β) is substituted with at least one selected from halogen atoms other than fluorine atoms and hydrogen atoms. Provided that in the substituents (α) and (β), —SO 2 Some of the fluorine atoms bonded to the carbon atoms directly bonded to the group are not substituted with hydrogen atoms, and M is a transition metal including rare earths, gallium, indium, thallium, silicon, germanium, tin, lead, An element selected from antimony and bismuth, n represents the same number of integers as the valence of M. )
[0007]
However, these metal salts are dissolved or partially dissolved in an aqueous medium using water or a water-containing organic solvent, or become oily or gelled. Furthermore, since it has hygroscopicity, it is difficult to separate and reuse it from the reaction system when used as a Lewis acid catalyst. In an aqueous medium, the organic compound has a poor reaction due to its poor solubility, causing a problem in terms of industrial practicality.
On the other hand, reactions using organic solvents have environmental problems such as toxicity of organic solvents, and safety problems such as flammability and explosiveness. A reaction in an aqueous medium using these metal salts supported on a cyclodextrin-epichlorohydrin copolymer is known (see Patent Document 1). However, due to the problem of the strength of the copolymer, it is industrial. In some cases, this method is not suitable for a method in which a long reaction is repeated.
[0008]
Also, a method of carrying out a catalytic reaction by carrying a transition metal complex such as iridium, rhodium, palladium on plastic beads such as silica gel, polystyrene, polyamide-polyethylene glycol copolymer having a polyfluorinated hydrocarbon group ( Patent Document 2) is known, but there is no specific description of catalyst recycling.
Furthermore, a method of recycling a catalyst by supporting a palladium complex on a silica gel having a polyfluorinated hydrocarbon group (see Non-Patent Document 1) is also known. It is often seen and is not versatile. In addition, the methods described in Patent Document 2 and Non-Patent Document 1 are both performed in a two-phase medium composed of an organic medium and a fluorinated compound medium, and in an organic medium. There is no description of a reaction method in an aqueous medium using.
[0009]
[Patent Document 1]
JP 2001-213836 A
[Patent Document 2]
International Publication No. 02/04120 Pamphlet
[Non-Patent Document 1]
Angewandte Chemie International Edition, 2002, Vol. 41, No. 23, p4500-4503.
[0010]
[Problems to be solved by the invention]
The present invention provides an immobilized Lewis acid catalyst and a reaction method using the immobilized Lewis acid catalyst, particularly a reaction method in an aqueous medium, and further, in the reaction method, the separation and reuse of the Lewis acid catalyst is possible. The object is to provide an easy reaction method.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied a reaction method in an aqueous medium, and further a reaction method that allows easy separation and reuse of a Lewis acid, and as a result, C, which has a linear, cyclic, or branched structure. 1 ~ C 40 A compound in which a part of fluorine atoms of the perfluorinated hydrocarbon group is substituted with at least one selected from the group consisting of halogen atoms other than fluorine atoms and hydrogen atoms, silicon, Metals such as silica, alumina, silica alumina, titania, zirconia, etc. having chemically combined with a fully fluorinated hydrocarbon compound and a partial substituent having at least one atom selected from nitrogen, phosphorus, oxygen and sulfur in the skeleton The oxide is at least selected from the sulfonic acid metal salt represented by the chemical formula (1), the sulfonylimide metal salt represented by the chemical formula (2), and the sulfonylmethide metal salt represented by the chemical formula (3). The reaction is carried out using an immobilized Lewis acid catalyst formed by immobilizing one kind of Lewis acid catalyst in water or an aqueous medium composed of water and an organic solvent. It the reaction in an aqueous medium is promoted, and the separation of the Lewis acid catalyst, discovered that reuse is easy, and have completed the present invention.
[0012]
That is, the present invention is as follows.
[1] C having a functional group capable of reacting with a hydroxyl group and binding 1 ~ C 40 At least one selected from the chemical formulas (1), (2) and (3), wherein the functional group of the fluorinated hydrocarbon compound is a metal oxide formed by chemical bonding with a hydroxyl group in the metal oxide having a hydroxyl group. An immobilized Lewis acid catalyst on which a Lewis acid catalyst is supported.
[0013]
[Chemical 9]
Figure 0004234461
[0014]
[Chemical Formula 10]
Figure 0004234461
[0015]
Embedded image
Figure 0004234461
[0016]
(In the formulas (1) to (3), Rf 1 ~ Rf Three Each independently has at least one heteroatom selected from an oxygen atom and a nitrogen atom in the skeleton, Four ~ C 20 A saturated or unsaturated perfluorinated hydrocarbon group, and at least one substituent (α) selected from partially substituted products thereof, or a hetero atom that does not have a heteroatom, 1 ~ C 16 A saturated or unsaturated perfluorinated hydrocarbon group and at least one substituent (β) selected from the partial substituents thereof, and the partial substituents of the substituents (α) and (β) are: A part of the fluorine atoms of the saturated or unsaturated perfluorinated hydrocarbon group of the substituents (α) and (β) is substituted with at least one selected from halogen atoms other than fluorine atoms and hydrogen atoms. Provided that in the substituents (α) and (β), —SO 2 Some of the fluorine atoms bonded to the carbon atoms directly bonded to the group are not substituted with hydrogen atoms, and M is a transition metal including rare earths, gallium, indium, thallium, silicon, germanium, tin, lead, An element selected from antimony and bismuth, n represents the same number of integers as the valence of M. )
[0017]
[2] C having a functional group capable of reacting with a hydroxyl group and binding 1 ~ C 40 The immobilized Lewis as described in [1], wherein the chemical bond between the functional group of the fluorinated hydrocarbon compound and the hydroxyl group in the metal oxide having a hydroxyl group is an ether bond and / or an ester bond Acid catalyst.
[3] In the chemical formulas (1), (2) and (3), Rf 1 ~ Rf Three The immobilized Lewis acid catalyst according to [1], wherein each of the substituents (α) is independently at least one substituent selected from chemical formulas (4) and (5).
[0018]
Embedded image
Figure 0004234461
[0019]
Embedded image
Figure 0004234461
[0020]
(Where X 1 And X 2 Are each independently at least one atom selected from a halogen atom and a hydrogen atom, t is an integer of 1 to 4, and u is an integer of 1 to 4. )
[4] An acid-catalyzed reaction method using the immobilized Lewis acid catalyst according to [1].
[5] The acid-catalyzed reaction method according to [4], wherein an aqueous medium is used.
Hereinafter, the present invention will be described in detail.
The Lewis acid catalyst in the immobilized Lewis acid catalyst of the present invention is represented by the chemical formulas (1), (2) and (3).
[0021]
Embedded image
Figure 0004234461
[0022]
Embedded image
Figure 0004234461
[0023]
Embedded image
Figure 0004234461
[0024]
(In the formulas (1) to (3), Rf 1 ~ Rf Three Are each independently a C having at least one heteroatom selected from an oxygen atom and a nitrogen atom in the skeleton. Four ~ C 20 A saturated or unsaturated perfluorinated hydrocarbon group, and at least one substituent (α) selected from the partially substituted products thereof, or C having no hetero atom 1 ~ C 16 A saturated or unsaturated perfluorinated hydrocarbon group and at least one substituent (β) selected from the partial substituents thereof, and the partial substituents of the substituents (α) and (β) are: A part of the fluorine atoms of the saturated or unsaturated perfluorinated hydrocarbon group of the substituents (α) and (β) is substituted with at least one selected from halogen atoms other than fluorine atoms and hydrogen atoms. Provided that in the substituents (α) and (β), —SO 2 Some of the fluorine atoms bonded to the carbon atoms directly bonded to the group are not substituted with hydrogen atoms, and M is a transition metal including rare earths, gallium, indium, thallium, silicon, germanium, tin, lead, An element selected from antimony and bismuth, n represents the same number of integers as the valence of M. )
[0025]
Rf of Lewis acid catalyst represented by the chemical formulas (1), (2) and (3) 1 ~ Rf Three Are each independently a substituent (α) or (β). Multiple Rf in one chemical formula 1 , Rf 2 Or Rf Three Is present (when n in the chemical formula is 2 or more), Rf in one chemical formula 1 , Rf 2 Or Rf Three May be the same or different.
The carbon number of the substituent (α) is C Four ~ C 20 And the lower limit is C Five Is preferred, more preferably C 6 , Most preferably C 7 It is. The upper limit is C 18 Is preferred, more preferably C 16 , Most preferably C 14 It is. Furthermore, the substituent (α) is preferably at least one substituent selected from chemical formulas (4) and (5).
[0026]
Embedded image
Figure 0004234461
[0027]
Embedded image
Figure 0004234461
[0028]
(Where X 1 And X 2 Are each independently at least one atom selected from a halogen atom and a hydrogen atom, t is an integer of 1 to 4, u is an integer of 1 to 4, and preferably 2 to 4 An integer, more preferably an integer of 2 to 3. )
The carbon number of the substituent (β) is C 1 ~ C 16 But the lower limit is C 2 Is preferred, more preferably C Three , Most preferably C Four It is. The upper limit is C 14 Is preferred, more preferably C 12 , Most preferably C Ten It is.
[0029]
In the substituents (α) and (β), examples of the halogen atom other than fluorine used for partial substitution include a chlorine atom, a bromine atom and an iodine atom, a chlorine atom and a bromine atom are preferred, and a chlorine atom is more preferred. The ratio of the number of halogen atoms and hydrogen atoms other than the substituted fluorine atom is preferably 40% or less, more preferably 30%, based on the number of fluorine atoms contained in the saturated perfluorinated hydrocarbon group. Hereinafter, it is more preferably 20% or less, and most preferably 10% or less.
[0030]
When the substituents (α) and (β) are unsaturated perfluorinated hydrocarbon groups, the number of carbon-carbon double bonds is the number of fluorine atoms contained in the saturated perfluorinated hydrocarbon group. On the other hand, it is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less, and most preferably 10% or less.
Specific examples of the substituent (α) include —C 2 F Four OC 2 F Five , -C 2 F Four OC Four F 9 , -CF 2 CHFCF 2 OC Four F 9 , -C Four F 8 N (C Four F 9 ) 2 , -CF 2 CF 2 OCF (CF Three CF 2 OCF = CF 2 , -CF 2 CF 2 OCF (CF Three CF 2 OCF (CF Three CF 2 OCF = CF 2 , -CF 2 CF 2 OCF (CF Three CF 2 OCHFCF Three , -CF 2 CF 2 OCF (CF Three CF 2 OCF (CF Three CF 2 OCHFCF Three , -CF 2 CF 2 O-CF (CF Three ) −CF 2 -OCF (CF Three ) −CF 2 OCF 2 CF Three , -CF 2 CF 2 OCF (CF Three CF 2 OCFClCF Three , -CF 2 CF 2 OCF (CF Three CF 2 OCFClCF 2 Cl etc. can be mentioned.
[0031]
Specific examples of the substituent (β) include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group. Perfluorononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, perfluorotridecyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorohexadecyl group, etc. it can.
[0032]
When the Lewis acid catalyst contained in the immobilized Lewis acid catalyst of the present invention is a compound represented by the chemical formula (1), the carbon number of the substituent (β) is preferably C Four ~ C 16 , More preferably C 6 ~ C 12 It is. When the Lewis acid catalyst is a compound represented by the chemical formula (2), Rf 1 And Rf 2 The total number of carbons of is preferably C 7 ~ C 32 And more preferably C 9 ~ C 28 , Most preferably C 11 ~ C twenty four It is. When the Lewis acid catalyst is a compound represented by the chemical formula (3), Rf 1 ~ Rf Three The total number of carbons of is preferably C 9 ~ C 48 , More preferably C 12 ~ C 42 , Most preferably C 15 ~ C 36 It is. Rf 1 ~ Rf Three When the number of carbon atoms is within the above range, the Lewis acid catalyst is immobilized on the metal oxide and does not move into the reaction medium. Accordingly, the Lewis acid catalyst after the reaction can be easily recovered and reused.
[0033]
M represents an element selected from transition metals including rare earth, gallium, indium, thallium, silicon, germanium, tin, lead, antimony and bismuth, preferably rare earth, hafnium, zirconium, gallium, tin and bismuth, and more Scandium, yttrium, lanthanum, ytterbium, hafnium, zirconium, gallium, tin and bismuth are preferred. n represents the same number of integers as the valence of M.
[0034]
Next, the metal oxide having a fluorinated hydrocarbon group, which is a carrier for the immobilized Lewis acid catalyst of the present invention, will be described.
As the metal oxide of the present invention, silica having a hydroxyl group, alumina, silica alumina, titania, zirconia and the like are used, and the particle diameter is not limited, but is preferably 0.00002 to 1 mm, more preferably 0.001 to 1. 0.5 mm.
The hydroxyl group of the metal oxide is preferably an ether bond and / or ester bond, more preferably a C having a functional group capable of reacting with the hydroxyl group to bond with the hydroxyl group. 1 ~ C 40 It is chemically bonded to the functional group of the fluorinated hydrocarbon compound.
[0035]
A fluorinated hydrocarbon compound chemically bonded to a metal oxide is a C having a functional group that can be bonded by reacting with a hydroxyl group. 1 ~ C 40 The fluorinated hydrocarbon compound. Preferably C consisting of a linear, cyclic or branched structure 1 ~ C 40 And a compound in which a part of the fluorine atoms of the perfluorinated hydrocarbon group is substituted with at least one selected from halogen atoms other than fluorine atoms and hydrogen atoms, The activated hydrocarbon group may have at least one atom selected from silicon, nitrogen, phosphorus, oxygen and sulfur in the skeleton.
[0036]
The carbon number of the fluorinated hydrocarbon compound of the present invention is C 1 ~ C 40 And the lower limit is C Four Is preferred, more preferably C 6 , Most preferably C 8 It is. The upper limit is C 30 Is preferred, more preferably C 20 , Most preferably C 15 It is. Specifically, -C Four F 9 , -C Five F 11 , -C 6 F 13 , -C 7 F 15 , -C 8 F 17 , -C 9 F 19 , -C Ten F twenty one , -C 11 F twenty three , -C 12 F twenty five , -C 13 F 27 , -C 14 F 29 , -CH 2 CH 2 C Four F 9 , -CH 2 CH 2 C Five F 11 , -CH 2 CH 2 C 6 F 13 , -CH 2 CH 2 C 7 F 15 , -CH 2 CH 2 C 8 F 17 , -C 6 H Four -C 6 F 13 , -C 6 H Three (C 6 F 13 ) 2 , -CH 2 CH 2 N (C 8 F 17 ) 2 , -CH 2 CH 2 OC 6 F 13 , -CH 2 CH 2 Si (CH 2 CH 2 C 6 F 13 ) Three And the like.
[0037]
Examples of the functional group present in the fluorinated hydrocarbon compound of the present invention that can be bonded by reacting with a hydroxyl group include an alkoxysilyl group, an epoxy group, and a halogen group. Preferred examples of the halogen group include chlorine, bromine and iodine. These functional groups may be present at the terminal or skeleton of the fluorinated hydrocarbon compound.
The reaction between the functional group capable of reacting with the hydroxyl group present in the fluorinated hydrocarbon compound of the present invention and the metal oxide having a hydroxyl group is, for example, in a medium such as anhydrous toluene or in the presence of a base in some cases. And is carried out by heating to reflux.
[0038]
The immobilized Lewis acid catalyst of the present invention is C 1 ~ C 40 A metal oxide obtained by chemically bonding a fluorinated hydrocarbon compound of the above with a hydroxyl group in the metal oxide and at least one Lewis acid catalyst selected from chemical formulas (1), (2) and (3) The weight ratio of the product: Lewis acid is preferably adjusted to a ratio of 10,000: 1 to 1: 1, more preferably 1000: 1 to 2: 1, most preferably 100: 1 to 3: 1.
[0039]
The method for producing the immobilized Lewis acid catalyst of the present invention includes, for example, a Lewis acid catalyst in which the metal oxide is fixed to an insoluble metal oxide by adding the Lewis acid catalyst while stirring vigorously in water. After obtaining by filtration, it can be obtained by washing with water and then drying under reduced pressure.
Alternatively, the Lewis acid catalyst is dissolved in an organic medium such as ethanol or acetonitrile, or in a solution of a fluorinated compound medium such as perfluoroheptane, perfluorooctane, perfluoromethylcyclohexane, or perfluorodecalin. The metal oxide can be added, and the organic medium or fluorinated compound medium can be distilled off under reduced pressure and dried under reduced pressure.
[0040]
The reaction using the immobilized Lewis acid catalyst thus obtained in an aqueous medium is accelerated more than the case where the Lewis acid catalyst is used alone. This effect is achieved by a specific Lewis acid catalyst and a specific metal oxide, and a compound hardly soluble in water may be a reaction substrate.
Due to the specific chemical structure described above, the immobilized Lewis acid catalyst has the following characteristics. That is, since the Lewis acid catalyst is fixed to a specific metal oxide, it is a powdery solid that is insoluble in water or a low-polar organic solvent and easy to handle. Therefore, when an immobilized Lewis acid catalyst is used as a catalyst, it can be separated from the reaction system and reused by a simple filtration operation after the reaction.
[0041]
The reaction substrate for the reaction using the immobilized Lewis acid catalyst of the present invention is preferably a compound having nucleophilicity. In the present invention, the “compound having nucleophilicity” refers to a compound having affinity with the element M of Lewis acid and forming a coordination. Examples of such a compound include compounds having elements such as oxygen and nitrogen. Specifically, ketone, aldehyde, nitrile, ketene, acid anhydride, acid halide, ester, thioester, lactone, ether, alcohol, phenol, carboxylic acid, nitro compound and the like. Other examples include unsaturated compounds such as nucleophilic olefins that have affinity with the M element of Lewis acid and can be coordinated.
[0042]
Examples of reaction of the reaction substrate as described above using the immobilized Lewis acid catalyst of the present invention include carbon-carbon bond reaction, oxidation reaction, reduction reaction, dehydration reaction, esterification reaction, and transesterification. . More specifically, Diels-Alder reaction, Michael reaction, Friedel-Crafts reaction, Schiff base synthesis, Fries rearrangement, methylolation reaction of benzene ring, meabein-pondolf-Burley reduction, aldol reaction, esterification reaction, transesterification Reactions, Mannich reaction, oxidation reaction with hydrogen peroxide, organic peroxide or molecular oxygen, alcohol dehydration reaction, O-glycosylation reaction, etc., can also be applied to polymerization reaction of olefins, etc. is there.
[0043]
When the immobilized Lewis acid catalyst of the present invention is used as a catalyst, it can be used in the same manner as a liquid phase reaction using a normal solid catalyst. As a reaction medium that becomes a liquid phase, water, a mixed medium of water and an organic solvent, or an organic solvent is used. The amount of the reaction medium to be used is preferably 1 or more, more preferably 2 to 1000, by weight with respect to the immobilized Lewis acid catalyst.
The addition amount of the immobilized Lewis acid catalyst of the present invention is 0.0001 to 10 times mol, preferably 0.01 to 2 times mol as the Lewis acid in the immobilized Lewis acid catalyst with respect to the reaction substrate. In the reaction using the catalyst of the present invention, the reaction temperature is frequently 200 ° C. or less, preferably −80 ° C. to 170 ° C., more preferably 0 ° C. to 100 ° C. The reaction time varies depending on the amount of the immobilized Lewis acid catalyst added, the Lewis acid content in the immobilized Lewis acid catalyst, the reaction temperature, etc., but usually several minutes to 72 hours are preferably used.
[0044]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited to these examples.
[0045]
[Example 1]
Silica gel 100 (trademark) (particle size: 0.063-0.200 mm) (manufactured by Merck), which was vacuum-dried at 80 ° C. for 5 hours, was added with 20 ml of dehydrated toluene, and 3,3,4,4,5,5,6 , 6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyltriethoxysilane was added and heated under reflux for 24 hours in a nitrogen atmosphere. The resulting mixture was collected by filtration, washed with toluene and methanol, and then vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours, 3,3,4,4,5,5,6,6,7,7,8 , 8,9,9,10,10,10-heptadecafluorodecyl group 6 g of silica gel was obtained. Elemental analysis value (carbon: 14.1%, fluorine: 6.8%) (elemental analysis value is% by weight. The same applies to the following examples and comparative examples.)
[0046]
[Example 2]
Silica gel having 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group synthesized by the method of Example 1 10 ml of water was added to 1.69 g, and 168 mg of hafnium (IV) bis (perfluorooctanesulfonyl) amide was added with vigorous stirring, and stirring was continued at room temperature for 14 hours. The solid was collected by filtration, washed with water, and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to obtain hafnium salt and 3,3,4,4,5,5,6,6,7,7,8. 1,8,9,9,10,10,10-heptadecafluorodecyl group 1.81 g of immobilized Lewis acid catalyst comprising silica gel was obtained. Elemental analysis value (hafnium: 0.23%)
[0047]
[Example 3]
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group silica gel Fluorous silica gel 40mm (trademark) ( Particle size) To 1.68 g (manufactured by Fluorous Technologies, Inc.) was added 10 ml of dehydrated ethanol in which 168 mg of hafnium (IV) bis (perfluorooctanesulfonyl) amide was dissolved, and stirring was continued at room temperature for 1 hour. After distilling off the solvent under reduced pressure, the solid was washed with water and vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. From hafnium salt and Fluorous silica 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) As a result, 1.75 g of the immobilized Lewis acid catalyst was obtained. Elemental analysis value (hafnium: 0.22%)
[0048]
[Example 4]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) 10 ml of dehydrated ethanol in which 401 mg of zirconium (IV) bis (perfluorooctanesulfonyl) amide was dissolved was added to 4.01 g (manufactured by Fluorous Technologies, Inc.), and stirring was continued for 1 hour at room temperature. After the solvent was distilled off under reduced pressure, the solid was washed with water and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to obtain a zirconium salt and Fluorous silica 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.). As a result, 4.39 g of an immobilized Lewis acid catalyst was obtained. Elemental analysis value (zirconium: 0.20%)
[0049]
[Example 5]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) To 4.02 g (manufactured by Fluorous Technologies, Inc.), 10 ml of dehydrated ethanol in which 400 mg of tin (IV) bis (perfluorooctanesulfonyl) amide was dissolved was added, and stirring was continued at room temperature for 1 hour. After distilling off the solvent under reduced pressure, the solid was washed with water and vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. From tin salt and Fluorous silica gel 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) As a result, 4.34 g of an immobilized Lewis acid catalyst was obtained. Elemental analysis value (tin: 0.27%)
[0050]
[Example 6]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) To 2.78 g (manufactured by Fluorous Technologies, Inc.) was added 10 ml of dehydrated ethanol in which 283 mg of ytterbium (III) bis (perfluorooctanesulfonyl) amide was dissolved, and stirring was continued at room temperature for 1 hour. After the solvent was distilled off under reduced pressure, the solid was washed with water and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to give ytterbium salt and Fluorous silica gel 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) As a result, 3.00 g of an immobilized Lewis acid catalyst comprising: Elemental analysis value (ytterbium: 0.51%)
[0051]
[Example 7]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) 10 ml of dehydrated ethanol in which 316 mg of scandium (III) bis (perfluorooctanesulfonyl) amide was dissolved was added to 3.11 g (manufactured by Fluorous Technologies, Inc.), and stirring was continued at room temperature for 1 hour. After the solvent was distilled off under reduced pressure, the solid was washed with water and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to obtain a scandium salt and Fluorous silica gel 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) 3.40 g of an immobilized Lewis acid catalyst consisting of Elemental analysis value (scandium: 0.16%)
[0052]
[Example 8]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) 10 ml of dehydrated ethanol in which 537 mg of hafnium (IV) bis C10 amide was dissolved was added to 5.35 g (manufactured by Fluorous Technologies, Inc.), and stirring was continued for 1 hour at room temperature (here, (CF Three CFHOCF 2 CF (CF Three OCF 2 CF (CF Three OCF 2 CF 2 SO 2 ) 2 The N group is abbreviated as bis C10 amide. The following examples are also the same. ). After the solvent was distilled off under reduced pressure, the solid was washed with water and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to obtain hafnium salt and Fluorous silica gel 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) 5.79 g of an immobilized Lewis acid catalyst consisting of Elemental analysis value (hafnium: 0.31%)
[0053]
[Example 9]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) To 3.89 g (manufactured by Fluorous Technologies, Inc.) was added 10 ml of dehydrated ethanol in which 389 mg of ytterbium (III) bis C10 amide was dissolved, and stirring was continued at room temperature for 1 hour. After the solvent was distilled off under reduced pressure, the solid was washed with water and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to give ytterbium salt and Fluorous silica gel 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) 4.25 g of an immobilized Lewis acid catalyst consisting of Elemental analysis value (ytterbium: 0.40%)
[0054]
[Example 10]
Silica gel with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group Fluorous silica gel 40mm (particle size) To 3.77 g (manufactured by Fluorous Technologies, Inc.), 10 ml of dehydrated ethanol in which 380 mg of scandium (III) bis C10 amide was dissolved was added, and stirring was continued at room temperature for 1 hour. After the solvent was distilled off under reduced pressure, the solid was washed with water and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to obtain a scandium salt and Fluorous silica gel 40 mm (particle size) (manufactured by Fluorous Technologies, Inc.) 4.11 g of an immobilized Lewis acid catalyst consisting of Elemental analysis value (scandium: 0.11%)
[0055]
Example 11
Silica gel having 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group synthesized by the method of Example 1 To 1.21 g, 10 ml of water was added, 121 mg of scandium (III) tris (perfluorobutanesulfonyl) methide was added with vigorous stirring, and stirring was continued at room temperature for 14 hours. The solid was collected by filtration and washed with water, and then vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours to obtain scandium salt and 3,3,4,4,5,5,6,6,7,7,8, 1.30 g of an immobilized Lewis acid catalyst composed of silica gel having 8,9,9,10,10,10-heptadecafluorodecyl group was obtained. Elemental analysis value (scandium: 0.17%)
[0056]
Example 12
Silica gel having 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl group synthesized by the method of Example 1 10 ml of water was added to 2.77 g, 276 mg of ytterbium (III) tris (perfluorobutanesulfonyl) methide was added with vigorous stirring, and stirring was continued at room temperature for 14 hours. The solid was collected by filtration, washed with water, and vacuum dried at 80 ° C. and 0.2 kPa for 5 hours to give ytterbium salt with 3,3,4,4,5,5,6,6,7,7,8, 3.02 g of an immobilized Lewis acid catalyst comprising silica gel having 8,9,9,10,10,10-heptadecafluorodecyl group was obtained. Elemental analysis value (ytterbium: 0.57%)
[0057]
[Comparative Example 1]
Silica gel Silica gel 100 (particle size: 0.063-0.200 mm) (Merck) 1.68 g was added 10 ml of dehydrated ethanol in which 168 mg of hafnium (IV) bis (perfluorooctanesulfonyl) amide was dissolved, and the mixture was stirred at room temperature for 1 hour. Continued. After the solvent was distilled off under reduced pressure, it was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours, and a Lewis acid catalyst composition comprising hafnium salt and Silica gel 100 (particle size 0.063-0.200 mm) (Merck) 1.84 g was obtained. Elemental analysis value (hafnium: 0.50%)
[0058]
[Comparative Example 2]
10 ml of dehydrated ethanol, in which 403 mg of hafnium (IV) bis (perfluorooctanesulfonyl) amide is dissolved, is added to 4.03 g of Wakogel 100C18 (trademark) (manufactured by Wako Pure Chemical Industries, Ltd.), which is a silica gel having an octadecyl group. Stirring was continued. The solvent was distilled off under reduced pressure, followed by vacuum drying at 80 ° C. and 0.2 kPa for 5 hours to obtain 4.35 g of a Lewis acid catalyst composition composed of hafnium salt and Wakogel 100C18. Elemental analysis value (hafnium: 0.20%)
[0059]
Example 13
75 mg of 2-adamantanone and 1.55 g of immobilized Lewis acid catalyst synthesized by the method of Example 2 (hafnium (IV) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate) The mixture was added to 4.4 ml of% hydrogen peroxide solution and stirred at 25 ° C. for 16 hours. 2 ml of dichloromethane was added and stirred for 10 minutes, followed by suction filtration, and the solid was washed with 3 ml of water and 12 ml of dichloromethane. Elemental analysis of the filtrate revealed that the amount of hafnium eluted was less than 3 ppm in the aqueous phase and less than 3 ppm in the dichloromethane phase.
[0060]
When the dichloromethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion rate of 97% and a yield of 87%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered immobilized Lewis acid catalyst and 75 mg of 2-adamantanone were added to 4.4 ml of 4% aqueous hydrogen peroxide and stirred at 25 ° C. for 16 hours. The target lactone was obtained with a conversion of 94% and a yield of 89%. The body was obtained.
[0061]
When the immobilized Lewis acid catalyst recovered again was used for the third reaction in the same manner, the desired lactone compound was obtained with a conversion of 93% and a yield of 87%.
As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0062]
[Comparative Example 3]
2-Adamantanone 75 mg and 1.13 g of Lewis acid catalyst composition synthesized by the method of Comparative Example 1 (hafnium (IV) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate) 4 The mixture was added to 4.4 ml of% hydrogen peroxide solution and stirred at 25 ° C. for 16 hours. After adding 2 ml of dichloromethane and stirring for 10 minutes, suction filtration was performed, and the solid was washed with 18 ml of dichloromethane. Elemental analysis of the filtrate revealed that the hafnium elution amount was 13 ppm in the aqueous phase and less than 3 ppm in the dichloromethane phase.
[0063]
When the dichloromethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion of 76% and a yield of 62%. The filtered composition was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered composition and 75 mg of 2-adamantanone were added to 4.4 ml of 4% hydrogen peroxide solution and stirred at 25 ° C. for 16 hours. As a result, the desired lactone was obtained with a conversion of 70% and a yield of 56%. It was.
Further, using the recovered composition again, a third reaction was carried out in the same manner. As a result, the desired lactone compound was obtained with a conversion rate of 78% and a yield of 50%. As described above, a decrease in yield was observed when the catalyst was reused.
[0064]
[Comparative Example 4]
2-Adamantanone 38 mg and Lewis acid catalyst composition 603 mg synthesized by the method of Comparative Example 2 (hafnium (IV) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate) 4% excess In addition to 2.2 ml of hydrogen oxide water, the mixture was stirred at 25 ° C. for 16 hours. 2 ml of dichloroethane was added and stirred for 10 minutes, followed by suction filtration, and the solid was washed with 2 ml of water and 12 ml of dichloroethane.
[0065]
When the dichloroethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion rate of 82% and a yield of 72%. The filtered composition was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered composition and 38 mg of 2-adamantanone were added to 2.2 ml of 4% aqueous hydrogen peroxide and stirred at 25 ° C. for 16 hours to obtain the desired lactone compound with a conversion rate of 72% and a yield of 61%. It was.
Further, using the recovered composition again, a third reaction was carried out in the same manner. As a result, the desired lactone compound was obtained with a conversion of 62% and a yield of 51%. As described above, when the catalyst was reused, the conversion rate and the yield decreased.
[0066]
[Comparative Example 5]
2-adamantanone 75 mg and 0.05-fold moles of hafnium (IV) triflate with respect to the reaction substrate were added to 4.4 ml of 4% hydrogen peroxide solution and stirred at 25 ° C. for 16 hours. When 14 ml of dichloromethane was added and the dichloromethane phase was analyzed by gas chromatography, the desired lactone compound was obtained with a very low yield of 8% conversion and 6% yield.
[0067]
Example 14
4-Adamantanone 38 mg and 552 mg of the immobilized Lewis acid catalyst synthesized by the method of Example 4 (zirconium (IV) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate) 4% excess In addition to 2.2 ml of hydrogen oxide water, the mixture was stirred at 25 ° C. for 16 hours. 2 ml of dichloroethane was added and stirred for 10 minutes, followed by suction filtration, and the solid was washed with 2 ml of water and 12 ml of dichloroethane.
[0068]
When the dichloroethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion rate of 95% and a yield of 85%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered immobilized Lewis acid catalyst and 38 mg of 2-adamantanone were added to 2.2 ml of 4% aqueous hydrogen peroxide and stirred at 25 ° C. for 16 hours. The target lactone was obtained with a conversion of 94% and a yield of 83%. The body was obtained.
[0069]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, the desired lactone compound was obtained with a conversion rate of 93% and a yield of 85%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0070]
Example 15
4-adamantanone (38 mg) and immobilized Lewis acid catalyst (670 mg) synthesized by the method of Example 5 (tin (IV) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate) in an amount of 4% excess. In addition to 2.2 ml of hydrogen oxide water, the mixture was stirred at 25 ° C. for 16 hours. 2 ml of dichloroethane was added and stirred for 10 minutes, followed by suction filtration, and the solid was washed with 2 ml of water and 12 ml of dichloroethane.
[0071]
When the dichloroethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion rate of 98% and a yield of 87%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered immobilized Lewis acid catalyst and 38 mg of 2-adamantanone were added to 2.2 ml of 4% aqueous hydrogen peroxide and stirred at 25 ° C. for 16 hours. The target lactone was obtained with a conversion of 97% and a yield of 89%. The body was obtained.
[0072]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, the desired lactone compound was obtained with a conversion of 96% and a yield of 86%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0073]
Example 16
2-Adamantanone (38 mg) and immobilized Lewis acid catalyst (510 mg) synthesized by the method of Example 10 (scandium (III) bis-C10 amide is 0.05-fold mol with respect to the reaction substrate) 4% hydrogen peroxide solution In addition to 2 ml, the mixture was stirred at 25 ° C. for 16 hours. 2 ml of dichloroethane was added and stirred for 10 minutes, followed by suction filtration, and the solid was washed with 2 ml of water and 12 ml of dichloroethane.
[0074]
When the dichloroethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion rate of 82% and a yield of 77%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered immobilized Lewis acid catalyst and 38 mg of 2-adamantanone were added to 2.2 ml of 4% aqueous hydrogen peroxide and stirred at 25 ° C. for 16 hours. The target lactone was obtained with a conversion of 81% and a yield of 76%. The body was obtained.
[0075]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, the desired lactone compound was obtained with a conversion rate of 80% and a yield of 76%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0076]
[Example 17]
2-adamantanone (75 mg) and immobilized Lewis acid catalyst (1.00 g) synthesized by the method of Example 11 (scandium (III) tris (perfluorobutanesulfonyl) methide is 0.05-fold mol with respect to the reaction substrate) The mixture was added to 4.4 ml of% hydrogen peroxide solution and stirred at 25 ° C. for 16 hours. 2 ml of dichloromethane was added and stirred for 10 minutes, followed by suction filtration, and the solid was washed with 3 ml of water and 12 ml of dichloromethane.
[0077]
The elemental analysis of the aqueous phase of the filtrate revealed that the amount of scandium eluted was 1 ppm. When the dichloromethane phase of the filtrate was analyzed by gas chromatography, the desired lactone compound was obtained with a conversion of 74% and a yield of 68%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. The recovered immobilized Lewis acid catalyst and 75 mg of 2-adamantanone were added to 4.4 ml of 4% aqueous hydrogen peroxide and stirred at 25 ° C. for 16 hours. The target lactone was obtained with a conversion of 78% and a yield of 64%. The body was obtained.
[0078]
When the immobilized Lewis acid catalyst recovered again was used for the third reaction in the same manner, the desired lactone compound was obtained with a conversion rate of 73% and a yield of 72%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0079]
Example 18
43 mg of methacrylic acid and 6.14 mol of methanol relative to methacrylic acid were dissolved in 1.5 ml of dichloroethane, and 1.14 g of immobilized Lewis acid catalyst synthesized by the method of Example 3 (hafnium (IV) bis (perfluoro Octanesulfonyl) amide was added to the solution in an amount of 0.05 moles per mole of the reaction substrate. After stirring the reaction solution at 60 ° C. for 16 hours,
The solid was washed with 2.5 ml of dichloroethane by suction filtration, and the filtrate was analyzed by gas chromatography. As a result, methyl methacrylate was obtained with a conversion rate of 95% and a yield of 86%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. When 43 mg of methacrylic acid and 6 times mol of methanol with respect to methacrylic acid were dissolved in 1.5 ml of dichloroethane and the recovered immobilized Lewis acid catalyst was added, the reaction was carried out. The conversion was 97% and the yield was 93%. Yielded methyl methacrylate.
[0080]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, methyl methacrylate was obtained with a conversion rate of 95% and a yield of 94%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0081]
Example 19
Immobilized Lewis acid synthesized by the method of Example 3 by dissolving 43 mg of methacrylic acid, 6 times mole of methanol with respect to methacrylic acid, and 1.6 times mole of water with respect to methacrylic acid in 1.5 ml of dichloroethane. 1.14 g of catalyst (hafnium (IV) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate) was added to the solution. After stirring the reaction solution at 70 ° C. for 16 hours,
The solid was washed with 2.5 ml of dichloroethane by suction filtration, and the filtrate was analyzed by gas chromatography. As a result, methyl methacrylate was obtained in a conversion rate of 92% and a yield of 89%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. 43 mg of methacrylic acid, 6 times mol of methanol to methacrylic acid, and 1.6 times mol of water to methacrylic acid were dissolved in 1.5 ml of dichloroethane, and the recovered immobilized Lewis acid catalyst was added to react. As a result, methyl methacrylate was obtained with a conversion of 97% and a yield of 91%.
[0082]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, methyl methacrylate was obtained with a conversion rate of 92% and a yield of 88%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0083]
Example 20
The immobilized Lewis acid catalyst 1.41 g (hafnium (IV) bis C10 amide) synthesized by the method of Example 8 was prepared by dissolving 43 mg of methacrylic acid and 6 moles of methanol with respect to methacrylic acid in 1.5 ml of dichloroethane. 0.05 times moles of reaction substrate) was added to the solution. After stirring the reaction solution at 60 ° C. for 16 hours,
The solid was washed with 2.5 ml of dichloroethane by suction filtration, and the filtrate was analyzed by gas chromatography. As a result, methyl methacrylate was obtained with a conversion rate of 95% and a yield of 87%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. When 43 mg of methacrylic acid and 6 times mol of methanol with respect to methacrylic acid were dissolved in 1.5 ml of dichloroethane and the recovered immobilized Lewis acid catalyst was added, the reaction was carried out. The conversion was 96% and the yield was 93%. Yielded methyl methacrylate.
[0084]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, methyl methacrylate was obtained with a conversion rate of 94% and a yield of 93%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0085]
Example 21
To 883 mg of the immobilized Lewis acid catalyst synthesized by the method of Example 7 (scandium (III) bis (perfluorooctanesulfonyl) amide is 0.05-fold mol with respect to the reaction substrate), 1.5 ml of dichloroethane was added, and 2 , 3-dimethylbutadiene 58 μl and methyl vinyl ketone 50 μl were added and stirred at 25 ° C. for 16 hours.
[0086]
After the reaction, the mixture was filtered with suction, the solid was washed with 3.5 ml of dichloroethane, and the filtrate was analyzed by gas chromatography. The desired 1- (3,4-dimethylcyclohex-3-enyl) -ethanone was converted. The yield was 96% and the yield was 91%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. To the recovered immobilized Lewis acid catalyst, 1.5 ml of dichloroethane was added, 58 μl of 2,3-dimethylbutadiene and 50 μl of methyl vinyl ketone were further added, and the mixture was stirred at 25 ° C. for 16 hours. 4-Dimethylcyclohex-3-enyl) -ethanone was obtained with a conversion of 95% and a yield of 92%.
[0087]
Using the immobilized Lewis acid catalyst recovered again, a third reaction was carried out in the same manner. As a result, 1- (3,4-dimethylcyclohex-3-enyl) was obtained at a conversion rate of 95% and a yield of 90%. -Ethanone was obtained. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0088]
[Example 22]
1.5 ml of water was added to 883 mg of the immobilized Lewis acid catalyst synthesized by the method of Example 7 (scandium (III) bis (perfluorooctanesulfonyl) amide was 0.05 times moles of the reaction substrate), and 2 , 3-dimethylbutadiene 58 μl and methyl vinyl ketone 50 μl were added and stirred at 25 ° C. for 16 hours.
After the reaction, 2 ml of dichloroethane was added and stirred for 10 minutes, the mixture was suction filtered, the solid was washed with 1 ml of water and 3 ml of dichloroethane, and the filtrate was analyzed by gas chromatography to find the desired 1- (3,4-dimethyl). Cyclohex-3-enyl) -ethanone was obtained with a conversion of 88% and a yield of 80%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. 1.5 ml of water was added to the recovered immobilized Lewis acid catalyst, 58 μl of 2,3-dimethylbutadiene and 50 μl of methyl vinyl ketone were further added, and the mixture was stirred at 25 ° C. for 16 hours. 4-Dimethylcyclohex-3-enyl) -ethanone was obtained with a conversion of 88% and a yield of 79%.
[0089]
Further, using the immobilized Lewis acid catalyst recovered again, a third reaction was conducted in the same manner. As a result, 1- (3,4-dimethylcyclohex-3-enyl) was obtained at a conversion rate of 86% and a yield of 79%. -Ethanone was obtained. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0090]
Example 23
1.5 ml of water was added to 1.02 g of the immobilized Lewis acid catalyst synthesized by the method of Example 10 (scandium (III) bis C10 amide was 0.05 times mol of the reaction substrate), and 2,3- Dimethylbutadiene (58 μl) and methyl vinyl ketone (50 μl) were added, and the mixture was stirred at 25 ° C. for 16 hours.
After the reaction, 2 ml of dichloroethane was added and stirred for 10 minutes, the mixture was suction filtered, the solid was washed with 1 ml of water and 3 ml of dichloroethane, and the filtrate was analyzed by gas chromatography to find the desired 1- (3,4-dimethyl). Cyclohex-3-enyl) -ethanone was obtained with a conversion of 92% and a yield of 80%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. 1.5 ml of water was added to the recovered immobilized Lewis acid catalyst, 58 μl of 2,3-dimethylbutadiene and 50 μl of methyl vinyl ketone were further added, and the mixture was stirred at 25 ° C. for 16 hours. 4-Dimethylcyclohex-3-enyl) -ethanone was obtained with a conversion of 90% and a yield of 82%.
[0091]
Further, the immobilized Lewis acid catalyst recovered again was used for the third reaction in the same manner. As a result, 1- (3,4-dimethylcyclohex-3-enyl) was obtained at a conversion rate of 89% and a yield of 80%. -Ethanone was obtained. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0092]
Example 24
To 1.06 g of the immobilized Lewis acid catalyst synthesized by the method of Example 9 (ytterbium (III) bis C10 amide is 0.05 times mol of the reaction substrate) 1.5 ml of dichloroethane was added, and 50 mg of cyclohexanol was added. Acetic anhydride (51 mg) was added, and the mixture was stirred at 25 ° C. for 3 hours.
After the reaction, the mixture was filtered with suction, the solid was washed with 3 ml of dichloroethane, and the filtrate was analyzed by gas chromatography. As a result, the desired cyclohexyl acetate was obtained in a conversion rate of 99% and a yield of 99%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. When 1.5 ml of dichloroethane was added to the recovered immobilized Lewis acid catalyst, 50 mg of cyclohexanol and 51 mg of acetic anhydride were further added, and the mixture was stirred at 25 ° C. for 16 hours, the target cyclohexyl acetate was converted to 99%, yield. 99%.
[0093]
Further, the immobilized Lewis acid catalyst recovered again was used for the third reaction in the same manner. As a result, cyclohexyl acetate was obtained with a conversion rate of 99% and a yield of 98%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0094]
Example 25
1.5 ml of dichloroethane was added to 1.00 g of the immobilized Lewis acid catalyst synthesized by the method of Example 11 (scandium (III) tris (perfluorobutanesulfonyl) methide was 0.05 moles relative to the reaction substrate), Further, 50 mg of cyclohexanol and 51 mg of acetic anhydride were added, and the mixture was stirred at 25 ° C. for 3 hours.
After the reaction, the mixture was suction filtered, the solid was washed with 3 ml of dichloroethane, and the filtrate was analyzed by gas chromatography. As a result, the desired cyclohexyl acetate was obtained in a conversion rate of 99% and a yield of 99%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. When 1.5 ml of dichloroethane was added to the recovered immobilized Lewis acid catalyst, 50 mg of cyclohexanol and 51 mg of acetic anhydride were further added, and the mixture was stirred at 25 ° C. for 16 hours, the target cyclohexyl acetate was converted to 99% yield. Obtained at 98%.
[0095]
Further, the immobilized Lewis acid catalyst recovered again was used for the third reaction in the same manner. As a result, cyclohexyl acetate was obtained with a conversion rate of 99% and a yield of 98%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0096]
Example 26
1.5 ml of dichloroethane was added to 754 mg of the immobilized Lewis acid catalyst synthesized by the method of Example 12 (ytterbium (III) tris (perfluorobutanesulfonyl) methide was 0.05 moles relative to the reaction substrate), and cyclohexane was further added. 50 mg of hexanol and 51 mg of acetic anhydride were added and stirred at 25 ° C. for 3 hours.
After the reaction, the mixture was filtered with suction, the solid was washed with 3 ml of dichloroethane, and the filtrate was analyzed by gas chromatography. As a result, the desired cyclohexyl acetate was obtained with a conversion of 99% and a yield of 98%. The immobilized Lewis acid catalyst collected by filtration was vacuum-dried at 80 ° C. and 0.2 kPa for 5 hours. When 1.5 ml of dichloroethane was added to the recovered immobilized Lewis acid catalyst, 50 mg of cyclohexanol and 51 mg of acetic anhydride were further added, and the mixture was stirred at 25 ° C. for 16 hours, the target cyclohexyl acetate was converted to 99% yield. Obtained at 98%.
[0097]
Further, the immobilized Lewis acid catalyst recovered again was used for the third reaction in the same manner. As a result, cyclohexyl acetate was obtained with a conversion rate of 98% and a yield of 98%. As described above, when the immobilized Lewis acid catalyst was reused, neither the conversion rate nor the yield decreased.
[0098]
【The invention's effect】
By carrying out the reaction in an aqueous medium using the immobilized Lewis acid catalyst of the present invention, the reaction is promoted by the effect of the specific Lewis acid and the specific metal oxide, and after the reaction, it can be easily performed by a simple filtration operation. The catalyst can be recovered and reused.

Claims (4)

水酸基と反応して結合しうる官能基を備えたC1〜C40のフッ素化炭化水素化合物の前記官能基が、水酸基を有する金属酸化物中の水酸基とエーテル結合してなる金属酸化物に、化学式(1)、(2)及び(3)から選ばれた少なくとも一種のルイス酸触媒が担持されている固定化ルイス酸触媒。
Figure 0004234461
Figure 0004234461
Figure 0004234461
(式(1)〜(3)において、Rf1〜Rf3は、各々独立に、酸素原子及び窒素原子から選ばれた少なくとも一種のヘテロ原子を骨格に有する、C4〜C20の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(α)、又はヘテロ原子を有していない、C1〜C16の飽和若しくは不飽和の全フッ素化炭化水素基、及びその部分置換体から選ばれた少なくとも一種の置換基(β)であり、置換基(α)及び(β)のそれぞれの部分置換体は、置換基(α)及び(β)の飽和若しくは不飽和の全フッ素化炭化水素基のフッ素原子の一部が、フッ素原子以外のハロゲン原子及び水素原子から選ばれた少なくとも一種で置換されたものであり、但し、置換基(α)及び(β)において、−SO2基に直接結合する炭素原子に結合しているフッ素原子の一部は水素原子では置換されておらず、Mは、希土類を含む遷移金属、ガリウム、インジウム、タリウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン及びビスマスから選ばれた元素、nは、Mの原子価と同数の整数を表す。)
The functional group of the C 1 to C 40 fluorinated hydrocarbon compound having a functional group capable of reacting with a hydroxyl group to bond to a metal oxide formed by ether bonding with a hydroxyl group in the metal oxide having a hydroxyl group, An immobilized Lewis acid catalyst on which at least one Lewis acid catalyst selected from chemical formulas (1), (2) and (3) is supported.
Figure 0004234461
Figure 0004234461
Figure 0004234461
(In the formulas (1) to (3), Rf 1 to Rf 3 each independently represents a C 4 to C 20 saturated or unsaturated group having at least one heteroatom selected from an oxygen atom and a nitrogen atom in the skeleton. C 1 -C 16 saturated or unsaturated perfluorinated group which does not have a saturated perfluorinated hydrocarbon group and at least one substituent (α) selected from a partially substituted product thereof, or a hetero atom It is at least one kind of substituent (β) selected from a hydrocarbon group and a partial substituent thereof, and the partial substituents of the substituents (α) and (β) are the substituents (α) and (β). A part of fluorine atoms of the saturated or unsaturated perfluorinated hydrocarbon group is substituted with at least one selected from halogen atoms other than fluorine atoms and hydrogen atoms, provided that the substituent (α) in and (beta), carbon directly bonded to the -SO 2 group Some of the fluorine atoms bonded to the child are not replaced by hydrogen atoms, and M is selected from transition metals including rare earths, gallium, indium, thallium, silicon, germanium, tin, lead, antimony and bismuth. And n represents an integer having the same number as the valence of M.)
化学式(1)、(2)及び(3)において、In the chemical formulas (1), (2) and (3), RfRf 11 ~ RfRf 3Three の置換基(α)が、各々独立に、化学式(4)及び(5)から選ばれた少なくとも一種の置換基であることを特徴とする請求項1記載の固定化ルイス酸触媒。The immobilized Lewis acid catalyst according to claim 1, wherein each of the substituents (α) is independently at least one substituent selected from chemical formulas (4) and (5).
Figure 0004234461
Figure 0004234461
Figure 0004234461
Figure 0004234461
(式中、(Where XX 11 及びas well as XX 22 は、各々独立に、ハロゲン原子及び水素原子から選ばれた少なくとも一種の原子であり、Are each independently at least one atom selected from a halogen atom and a hydrogen atom, tt は、1〜4の整数であり、Is an integer from 1 to 4, uu は、1〜4の整数である。)Is an integer from 1 to 4. )
請求項1記載の固定化ルイス酸触媒を用いた酸触媒反応方法。An acid-catalyzed reaction method using the immobilized Lewis acid catalyst according to claim 1. 水系媒体を用いることを特徴とする請求項3記載の酸触媒反応方法。The acid-catalyzed reaction method according to claim 3, wherein an aqueous medium is used.
JP2003037165A 2003-02-14 2003-02-14 Immobilized Lewis acid catalyst Expired - Fee Related JP4234461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037165A JP4234461B2 (en) 2003-02-14 2003-02-14 Immobilized Lewis acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037165A JP4234461B2 (en) 2003-02-14 2003-02-14 Immobilized Lewis acid catalyst

Publications (2)

Publication Number Publication Date
JP2004243247A JP2004243247A (en) 2004-09-02
JP4234461B2 true JP4234461B2 (en) 2009-03-04

Family

ID=33022060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037165A Expired - Fee Related JP4234461B2 (en) 2003-02-14 2003-02-14 Immobilized Lewis acid catalyst

Country Status (1)

Country Link
JP (1) JP4234461B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142178B2 (en) * 2006-03-10 2013-02-13 独立行政法人科学技術振興機構 Immobilized Lewis acid catalyst coated with ionic liquid and use thereof
JP5030270B2 (en) * 2007-03-01 2012-09-19 独立行政法人科学技術振興機構 Process for producing β-hydroxycarbonyl compound

Also Published As

Publication number Publication date
JP2004243247A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US8658796B2 (en) Complexes of ruthenium, method of production thereof and use thereof as (pre)catalysts of the metathesis reaction
US6436866B1 (en) Lewis acid catalyst composition
US7026409B2 (en) Polymer-supported arylbis(perfluoroalkylsulfonyl)-methane
JP4234461B2 (en) Immobilized Lewis acid catalyst
EP1344772B1 (en) Arylbis (perfluoroalkylsulfonyl) methane, metal salt of the same, and processes for producing these
JP2007063275A (en) Allyl-type alkylation by iron catalyst action
US20040030192A1 (en) Arylbis(perfluoroalkylsulfonyl) methane and metallic salt thereof and methods for producing the same
JP4234307B2 (en) Acid catalyst composition
JP4119371B2 (en) Lewis acid catalyst-containing composition
JP2005103511A (en) Fixed acid catalyst
JP3031851B2 (en) Method for producing alcohols
JP4081269B2 (en) Lewis acid catalyst
JP4038140B2 (en) Reaction and separation method in fluorinated medium
JP2003326173A (en) Lewis acid catalyst composition
JP4321687B2 (en) Cyclodextrin-containing substance
JP2001525386A (en) Production of 1,3-propanediol esters
FR2768728A1 (en) A new process for the acylation of an aromatic compound
JP4081270B2 (en) Oxidation catalysts for ketone compounds
JP4047976B2 (en) Contains cyclodextrin
JP2003159530A (en) Lewis acid catalyst composition
JP2003334449A (en) Lewis acid catalyst composition
JP2007302579A (en) Method for producing 1, 3-dioxane derivative
JPH09169690A (en) Production of acyl compounds
JP2001039896A (en) Lewis acid catalyst composition
JPH11246443A (en) Reaction of nucleophilic reagent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees