JP4233829B2 - Metal pouring method and apparatus - Google Patents

Metal pouring method and apparatus Download PDF

Info

Publication number
JP4233829B2
JP4233829B2 JP2002261551A JP2002261551A JP4233829B2 JP 4233829 B2 JP4233829 B2 JP 4233829B2 JP 2002261551 A JP2002261551 A JP 2002261551A JP 2002261551 A JP2002261551 A JP 2002261551A JP 4233829 B2 JP4233829 B2 JP 4233829B2
Authority
JP
Japan
Prior art keywords
pouring
nozzle
gallium
sectional area
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002261551A
Other languages
Japanese (ja)
Other versions
JP2004098106A (en
Inventor
弘毅 安田
淳一 渡辺
光昭 虻川
和司 佐野
幸雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2002261551A priority Critical patent/JP4233829B2/en
Publication of JP2004098106A publication Critical patent/JP2004098106A/en
Application granted granted Critical
Publication of JP4233829B2 publication Critical patent/JP4233829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金属の注湯方法及び装置、特に、ガリウムの注湯方法及び装置に関するものである。
【0002】
【従来の技術】
従来、ガリウムの鋳造方法及び装置としては特開平9−122889号公報に示されたものがある。
【0003】
【発明が解決しようとする課題】
然しながら上記従来の鋳造方法及び装置では例えば内径0.9mmの一本のノズルを用い、このノズルの先端を液体ガリウム内に常時0.5mm〜2mmだけ浸漬せしめて注湯するものであり、大型の鋳型に注湯する場合、注湯時間が大きくなる欠点がある。
【0004】
例えば、上記ノズルを用いガリウム輸送圧を1.5Kg/cm2として2400gのガリウムを注湯するには約9分間必要であり、ノズル内径をより大きくし、または、上記輸送圧をより大きくして注湯時間を減少せしめれば注湯の重量精度が悪化するようになる。
【0005】
本発明は上記の欠点を除くようにしたものである。
【0006】
【課題を解決するための手段】
本発明の金属の注湯装置は、大きい及び小さい断面積の2本の注湯ノズルと、これらノズルから注湯される溶融ガリウムを受け取る容器と、上記2本の注湯ノズルを介して上記容器内に夫々溶融ガリウムを注湯する手段と、上記注湯手段による上記注湯ノズルからの注湯を所定の注湯速度で連続的に行なうよう制御する手段と、上記小さい断面積のノズルからの注湯を間歇的に行なうよう制御する手段と、上記2本のノズルを夫々上記容器内で上下動せしめる手段と、上記大きい断面積のノズルからの注湯中、このノズルの下面が上記容器内の溶融ガリウムの液面上に位置し、上記下面と液面間の距離が、上記ノズルから注湯された溶融ガリウムの表面張力によって上記ノズルの下面と液面間に溶融ガリウムの柱が形成されるようになる距離以下に維持する手段とより成ることを特徴とする。
【0008】
本発明の金属の注湯方法は、大きい及び小さい断面積の2本の注湯ノズルから容器内に夫々溶融ガリウムを連続的に注湯する第1の工程と、上記大きい断面積のノズルからの注湯を止め小さい断面積のノズルから連続的に注湯する第2の工程と、上記小さい断面積のノズルからの注湯を間歇的に行なう第3の工程とより成り、上記第1の工程においては、上記大きい断面積のノズルの下面が上記容器内の溶融ガリウムの液面上に位置し、上記下面と液面間の距離が、上記ノズルから注湯された溶融ガリウムの表面張力によって上記ノズルの下面と液面間に溶融ガリウムの柱が形成されるようになる距離以下に維持されることを特徴とする。
【0009】
【発明の実施の形態】
以下図面によって本発明の実施例を説明する。
【0010】
本発明の注湯装置においては、図1に示すように注湯用ニードル1として例えば内径1.6mmと0.8mmのように夫々断面積の異なる大小2本のノズル1a,1bを用い、大径ノズル1aには3.0Kg/cm2以上の窒素圧を加えた第1のガリウムタンク2aから液体ガリウムを所定の速度で供給し、小径ノズル1bには1.5Kg/cm2の窒素圧を加えた第2のガリウムタンク2bから液体ガリウムを所定の速度で供給し、上記大小2本のノズル1a,1bの先端を鋳型またはガリウムボトル3内で上下動手段(図示せず)によって上下動自在ならしめる。
【0011】
本発明の注湯方法においては、図2に示すように注湯開始時には大小2本のノズル1a,1bを共に用いて所定の速度で連続的な注湯を行ない、ガリウムボトル3内に対する予定注湯量が例えば2315gの場合、注湯量が例えば2300g即ち、残り15gに達した時点で大ノズル1aによる注湯を停止し、小ノズル1bのみにより、残り例えば5gになる迄連続的な注湯を行ない、その後は間歇供給手段(図示せず)によって間歇的な注湯とする。
【0012】
本発明によれば、従来注湯完了迄例えば9分間を必要としたのに比べ僅か2分で注湯を完了することができ、且つ残り15gからの注湯はこれを時間をかけて精度良く達成できるようになる。
【0013】
なお、この種注湯においてはノズルからの注湯はノズル先端をガリウムボトル3内の液体ガリウム4の液面内に例えば0.5〜2mm浸漬しながら行ない、注湯を終了後これを液面上に引き上げているが、この引き上げの際にノズル先端から滴下した液体ガリウム滴が液体ガリウム面上に落下してドロス(スラグ)を形成することが多い。この傾向は大径のノズルを用いたときほど発生し易い。
【0014】
従って本発明においては図3に示すように大ノズル2aをガリウムボトル3内の液体ガリウム4の液面から常時所定距離Dだけ上昇した位置として注湯せしめ、上記距離Dは大ノズル2aの下端から液体ガリウム4の液面迄液体ガリウムの表面張力によって液体ガリウムの柱5が形成される例えば2mmならしめる。
【0015】
このようにすれば上記ドロスの発生を最小となし得ることが実験の結果確かめられた。
【0016】
なお上記注湯に応じて上記液体ガリウム4の液面は上昇するから上記大小ノズル2a,2bはこれに応じて上下動手段(図示せず)によって上昇せしめるが、上記大ノズル2aの上記Dの値を常時維持せしめるためには例えば超音波センサ(図示せず)を大ノズル2aに取り付けて行なう。
【0017】
図4は本発明の注湯方法の一例を示すフローチャートである。
【0018】
【発明の効果】
上記のように本発明の注湯方法及び装置によれば、ガリウムの注湯を短時間で且つ精度良く行なうことができ、大きい内径のノズルを使用してもそのドロス発生を最小となし得る大きな利益がある。
【図面の簡単な説明】
【図1】本発明の注湯装置の説明図である。
【図2】本発明の注湯方法の説明用線図である。
【図3】本発明の注湯装置におけるノズルの説明図である。
【図4】本発明の注湯方法のフローチャートである。
【符号の説明】
1 注湯用ニードル
1a 大径ノズル
1b 小径ノズル
2a 第1のガリウムタンク
2b 第2のガリウムタンク
3 ガリウムボトル
4 液体ガリウム
5 柱
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal pouring method and apparatus, and more particularly to a gallium pouring method and apparatus.
[0002]
[Prior art]
Conventionally, a method and apparatus for casting gallium is disclosed in Japanese Patent Application Laid-Open No. 9-122889.
[0003]
[Problems to be solved by the invention]
However, in the conventional casting method and apparatus described above, for example, a single nozzle with an inner diameter of 0.9 mm is used, and the tip of this nozzle is always immersed in liquid gallium by 0.5 mm to 2 mm to pour the molten metal into a large mold. When pouring, there is a drawback that the pouring time becomes long.
[0004]
For example, it takes about 9 minutes to pour 2400 g of gallium using the nozzle with a gallium transport pressure of 1.5 kg / cm 2 , and the nozzle inner diameter is increased or the transport pressure is increased. If the hot water time is reduced, the weight accuracy of the pouring will deteriorate.
[0005]
The present invention eliminates the above-mentioned drawbacks.
[0006]
[Means for Solving the Problems]
The metal pouring apparatus of the present invention includes two pouring nozzles having large and small cross-sectional areas, a container for receiving molten gallium poured from these nozzles, and the container via the two pouring nozzles. and means for pouring the respective molten gallium within, and means for controlling to perform the pouring from the respective pouring nozzle by the pouring means continuously at a predetermined pouring rate from the nozzles of the small cross-sectional area Means for intermittently pouring the molten metal, means for moving the two nozzles up and down in the container, and during pouring from the nozzle having the large cross-sectional area, the lower surface of the nozzle is the container. A molten gallium column is formed between the lower surface of the nozzle and the liquid surface due to the surface tension of the molten gallium poured from the nozzle. The distance to become Characterized by comprising further a means you maintained below.
[0008]
The metal pouring method of the present invention includes a first step of continuously pouring molten gallium into a container from two pouring nozzles having a large and a small cross-sectional area, and a nozzle from the nozzle having a large cross-sectional area. Note stop the hot water, and a second step of pouring continuously from a nozzle of small cross-sectional area, Ri more a third step of performing intermittently the pouring from the nozzle of the small cross-sectional area, the first In this step, the lower surface of the nozzle having the large cross-sectional area is positioned on the molten gallium liquid surface in the container, and the distance between the lower surface and the liquid surface is the surface tension of the molten gallium poured from the nozzle. Is maintained at a distance equal to or less than a distance at which a column of molten gallium is formed between the lower surface and the liquid surface of the nozzle .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0010]
In the pouring apparatus of the present invention, as shown in FIG. 1, two large and small nozzles 1a and 1b having different cross-sectional areas such as an inner diameter of 1.6 mm and 0.8 mm are used as a pouring needle 1. the liquid gallium was supplied at a predetermined rate from the first gallium tank 2a plus 3.0 Kg / cm 2 or more nitrogen pressure in the 1a, the second is the small-diameter nozzle 1b plus nitrogen pressure of 1.5 Kg / cm 2 Liquid gallium is supplied from the gallium tank 2b at a predetermined speed, and the tips of the two large and small nozzles 1a, 1b are made to be movable up and down by a vertical movement means (not shown) in the mold or the gallium bottle 3.
[0011]
In the pouring method of the present invention, as shown in FIG. 2, at the start of pouring, both the large and small nozzles 1a and 1b are used to perform continuous pouring at a predetermined speed, and scheduled pouring into the gallium bottle 3 is performed. When the amount of hot water is 2315 g, for example, when the amount of pouring reaches 2300 g, that is, when the remaining 15 g is reached, pouring by the large nozzle 1a is stopped, and continuous pouring is performed only by the small nozzle 1b until the remaining amount is 5 g, for example. Thereafter, intermittent pouring is performed by an intermittent supply means (not shown).
[0012]
According to the present invention, it is possible to complete the pouring in only 2 minutes compared to, for example, 9 minutes until the conventional pouring is completed, and the remaining 15 g of pouring can be accurately performed over time. Can be achieved.
[0013]
In this type of pouring, pouring from the nozzle is performed while immersing the nozzle tip in the liquid surface of liquid gallium 4 in the gallium bottle 3, for example, 0.5-2 mm, and after pouring, this is placed on the liquid surface. Although the liquid gallium is pulled up, the liquid gallium drop dripped from the nozzle tip during the pulling often falls on the liquid gallium surface to form dross (slag). This tendency is more likely to occur when a large-diameter nozzle is used.
[0014]
Accordingly, in the present invention, as shown in FIG. 3, the large nozzle 2a is poured as a position that is always elevated by a predetermined distance D from the liquid surface of the liquid gallium 4 in the gallium bottle 3, and the distance D is from the lower end of the large nozzle 2a. The liquid gallium pillar 5 is formed by the surface tension of the liquid gallium to the liquid gallium 4 surface, for example, 2 mm.
[0015]
As a result of experiments, it was confirmed that the generation of the dross can be minimized by doing so.
[0016]
The liquid level of the liquid gallium 4 rises in response to the pouring, so that the large and small nozzles 2a, 2b are raised accordingly by vertical movement means (not shown). In order to maintain the value at all times, for example, an ultrasonic sensor (not shown) is attached to the large nozzle 2a.
[0017]
FIG. 4 is a flowchart showing an example of the pouring method of the present invention.
[0018]
【The invention's effect】
As described above, according to the pouring method and apparatus of the present invention, gallium pouring can be performed in a short time and with high accuracy, and even when a nozzle with a large inner diameter is used, dross generation can be minimized. There is a profit.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a pouring device of the present invention.
FIG. 2 is a diagram for explaining the pouring method of the present invention.
FIG. 3 is an explanatory diagram of a nozzle in the pouring device of the present invention.
FIG. 4 is a flowchart of the pouring method of the present invention.
[Explanation of symbols]
1 Needle for pouring 1a Large nozzle 1b Small nozzle 2a First gallium tank 2b Second gallium tank 3 Gallium bottle 4 Liquid gallium 5 Column

Claims (2)

大きい及び小さい断面積の2本の注湯ノズルと、これらノズルから注湯される溶融ガリウムを受け取る容器と、上記2本の注湯ノズルを介して上記容器内に夫々溶融ガリウムを注湯する手段と、上記注湯手段による上記注湯ノズルからの注湯を所定の注湯速度で連続的に行なうよう制御する手段と、上記小さい断面積のノズルからの注湯を間歇的に行なうよう制御する手段と、上記2本のノズルを夫々上記容器内で上下動せしめる手段と、上記大きい断面積のノズルからの注湯中、このノズルの下面が上記容器内の溶融ガリウムの液面上に位置し、上記下面と液面間の距離が、上記ノズルから注湯された溶融ガリウムの表面張力によって上記ノズルの下面と液面間に溶融ガリウムの柱が形成されるようになる距離以下に維持する手段とより成ることを特徴とする金属の注湯装置。Two pouring nozzles having large and small cross-sectional areas, a container for receiving molten gallium poured from these nozzles, and means for pouring molten gallium into the container through the two pouring nozzles, respectively And means for controlling the pouring from each of the pouring nozzles by the pouring means to be performed continuously at a predetermined pouring speed, and the control for intermittently pouring from the nozzle having the small cross-sectional area. Means for moving the two nozzles up and down in the container, and during pouring from the nozzle having the large cross-sectional area, the lower surface of the nozzle is positioned on the liquid surface of the molten gallium in the container. The distance between the lower surface and the liquid surface is maintained below the distance at which a molten gallium column is formed between the lower surface and the liquid surface of the nozzle by the surface tension of the molten gallium poured from the nozzle. Means and more Pouring apparatus of metal characterized by Rukoto. 大きい及び小さい断面積の2本の注湯ノズルから容器内に夫々溶融ガリウムを連続的に注湯する第1の工程と、上記大きい断面積のノズルからの注湯を止め小さい断面積のノズルから連続的に注湯する第2の工程と、上記小さい断面積のノズルからの注湯を間歇的に行なう第3の工程とより成り、上記第1の工程においては、上記大きい断面積のノズルの下面が上記容器内の溶融ガリウムの液面上に位置し、上記下面と液面間の距離が、上記ノズルから注湯された溶融ガリウムの表面張力によって上記ノズルの下面と液面間に溶融ガリウムの柱が形成されるようになる距離以下に維持されることを特徴とする金属の注湯方法。A first step of continuously pouring molten gallium into a container from two pouring nozzles having a large and a small cross-sectional area, and a nozzle having a small cross-sectional area by stopping the pouring from the nozzle having the large cross-sectional area. from a second step of continuously pouring, Ri more a third step of intermittently performing the pouring from the nozzle of the small cross-sectional area, in the first step, the larger cross-sectional area The lower surface of the nozzle is positioned on the molten gallium liquid surface in the container, and the distance between the lower surface and the liquid surface is between the lower surface of the nozzle and the liquid surface by the surface tension of the molten gallium poured from the nozzle. A method for pouring metal, characterized in that the molten metal is maintained at a distance equal to or less than a distance at which columns of molten gallium are formed .
JP2002261551A 2002-09-06 2002-09-06 Metal pouring method and apparatus Expired - Fee Related JP4233829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261551A JP4233829B2 (en) 2002-09-06 2002-09-06 Metal pouring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261551A JP4233829B2 (en) 2002-09-06 2002-09-06 Metal pouring method and apparatus

Publications (2)

Publication Number Publication Date
JP2004098106A JP2004098106A (en) 2004-04-02
JP4233829B2 true JP4233829B2 (en) 2009-03-04

Family

ID=32261895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261551A Expired - Fee Related JP4233829B2 (en) 2002-09-06 2002-09-06 Metal pouring method and apparatus

Country Status (1)

Country Link
JP (1) JP4233829B2 (en)

Also Published As

Publication number Publication date
JP2004098106A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP2005532169A5 (en)
JP4233829B2 (en) Metal pouring method and apparatus
KR101321852B1 (en) Stopper device and Method for Operating stopper device
JPH1110301A (en) Stopper device for controlling high accurate flow rate and continuous casting method using it and device therefor
Gnyloskurenko et al. Influence of wettability on bubble formation in liquid
ES2001920A6 (en) Method for controlling early casting stage in continuous casting process.
JP2008290113A (en) Continuous casting method of steel
JP2002087899A5 (en)
JP4331015B2 (en) Method for controlling molten steel level in mold of continuous casting equipment
CN100408228C (en) Technology of on-line control molten steel flow in crystallizer
JP6733854B1 (en) Method for controlling sliding nozzle device and method for manufacturing slab
JPH09262644A (en) Method for controlling supply of a little quantity of molten metal and alloy and apparatus therefor
JP2002035910A (en) Method of completing pouring of residual molten steel in tundish in continuous casting
JPH0683141U (en) Continuous casting equipment for composite metal materials
JPS62197257A (en) Pouring method for molten steel in continuous casting
JPS61283445A (en) Pouring method for molten steel in continuous casting
JPS62282757A (en) Pouring method for molten metal
JP2002178108A (en) Method for continuously casting steel
JPS63235053A (en) Method for pouring molten metal
KR101529194B1 (en) Turndish stopper
JPH0646597Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPS63123555A (en) Method and apparatus for supplying powder for continuous casting
JPH03128156A (en) Method for starting casting in continuous casting, and tundish
JP2002011553A (en) Method for producing small lot of materials in continuous casting
JPH08238542A (en) Supply control method for molten metal and alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees