JP4233171B2 - Photothermographic material - Google Patents
Photothermographic material Download PDFInfo
- Publication number
- JP4233171B2 JP4233171B2 JP09870899A JP9870899A JP4233171B2 JP 4233171 B2 JP4233171 B2 JP 4233171B2 JP 09870899 A JP09870899 A JP 09870899A JP 9870899 A JP9870899 A JP 9870899A JP 4233171 B2 JP4233171 B2 JP 4233171B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- photothermographic material
- emulsion
- silver halide
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は熱現像感光材料(以下、熱現像感材ということがある)に関するものである。特に、高感度でかつ処理後明室保存下での被りの増加が小さい熱現像感光材料に関するものである。
【0002】
【従来の技術】
近年医療分野において環境保全、省スペースの観点から処理廃液の減量が強く望まれている。そこでレーザー・イメージセッターまたはレーザー・イメージャーにより効率的に露光させることができ、高解像度および鮮明さを有する鮮明な黒色画像を形成することができる医療診断用および写真技術用途の光感光性熱現像写真材料に関する技術が必要とされている。これら感光性熱現像写真材料では、溶液系処理化学薬品の使用をなくし、より簡単で環境を損なわない熱現像処理システムを顧客に対して供給することができる。
【0003】
しかしながらこれらの熱現像感光材料に於いては、溶液処理の場合と異なり、現像主薬(還元剤)や未現像銀の定着が行われないために、処理後のハロゲン化銀のプリントアウトが画像を変質させ問題になる。これを回避するためには、ハロゲン化銀粒子を小さくしたり、ハロゲン化銀粒子の塗布銀量を下げる事が有効であるが、そうすると感度や画像濃度が顕著に低下してしまうことが判っていた。
【0004】
また、ハロゲン化銀の粒子サイズを著しく低下させて本発明の50nm以下の領域にしてしまうと、感光過程における様々な非効率が著しく増加して、大きな感度低下を起こすことは、当業界で良く知られた事実である。一方、高感度化は、同時に被りの増加をもたらす事が多く、これも被り易い熱現像感材に於いては、感度と被りを両立する上で、困難な課題であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、高感度で被りが低く、かつ処理後の明室保存状態に於いても、プリントアウト等での被りの増大による画質低下の極めてすくなく、又処理前の状態でも経時安定性に優れる熱現像写真感光材料を提供することにある。
さらに本発明に於いては、ハロゲン化銀乳剤の経時安定性の付与により、塗布ロットごとのばらつきの少ない上記感光材料を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明者は、鋭意検討の結果以下の手段で前述の課題を達成した。
【0007】
支持体上に少なくとも1層の感光性層を有する熱現像感光材料において、該感光材料が平均球相当径10nm以上50nm以下のハロゲン化銀微粒子乳剤と非感光性有機脂肪酸銀を含有し、かつ以下の構成要件を満たすことを特徴とする熱現像感光材料。
【0008】
(1)該ハロゲン化乳剤が、該非感光性有機脂肪酸銀の一部をハロゲン変換して作成される物ではなく(即ち、予め形成されたハロゲン化銀乳剤)、該非感光性有機脂肪酸銀とは、独立に調整され、塗布時に混合して用いられること。
(2)銀イオンに対する還元剤を含有すること。
(3)該ハロゲン化銀微粒子乳剤が、分光増感色素存在下に化学増感されている。
【0009】
好ましくは、
(4)該乳剤がセレン及び/又はテルル増感されていることを特徴とすること。
(5)該乳剤が、ハロゲン化銀1モル当たり1/100000モル以上1/1000以下の多価金属イオンを含有すること。
(6)該乳剤が{100}面比率が、全表面の50%以上100%以下であること。
(7)該乳剤が銀に対する酸化剤の存在下に粒子形成されていること。
(8)好ましくは、ハロゲン化銀粒子の平均球相当径が、10nm以上30nm以下であること。
(9)分光増感色素が600nm以上1000nm以下に吸収極大を有するメロシアニン及び/又はシアニン色素であること。
(10)該ハロゲン化銀粒子の沃化銀含有量が0モル%以上5モル%以下であること。
(11)該乳剤がトリアジン化合物を含有すること。
(12)多価金属イオンが、イリジウムイオン、ルテニウムイオン、鉄イオンのいずれから選択され、その配位子がClイオン、Brイオン、CNイオンのいずれかを含むこと。
(13)上記感光材料において水溶性ポリマー及び/又は水分散性ポリマーからなるバインダーを含有する熱現像感光材料であること。
などにより、本発明を好ましく実現することができる。
【0010】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明に用いられる感光性ハロゲン化銀は、ハロゲン組成として特に制限はなく、塩化銀、塩臭化銀、臭化銀、ヨウ臭化銀、ヨウ塩臭化銀を用いることができるが、本発明の乳剤の好ましい沃化銀含有量は、5モル%以下である。本発明に用いられる感光性ハロゲン化銀は、粒子内におけるハロゲン組成の分布は均一であってもよく、ハロゲン組成がステップ状に変化したものでもよく、或いは連続的に変化したものでもよい。また、コア/シェル構造を有するハロゲン化銀粒子を好ましく用いることができる。構造として好ましくいものは2〜5重構造であり、より好ましくは2〜4重構造のコア/シェル粒子を用いることができる。また塩化銀または塩臭化銀粒子の表面に臭化銀を局在させる技術も好ましく用いることができる。
【0011】
感光性ハロゲン化銀の形成方法は当業界ではよく知られており、例えば、リサーチディスクロージャー1978年6 月の第17029 号、および米国特許第3,700,458 号に記載されている方法を用いることができるが、具体的にはゼラチンあるいは他のポリマー溶液中に銀供給化合物及びハロゲン供給化合物を添加することにより感光性ハロゲン化銀を予め調製し、その後で有機銀塩と混合する方法を用いる。感光性ハロゲン化銀の粒子サイズは、画像形成後の白濁および被り並びに、プリントアウトでの被り増加を低く抑える目的のために小さいことが好ましく、具体的には10nm以上50nm以下、好ましくは10nm以上45nm以下、より好ましくは10nm以上40nm以下、特に好ましくは10nmμm以上30nm以下がよい。ここでいう粒子サイズとは、ハロゲン化銀粒子の体積と同等な球を考えたときの直径をいう。
【0012】
ハロゲン化銀粒子の形状としては立方体、八面体、平板状粒子、球状粒子、棒状粒子、ジャガイモ状粒子等を挙げることができるが、本発明においては特に立方体状粒子が好ましい。さらに、ハロゲン化銀粒子のコーナーが丸まった粒子も好ましく用いることができる。感光性ハロゲン化銀粒子の外表面の面指数(ミラー指数)については特に制限はないが、分光増感色素が吸着した場合の分光増感効率が高い〔100 〕面の占める割合が高いことが好ましい。その割合としては50% 以上100%以下が好ましく、65% 以上がより好ましく、80% 以上が更に好ましい。ミラー指数〔100 〕面の比率は増感色素の吸着における〔111 〕面と〔100 〕面との吸着依存性を利用したT.Tani;J.Imaging Sci.,29、165(1985年) に記載の方法により求めることができる。
【0013】
<多価金属イオン>
本発明に用いられるハロゲン化銀粒子は周期表の4、5および6周期の3〜14族元素の金属を含む配位金属錯体または金属イオンを結晶格子中に含有してることも好ましい。配位金属錯体または金属イオンとしては族番号を左から1〜18まで表記した周期表の4、5、6周期の3〜14族元素から選ぶことができる。これらの金属はアンモニウム塩、酢酸塩、硝酸塩、硫酸塩、燐酸塩、水酸塩などの金属塩として用いることによって金属イオンとして使用することもできるが、6配位錯塩、4配位錯塩などの単核の配位金属錯塩、あるいは複核金属錯塩、多核金属錯塩として用いることにより、配位子あるいは錯塩の構造による性能を引き出すこともできる。
【0014】
配位金属錯体を用いるときの配位子としては、ハロ(X)、アコ(H2 O)、アジド(N3 )、シアノ(CN)、シアネート(OCN)、チオシアネート(SCN)、セレノシアネート(SeCN)、テルロシアネート(TeCN)、ニトロシル(NO)、チオニトロシル(NS)、オキソ(O)、またはカルボニル(CO)などが好ましく用いられる。また、米国特許第5,360,712号明細書に開示されている、4,4’−ビピリジン、ピラジン、チアゾールなどのような炭素−炭素、炭素−水素、または炭素−窒素−水素結合を1つ以上含む有機配位子を含んでいてもよい。
具体的には、Mg、Ca、Sr、Ba、Al、Sc、Y、LaCr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ru、Rh、Pd、Re、Os、Ir、Pt、Au、Cd、Hg、Tl、In、Sn、Pb、Biなどを用いることができ、これらの金属はアンモニウム塩、酢酸塩、硝酸塩、硫酸塩、燐酸塩、水酸塩あるいは6配位錯体、4配位錯体など粒子形成時に溶解させることができる塩の形であれば添加できる。例えば、CdBr2 、CdCl2 、Cd(NO3 )2 、Pd(NO3 )2 、Pd(CH3 COO)2 、K3 〔Fe(CN)6 〕、(NH4 )4 〔Fe(CN)6 〕、KIrCl6 、(NH4 )3 RhCl6 、K4 Ru(CN)6 などが挙げられる。配位化合物のリガンドとしてハロ、アコ、シアノ、シアネート、チオシアネート、ニトロシル、チオニトロシル、オキソ、カルボニルのなかから選ぶことができる。これらは金属化合部を1種のみで用いてもよいが,2種あるいは3種以上を組み合わせてもちいてもよい。
米国特許3,772,031号に記載されているようなカルコゲン化合物を乳剤調製中に添加する方法も有用な場合がある。S、Se、Te以外にもシアン塩、チオシアン塩、セレノシアン塩、炭酸塩、燐酸塩、酢酸塩を存在させてもよい。
【0015】
本発明の配位金属錯体または金属イオンは、水または、水と混和しうる適当な有機溶媒(例えば、アルコール類、エーテル類、グリコール類、ケトン類、エステル類、アミド類等)との混合溶媒に溶かして添加することができる。
【0016】
本発明に用いられるハロゲン化銀乳剤は、乳剤調製時、例えば粒子形成時、脱塩工程、化学増感時、塗布前に配位金属錯体または金属イオンを存在させることが好ましい。粒子にドープする場合には粒子形成時、粒子表面の修飾あるいは化学増感剤として用いる時は粒子形成後、化学増感終了前に添加することが好ましい。粒子全体にドープする場合と粒子のコアー部のみ、あるいはシェル部のみ、あるいはエピタシャル部分にのみ、あるいは基盤粒子にのみドープする方法も選べる。
【0017】
本発明の配位金属錯体または金属イオンをハロゲン化銀粒子にドープする場合には、ハロゲン化銀粒子形成時に反応溶液中に直接添加するか、またはハロゲン化銀粒子を形成するためのハロゲン化物イオンを含む溶液中あるいはそれ以外の溶液中に添加してから粒子形成反応溶液に添加するのが好ましい。さらに種々の添加方法を組み合わせてもよい。
本発明の配位金属錯体または金属イオンをハロゲン化銀粒子にドープする場合、粒子内部に均一に存在させてもよいし、特開平4−208936号、特開平2−125245号、特開平3−188437号に開示されているように、粒子表面相により高濃度のドープさせてもよい。また、米国特許第5,256,530号に開示されているように、ドープさせた微粒子で物理熟成して粒子表面相を改質してもよい。このように、ドープさせた微粒子を調製し、その微粒子を添加し物理熟成をすることによりハロゲン化銀粒子にドープさせる方法も好ましい。さらに、上記ドープ方法を組み合わせて用いてもよい。
【0018】
本発明の要件を満足する配位金属錯体または金属イオンは、遷移金属ドーピングに際して、従来から用いられてきたのと同様の銀1モル当たりの濃度で、ハロゲン化銀粒子に含有させることができる。これに関しては、極めて広範囲の濃度が知られており、特開昭51−107129号に開示されている銀1モル当たり10-10 モルの低濃度から、米国特許3,687,676号および同3,690,891号各明細書に開示されている銀1モル当たり10-3モルの高濃度の範囲で使用される。有効な濃度は、粒子のハロゲン化物含量、選択される配位金属錯体または金属イオン、その酸化状態、配位子がある場合にはその種類および、所望の写真効果により大きく異なる。
本発明のハロゲン化銀乳剤において、多価金属イオンの含有量はハロゲン化銀乳剤1モル当り10-10 〜10-3モルが好ましく、10-5〜10-3モルがより好ましい。
【0019】
本研究の配位金属錯体または金属イオンのハロゲン化銀粒子中のドープ量およびドープ率は、ドープされた配位金属錯体または金属イオンの金属イオンについて原子吸光法、ICP法(Inductively Coupled Plasma Spectrometry:誘導結合高周波プラズマ分光分析法)およびICPMS法(Inductively Coupled Plasma Mass Spectrometry:誘導結合プラズマ質量分析法)等を用いることにより定量することができる。
【0020】
本発明の配位金属錯体または金属イオンの具体的な例としては、「コンプリヘンシブ・コーディネーション・ケミストリー(”Comprehensive Coordination Chemistry”)」(Pergamon Press(1987))に記載されているものが挙げられる。
これらの中で特に好ましい物は、多価金属イオンとして、イリジウムイオン、ルテニウムイオン、鉄イオンの場合であり、好ましいリガンドは、Clイオン、Brイオン、CNイオンである。
【0021】
感光性ハロゲン化銀粒子はヌードル法、フロキュレーション法等、当業界で知られている方法の水洗により脱塩することができるが本発明においては脱塩してもしなくてもよい。
【0022】
本発明のハロゲン化銀乳剤に金増感を施す場合に用いられる金増感剤としては、金の酸化数が+1価でも+3価でもよく、金増感剤として通常用いられる金化合物を用いることができる。代表的な例としては塩化金酸、カリウムクロロオーレート、オーリックトリクロライド、カリウムオーリックチオシアネート、カリウムヨードオーレート、テトラシアノオーリックアシド、アンモニウムオーロチオシアネート、ピリジルトリクロロゴールドなどがあげられる。
金増感剤の添加量は種々の条件により異なるが、目安としてはハロゲン化銀1モル当り1×10-7モル以上1×10-3モル以下、より好ましくは1×10-6モル以上5×10-4以下である。
【0023】
本発明のハロゲン化銀乳剤は金増感と他の化学増感とを併用することができる。他の化学増感の方法としては、硫黄増感法、セレン増感法、テルル増感法、貴金属増感法などの知られている方法を用いることができる。金増感法と組み合わせて使用する場合には、例えば、硫黄増感法と金増感法、セレン増感法と金増感法、硫黄増感法とセレン増感法と金増感法、硫黄増感法とテルル増感法と金増感法、硫黄増感法とセレン増感法とテルル増感法と金増感法などが好ましい。
本発明においては、高感度化のために少なくともセレン増感又はテルル増感を用いることが好ましい。
【0024】
本発明に好ましく用いられる硫黄増感は、通常、硫黄増感剤を添加して、40℃以上の高温で乳剤を一定時間攪拌することにより行われる。硫黄増感剤としては公知の化合物を使用することができ、例えば、ゼラチン中に含まれる硫黄化合物のほか、種々の硫黄化合物、例えばチオ硫酸塩、チオ尿素類、チアゾール類、ローダニン類等を用いることができる。好ましい硫黄化合物は、チオ硫酸塩、チオ尿素化合物である。硫黄増感剤の添加量は、化学熟成時のpH、温度、ハロゲン化銀粒子の大きさなど種々の条件下で変化するが、ハロゲン化銀1モル当り1×10-7〜1×10-2モルであり、より好ましくは1×10-5〜1×10-3モルである。
【0025】
本発明に用いられるセレン増感剤としては、公知のセレン化合物を用いることができる。すなわち、通常、不安定型および/または非不安定型セレン化合物を添加して40℃以上の高温で乳剤を一定時間攪拌することにより行われる。不安定型セレン化合物としては特公昭44-15748号、同43-13489号、特開平4-25832 号、同4-109240号、同3-121798号等に記載の化合物を用いることができる。特に特開平4-324855号中の一般式(VIII)および(IX)で示される化合物を用いることが好ましい。
【0026】
本発明に用いられるテルル増感剤は、ハロゲン化銀粒子表面または内部に、増感核になると推定されるテルル化銀を生成させる化合物である。ハロゲン化銀乳剤中のテルル化銀生成速度については特開平5-313284号に記載の方法で試験することができる。テルル増感剤としては例えばジアシルテルリド類、ビス(オキシカルボニル)テルリド類、ビス(カルバモイル)テルリド類、ジアシルテルリド類、ビス(オキシカルボニル)ジテルリド類、ビス(カルバモイル)ジテルリド類、P=Te結合を有する化合物、テルロカルボン酸塩類、Te- オルガニルテルロカルボン酸エステル類、ジ(ポリ)テルリド類、テルリド類、テルロール類、テルロアセタール類、テルロスルホナート類、P-Te結合を有する化合物、含Teヘテロ環類、テルロカルボニル化合物、無機テルル化合物、コロイド状テルルなどを用いることができる。具体的には、米国特許第1,623,499 号、同第3,320,069 号、同第3,772,031 号、英国特許第235,211 号、同第1,121,496 号、同第1,295,462 号、同第1,396,696 号、カナダ特許第800,958 号、特開平4-204640号、同3-53693 号、同3-131598号、同4-129787号、ジャーナル・オブ・ケミカル・ソサイアティー・ケミカル・コミュニケーション(J.Chem.Soc.Chem.Commun.),635(1980) 、ibid, 1102(1979)、ibid ,645(1979) 、ジャーナル・オブ・ケミカル・ソサイアティー・パーキン・トランザクション1 Chem.Soc.Perkin.Trans.1),2191(1980) 、S.パタイ(S.Patai) 編、ザ・ケミストリー・オブ・オーガニック・セレニウム・アンド・テルリウム・カンパウンズ(The Chemistry of Organic Serenium and Tellunium Compounds),Vol 1(1986) 、同 Vol 2(1987)に記載の化合物を用いることができる。特に特開平5-313284号中の一般式(II)、(III) 、(IV)で示される化合物が好ましい。
【0027】
本発明で用いられるセレンおよびテルル増感剤の使用量は、使用するハロゲン化銀粒子、化学熟成条件等によって変わるが、一般にハロゲン化銀1モル当たり1×10-8〜1×10-2モル、好ましくは1×10-7〜1×10-3モル程度を用いる。本発明における化学増感の条件としては特に制限はないが、pHとしては5〜8、pAg としては6〜11、好ましくは7〜10であり、温度としては40〜95℃、好ましくは45〜85℃である。
本発明に用いるハロゲン化銀乳剤にはハロゲン化銀粒子の形成または物理熟成の過程においてカドミウム塩、亜硫酸塩、鉛塩、タリウム塩などを共存させてもよい。
【0028】
本発明においては、還元増感を用いることができる。還元増感法の具体的な化合物としてはアスコルビン酸、二酸化チオ尿素の他に例えば、塩化第一スズ、アミノイミノメタンスルフィン酸、ヒドラジン誘導体、ボラン化合物、シラン化合物、ポリアミン化合物等を用いることができる。また、乳剤のpHを7以上またはpAgを8.3以下に保持して熟成することにより還元増感することができる。また、粒子形成中に銀イオンのシングルアディション部分を導入することにより還元増感することができる。
本発明のハロゲン化銀乳剤は、欧州特293,917 号に示される方法により、チオスルホン酸化合物を添加してもよい。
本発明に用いられる感光材料中のハロゲン化銀乳剤は、一種だけでもよいし、二種以上(例えば、平均粒子サイズの異なるもの、ハロゲン組成の異なるもの、晶癖の異なるもの、化学増感の条件の異なるもの)併用してもよい。
【0029】
本発明の感光性ハロゲン化銀の使用量としては有機銀塩1モルに対して感光性ハロゲン化銀0.01モル以上0.5 モル以下が好ましく、0.02モル以上0.3 モル以下がより好ましく、0.02モル以上0.20モル以下が特に好ましい。別々に調製した感光性ハロゲン化銀と有機銀塩の混合方法及び混合条件については、それぞれ調製終了したハロゲン化銀粒子と有機銀塩を高速攪拌機やボールミル、サンドミコロイドミル、振動ミル、ホモジナイザー等で混合する方法や、あるいは有機銀塩の調製中のいずれかのタイミングで調製終了した感光性ハロゲン化銀を混合して有機銀塩を調製する方法等があるが、本発明の効果が十分に現れる限りにおいては特に制限はない。
本発明のハロゲン化銀の画像形成層塗布液中への好ましい添加時期は、塗布する180 分前から直前、好ましくは60分前から10秒前にであるが、混合方法及び混合条件については本発明の効果が十分に現れる限りにおいては特に制限はない。具体的な混合方法としては添加流量とコーターへの送液量から計算した平均滞留時間を所望の時間となるようにしたタンクでの混合する方法やN.Harnby、F.Edwards 、A.W.Nienow著、高橋幸司訳“液体混合技術”(日刊工業新聞社刊、1989年)の第8章等に記載されているスタチックミキサーなどを使用する方法がある。
【0030】
<分光増感色素について>
本発明における分光増感色素としてはハロゲン化銀粒子に吸着した際、所望の(600nm以上)波長領域でハロゲン化銀粒子を分光増感できるもので有ればいかなるものでも良い。増感色素としては、シアニン色素、メロシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、ホロホーラーシアニン色素、スチリル色素、ヘミシアニン色素、オキソノール色素、ヘミオキソノール色素等を用いることができる。本発明に使用される有用な増感色素は例えばRESEARCH DISCLOSURE Item17643IV-A 項(1978年12月p.23)、同Item1831X 項(1979年8月p.437)に記載もしくは引用された文献に記載されている。特に各種レーザーイメージャー、スキャナー、イメージセッターや製版カメラの光源の分光特性に適した分光感度を有する増感色素を有利に選択することができる。
【0031】
赤色光への分光増感の例としては、He-Ne レーザー、赤色半導体レーザーやLED などのいわゆる赤色光源に対しては、特開昭54-18726号に記載のI-1からI-38 の化合物、特開平6-75322号に記載のI-1からI-35の化合物および特開平7-287338号に記載のI-1からI-34の化合物、特公昭55-39818号に記載の色素1から20、特開昭62-284343号に記載のI-1からI-37の化合物および特開平7-287338号に記載のI-1からI-34の化合物などが有利に選択される。
【0032】
750 〜1400nmの波長領域の半導体レーザー光源に対しては、シアニン、メロシアニン、スチリル、ヘミシアニン、オキソノール、ヘミオキソノールおよびキサンテン色素を含む種々の既知の色素により、スペクトル的に有利に増感させることができる。有用なシアニン色素は、例えば、チアゾリン核、オキサゾリン核、ピロリン核、ピリジン核、オキサゾール核、チアゾール核、セレナゾール核およびイミダゾール核などの塩基性核を有するシアニン色素である。有用なメロシアニン染料で好ましいものは、上記の塩基性核に加えて、チオヒダントイン核、ローダニン核、オキサゾリジンジオン核、チアゾリンジオン核、バルビツール酸核、チアゾリノン核、マロノニトリル核およびピラゾロン核などの酸性核も含む。上記のシアニンおよびメロシアニン色素において、イミノ基またはカルボキシル基を有するものが特に効果的である。例えば、米国特許3,761,279 号、同3,719,495号、同3,877,943号、英国特許1,466,201号、同1,469,117号、同1,422,057号、特公平3-10391号、同6-52387号、特開平5-341432号、同6-194781号、同6-301141号に記載されたような既知の色素から適当に選択してよい。
【0033】
本発明に用いられる色素の構造として特に好ましいものは、チオエーテル結合含有置換基を有するシアニン色素(例としては特開昭62-58239号、同3-138638号、同3-138642号、同4-255840号、同5-72659号、同5-72661号、同6-222491号、同2-230506号、同6-258757号、同6-317868号、同6-324425号、特表平7-500926号、米国特許5,541,054号に記載された色素)、カルボン酸基を有する色素(例としては特開平3-163440号、6-301141号、米国特許5,441,899号に記載された色素)、メロシアニン色素、多核メロシアニン色素や多核シアニン色素(特開昭47-6329号、同49-105524号、同51-127719号、同52-80829号、同54-61517号、同59-214846号、同60-6750号、同63-159841号、特開平6-35109号、同6-59381号、同7-146537号、同7-146537号、特表平55-50111号、英国特許1,467,638号、米国特許5,281,515号に記載された色素)が挙げられる。
また、J-bandを形成する色素として米国特許5,510,236号、同3,871,887号の実施例5記載の色素、特開平2-96131号、特開昭59-48753号が開示されており、本発明に用いることができる。
本発明に於いては、これらの中でも特に従来、吸着が弱く化学増感以前の添加に用いられることがほとんど無かった、600nm以上1000nm以下に吸収極大を有するメロシアニン系色素が、残色及び感度特に好ましい。シアニン色素に比べてこのようなメロシアニン色素の場合に効果が顕著である。
【0034】
これらの増感色素は単独に用いてもよく、2種以上組合せて用いてもよい。増感色素の組合せは特に、強色増感の目的でしばしば用いられる。増感色素とともに、それ自身分光増感作用をもたない色素あるいは可視光を実質的に吸収しない物質であって、強色増感を示す物質を乳剤中に含んでもよい。有用な増感色素、強色増感を示す色素の組合せ及び強色増感を示す物質はResearch Disclosure 176 巻17643(1978年12月発行)第23頁IVのJ項、あるいは特公昭49-25500号、同43-4933号、特開昭59-19032号、同59-192242号等に記載されている。
【0035】
増感色素をハロゲン化銀乳剤中に添加させるには、それらを直接乳剤中に分散してもよいし、あるいは水、メタノール、エタノール、プロパノール、アセトン、メチルセルソルブ、2,2,3,3-テトラフルオロプロパノール、2,2,2-トリフルオロエタノール、3-メトキシ-1-プロパノール、3-メトキシ-1-ブタノール、1-メトキシ-2-プロパノール、N,N-ジメチルホルムアミド等の溶媒の単独もしくは混合溶媒に溶解して乳剤に添加してもよい。
【0036】
また、米国特許3,469,987 号明細書等に開示されているように、色素を揮発性の有機溶剤に溶解し、該溶液を水または親水性コロイド中に分散し、この分散物を乳剤中へ添加する方法、特公昭44-23389号、同44-27555号、同57-22091号等に開示されているように、色素を酸に溶解し、該溶液を乳剤中に添加したり、酸または塩基を共存させて水溶液として乳剤中へ添加する方法、米国特許3,822,135号、同4,006,025号明細書等に開示されているように界面活性剤を共存させて水溶液あるいはコロイド分散物としたものを乳剤中に添加する方法、特開昭53-102733号、同58-105141号に開示されているように親水性コロイド中に色素を直接分散させ、その分散物を乳剤中に添加する方法、特開昭51-74624号に開示されているように、レッドシフトさせる化合物を用いて色素を溶解し、該溶液を乳剤中へ添加する方法を用いることもできる。また、溶液に超音波を用いることもできる。
【0037】
本発明に用いる増感色素を本発明のハロゲン化銀乳剤中に添加する時期は、化学増感の際に存在するようであれば、乳剤調製のいかなる工程中であってもよい。例えば米国特許2,735,766号、同3,628,960号、同4,183,756号、同4,225,666号、特開昭58-184142号、同60-196749号等の明細書に開示されているように、ハロゲン化銀の粒子形成工程中または/および脱塩前の時期、脱塩工程中および/または脱塩後から化学熟成の開始前までの時期、特開昭58-113920号等の明細書に開示されているように、化学熟成の直前または工程中の時期において添加されてもよい。また、米国特許4,225,666号、特開昭58-7629号等の明細書に開示されているように、同一化合物を単独で、または異種構造の化合物と組み合わせて、例えば粒子形成工程中と化学熟成工程中または化学熟成完了後とに分けたり、化学熟成の前または工程中と完了後とに分けるなどして分割して添加してもよく、分割して添加する化合物および化合物の組み合わせの種類を変えて添加してもよい。
以上様々な添加方法を採りうるが、化学増感時に分光増感色素が存在するよう添加することが必要である。本発明においては脱塩後から化学増感の開始前までの時期に添加するのが好ましい。
【0038】
本発明における分光増感色素の使用量としては感度やカブリなどの性能に合わせて所望の量でよいが、感光性層のハロゲン化銀1モル当たり10-6〜1モルが好ましく、10-4〜10-1モルがさらに好ましい。
【0039】
<酸化剤>
銀(この場合物理現像核となる数原子オーダーの極微小銀核を指す。)に対する酸化剤としては、過酸化水素水、水銀、ブロモサクシンイミド類、後述されるポリハロゲン化物、ジスルフィド化合物および沃素、臭素、塩素などが上げられる。又、特開平2−105139に記載の一般式(i)、(ii)、(iii)の化合物や具体的例示化合物1−1〜33及び2−1〜25及び3−1〜9のチオスルフォン酸化合物好ましく用いることができる。
これらの添加時期は、粒子形成中及び化学増感終了後までの任意の次期を選ぶことが出来るが、好ましくは、粒子形成中及び、終了時点で酸化剤が存在することである。又、その添加量は、酸化剤の酸化力によっていかようにも選ぶことができるが、好ましくは、銀1モルに対して、1/1000000〜1/10モル程度が目安となる。
【0040】
<{100}面比率の向上>
微粒子になると晶癖が不安定になり、ハロゲン化銀微粒子形成に於いて、立方体結晶を通常生じる成長条件でも、粒子は丸まってしまう。しかしながら{100}面は、固有減感が少なく色増感効率の良い系として知られており、粒子の丸まりは、著しい感度の低下をもたらす。これを防ぐためには、微粒子の形成において、様々な工夫が必要であり、少なくとも{100}面比率が、50%を越える粒子であることが、本発明の高感度超微粒子を作成するためには重要であることが判った。
【0041】
{100}面比率を高める方法としては、本発明の実施例に示したように、低温で成長させること、晶癖制御剤として、ベンゾイミダゾール類等のpKaは6.0以下(すなわち水洗pH5.0以下の沈降・脱塩・水洗工程で大部分が除かれる)の{100}面吸着性の化合物やメルカプト系化合物を吸着させることで、形態保持すること、本発明にあるように比較的高温の化学増感工程において、化学増感開始以前に色素を添加してしまうこと、などが、有効であることが判った。これらの吸着物質の使用量は、ハロゲン化銀1モルあたり、1/100000〜1/10モル程度が好ましく用いられる。
【0042】
<トリアジン化合物>
本発明には、乳剤形成後の性能安定性の目的として、トリアジン化合物を添加することがこのまししい。その具体例は、特開平6−11791号に記載の一般式(iii)で表される化合物類である。同特許に記載の例示化合物ii−1〜iii−21等を好ましく用いる事が出来るが、これに限定されるわけではない。その添加次期は、粒子形成―脱塩・水洗―分散・化学熟成などのいかなる工程でも可能であるが、好ましくは脱塩水洗工程以降である。又その添加量は、特に制約はないが、好ましくは、ハロゲン化銀1モル当たり、1/1000000〜1/100モル程度が好ましい。
【0043】
<有機脂肪酸銀>
本発明に用いることのできる有機脂肪銀塩は、光に対して比較的安定であるが、露光された光触媒(感光性ハロゲン化銀の潜像など)及び還元剤の存在下で、80℃或いはそれ以上に加熱された場合に銀画像を形成する銀塩である。有機脂肪酸銀塩は、特に(炭素数が10〜30、好ましくは15〜28の)長鎖脂肪カルボン酸の銀塩が好ましい。有機脂肪酸銀塩は、好ましくは画像形成層の約5〜70重量% を構成することができる。有機脂肪酸銀の好ましい例としては、ベヘン酸銀、アラキジン酸銀、ステアリン酸銀、オレイン酸銀、ラウリン酸銀、カプロン酸銀、ミリスチン酸銀、パルミチン酸銀、マレイン酸銀、フマル酸銀、酒石酸銀、リノール酸銀、酪酸銀及び樟脳酸銀、これらの混合物などを含む。
【0044】
本発明に好ましく用いられる有機脂肪酸銀は、上記に示した有機脂肪酸のアルカリ金属塩(Na 塩,K 塩,Li塩等が挙げられる) 溶液または懸濁液と硝酸銀を反応させることで調製することができる。本発明の有機脂肪酸アルカリ金属塩は、上記有機脂肪酸をアルカリ処理することによって得られる。本発明の有機脂肪酸銀(以下、単に有機銀または有機酸銀ということあり)は任意の好適な容器中で回文式または連続式で製造することができる。反応容器中の攪拌は粒子の要求される特性によって任意の攪拌方法で攪拌することができる。有機酸銀の調製法としては、有機酸アルカリ金属塩溶液あるいは懸濁液の入った反応容器に硝酸銀水溶液を徐々にあるいは急激に添加する方法、硝酸銀水溶液の入った反応容器に予め調製した有機酸アルカリ金属塩溶液あるいは懸濁液を徐々にあるいは急激に添加する方法、予め調製した硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液を反応容器中に同時に添加する方法のいずれもが好ましく用いることができる。
【0045】
硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液は調整する有機酸銀の粒子サイズ制御のために任意の濃度の物を用いることができ、また任意の添加速度で添加することができる。硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液の添加方法としては、添加速度一定で添加する方法、任意の時間関数による加速添加法あるいは減速添加法にて添加することができる。また反応液に対し、液面に添加してもよく、また液中に添加してもよい。予め調製した硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液を反応容器中に同時に添加する方法の場合には、硝酸銀水溶液あるいは有機酸アルカリ金属塩溶液または懸濁液のいずれかを先行させて添加することもできるが、硝酸銀水溶液を先行させて添加することが好ましい。先行度としては総添加量の0から50% が好ましく、0から25% が特に好ましい。また特開平9-127643号公報等に記載のように反応中の反応液のpHないしは銀電位を制御しながら添加する方法も好ましく用いることができる。
【0046】
添加される硝酸銀水溶液や有機酸アルカリ金属塩溶液または懸濁液は粒子の要求される特性によりpHを調整することができる。pH調整のために任意の酸やアルカリを添加することができる。また、粒子の要求される特性により、例えば調整する有機酸銀の粒子サイズの制御のため反応容器中の温度を任意に設定することができるが、添加される硝酸銀水溶液や有機酸アルカリ金属塩溶液または懸濁液も任意の温度に調整することができる。有機酸アルカリ金属塩溶液または懸濁液は液の流動性を確保するために、50℃以上に加熱保温することが好ましい。
【0047】
本発明に用いる有機酸銀は第3級アルコールの存在下で調製されることが好ましい。本発明に用いる第3級アルコールは総炭素数15以下の物が好ましく、10以下が特に好ましい。好ましい第3級アルコールの例としては、tert- ブタノール等が挙げられるが、本発明はこれに限定されない。
【0048】
本発明に用いられる第3級アルコールの添加時期は有機酸銀調整時のいずれのタイミングでも良いが、有機酸アルカリ金属塩の調製時に添加して、有機酸アルカリ金属塩を溶解して用いることが好ましい。また、本発明の第3級アルコールの使用量は有機酸銀調製時の溶媒としてのH2O に対して重量比で0.01〜10の範囲で任意に使用することができるが、0.03〜1の範囲が好ましい。
【0049】
本発明に用いることができる有機銀塩の形状としては特に制限はないが、短軸と長軸を有する針状結晶が好ましい。本発明においては短軸0.01μm 以上0.20μm 以下、長軸0.10μm 以上5.0 μm 以下が好ましく、短軸0.01μm 以上0.15μm 以下、長軸0.10μm 以上4.0 μm 以下がより好ましい。有機銀塩の粒子サイズ分布は単分散であることが好ましい。単分散とは短軸、長軸それぞれの長さの標準偏差を短軸、長軸それぞれで割った値の100 分率が好ましくは100%以下、より好ましくは80% 以下、更に好ましくは50% 以下である。有機銀塩の形状の測定方法としては有機銀塩分散物の透過型電子顕微鏡像より求めることができる。単分散性を測定する別の方法として、有機銀塩の体積加重平均直径の標準偏差を求める方法があり、体積加重平均直径で割った値の百分率(変動係数)が好ましくは100%以下、より好ましくは80% 以下、更に好ましくは50% 以下である。測定方法としては例えば液中に分散した有機銀塩にレーザー光を照射し、その散乱光のゆらぎの時間変化に対する自己相関関数を求めることにより得られた粒子サイズ(体積加重平均直径)から求めることができる。
【0050】
本発明に用いることのできる有機銀塩は、好ましくは脱塩をすることができる。脱塩を行う方法としては特に制限はなく公知の方法を用いることができるが、遠心濾過、吸引濾過、限外濾過、凝集法によるフロック形成水洗等の公知の濾過方法を好ましく用いることができる。
【0051】
本発明では、高S/N で、粒子サイズが小さく、凝集のない有機銀塩固体分散物を得る目的で、画像形成媒体である有機銀塩を含み、かつ感光性銀塩を実質的に含まない水分散液を高速流に変換した後、圧力降下させる分散法を用いることが好ましい。
【0052】
そして、このような工程を経た後に、感光性銀塩水溶液と混合して感光性画像形成媒体塗布液を製造する。このような塗布液を用いて熱現像感光材料を作製するとヘイズが低く、低カブリで高感度の熱現像感光材料が得られる。これに対し、高圧、高速流に変換して分散する時に、感光性銀塩を共存させると、カブリが上昇し、感度が著しく低下する。また、分散媒として水ではなく、有機溶剤を用いると、ヘイズが高くなり、カブリが上昇し、感度が低下しやすくなる。一方、感光性銀塩水溶液を混合する方法にかえて、分散液中の有機銀塩の一部を感光性銀塩に変換するコンバージョン法を用いると感度が低下する。
上記において、高圧、高速化に変換して分散される水分散液は、実質的に感光性銀塩を含まないものであり、その含水量は非感光性の有機銀塩に対して0.1 モル% 以下であり、積極的な感光性銀塩の添加は行わないものである。
【0053】
本発明において、上記のような分散法を実施するのに用いられる固体分散装置およびその技術については、例えば『分散系レオロジーと分散化技術』(梶内俊夫、薄井洋基 著、1991、信山社出版(株)、p357〜p403)、『化学工学の進歩第24集』(社団法人 化学工学会東海支部 編、1990、槙書店、p184〜p185 )、等に詳しいが、本発明での分散法は、少なくとも有機銀塩を含む水分散物を高圧ポンプ等で加圧して配管内に送入した後、配管内に設けられた細いスリットを通過させ、この後に分散液に急激な圧力低下を生じさせることにより微細な分散を行う方法である。
【0054】
本発明が関連する高圧ホモジナイザーについては、一般には、(a) 分散質が狭間隙を高圧、高速で通過する際に生じる『剪断力』、(b) 分散質が高圧下から常圧に解放される際に生じる『キャビテーション力』、等の分散力によって微細な粒子への分散が行われると考えられている。この種の分散装置としては、古くはゴーリンホモジナイザーが挙げられるが、この装置では高圧で送られた被分散液が円柱面上の狭い間隙で、高速流に変換され、その勢いで周囲の壁面に衝突し、その衝撃力で乳化・分散が行われる。使用圧力は一般には100 〜600kg/cm2 、流速は数m 〜30m/秒の範囲であり、分散効率を上げるために高流速部を鋸刃状にして衝突回数を増やすなどの工夫を施したものも考案されている。これに対して、近年更に高圧、高流速での分散が可能となる装置が開発されてきており、その代表例としてはマイクロフルイダイザー(マイクロフルイデックス・インターナショナル・コーポレーション社)、ナノマイザー(特殊機化工業(株))などが挙げられる。
【0055】
本発明に適した分散装置としては、マイクロフルイデックス・インターナショナル・コーポレーション社製マイクロフルイダイザーM-110S-EH(G10Zインターラクションチャンバー付き)、M-110Y(H10Z インターラクションチャンバー付き) 、M-140K(G10Z インターラクションチャンバー付き) 、HC-5000(L30ZまたはH230Z インターラクションチャンバー付き) 、HC-8000(E230Z またはL30Zインターラクションチャンバー付き) 等が挙げられる。
【0056】
これらの装置を用い、少なくとも有機銀塩を含む水分散液を高圧ポンプ等で加圧して配管内に送入した後、配管内に設けられた細いスリットを通過させることにより所望の圧力を印加し、この後に配管内の圧力を大気圧に急速に戻す等の方法で分散液に急激な圧力降下を生じさせることにより本発明に最適な有機銀塩分散物を得ることが可能である。
【0057】
分散操作に先だって、原料液を予備分散することが好ましい。予備分散する手段としては公知の分散手段(例えば、高速ミキサー、ホモジナイザー、高速衝撃ミル、バンバリーミキサー、ホモミキサー、ニーダー、ボールミル、振動ボールミル、遊星ボールミル、アトライター、サンドミル、ビーズミル、コロイドミル、ジェットミル、ローラーミル、トロンミル、高速ストーンミル)を用いることができる。機械的に分散する以外にも、pHコントロールすることで溶媒中に粗分散し、その後、分散助剤の存在下でpHを変化させて微粒子化させても良い。このとき、粗分散に用いる溶媒として有機溶媒を使用しても良く、通常有機溶媒は微粒子化終了後除去される。
【0058】
本発明の有機銀塩分散においては、流速、圧力降下時の差圧と処理回数の調節によって所望の粒子サイズに分散することが可能であるが、写真特性と粒子サイズの点から、流速が200m/秒〜600m/秒、圧力降下時の差圧が900 〜3000kg/cm2の範囲が好ましく、流速が300m/秒〜600m/秒、圧力降下時の差圧が1500〜3000kg/cm2の範囲であることが更に好ましい。分散処理回数は必要に応じて選択できるが、通常は1回〜10回の処理回数が選ばれるが、生産性の点からは1回〜3回程度の処理回数が選ばれる。高圧下でこのような水分散液を高温にすることは、分散性、写真特性の点から好ましくなく、90℃を越えるような高温では粒子サイズが大きくなりやすくなると共に、カブリが高くなる傾向がある。従って、本発明では前記の高圧、高流速に変換する前の工程もしくは、圧力降下させた後の工程、あるいはこれらの両工程に冷却工程を含み、このような水分散の温度が冷却工程により5〜90℃の範囲に保たれていることが好ましく、更に好ましくは5〜80℃の範囲、特に5〜65℃の範囲に保たれていることが好ましい。特に、1500〜3000kg/cm2の範囲の高圧の分散時には前記の冷却工程を設置することが有効である。冷却器は、その所要熱交換量に応じて、二重管や二重管にスタチックミキサーを使用したもの、多管式熱交換器、蛇管式熱交換器等を適宜選択することができる。また、熱交換の効率を上げるために、使用圧力を考慮して、管の太さ、肉厚や材質など好適なものを選べばよい。冷却器に使用する冷媒は、熱交換量から、20℃の井水や冷凍機で処理した5〜10℃の冷水、また必要に応じて-30 ℃のエチレングリコール/水等の冷媒を使用することもできる。
【0059】
本発明の分散操作では、水性溶媒可溶な分散剤(分散助剤)の存在下で有機銀塩を分散することが好ましい。分散助剤としては、例えば、ポリアクリル酸、アクリル酸の共重合体、マレイン酸共重合体、マレイン酸モノエステル共重合体、アクリロメチルプロパンスルホン酸共重合体などの合成アニオンポリマー、カルボキシメチルデンプン、カルボキシメチルセルロースなどの半合成アニオンポリマー、アルギン酸、ペクチン酸などのアニオン性ポリマー、特開平7-350753号に記載の化合物、あるいは公知のアニオン性、ノニオン性、カチオン性界面活性剤やその他のポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の公知のポリマー、或いはゼラチン等の自然界に存在する高分子化合物を適宜選択して用いることができるが、ポリビニルアルコール類、水溶性のセルロース誘導体が特に好ましい。
【0060】
分散助剤は、分散前に有機銀塩の粉末またはウェットケーキ状態の有機銀塩と混合し、スラリーとして分散機に送り込むのは一般的な方法であるが、予め有機銀塩と混ぜ合わせた状態で熱処理や溶媒による処理を施して有機銀塩粉末またはウェットケーキとしても良い。分散前後または分散中に適当なpH調整剤によりpHコントロールしても良い。
【0061】
機械的に分散する以外にも、pHコントロールすることで溶媒中に粗分散し、その後、分散助剤の存在下でpHを変化させて微粒子化させても良い。このとき、粗分散に用いる溶媒として有機溶媒を使用しても良く、通常有機溶媒は微粒子化終了後除去される。
【0062】
調製された分散物は、保存時の微粒子の沈降を抑える目的で攪拌しながら保存したり、親水性コロイドにより粘性の高い状態(例えば、ゼラチンを使用しゼリー状にした状態)で保存したりすることもできる。また、保存時の雑菌などの繁殖を防止する目的で防腐剤を添加することもできる。
【0063】
本発明の有機銀塩固体微粒子分散物の粒子サイズ(体積加重平均直径)は、例えば液中に分散した固体微粒子分散物にレーザー光を照射し、その散乱光のゆらぎの時間変化に対する自己相関関数を求めることにより得られた粒子サイズ(体積加重平均直径)から求めることができる。平均粒子サイズ0.05μm以上10.0μm以下の固体微粒子分散物が好ましい。より好ましくは平均粒子サイズ0.1 μm以上5.0 μm以下、更に好ましくは平均粒子サイズ0.1 μm以上2.0 μm以下である。
【0064】
有機銀塩の粒子サイズ分布は単分散であることが好ましい。具体的には、体積加重平均直径の標準偏差を体積加重平均直径で割った値の百分率(変動係数)が80% 以下、より好ましくは50% 以下、更に好ましくは30% 以下である。
【0065】
有機銀塩の形状の測定方法としては有機銀塩分散物の透過型電子顕微鏡像より求めることができる。
【0066】
<還元剤>
本発明の熱現像感光材料には有機銀塩のための(銀イオンに対する)還元剤を含む。有機銀塩のための還元剤は、銀イオンを金属銀に還元する任意の物質、好ましくは有機物質であってよい。フェニドン、ハイドロキノンおよびカテコールなどの従来の写真現像剤は有用であるが、ヒンダードフェノール還元剤が好ましい。還元剤は、画像形成層を有する面の銀1モルに対して5〜50%モル含まれることが好ましく、10〜40モル%で含まれることがさらに好ましい。還元剤の添加層は画像形成層を有する面のいかなる層でも良い。画像形成層以外の層に添加する場合は銀1モルに対して10〜50モル%と多めに使用することが好ましい。また、還元剤は現像時のみ有効に機能を持つように誘導化されたいわゆるプレカーサーであってもよい。
【0067】
有機銀塩を利用した熱現像感光材料においては広範囲の還元剤が特開昭46-6074号、同47-1238号、同47-33621号、同49-46427号、同49-115540号、同50-14334号、同50-36110号、同50-14771号、同51-32632号、同51-1023721号、同51-32324号、同51-51933号、同52-84727号、同55-108654号、同56-146133号、同57-82828号、同57-82829号、特開平6-3793号、米国特許3,667,9586号、同3,679,426号、同3,751,252号、同3,751,255号、同3,761,270号、同3,782,949号、同3,839,048 号、同3,928,686号、同5,464,738号、独国特許2321328号、欧州特許692732号などに開示されている。例えば、フェニルアミドオキシム、2-チエニルアミドオキシムおよびp-フェノキシフェニルアミドオキシムなどのアミドオキシム;例えば4-ヒドロキシ-3,5-ジメトキシベンズアルデヒドアジンなどのアジン;2,2'-ビス(ヒドロキシメチル)プロピオニル-β-フェニルヒドラジンとアスコルビン酸との組合せのような脂肪族カルボン酸アリールヒドラジドとアスコルビン酸との組合せ;ポリヒドロキシベンゼンと、ヒドロキシルアミン、レダクトンおよび/またはヒドラジンの組合せ(例えばハイドロキノンと、ビス(エトキシエチル)ヒドロキシルアミン、ピペリジノヘキソースレダクトンまたはホルミル-4-メチルフェニルヒドラジンの組合せなど);フェニルヒドロキサム酸、p-ヒドロキシフェニルヒドロキサム酸およびβ-アリニンヒドロキサム酸などのヒドロキサム酸;アジンとスルホンアミドフェノールとの組合せ(例えば、フェノチアジンと2,6-ジクロロ-4-ベンゼンスルホンアミドフェノールなど);エチル-α-シアノ-2-メチルフェニルアセテート、エチル-α-シアノフェニルアセテートなどのα-シアノフェニル酢酸誘導体;2,2'-ジヒドロキシ-1,1'-ビナフチル、6,6'-ジブロモ-2,2'-ジヒドロキシ-1,1'-ビナフチルおよびビス(2-ヒドロキシ-1-ナフチル)メタンに例示されるようなビス-β-ナフトール;ビス-β-ナフトールと1,3-ジヒドロキシベンゼン誘導体(例えば、2,4-ジヒドロキシベンゾフェノンまたは2',4'-ジヒドロキシアセトフェノンなど)の組合せ;3-メチル-1-フェニル-5-ピラゾロンなどの、5-ピラゾロン;ジメチルアミノヘキソースレダクトン、アンヒドロジヒドロアミノヘキソースレダクトンおよびアンヒドロジヒドロピペリドンヘキソースレダクトンに例示されるようなレダクトン;2,6-ジクロロ-4-ベンゼンスルホンアミドフェノールおよびp-ベンゼンスルホンアミドフェノールなどのスルホンアミドフェノール還元剤;2-フェニルインダン-1,3-ジオンなど;2,2-ジメチル-7-t-ブチル-6-ヒドロキシクロマンなどのクロマン;2,6-ジメトキシ-3,5-ジカルボエトキシ-1,4-ジヒドロピリジンなどの1,4-ジヒドロピリジン;ビスフェノール(例えば、ビス(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、4,4-エチリデン-ビス(2-t-ブチル-6-メチルフェノール)、1,1,-ビス(2-ヒドロキシ-3,5-ジメチルフェニ-3,5,5-トリメチルヘキサンおよび2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパノールなど);アスコルビン酸誘導体(例えば、パルミチン酸1-アスコルビル、ステアリン酸アスコルビルなど);ならびにベンジルおよびビアセチルなどのアルデヒドおよびケトン;3-ピラゾリドンおよびある種のインダン-1,3-ジオン;クロマノール(トコフェロールなど)などがある。特に好ましい還元剤としては、ビスフェノール、クロマノールである。
【0068】
本発明の還元剤は、溶液、粉末、固体微粒子分散物などいかなる方法で添加してもよい。固体微粒子分散は公知の微細化手段(例えば、ボールミル、振動ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなど)で行われる。また、固体微粒子分散する際に分散助剤を用いてもよい。
【0069】
画像を向上させる「色調剤」として知られる添加剤を含むと光学濃度が高くなることがある。また、色調剤は黒色銀画像を形成させるうえでも有利になることがある。色調剤は画像形成層を有する面に銀1モルあたりの0.1 〜50モル% の量含まれることが好ましく、0.5 〜20モル% 含まれることがさらに好ましい。また、色調剤は現像時のみ有効に機能を持つように誘導化されたいわゆるプレカーサーであってもよい。
【0070】
有機銀塩を利用した熱現像感光材料においては広範囲の色調剤が特開昭46-6077号、同47-10282号、同49-5019号、同49-5020号、同49-91215号、同49-91215号、同50-2524号、同50-32927号、同50-67132号、同50-67641号、同50-114217号、同51-3223号、同51-27923号、同52-1478号、同52-99813号、同53-1020号、同53-76020号、同54-156524号、同54-156525号、同61-183642号、特開平4-56848号、特公昭49-10727号、同54-20333号、米国特許3,080,254号、同3,446,648号、同3,782,941号、同4,123,282号、同4,510,236号、英国特許1380795号、ベルギー特許841910号などに開示されている。色調剤の例は、フタルイミドおよびN-ヒドロキシフタルイミド;スクシンイミド、ピラゾリン-5-オン、ならびにキナゾリノン、3-フェニル-2-ピラゾリン-5-オン、1-フェニルウラゾール、キナゾリンおよび2,4-チアゾリジンジオンのような環状イミド;ナフタルイミド(例えば、N-ヒドロキシ-1,8-ナフタルイミド);コバルト錯体(例えば、コバルトヘキサミントリフルオロアセテート);3-メルカプト-1,2,4-トリアゾール、2,4-ジメルカプトピリミジン、3-メルカプト-4,5-ジフェニル-1,2,4-トリアゾールおよび2,5-ジメルカプト-1,3,4-チアジアゾールに例示されるメルカプタン;N-(アミノメチル)アリールジカルボキシイミド、(例えば、(N,N-ジメチルアミノメチル)フタルイミドおよびN,N-(ジメチルアミノメチル)-ナフタレン-2,3-ジカルボキシイミド);ならびにブロック化ピラゾール、イソチウロニウム誘導体およびある種の光退色剤(例えば、N,N'-ヘキサメチレンビス(1-カルバモイル-3,5-ジメチルピラゾール)、1,8-(3,6-ジアザオクタン)ビス(イソチウロニウムトリフルオロアセテート)および2-トリブロモメチルスルホニル)-(ベンゾチアゾール));ならびに3-エチル-5〔(3-エチル-2-ベンゾチアゾリニリデン)-1-メチルエチリデン〕-2-チオ-2,4-オキサゾリジンジオン;フタラジノン、フタラジノン誘導体もしくは金属塩、または4-(1-ナフチル)フタラジノン、6-クロロフタラジノン、5,7-ジメトキシフタラジノンおよび2,3-ジヒドロ-1,4-フタラジンジオンなどの誘導体;フタラジノンとフタル酸誘導体(例えば、フタル酸、4-メチルフタル酸、4-ニトロフタル酸およびテトラクロロ無水フタル酸など)との組合せ;フタラジン、フタラジン誘導体もしくは金属塩(例えば、6-イソプロピルフタラジン、6-メチルフタラジン、4-(1-ナフチル)フタラジン、6-クロロフタラジン、5,7-ジメトキシフタラジンおよび2,3-ジヒドロフタラジン);フタラジンとフタル酸誘導体(例えば、フタル酸、4-メチルフタル酸、4-ニトロフタル酸およびテトラクロロ無水フタル酸など)との組合せ;キナゾリンジオン、ベンズオキサジンまたはナフトオキサジン誘導体;色調調節剤としてだけでなくその場でハロゲン化銀生成のためのハライドイオンの源としても機能するロジウム錯体、例えばヘキサクロロロジウム(III)酸アンモニウム、臭化ロジウム、硝酸ロジウムおよびヘキサクロロロジウム(III)酸カリウムなど;無機過酸化物および過硫酸塩、例えば、過酸化二硫化アンモニウムおよび過酸化水素;1,3-ベンズオキサジン-2,4-ジオン、8-メチル-1,3-ベンズオキサジン-2,4-ジオンおよび6-ニトロ-1,3-ベンズオキサジン-2,4-ジオンなどのベンズオキサジン-2,4-ジオン;ピリミジンおよび不斉-トリアジン(例えば、2,4-ジヒドロキシピリミジン、2-ヒドロキシ-4-アミノピリミジンなど)、アザウラシル、およびテトラアザペンタレン誘導体(例えば、3,6-ジメルカプト-1,4-ジフェニル-1H,4H-2,3a,5,6a-テトラアザペンタレン、および1,4-ジ(o-クロロフェニル)-3,6-ジメルカプト-1H,4H-2,3a,5,6a-テトラアザペンタレン)などがある。
【0071】
本発明の色調剤は、溶液、粉末、固体微粒子分散物などいかなる方法で添加してもよい。固体微粒子分散は公知の微細化手段(例えば、ボールミル、振動ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなど)で行われる。また、固体微粒子分散する際に分散助剤を用いてもよい。
【0072】
<水溶性及び又は水分散性ポリマーについて>
本発明の効果は、有機銀塩含有層が溶媒の30wt% 以上が水である塗布液を用いて塗布し乾燥して形成される場合に、さらに有機銀塩含有層のバインダー(以降「本発明のポリマー」という)が水系溶媒( 水溶媒)に可溶または分散可能で、特に25℃60%RH での平衡含水率が2wt%以下のポリマーラテックスからなる場合に向上する。最も好ましい形態は、イオン伝導度が2.5mS/cm以下になるように調製されたものであり、このような調製法としてポリマー合成後分離機能膜を用いて精製処理する方法が挙げられる。
【0073】
ここでいう本発明のポリマーが可溶または分散可能である水系溶媒とは、水または水に70wt% 以下の水混和性の有機溶媒を混合したものである。水混和性の有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール系、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ系、酢酸エチル、ジメチルホルミアミドなどを挙げることができる。
なお、ポリマーが熱力学的に溶解しておらず、いわゆる分散状態で存在している系の場合にも、ここでは水系溶媒という言葉を使用する。
【0074】
本発明でいう「25℃60%RH における平衡含水率」とは、25℃60%RH の雰囲気下で調湿平衡にあるポリマーの重量W1と25℃で絶乾状態にあるポリマーの重量W0を用いて以下のように表すことができる。
25℃60%RH における平衡含水率 =〔(W1-W0)/W0〕×100(wt%)
含水率の定義と測定法については、例えば高分子工学講座14、高分子材料試験法(高分子学会編、地人書館)を参考にすることができる。
本発明のポリマーの25℃60%RH における平衡含水率は2wt%以下であることが好ましいが、より好ましくは0.01wt% 以上1.5wt%以下、さらに好ましくは0.02wt% 以上1wt% 以下が望ましい。
本発明のポリマーは、前述の水系溶媒に可溶または分散可能で25℃60%RH における平衡含水率が2wt%以下であれば特に制限はない。これらのポリマーのうち、水系溶媒に分散可能なポリマーは特に好ましい。
【0075】
分散状態の例としては、固体ポリマーの微粒子が分散しているラテックスやポリマー分子が分子状態またはミセルを形成して分散しているものなどがあるが、いずれも好ましい。
【0076】
本発明において好ましい態様としては、アクリル樹脂、ポリエステル樹脂、ゴム系樹脂( 例えばSBR 樹脂) 、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニリデン樹脂、ポリオレフィン樹脂等の疎水性ポリマーを好ましく用いることができる。ポリマーとしては直鎖のポリマーでも枝分かれしたポリマーでもまた架橋されたポリマーでもよい。ポリマーとしては単一のモノマーが重合したいわゆるホモポリマーでもよいし、2種類以上のモノマーが重合したコポリマーでもよい。コポリマーの場合はランダムコポリマーでも、ブロックコポリマーでもよい。ポリマーの分子量は数平均分子量で5000〜1000000、好ましくは10000〜200000がよい。分子量が小さすぎるものは乳剤層の力学強度が不十分であり、大きすぎるものは成膜性が悪く好ましくない。
【0077】
本発明のポリマーとしてはこれらのポリマーが水系分散媒に分散したものである。ここで水系とは、組成の30wt% 以上が水である分散媒をいう。分散状態としては乳化分散したもの、ミセル分散したもの、更に分子中に親水性部位を持ったポリマーを分子状態で分散したものなど、どのようなものでもよいが、これらのうちでラテックスが特に好ましい。
【0078】
好ましいポリマーの具体例としては以下のものを挙げることができる。以下では原料モノマーを用いて表し、括弧内の数値はwt% 、分子量は数平均分子量である。
P-1;-MMA(70)-EA(27)-MAA(3)- のラテックス(分子量37000)
P-2;-MMA(70)-2EHA(20)-St(5)-AA(5)-のラテックス(分子量40000)
P-3;-St(50)-Bu(47)-MAA(3)-のラテックス(分子量45000)
P-4;-St(68)-Bu(29)-AA(3)- のラテックス(分子量60000)
P-5;-St(70)-Bu(27)-IA(3)- のラテックス(分子量120000)
P-6;-St(75)-Bu(24)-AA(1)-のラテックス(分子量108000)
P-7;-St(60)-Bu(35)-DVB(3)-MAA(2)-のラテックス(分子量150000)
P-8;-St(70)-Bu(25)-DVB(2)-AA(3)-のラテックス(分子量280000)
P-9;-VC(50)-MMA(20)-EA(20)-AN(5)-AA(5)-のラテックス(分子量80000)
P-10;-VDC(85)-MMA(5)-EA(5)-MMA(5)-のラテックス(分子量67000)
P-11;-Et(90)-MAA(10)-のラテックス(分子量12000)
【0079】
上記構造の略号は以下のモノマーを表す。MMA;メチルメタクリレート、EA;エチルアクリレート、MAA;メタクリル酸、2EHA;2エチルヘキシルアクリレート、St;スチレン、Bu;ブタジエン、AA;アクリル酸、DVB;ジビニルベンゼン、VC;塩化ビニル、AN;アクリロニトリル、VDC ;塩化ビニリデン、Et;エチレン、IA;イタコン酸。
【0080】
以上に記載したポリマーは市販もされていて、以下のようなポリマーが利用できる。アクリル樹脂の例としては、セビアンA-4635,46583,4601(以上ダイセル化学工業(株)製)、Nipol Lx811、814、821、820、857(以上日本ゼオン(株)製)など、ポリエステル樹脂の例としては、FINETEX ES650、611、675、850(以上大日本インキ化学(株)製)、WD-size、WMS(以上イーストマンケミカル製)など、ポリウレタン樹脂の例としては、HYDRAN AP10、20、30、40(以上大日本インキ化学(株)製)など、ゴム系樹脂の例としては、LACSTAR 7310K、3307B、4700H、7132C(以上大日本インキ化学(株)製)、Nipol Lx416、410、438C、2507(以上日本ゼオン(株)製)など、塩化ビニル樹脂の例としては、G351、G576(以上日本ゼオン(株)製)など、塩化ビニリデン樹脂の例としては、L502、L513(以上旭化成工業(株)製)など、オレフィン樹脂の例としては、ケミパールS120、SA100(以上三井石油化学(株)製)などを挙げることができる。
これらのポリマーはポリマーラテックスとして単独で用いてもよいし、必要に応じて2種以上ブレンドしてもよい。
【0081】
本発明に用いられるポリマーラテックスとしては、特に、スチレン-ブタジエン共重合体のラテックスが好ましい。スチレン-ブタジエン共重合体におけるスチレンのモノマー単位とブタジエンのモノマー単位との重量比は40:60〜95:5であることが好ましい。また、スチレンのモノマー単位とブタジエンのモノマー単位との共重合体に占める割合は60〜99wt% であることが好ましい。好ましい分子量の範囲は前記と同様である。
本発明に用いることが好ましいスチレン-ブタジエン共重合体のラテックスとしては、前記のP-3 〜P-8 、市販品であるLACSTAR-3307B、7132C、Nipol Lx416、等が挙げられる。
【0082】
本発明の感光材料の有機銀塩含有層には必要に応じてゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロースなどの親水性ポリマーを添加してもよい。これらの親水性ポリマーの添加量は有機銀塩含有層の全バインダーの30wt% 以下、より好ましくは20wt% 以下が好ましい。
本発明の有機銀塩含有層は、ポリマーラテックスとを用いて形成されたものであるが、有機銀塩含有層のバインダーの量は、全バインダー/有機銀塩の重量比が1/10〜10/1、更には1/5〜4/1の範囲が好ましい。
また、このような有機銀塩含有層は、通常、感光性銀塩である感光性ハロゲン化銀が含有された感光層(乳剤層)でもあり、このような場合の、全バインダー/ハロゲン化銀の重量比は400〜5、より好ましくは200〜10の範囲が好ましい。
【0083】
本発明の画像形成層の全バインダー量は0.2 〜30g/m2、より好ましくは1〜15g/m2の範囲が好ましい。本発明の画像形成層には架橋のための架橋剤、塗布性改良のための界面活性剤などを添加してもよい。
【0084】
本発明において感光材料の有機銀塩含有層塗布液の溶媒(ここでは簡単のため、溶媒と分散媒をあわせて溶媒と表す)は、水を30wt% 以上含む水系溶媒である。水以外の成分としてはメチルアルコール、エチルアルコール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ、ジメチルホルムアミド、酢酸エチルなど任意の水混和性有機溶媒を用いてよい。塗布液の溶媒の水含有率は50wt% 以上、より好ましくは70wt% 以上が好ましい。好ましい溶媒組成の例を挙げると、水/メチルアルコール=90/10、水/メチルアルコール=70/30、水/メチルアルコール/ジメチルホルムアミド=80/15/5、水/メチルアルコール/エチルセルソルブ=85/10/5、水/メチルアルコール/イソプロピルアルコール=85/10/5 などがある。
【0085】
本発明におけるハロゲン化銀乳剤または/および有機銀塩は、カブリ防止剤、安定剤および安定剤前駆体によって、付加的なかぶりの生成に対して更に保護され、在庫貯蔵中における感度の低下に対して安定化することができる。単独または組合せて使用することができる適当なカブリ防止剤、安定剤および安定剤前駆体は、米国特許第2,131,038号および同第2,694,716号に記載のチアゾニウム塩、米国特許第2,886,437号および同第2,444,605号に記載のアザインデン、米国特許第2,728,663号に記載の水銀塩、米国特許第3,287,135号に記載のウラゾール、米国特許第3,235,652号に記載のスルホカテコール、英国特許第623,448号に記載のオキシム、ニトロン、ニトロインダゾール、米国特許第2,839,405号に記載の多価金属塩、米国特許第3,220,839号に記載のチウロニウム塩、ならびに米国特許第2,566,263号および同第2,597,915号に記載のパラジウム、白金および金塩、米国特許第4,108,665号および同第4,442,202号に記載のハロゲン置換有機化合物、米国特許第4,128,557号および同第4,137,079号、第4,138,365号および同第4,459,350号に記載のトリアジンならびに米国特許第4,411,985号に記載のリン化合物などがある。
【0086】
本発明に好ましく用いられるかぶり防止剤は有機ハロゲン化物であり、例えば、特開昭50-119624号、同50-120328号、同51-121332号、同54-58022号、同56-70543号、同56-99335号、同59-90842号、同61-129642号、同62-129845号、特開平6-208191号、同7-5621号、同7-2781号、同8-15809号、米国特許第5340712号、同5369000号、同5464737号に開示されているような化合物が挙げられる。
【0087】
本発明のカブリ防止剤は、溶液、粉末、固体微粒子分散物などいかなる方法で添加してもよい。固体微粒子分散は公知の微細化手段(例えば、ボールミル、振動ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなど)で行われる。また、固体微粒子分散する際に分散助剤を用いてもよい。
【0088】
本発明を実施するために必要ではないが、乳剤層にカブリ防止剤として水銀(II)塩を加えることが有利なことがある。この目的に好ましい水銀(II)塩は、酢酸水銀および臭化水銀である。本発明に使用する水銀の添加量としては、塗布された銀1モル当たり好ましくは1×10-9モル〜1×10-3モル、さらに好ましくは1×10-9モル〜1×10-4モルの範囲である。
【0089】
本発明における熱現像感光材料は高感度化やカブリ防止を目的として安息香酸類を含有しても良い。本発明の安息香酸類はいかなる安息香酸誘導体でもよいが、好ましい構造の例としては、米国特許4,784,939号、同4,152,160号、特願平8-151242号、同8-151241号、同8-98051号などに記載の化合物が挙げられる。本発明の安息香酸類は感光材料のいかなる部位に添加しても良いが、添加層としては感光性層を有する面の層に添加することが好ましく、有機銀塩含有層に添加することがさらに好ましい。本発明の安息香酸類の添加時期としては塗布液調製のいかなる工程で行っても良く、有機銀塩含有層に添加する場合は有機銀塩調製時から塗布液調製時のいかなる工程でも良いが有機銀塩調製後から塗布直前が好ましい。本発明の安息香酸類の添加法としては粉末、溶液、微粒子分散物などいかなる方法で行っても良い。また、増感色素、還元剤、色調剤など他の添加物と混合した溶液として添加しても良い。本発明の安息香酸類の添加量としてはいかなる量でも良いが、銀1モル当たり1×10-6モル以上2モル以下が好ましく、1×10-3モル以上0.5 モル以下がさらに好ましい。
【0090】
本発明には現像を抑制あるいは促進させ現像を制御するため、分光増感効率を向上させるため、現像前後の保存性を向上させるためなどにメルカプト化合物、ジスルフィド化合物、チオン化合物を含有させることができる。
本発明にメルカプト化合物を使用する場合、いかなる構造のものでも良いが、Ar-SM 、Ar-S-S-Ar で表されるものが好ましい。式中、M は水素原子またはアルカリ金属原子であり、Arは1個以上の窒素、イオウ、酸素、セレニウムまたはテルリウム原子を有する芳香環または縮合芳香環である。好ましくは、複素芳香環はベンズイミダゾール、ナフスイミダゾール、ベンゾチアゾール、ナフトチアゾール、ベンズオキサゾール、ナフスオキサゾール、ベンゾセレナゾール、ベンゾテルラゾール、イミダゾール、オキサゾール、ピラゾール、トリアゾール、チアジアゾール、テトラゾール、トリアジピリミジン、ピリダジン、ピラジン、ピリジン、プリン、キノリンまたはキナゾリノンである。この複素芳香環は、例えば、ハロゲン(例えば、BrおよびCl)、ヒドロキシ、アミノ、カルボキシ、アルキル(例えば、1個以上の炭素原子、好ましくは1〜4個の炭素原子を有するもの)およびアルコキシ(例えば、1個以上の炭素原子、好ましくは1〜4個の炭素原子を有するもの)からなる置換基群から選択されるものを有してもよい。メルカプト置換複素芳香族化合物をとしては、2-メルカプトベンズイミダゾール、2-メルカプトベンズオキサゾール、2-メルカプトベンゾチアゾール、2-メルカプト-5-メチルベンズイミダゾール、6-エトキシ-2-メルカプトベンゾチアゾール、2,2'-ジチオビス-(ベンゾチアゾール、3-メルカプト-1,2,4-トリアゾール、4,5-ジフェニル-2-イミダゾールチオール、2-メルカプトイミダゾール、1-エチル-2-メルカプトベンズイミダゾール、2-メルカプトキノリン、8-メルカプトプリン、2-メルカプト-4(3H)-キナゾリノン、7-トリフルオロメチル-4-キノリンチオール、2,3,5,6-テトラクロロ-4-ピリジンチオール、4-アミノ-6-ヒドロキシ-2-メルカプトピリミジンモノヒドレー2-アミノ-5-メルカプト-1,3,4-チアジアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、4-ヒドキロシ-2-メルカプトピリミジン、2-メルカプトピリミジン、4,6-ジアミノ-2-メルカプト、ピリミジン、2-メルカプト-4-メチルピリミジンヒドロクロリド、3-メルカプト-5-フェニル-1,2,4-トリアゾール、2-メルカプト-4-フェニルオキサゾールなどが挙げられるが、本発明はこれらに限定されない。
【0091】
これらのメルカプト化合物の添加量としては乳剤層中に銀1モル当たり0.001〜1.0モルの範囲が好ましく、さらに好ましくは、銀の1モル当たり0.01〜0.3モルの量である。
【0092】
本発明における感光性層には、可塑剤および潤滑剤として多価アルコール(例えば、米国特許第2,960,404号に記載された種類のグリセリンおよびジオール)、米国特許第2,588,765号および同第3,121,060号に記載の脂肪酸またはエステル、英国特許第955,061号に記載のシリコーン樹脂などを用いることができる。
【0093】
本発明における画像形成材料は画像形成層の付着防止などの目的で表面保護層を設けることができる。
本発明の表面保護層のバインダーとしてはいかなるポリマーでもよいが、カルボン酸残基を有するポリマーを100mg/m2以上5g/m2 以下含むことが好ましい。ここでいうカルボキシル残基を有するポリマーとしては天然高分子(ゼラチン、アルギン酸など)、変成天然高分子(カルボキシメチルセルロース、フタル化ゼラチンなど)、合成高分子(ポリメタクリレート、ポリアクリレート、ポリアルキルメタクリレート/アクリレート共重合体、ポリスチレン/ポリメタクリレート共重合体など)などがあげられる。該ポリマーのカルボキシ残基の含有量としてはポリマー100g当たり1×10-2モル以上1.4 モル以下であることが好ましい。また、カルボン酸残基はアルカリ金属イオン、アルカリ土類金属イオン、有機カチオンなどと塩を形成してもよい。
【0094】
本発明の表面保護層としては、いかなる付着防止材料を使用してもよい。付着防止材料の例としては、ワックス、シリカ粒子、スチレン含有エラストマー性ブロックコポリマー(例えば、スチレン-ブタジエン-スチレン、スチレン-イソプレン-スチレン)、酢酸セルロース、セルロースアセテートブチレート、セルロースプロピオネートやこれらの混合物などがある。また、表面保護層には架橋のための架橋剤、塗布性改良のための界面活性剤などを添加してもよい。
【0095】
本発明における画像形成層もしくは画像形成層の保護層には、米国特許第3,253,921号、同第2,274,782号、同第2,527,583号および同第2,956,879号に記載されているような光吸収物質およびフィルター染料を含む写真要素において使用することができる。また、例えば米国特許第3,282,699号に記載のように染料を媒染することができる。フィルター染料の使用量としては露光波長での吸光度が0.1〜3.0であることが好ましく、0.2〜1.5が特に好ましい。
本発明における画像形成層もしくは乳剤層の画像形成層には、艶消剤、例えばデンプン、二酸化チタン、酸化亜鉛、シリカ、米国特許第2,992,101号および同第2,701,245号に記載された種類のビーズを含むポリマービーズなどを含有することができる。また、乳剤面のマット度は星屑故障が生じなければいかようでも良いが、ベック平滑度が200秒以上10000秒以下が好ましく、特に300秒以上10000秒以下が好ましい。
【0096】
本発明における熱現像写真感光性材料は、支持体の一方の側に少なくとも1層のハロゲン化銀乳剤を含む感光性層を有し、他方の側にバック層を有する、いわゆる片面感光材料であることが好ましい。
【0097】
本発明において片面感光材料は、搬送性改良のためにマット剤を添加しても良い。マット剤は、一般に水に不溶性の有機または無機化合物の微粒子である。マット剤としては任意のものを使用でき、例えば米国特許第1,939,213号、同2,701,245号、同2,322,037号、同3,262,782号、同3,539,344号、同3,767,448号等の各明細書に記載の有機マット剤、同1,260,772号、同2,192,241号、同3,257,206号、同3,370,951号、同3,523,022号、同3,769,020号等の各明細書に記載の無機マット剤など当業界で良く知られたものを用いることができる。例えば具体的にはマット剤として用いることのできる有機化合物の例としては、水分散性ビニル重合体の例としてポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、アクリロニトリル-α-メチルスチレン共重合体、ポリスチレン、スチレン-ジビニルベンゼン共重合体、ポリビニルアセテート、ポリエチレンカーボネート、ポリテトラフルオロエチレンなど、セルロース誘導体の例としてはメチルセルロース、セルロースアセテート、セルロースアセテートプロピオネートなど、澱粉誘導体の例としてカルボキシ澱粉、カルボキシニトロフェニル澱粉、尿素-ホルムアルデヒド-澱粉反応物など、公知の硬化剤で硬化したゼラチンおよびコアセルベート硬化して微少カプセル中空粒体とした硬化ゼラチンなど好ましく用いることができる。無機化合物の例としては二酸化珪素、二酸化チタン、二酸化マグネシウム、酸化アルミニウム、硫酸バリウム、炭酸カルシウム、公知の方法で減感した塩化銀、同じく臭化銀、ガラ珪藻土などを好ましく用いることができる。上記のマット剤は必要に応じて異なる種類の物質を混合して用いることができる。マット剤の大きさ、形状に特に限定はなく、任意の粒径のものを用いることができる。本発明の実施に際しては0.1μm 〜30μm の粒径のものを用いるのが好ましい。
【0098】
また、マット剤の粒径分布は狭くても広くても良い。一方、マット剤は感材のヘイズ、表面光沢に大きく影響することから、マット剤作製時あるいは複数のマット剤の混合により、粒径、形状および粒径分布を必要に応じた状態にすることが好ましい。
【0099】
本発明においてバック層のマット度としてはベック平滑度が250秒以下10秒以上が好ましく、さらに好ましくは180秒以下50秒以上である。
本発明において、マット剤は感光材料の最外表面層もしくは最外表面層として機能する層、あるいは外表面に近い層に含有されるのが好ましく、またいわゆる保護層として作用する層に含有されることが好ましい。
【0100】
本発明においてバック層の好適なバインダーは透明又は半透明で、一般に無色であり、天然ポリマー合成樹脂やポリマー及びコポリマー、その他フィルムを形成する媒体、例えば:ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン-無水マレイン酸)、コポリ(スチレン-アクリロニトリル)、コポリ(スチレン-ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)及びポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類がある。バインダーは水又は有機溶媒またはエマルションから被覆形成してもよい。
【0101】
本発明においてバック層は、所望の波長範囲での最大吸収が0.3以上2以下であることが好ましく、さらに好ましくは0.5以上2以下の吸収であり、かつ処理後の可視領域においての吸収が0.001以上5未満であることが好ましく、さらに好ましくは0.001以上0.3未満の光学濃度を有する層であることが好ましい。また、バック層に用いるハレーション防止染料の例としては前述のアンチハレーション層と同じである。
【0102】
米国特許第4,460,681号および同第4,374,921号に示されるような裏面抵抗性加熱層(backside resistive heating layer)を感光性熱現像写真画像系に使用することもできる。
【0103】
本発明の感光性層、保護層、バック層など各層には硬膜剤を用いても良い。硬膜剤の例としてはJames著“THE THEORY OF THE PHOTOGRAPHIC PROCESS FOURTH EDITION"(Macmillan Publishing Co., Inc.刊、1977年刊)77 頁から87頁に記載の各方法があり、同書78頁など記載の多価金属イオン、米国特許4,281,060号、特開平6-208193号などのポリイソシアネート類、米国特許4,791,042号などのエポキシ化合物類、特開昭62-89048号などのビニルスルホン系化合物類が好ましく用いられる。
硬膜剤は溶液として添加され、該溶液の保護層塗布液中への添加時期は、塗布する180分前から直前、好ましくは60分前から10秒前であるが、混合方法及び混合条件については本発明の効果が十分に現れる限りにおいては特に制限はない。具体的な混合方法としては添加流量とコーターへの送液量から計算した平均滞留時間を所望の時間となるようにしたタンクでの混合する方法やN.Harnby、F.Edwards 、A.W.Nienow著、高橋幸司訳“液体混合技術”(日刊工業新聞社刊、1989年)の第8章等に記載されているスタチックミキサーなどを使用する方法がある。
【0104】
本発明には塗布性、帯電改良などを目的として界面活性剤を用いても良い。界面活性剤の例としては、ノニオン系、アニオン系、カチオン系、フッ素系などいかなるものも適宜用いられる。具体的には、特開昭62-170950号、米国特許5,380,644号などに記載のフッ素系高分子界面活性剤、特開昭60-244945号、特開昭63-188135号などに記載のフッ素系界面活性剤、米国特許3,885,965号などに記載のポリシロキ酸系界面活性剤、特開平6-301140号などに記載のポリアルキレンオキサイドやアニオン系界面活性剤などが挙げられる。
【0105】
本発明に用いられる溶剤の例としては新版溶剤ポケットブック(オーム社、1994年刊)などに挙げられるが、本発明はこれに限定されるものではない。また、本発明で使用する溶剤の沸点としては40℃以上180℃以下のものが好ましい。本発明の溶剤の例としてはヘキサン、シクロヘキサン、トルエン、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、酢酸エチル、1,1,1-トリクロロエタン、テトラヒドロフラン、トリエチルアミン、チオフェン、トリフルオロエタノール、パーフルオロペンタン、キシレン、n-ブタノール、フェノール、メチルイソブチルケトン、シクロヘキサノン、酢酸ブチル、炭酸ジエチル、クロロベンゼン、ジブチルエーテル、アニソール、エチレングリコールジエチルエーテル、N,N-ジメチルホルムアミド、モルホリン、プロパンスルトン、パーフルオロトリブチルアミン、水などが挙げられる。
【0106】
本発明における熱現像用写真乳剤は、種々の支持体上に被覆させることができる。典型的な支持体は、ポリエステルフィルム、下塗りポリエステルフィルム、ポリ(エチレンテレフタレート)フィルポリエチレンナフタレートフィルム、硝酸セルロースフィルム、セルロースエステルフィルム、ポリ(ビニルアセタール)フィルム、ポリカーボネートフィルムおよび関連するまたは樹脂状の材料、ならびにガラス、紙、金属などを含む。可撓性基材、特に、部分的にアセチル化された、もしくはバライタおよび/またはα-オレフィンポリマー、特にポリエチレン、ポリプロピレン、エチレン−ブテンコポリマーなどの炭素数2〜10であるα-オレフィンのポリマーによりコートされた紙支持体が、典型的に用いられる。該支持体は透明であっても不透明であってもよいが、透明であることが好ましい。
【0107】
本発明における感光材料は、帯電防止または導電性層、例えば、可溶性塩(例えば塩化物、硝酸塩など)、蒸着金属層、米国特許第2,861,056号および同第3,206,312号に記載のようなイオン性ポリマーまたは米国特許第3,428,451号に記載のような不溶性無機塩などを含む層などを有してもよい。
【0108】
本発明における熱現像感材を用いてカラー画像を得る方法としては特開平7-13295号10頁左欄43行目から11左欄40行目に記載の方法がある。また、カラー染料画像の安定剤としては英国特許第1,326,889号、米国特許第3,432,300号、同第3,698,909号、同第3,574,627号、同第3,573,050号、同第3,764,337号および同第4,042,394号に例示されている。
【0109】
本発明における熱現像感光材料はいかなる方法で塗布されても良い。具体的には、エクストルージョンコーティング、スライドコーティング、カーテンコーティング、浸漬コーティング、ナイフコーティング、フローコーティング、または米国特許第2,681,294号に記載の種類のホッパーを用いる押出コーティングを含む種々のコーティング操作が用いられ、Stephen F. Kistler、Petert M. Schweizer著“LIQUID FILM COATING ”(CHAPMAN & HALL 社刊、1997年)399頁から536頁記載のエクストルージョンコーティング、またはスライドコーティング好ましく用いられ、特に好ましくはスライドコーティングが用いられる。スライドコーティングに使用されるスライドコーターの形状の例は同書427頁のFigure 11b.1にある。また、所望により同書399頁から536頁記載の方法、米国特許第2,761,791号および英国特許第837,095号に記載の方法により2層またはそれ以上の層を同時に被覆することができる。
【0110】
本発明における熱現像写真材料の中に追加の層、例えば移動染料画像を受容するための染料受容層、反射印刷が望まれる場合の不透明化層、保護トップコート層および光熱写真技術において既知のプライマー層などを含むことができる。本発明の感材はその感材一枚のみで画像形成できることが好ましく、受像層等の画像形成に必要な機能性層が別の感材とならないことが好ましい。
【0111】
本発明における熱現像写真材料の中に追加の層、例えば移動染料画像を受容するための染料受容層、反射印刷が望まれる場合の不透明化層、保護トップコート層および光熱写真技術において既知のプライマー層などを含むことができる。本発明の感材はその感材一枚のみで画像形成できることが好ましく、受像層等の画像形成に必要な機能性層が別の感材とならないことが好ましい。
【0112】
本発明の感光材料はいかなる方法で現像されても良いが、通常イメージワイズに露光した感光材料を昇温して現像される。好ましい現像温度としては80〜250℃であり、さらに好ましくは100〜140℃である。現像時間としては1〜180秒が好ましく、10〜90秒がさらに好ましい。
【0113】
本発明の感光材料はいかなる方法で露光されても良いが、露光光源としてレーザー光が好ましい。
本発明によるレーザー光としては、ガスレーザー、YAG レーザー、色素レーザー、半導体レーザーなどが好ましい。また、半導体レーザーと第2高調波発生素子などを用いることもできる。
本発明の感光材料は露光時のヘイズが低く、干渉縞が発生しやすい傾向にある。この干渉縞発生防止技術としては、特開平5-113548などに開示されているレーザー光を感光材料に対して斜めに入光させる技術や、WO95/31754などに開示されているマルチモードレーザーを利用する方法が知られており、これらの技術を用いることが好ましい。
本発明の感光材料を露光するにはSPIE vol.169 Laser Printing 116-128頁(1979)、特開平4-51043、WO95/31754などに開示されているようにレーザー光が重なるように露光し、走査線が見えないようにすることが好ましい。
【0114】
【実施例】
以下に本発明を実施例によって具体的に説明する。
【0115】
実施例1
《PET 支持体の作成》
テレフタル酸とエチレングリコ−ルを用い、常法に従い固有粘度IV=0.66(フェノ−ル/テトラクロルエタン=6/4(重量比)中25℃で測定)のPETを得た。これをペレット化した後130℃で4時間乾燥した後、300 ℃で溶融後T型ダイから押し出したあと急冷し、熱固定後の膜厚が175μm になるような厚みの未延伸フィルムを作成した。
【0116】
これを、周速の異なるロ−ルを用い3.3倍に縦延伸、ついでテンタ−で4.5倍に横延伸を実施した、この時の温度はそれぞれ、110℃、130℃であった。この後、240℃で20秒間熱固定後これと同じ温度で横方向に4%緩和した。この後テンタ−のチャック部をスリットした後、両端にナ−ル加工を行い、4kg/cm2 で巻き取り、厚み175μm のロ−ルを得た。
【0117】
《表面コロナ処理》
ピラー社製ソリッドステートコロナ処理機6KVAモデルを用い、支持体の両面を室温下において20m/分で処理した。この時の電流、電圧の読み取り値から、支持体には0.375kV・A・分/m2 の処理がなされていることがわかった。この時の処理周波数は9.6kHz、電極と誘電体ロ−ルのギャップクリアランスは1.6mmであった。
【0118】
《下塗り支持体の作成》
(下塗り塗布液Aの調製)
ポリエステル共重合体水分散物ペスレジンA-515GB(30% 、高松油脂(株)製)200mlにポリスチレン微粒子(平均粒径0.2μm)1g、界面活性剤1(1wt%)20mlを添加し、これに蒸留水を加えて1000mlとして下塗り塗布液Aとした。
【0119】
(下塗り塗布液Bの調製)
蒸留水680mlにスチレン−ブタジエン共重合体水分散物(スチレン/ブタジエン/イタコン酸=47/50/3(重量比)、濃度30wt% 、)200ml、ポリスチレン微粒子(平均粒径2.5μm)0.1gを添加し、更に蒸留水を加えて1000mlとして下塗り塗布液Bとした。
【0120】
(下塗り塗布液Cの調製)
イナートゼラチン10gを蒸留水500mlに溶解し、そこに特開昭61−20033号明細書記載の酸化スズ−酸化アンチモン複合物微粒子の水分散物(40wt%)40gを添加して、これに蒸留水を加えて1000mlにして下塗り塗布液Cとした。
【0121】
(下塗り支持体の作成)
上記コロナ放電処理を施した後、下塗り塗布液Aをバーコーターでウエット塗布量が5ml/m2になる様に塗布して180℃で5分間乾燥した。乾燥膜厚は約0.3μmであった。次いでこの裏面(バック面)にコロナ放電処理を施した後、下塗り塗布液Bをバーコーターでウエット塗布量が5ml/m2、乾燥膜厚が約0.3μmになる様に塗布して180℃で5分間乾燥し、更にこの上に下塗り塗布液Cをバーコーターでウエット塗布量が3ml/m2、乾燥膜厚が約0.03μmになる様に塗布して180℃で5分間乾燥して下塗り支持体を作成した。
【0122】
《有機酸銀分散物の調製》
ヘンケル社製ベヘン酸(製品名Edenor C22-85R)43.8g 、蒸留水730ml、tert-ブタノール60mlを79℃で攪拌しながら1N-NaOH水溶液117mlを55分かけて添加し、240 分反応させた。次いで、硝酸銀19.2gの水溶液112.5mlを45秒かけて添加し、そのまま20分間放置し、30℃に降温した。その後吸引濾過で固形分を濾別し、固形分を濾水の伝導度が30μS/cmになるまで水洗した。こうして得られた固形分は、乾燥させないでウエットケーキとして取り扱い、乾燥固形分100g相当のウエットケーキに対し、ポリビニルアルコール(商品名:PVA-205)7.4gおよび水を添加し、全体量を385gとしてからホモミキサーにて予備分散した。
【0123】
次に予備分散済みの原液を分散機(商品名:マイクロフルイダイザーM−110S−EH、マイクロフルイデックス・インターナショナル・コーポレーション製、G10Zインタラクションチャンバー使用)の圧力を1750kg/m2 に調節して、三回処理し、ベヘン酸銀分散物Bを得た。こうして得たベヘン酸銀分散物に含まれるベヘン酸銀粒子は平均短径0.04μm 、平均長径0.8μm 、変動係数30%の針状粒子であった。粒子サイズの測定は、Malvern Instruments Ltd.製MasterSizerXにて行った冷却操作は蛇管式熱交換器をインタラクションチャンバーの前後に各々装着し、冷媒の温度を調節することで所望の分散温度に設定した。
【0124】
《還元剤の25% 分散物の調製》
1,1-ビス(2-ヒドロキシ-3,5-ジメチルフェニル)-3,5,5-トリメチルヘキサン80g とクラレ(株)製変性ポバールMP203の20%水溶液64gに水176gを添加し良く混合してスラリーとした。平均直径0.5mmのジルコニアビーズ800g用意してスラリーと一緒にベッセルに入れ、分散機(1/4Gサンドグラインダーミル:アイメックス(株)製)にて5時間分散し還元剤分散物を得た。こうして得た還元剤分散物に含まれる還元剤粒子は平均粒径0.72μm であった。
【0125】
《メルカプト化合物の20% 分散物の調製》
3-メルカプト-4-フェニル-5-ヘプチル-1,2,4-トリアゾール64gとクラレ(株)製変性ポバールMP203の20%水溶液32gに水224gを添加し良く混合してスラリーとした。平均直径0.5mmのジルコニアビーズ800g用意してスラリーと一緒にベッセルに入れ、分散機(1/4Gサンドグラインダーミル:アイメックス(株)製)にて10時間分散しメルカプト分散物を得た。こうして得たメルカプト化合物分散物に含まれるメルカプト化合物粒子は平均粒径0.67μm であった。
【0126】
《有機ポリハロゲン化合物の30% 分散物の調製》
トリブロモメチルフェニルスルホン48gと3-トリブロモメチルスルホニル-4-フェニル-5-トリデシル-1,2,4-トリアゾール48gとクラレ(株)製変性ポバールMP203の20%水溶液48gに水224gを添加し良く混合してスラリーとした。平均直径0.5mmのジルコニアビーズ800g用意してスラリーと一緒にベッセルに入れ、分散機(1/4Gサンドグラインダーミル:アイメックス(株)製)にて5時間分散しポリハロゲン化合物分散物を得た。こうして得たポリハロゲン化合物分散物に含まれるポリハロゲン化合物粒子は平均粒径0.74μm であった。
【0127】
《フタラジン化合物のメタノール溶液の調製》
6-イソプロピルフタラジン26gをメタノール100mlに溶解して使用した。
【0128】
《顔料の20% 分散物の調製》
I. Pigment Blue 60を64g と花王(株)製デモールN を6.4gに水250gを添加し良く混合してスラリーとした。平均直径0.5mmのジルコニアビーズ800g用意してスラリーと一緒にベッセルに入れ、分散機(1/4Gサンドグラインダーミル:アイメックス(株)製)にて25時間分散し顔料分散物を得た。こうして得た顔料分散物に含まれる顔料粒子は平均粒径0.21μm であった。
【0129】
《ハロゲン化銀粒子1の調製》
蒸留水1421ccに1wt%臭化カリウム溶液6.7ccを加え、さらに1N硝酸を8.2cc、フタル化ゼラチン8gを添加した液をチタンコートしたステンレス製反応壺中で攪拌しながら、30℃に液温を保ち、硝酸銀37.04gに蒸留水を加え159ccに希釈した溶液a1と臭化カリウム32.6gを蒸留水にて容量200ccに希釈した溶液b1を準備し、コントロールダブルジェット法でpAgを8.1に維持しながら、溶液a1の全量を一定流量で1分間かけて添加した。(溶液b1は、コントロールドダブルジェット法にて添加)その後3.5%の過酸化水素水溶液を30cc添加し、さらにベンゾイミダゾールの3wt%水溶液を36cc添加した。その後、再び溶液a1を蒸留水希釈して317.5ccにした溶液a2と、溶液b1に対して最終的に銀1モル当たり1×10-4モルになるよう六塩化イリジウム酸三カリウムを溶解し液量を溶液b1の2倍の400ccまで蒸留水希釈した溶液b2を用いて、やはりコントロールドダブルジェット法にて、pAgを8.25に維持しながら、一定流量で溶液a2を10分間かけて全量添加した。(溶液b2は、コントロールドダブルジェット法で添加)その後2-メルカプト-5-メチルベンゾイミダゾールの0.5%メタノール溶液を50cc添加し、さらに硝酸銀でpAgを7.5に下げてから1N硫酸を用いてpHを3.8に調整し攪拌を止め、沈降/脱塩/水洗工程を行い、脱イオンゼラチン3.5gを加えて1Nの水酸化ナトリウムを添加して、40℃にてpH6.0、pAg8.2に調整してハロゲン化銀分散物を作成した。
【0130】
できあがったハロゲン化銀乳剤中の粒子は、平均球相当径0.022μm 、球相当径の変動係数20%の純臭化銀粒子である。粒子サイズ等は、電子顕微鏡を用い1000個の粒子の平均から求めた。該粒子の〔100〕面比率は、クベルカムンク法を用いて75%と求められた。
【0131】
該乳剤を攪拌しながら50℃に昇温し、N,N'-ジヒドロキシ-N'',N''-ジエチルメラミンの0.5wt%メタノール溶液を5ccとフェノキシエタノールの3.5wt%メタノール溶液5ccを加え、1分後にベンゼンチオスルホン酸ナトリウムを銀1モルに対して3×10-5モル加えた。さらに2分後に分光増感色素Aの固体分散物(ゼラチン水溶液)を銀1モルあたり、5×10-3モル加え、さらに2分後テルル増感剤Bを銀1モルあたり5×10-5モル加えて50分間熟成した。熟成終了間際に、2-メルカプト-5-メチルベンゾイミダゾールを銀1モルあたり1×10-3モル添加して温度を下げ、化学増感を終了しハロゲン化銀粒子1を作成した。
【0132】
乳剤1と全く同様にして、ただし粒子形成中の液温度を変える事で、粒子サイズを変えたことと、後述するセンシトメトリーにおいて、最適な感度を与えるように化学増感剤並びに増感色素の量を調整した以外は全く同様にして、表1の乳剤2〜5を作成した。また、増感色素の添加を化学増感終了後に変える事以外は、全く同様にして、乳剤1〜5に対応する乳剤6〜10を作成した。乳剤3の{100}面比率は、83%であった。
【0133】
【0134】
《乳剤層塗布液の調製》
(乳剤層塗布液No.1)上記で得た有機酸銀分散物103g、ポリビニルアルコールPVA-205(クラレ(株)製)の20wt%水溶液5gを混合し40℃に保った中へ、上記25%還元剤分散物23.2g、顔料C.I. Pigment Blue 60の5%水分散物を4.8g、有機ポリハロゲン化物30% 分散物10.7g 、メルカプト化合物20%分散物3.1gを添加した。その後、40℃に保温した限外濾過精製したSBR ラテックス40wt%を106gを添加して十分攪拌した後、フタラジン化合物のメタノール液を6mlを添加し、有機酸銀含有液を得た。また、ハロゲン化銀粒子1〜10を事前によく攪拌し、塗布直前にスタチックミキサーで有機酸銀含有液と混合し、乳剤層塗布液を調製し、そのままコーティングダイへ塗布銀量1.4g/m2 となるように送液した。このうち0.1g/m2分がハロゲン化銀の塗布銀量持ち分である。
【0135】
該乳剤層塗布液の粘度は東京計器のB型粘度計(No.1ローター使用、以下の粘度測定について同じ。)で測定して、40℃で85〔mPa・s〕であった。レオメトリックスファーイースト株式会社製RFSフルードスペクトロメーターを使用した25℃での塗布液の粘度は剪断速度が0.1、1、10、100、1000〔1/秒〕においてそれぞれ1500、220、70、40、20〔mPa・s〕であった。
【0136】
なお、限外濾過精製したSBR ラテックスは以下のように得た。
下記のSBR ラテックスを蒸留水で10倍に希釈したものを限外濾過精製用モジュール、FS03-FC-FUY03A1(ダイセン・メンブレン・システム(株)を用いてイオン伝導度が1.5mS/cmになるまで希釈精製したものを用いた。この時ラテックス濃度は40%であった。
(SBRラテックス:-St(68)-Bu(29)-AA(3)-のラテックス)平均粒径0.1μm 、濃度45%、イオン伝導度4.2mS/cm(イオン伝導度の測定は東亜電波工業(株)製伝導度計CM-30S使用しラテックス原液(40%)を25℃にて測定)、pH8.2。
【0137】
《乳剤面中間層塗布液の調製》
(中間層塗布液)
ポリビニルアルコールPVA-205(クラレ(株)製)の10wt% 水溶液772g、メチルメタクリレート/スチレン/2-エチルヘキシルアクリレート/ヒドロキシエチルメタクリレート/アクリル酸共重合体(共重合重量比59/9/26/5/1)ラテックス27.5%液226gにエアロゾールOT(アメリカンサイアナミド社製)の5wt%水溶液を2ml、ベンジルアルコール4g、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート1gとベンゾイソチアゾリノン10mgを加えて中間層塗布液とし、5ml/m2になるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃で21〔mPa・s〕であった。
【0138】
《乳剤面保護層第1層塗布液の調製》
(保護層第1層塗布液No.1)
イナートゼラチン80gを水に溶解し、フタル酸の10% メタノール溶液を138ml、1Nの硫酸を28ml、エアロゾールOT(アメリカンサイアナミド社製)の5wt%水溶液を5ml、フェノキシエタノール1gを加え、総量1000gになるように水を加えて塗布液とし、10ml/m2 になるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃で17〔mPa・s〕であった。
【0139】
《乳剤面保護層第2層塗布液の調製》
(保護層第2層塗布液)
イナートゼラチン100gを水に溶解し、N-パーフルオロオクチルスルフォニル-N-プロピルアラニンカリウム塩の5%溶液を20ml、エアロゾールOT(アメリカンサイアナミド社製)の5wt%溶液を16ml、ポリメチルメタクリレート微粒子(平均粒径4.0μm)25g、1Nの硫酸を44ml、ベンゾイソチアゾリノン10mgに総量1555gとなるよう水を添加して、4wt%のクロムみょうばんと0.67wt%のフタル酸を含有する水溶液445mlを塗布直前にスタチックミキサーで混合したものを表面保護層塗布液とし、10ml/m2 になるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃で9〔mPa・s〕であった。
【0140】
《バック面塗布液の調製》
(塩基プレカーサーの固体微粒子分散液の調製)
塩基プレカーサー化合物64g、および花王(株)製界面活性剤デモールN 10gを蒸留水246mlと混合し、混合液をサンドミル(1/4Gallonサンドグラインダーミル、アイメックス(株)製)を用いてビーズ分散し、平均粒子径0.2μmの、塩基プレカーサーの固体微粒子分散液を得た。
【0141】
(染料固体微粒子分散液の調製)
シアニン染料化合物9.6gおよびp-アルキルベンゼンスルフォン酸ナトリウム5.8gを蒸留水305mlと混合し、混合液をサンドミル(1/4Gallonサンドグラインダーミル、アイメックス(株)製)を用いてビーズ分散して平均粒子径0.2μmの染料固体微粒子分散液を得た。
【0142】
(ハレーション防止層塗布液の調製)
ゼラチン17g、ポリアクリルアミド9.6g、上記塩基プレカーサーの固体微粒子分散液70g、上記染料の固体微粒子分散液56g、ポリメチルメタクリレート微粒子(平均粒子サイズ6.5μm)1.5g、ポリエチレンスルフォン酸ナトリウム2.2g、着色染料化合物の1%水溶液0.2g、H2Oを844ml混合しハレーション防止層塗布液を調製した。
【0143】
(バック面保護層塗布液の調製)
容器を40℃に保温しゼラチン50g、ポリスチレンスルフォン酸ナトリウム0.2g、N,N'-エチレンビス(ビニルスルフォンアセトアミド)2.4g、t-オクチルフェノキシエトキシエタンスルフォン酸ナトリウム1g、ベンゾイソチアゾリノン30mg、C8F17SO3Kを32mg、C8F17SO2N(C3H7)(CH2CH2O)4(CH2)4-SO3Naを64mg、H2Oを950ml混合して保護層塗布液とした。
【0144】
【化1】
【0145】
【化2】
【0146】
《熱現像感光材料の調製》
上記下塗りを施した支持体にハレーション防止層塗布液を固体微粒子染料の固形分塗布量が0.4g/m2となり、バック面保護層塗布液をゼラチン塗布量が1g/m2 となるように同時重層塗布し、乾燥しハレーション防止バック層を作成した後、バック面と反対の面に下塗面から乳剤層、中間層、保護層第1層、保護層第2層の順番でスライドビード塗布方式にて同時重層塗布し、熱現像感光材料の試料を作製した。なお、バック面塗布後巻き取らずに乳剤面を塗布した。
【0147】
塗布はスピード160m/minで行い、コーティングダイ先端と支持体との間隔を0.18mmに、減圧室の圧力を大気圧に対して392Pa低く設定した。引き続くチリングゾーンでは、乾球温度が18℃、湿球温度が12℃の風を平均風速は7m/秒で30秒間吹き当てて、塗布液を冷却した後、つるまき式の浮上方式の乾燥ゾーンにて、乾球温度が30℃、湿球温度が18℃の乾燥風を、穴からの吹き出し風速20m/秒で、200秒間吹き当てて、塗布液中の溶剤の揮発を行った。
【0148】
(写真性能の評価)
647nmKrレーザー感光計(最大出力500mW)で法線に対して30度の斜度で写真材料を露光した後、写真材料を120 ℃で15秒間処理(現像)し、得られた画像の評価を濃度計により行った。測定の結果は、Dmin、感度(Dminより1.0高い濃度を与える露光量の比の逆数)で評価した。感度については写真材料1の感度を100とした。
【0149】
上記の評価結果を表2に示す。
【0150】
【0151】
表2より本発明の効果は、特に50nm以下の超微粒子領域で、比較例に対して被りが低く相対感度が高く、高い最大濃度を与える事が判る。
【0152】
実施例2
実施例1の感材8において、ハロゲン化銀塗布量を銀量換算で0.17g/m2 に上げることにより、感材1とほぼ同じ感度、最大濃度を有する感材11を作成した。また、感材9において、ハロゲン化銀塗布量を銀量換算で0.25g/m2 にする事により最大濃度と感度を感材3とほぼ同じにした塗布試料12を作成した。
【0153】
(光照射画像保存性評価)
写真性評価と同様に露光現像した感光材料を、輝度1000ルックスのシャーカステン上に張り付け10日間放置した後の画像の様子を下記の基準で目視評価した。
◎・・・ほとんど変化がない。
○・・・微かに色調変化があるが気にならない。
△・・・画像部変色があるが実用的に許容される。
×・・・Dminが変色し濃度が上がり不可。
結果を表3に示す。
【0154】
【0155】
表3から明らかな様に、本発明の感光材料は、所望の感度、最大濃度を得た時に、光照射での画像保存性に優れて性能を示した。
【0156】
実施例3
実施例1の乳剤1〜5の作成において、テルル増感剤の代わりに硫黄増感剤として、チオ硫酸ナトリウムを、セレン増感剤としてトリフェニルフォスフィンセレナイドをほぼ等モル用いて、乳剤を調整する以外は、全く同様にして、乳剤11〜20を作成し、これを用いて、実施例1と全く同様にして、塗布試料13〜22を作成し、実施例1と同様のセンシトメトリーの実験を行った。作成した試料とセンシトメトリーの結果を表4に示す。尚、感度は、試料1を120とした時の相対感度である。
【0157】
【0158】
実施例4
実施例1の乳剤2と5の作成において、イリジウム化合物及びイリジウム化合物に変えて黄血塩を添加量を表5のごとく変えて添加して、乳剤21〜30を作成しこれを実施例1と同様に塗布し、実施例1と同様ののセンシトメトリーの実験を行った。結果を表5に示す。
【0159】
【0160】
実施例5
実施例1の乳剤1〜3の作成において酸化剤である過酸化水素水を抜いた乳剤31〜33を作成し、他は、全く同様にしてサンプルを作成した。
(強制経時保存性の評価)
それぞれの感材を30.5cm×25.4cmに裁断し角を内径0.5cmのラウンドコーナーとし、25℃-50%RHの条件下1日放置し、写真材料それぞれ10枚ずつを防湿材料でできた袋の中に密閉し、さらに35.1cm×26.9cm×3.0cmの化粧箱に入れ、50℃で5日間経時した(強制経時)。写真性の評価と同じ処理を行い、カブリ部分の濃度を測定した。
比較となる試料1〜3と新たに作成した試料33〜35の保存後の被りの変化を表6に示す。
【0161】
【0162】
表6の結果から本発明の乳剤は、粒子形成中の酸化剤の添加により経時被りが押さえられているのが判る。
【0163】
実施例6
実施例の1の乳剤2と5において、溶液b2にヨウ化カリウムを添加することで、表7の様なヨウド含有量を有する沃臭化銀乳剤を調整し、その他は全く同様にして、乳剤34〜41を作成した。これを用いて、実施例1と全く同様にして、塗布試料36〜43を作成し、実施例1のセンシトメトリーの実験並びに、実施例2に記載の光照射画像保存性評価を行った。
結果を表7に示す。
【0164】
【0165】
表7の結果から、本発明の平均球相当径50nm以下の粒子は、ヨウド含有率5モル%以下で、感度を維持し、被りが切れ、画像保存性に優れている。
( )内は、基となった乳剤
【0166】
実施例7
実施例1の乳剤2において分光増加色素Aを下記分光増感色素Bと等モル量で置きかえ、テルル増感剤Bをテルル増感剤Cに等モル量で置きかえた以外は同じにして塗布試料44を作成し、実施例6と同様に評価した。但し、露光は、35mW出力の660nmダイオードレーザーを2本合波(ガウシアンビームスポット1/e2が100μm )し、シングルモードで法線方向から露光し、露光後、写真材料を118℃で5秒、引き続いて122℃で12秒処理(熱現像)した。塗布試料(2)と同等の性能であった。
【0167】
【化3】
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photothermographic material (hereinafter sometimes referred to as a photothermographic material). In particular, the present invention relates to a photothermographic material having high sensitivity and a small increase in the amount of fogging after storage in a bright room.
[0002]
[Prior art]
In recent years, in the medical field, reduction of waste processing liquid has been strongly desired from the viewpoint of environmental protection and space saving. Therefore, it can be exposed efficiently by a laser image setter or laser imager, and can form a clear black image with high resolution and sharpness. Photosensitive thermal development for medical diagnosis and photographic technology. There is a need for technology relating to photographic materials. These photosensitive heat-developable photographic materials eliminate the use of solution processing chemicals and can provide customers with a heat-development processing system that is simpler and does not impair the environment.
[0003]
However, in these photothermographic materials, unlike the case of solution processing, since the developing agent (reducing agent) and undeveloped silver are not fixed, the printout of the silver halide after processing produces an image. It changes and becomes a problem. In order to avoid this, it is effective to reduce the silver halide grains or reduce the silver coating amount of the silver halide grains. However, it has been found that sensitivity and image density are significantly reduced. It was.
[0004]
In addition, it is well known in the art that if the grain size of silver halide is significantly reduced to the region of 50 nm or less of the present invention, various inefficiencies in the sensitization process are remarkably increased and a large reduction in sensitivity is caused. It is a known fact. On the other hand, high sensitivity often causes an increase in covering at the same time, and this is also a difficult problem in the heat-developable photosensitive material that is easy to cover, in order to achieve both sensitivity and covering.
[0005]
[Problems to be solved by the invention]
The object of the present invention is high sensitivity, low covering, and very little deterioration in image quality due to increased covering in printout etc. even in the storage in a bright room after processing, and stability over time even in the state before processing. It is an object of the present invention to provide a heat-developable photographic light-sensitive material excellent in the above.
It is a further object of the present invention to provide the above light-sensitive material having little variation from coating lot to coating lot by imparting stability over time of a silver halide emulsion.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has achieved the above-described problems by the following means.
[0007]
In a photothermographic material having at least one photosensitive layer on a support, the photosensitive material contains a silver halide fine grain emulsion having an average sphere equivalent diameter of 10 nm to 50 nm and a non-photosensitive organic fatty acid silver, and 2. A photothermographic material characterized by satisfying the following structural requirements:
[0008]
(1) The halogenated emulsion is not a product prepared by halogen-converting a part of the non-photosensitive organic fatty acid silver (that is, a preformed silver halide emulsion). Can be adjusted independently and mixed when used.
(2) Containing a reducing agent for silver ions.
(3) The silver halide fine grain emulsion is chemically sensitized in the presence of a spectral sensitizing dye.
[0009]
Preferably,
(4) The emulsion is sensitized with selenium and / or tellurium.
(5) The emulsion contains 1 / 100,000 mol or more and 1/1000 or less of polyvalent metal ions per mol of silver halide.
(6) The emulsion has a {100} plane ratio of 50% to 100% of the entire surface.
(7) The emulsion is grain-formed in the presence of an oxidizing agent for silver.
(8) Preferably, the average spherical equivalent diameter of the silver halide grains is 10 nm or more and 30 nm or less.
(9) The spectral sensitizing dye is a merocyanine and / or cyanine dye having an absorption maximum at 600 nm or more and 1000 nm or less.
(10) The silver iodide content of the silver halide grains is from 0 mol% to 5 mol%.
(11) The emulsion contains a triazine compound.
(12) The polyvalent metal ion is selected from any of iridium ions, ruthenium ions, and iron ions, and the ligand thereof includes any of Cl ions, Br ions, and CN ions.
(13) A photothermographic material containing a binder composed of a water-soluble polymer and / or a water-dispersible polymer in the photosensitive material.
Thus, the present invention can be preferably realized.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The photosensitive silver halide used in the present invention is not particularly limited as a halogen composition, and silver chloride, silver chlorobromide, silver bromide, silver iodobromide, silver iodochlorobromide can be used. The preferred silver iodide content of the emulsions of the invention is 5 mol% or less. In the photosensitive silver halide used in the present invention, the distribution of the halogen composition in the grains may be uniform, the halogen composition may be changed stepwise, or may be continuously changed. Further, silver halide grains having a core / shell structure can be preferably used. A preferable structure is a 2- to 5-fold structure, and more preferably 2- to 4-fold core / shell particles can be used. A technique of localizing silver bromide on the surface of silver chloride or silver chlorobromide grains can also be preferably used.
[0011]
Methods for forming photosensitive silver halide are well known in the art, for example, the methods described in Research Disclosure No. 17029 in June 1978 and U.S. Pat.No. 3,700,458 can be used, Specifically, a method is used in which a photosensitive silver halide is prepared in advance by adding a silver supply compound and a halogen supply compound into gelatin or another polymer solution, and then mixed with an organic silver salt. The grain size of the photosensitive silver halide is preferably small for the purpose of suppressing the cloudiness and fogging after image formation and the increase in fogging during printout, specifically 10 nm or more and 50 nm or less, preferably 10 nm or more. 45 nm or less, more preferably 10 nm or more and 40 nm or less, particularly preferably 10 nm μm or more and 30 nm or less. The grain size here refers to the diameter when a sphere equivalent to the volume of silver halide grains is considered.
[0012]
Examples of the shape of silver halide grains include cubes, octahedrons, tabular grains, spherical grains, rod-shaped grains, and potato-shaped grains. In the present invention, cubic grains are particularly preferred. Further, grains having rounded corners of silver halide grains can be preferably used. The surface index (Miller index) of the outer surface of the photosensitive silver halide grain is not particularly limited, but the ratio of the [100] plane with high spectral sensitization efficiency when the spectral sensitizing dye is adsorbed is high. preferable. The ratio is preferably 50% or more and 100% or less, more preferably 65% or more, and further preferably 80% or more. The ratio of the Miller index [100] plane is calculated by T. Tani; J. Imaging Sci., 29, 165 (1985), which uses the adsorption dependence of the [111] plane and the [100] plane in the adsorption of sensitizing dyes. It can be determined by the method described.
[0013]
<Multivalent metal ion>
It is also preferred that the silver halide grains used in the present invention contain a coordination metal complex or metal ion containing a metal of group 3-14 elements of 4, 5 and 6 of the periodic table in the crystal lattice. The coordination metal complex or metal ion can be selected from Group 3 to 14 elements of the 4, 5, and 6 periods in the periodic table with group numbers 1 to 18 from the left. These metals can also be used as metal ions by using them as metal salts such as ammonium salts, acetates, nitrates, sulfates, phosphates, and hydrates, but such as 6-coordinate complex salts and 4-coordinate complex salts By using it as a mononuclear coordination metal complex salt, a binuclear metal complex salt, or a polynuclear metal complex salt, the performance depending on the structure of the ligand or the complex salt can be derived.
[0014]
As a ligand when a coordination metal complex is used, halo (X), aco (H 2 O), azide (N Three ), Cyano (CN), cyanate (OCN), thiocyanate (SCN), selenocyanate (SeCN), tellurocyanate (TeCN), nitrosyl (NO), thionitrosyl (NS), oxo (O), or carbonyl (CO) Etc.) are preferably used. In addition, a carbon-carbon, carbon-hydrogen, or carbon-nitrogen-hydrogen bond such as 4,4′-bipyridine, pyrazine, thiazole and the like disclosed in US Pat. No. 5,360,712 is used. One or more organic ligands may be included.
Specifically, Mg, Ca, Sr, Ba, Al, Sc, Y, LaCr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ru, Rh, Pd, Re, Os, Ir, Pt, Au Cd, Hg, Tl, In, Sn, Pb, Bi, etc. can be used, and these metals are ammonium salt, acetate salt, nitrate salt, sulfate salt, phosphate salt, hydrochloride salt, hexacoordination complex, tetracoordination. Any salt form that can be dissolved during particle formation, such as a coordination complex, can be added. For example, CdBr 2 , CdCl 2 , Cd (NO Three ) 2 , Pd (NO Three ) 2 , Pd (CH Three COO) 2 , K Three [Fe (CN) 6 ], (NH Four ) Four [Fe (CN) 6 ], KIrCl 6 , (NH Four ) Three RhCl 6 , K Four Ru (CN) 6 Etc. The ligand of the coordination compound can be selected from halo, aco, cyano, cyanate, thiocyanate, nitrosyl, thionitrosyl, oxo and carbonyl. These may use only one kind of metal compound part, but may use two kinds or a combination of three or more kinds.
A method of adding a chalcogen compound during preparation of an emulsion as described in US Pat. No. 3,772,031 may be useful. In addition to S, Se, and Te, cyanate, thiocyanate, selenocyanate, carbonate, phosphate, and acetate may be present.
[0015]
The coordination metal complex or metal ion of the present invention is mixed with water or an appropriate organic solvent miscible with water (for example, alcohols, ethers, glycols, ketones, esters, amides, etc.). It can be dissolved and added.
[0016]
The silver halide emulsion used in the present invention preferably has a coordination metal complex or metal ion present during emulsion preparation, for example, during grain formation, desalting step, chemical sensitization, and before coating. When the particles are doped, it is preferably added after the formation of the particles, before the completion of the chemical sensitization after the formation of the particles when used as a particle sensitizer or a chemical sensitizer. A method of doping the whole particle, a method of doping only the core part, the shell part, only the epitaxial part or only the base particle of the grain can be selected.
[0017]
When the silver halide grains are doped with the coordination metal complex or metal ion of the present invention, they are added directly to the reaction solution at the time of silver halide grain formation, or halide ions for forming silver halide grains It is preferable to add it to the particle-forming reaction solution after adding it to a solution containing or after. Further, various addition methods may be combined.
When the silver halide grains are doped with the coordination metal complex or metal ion of the present invention, they may be uniformly present inside the grains, or disclosed in JP-A-4-208936, JP-A-2-125245, and JP-A-3- As disclosed in US Pat. No. 188437, the grain surface phase may be highly doped. Further, as disclosed in US Pat. No. 5,256,530, the particle surface phase may be modified by physical ripening with doped fine particles. Thus, a method of doping silver halide grains by preparing doped fine grains, adding the fine grains and physical ripening is also preferred. Furthermore, you may use combining the said doping method.
[0018]
The coordination metal complex or metal ion satisfying the requirements of the present invention can be contained in the silver halide grains at the same concentration per mole of silver as that conventionally used in the transition metal doping. In this regard, a very wide range of concentrations is known and is disclosed in JP-A 51-107129, 10 per mol of silver. -Ten From a low molar concentration, 10 mol per mol of silver disclosed in US Pat. Nos. 3,687,676 and 3,690,891. -3 Used in a range of high molar concentrations. Effective concentrations vary greatly depending on the halide content of the particles, the selected coordination metal complex or metal ion, its oxidation state, the type of ligand, if any, and the desired photographic effect.
In the silver halide emulsion of the present invention, the content of polyvalent metal ions is 10 per mol of silver halide emulsion. -Ten -10 -3 Moles are preferred, 10 -Five -10 -3 Mole is more preferred.
[0019]
The doping amount and doping ratio of the coordination metal complex or metal ion in the silver halide grains of this study are determined by atomic absorption method, ICP method (Inductively Coupled Plasma Spectrometry: metal ion of the doped coordination metal complex or metal ion: It can be quantified by using an inductively coupled plasma spectroscopy (ICP) method, an ICPMS method (Inductively Coupled Plasma Mass Spectrometry), or the like.
[0020]
Specific examples of the coordination metal complex or metal ion of the present invention include those described in “Comprehensive Coordination Chemistry” (Pergamon Press (1987)). .
Among these, particularly preferred are iridium ions, ruthenium ions, and iron ions as polyvalent metal ions, and preferred ligands are Cl ions, Br ions, and CN ions.
[0021]
The photosensitive silver halide grains can be desalted by washing with water by a method known in the art such as a noodle method or a flocculation method, but in the present invention, it may or may not be desalted.
[0022]
As the gold sensitizer used for gold sensitization to the silver halide emulsion of the present invention, the oxidation number of gold may be +1 or +3, and gold compounds usually used as gold sensitizers are used. Can be used. Typical examples include chloroauric acid, potassium chloroaurate, auric trichloride, potassium auric thiocyanate, potassium iodoaurate, tetracyanoauric acid, ammonium aurothiocyanate, pyridyltrichlorogold and the like.
The amount of gold sensitizer added varies depending on various conditions, but as a guideline it is 1 x 10 per mole of silver halide. -7 More than mole 1 × 10 -3 Mol or less, more preferably 1 × 10 -6 More than mole 5 × 10 -Four It is as follows.
[0023]
The silver halide emulsion of the present invention can be used in combination with gold sensitization and other chemical sensitization. As other chemical sensitization methods, known methods such as sulfur sensitization method, selenium sensitization method, tellurium sensitization method and noble metal sensitization method can be used. When used in combination with the gold sensitizing method, for example, sulfur sensitizing method and gold sensitizing method, selenium sensitizing method and gold sensitizing method, sulfur sensitizing method and selenium sensitizing method and gold sensitizing method, Sulfur sensitizing method, tellurium sensitizing method and gold sensitizing method, sulfur sensitizing method, selenium sensitizing method, tellurium sensitizing method and gold sensitizing method are preferable.
In the present invention, it is preferable to use at least selenium sensitization or tellurium sensitization for high sensitivity.
[0024]
The sulfur sensitization preferably used in the present invention is usually carried out by adding a sulfur sensitizer and stirring the emulsion at a high temperature of 40 ° C. or higher for a predetermined time. Known compounds can be used as the sulfur sensitizer, for example, various sulfur compounds such as thiosulfate, thioureas, thiazoles, rhodanines, etc. in addition to sulfur compounds contained in gelatin. be able to. Preferred sulfur compounds are thiosulfate and thiourea compounds. The amount of sulfur sensitizer added varies under various conditions such as pH during chemical ripening, temperature, and the size of silver halide grains, but 1 × 10 per mole of silver halide. -7 ~ 1 × 10 -2 Mol, more preferably 1 × 10 -Five ~ 1 × 10 -3 Is a mole.
[0025]
A known selenium compound can be used as the selenium sensitizer used in the present invention. That is, it is usually carried out by adding unstable and / or non-labile selenium compounds and stirring the emulsion at a high temperature of 40 ° C. or higher for a predetermined time. As the unstable selenium compound, compounds described in JP-B-44-15748, JP-A-43-13489, JP-A-4-25832, JP-A-4-109240, JP-A-3-121798 and the like can be used. In particular, it is preferable to use compounds represented by general formulas (VIII) and (IX) in JP-A-4-324855.
[0026]
The tellurium sensitizer used in the present invention is a compound that forms silver telluride presumed to be a sensitization nucleus on the surface or inside of a silver halide grain. The rate of silver telluride formation in the silver halide emulsion can be tested by the method described in JP-A-5-313284. Examples of tellurium sensitizers include diacyl tellurides, bis (oxycarbonyl) tellurides, bis (carbamoyl) tellurides, diacyl tellurides, bis (oxycarbonyl) ditellurides, bis (carbamoyl) ditellurides, P = Te Compounds having a bond, tellurocarboxylates, Te-organyl tellurocarboxylates, di (poly) tellurides, tellurides, tellurols, telluroacetals, tellurosulfonates, compounds having a P-Te bond, Te heterocycles, tellurocarbonyl compounds, inorganic tellurium compounds, colloidal tellurium and the like can be used. Specifically, U.S. Patent Nos. 1,623,499, 3,320,069, 3,772,031, British Patent Nos. 235,211, 1,121,496, 1,295,462, 1,396,696, Canadian Patent No. 800,958, 4-204640, 3-53693, 3-131598, 4-129787, Journal of Chemical Society, Chemical Communication (J. Chem. Soc. Chem. Commun.), 635 (1980) ), Ibid, 1102 (1979), ibid, 645 (1979), Journal of Chemical Society Perkin Transaction 1 Chem. Soc. Perkin.Trans. 1), 2191 (1980), S. Patai (S. Patai), The Chemistry of Organic Serenium and Tellunium Compounds, Vol 1 (1986), Vol 2 (1987). it can. In particular, compounds represented by general formulas (II), (III) and (IV) in JP-A-5-313284 are preferred.
[0027]
The amount of selenium and tellurium sensitizers used in the present invention varies depending on the silver halide grains used, chemical ripening conditions, etc., but is generally 1 × 10 6 per mole of silver halide. -8 ~ 1 × 10 -2 Moles, preferably 1 x 10 -7 ~ 1 × 10 -3 Use moles. The conditions for chemical sensitization in the present invention are not particularly limited, but the pH is 5 to 8, the pAg is 6 to 11, preferably 7 to 10, and the temperature is 40 to 95 ° C., preferably 45 to 85 ° C.
In the silver halide emulsion used in the present invention, a cadmium salt, a sulfite salt, a lead salt, a thallium salt or the like may coexist in the process of silver halide grain formation or physical ripening.
[0028]
In the present invention, reduction sensitization can be used. As specific compounds of the reduction sensitization method, for example, stannous chloride, aminoiminomethanesulfinic acid, hydrazine derivatives, borane compounds, silane compounds, polyamine compounds, etc. can be used in addition to ascorbic acid and thiourea dioxide. . Further, reduction sensitization can be performed by ripening the emulsion while maintaining the pH at 7 or higher or pAg at 8.3 or lower. Further, reduction sensitization can be performed by introducing a single addition portion of silver ions during grain formation.
A thiosulfonic acid compound may be added to the silver halide emulsion of the present invention by the method described in European Patent No. 293,917.
The silver halide emulsion in the light-sensitive material used in the present invention may be one kind or two or more kinds (for example, those having different average grain sizes, those having different halogen compositions, those having different crystal habits, chemical sensitization, etc. Those with different conditions) may be used in combination.
[0029]
The amount of the photosensitive silver halide used in the present invention is preferably 0.01 to 0.5 mol, more preferably 0.02 to 0.3 mol, and more preferably 0.02 to 0.20 mol per mol of the organic silver salt. The following are particularly preferred: Regarding the mixing method and mixing conditions of photosensitive silver halide and organic silver salt prepared separately, the silver halide particles and organic silver salt that have been prepared respectively are mixed with a high-speed stirrer, ball mill, sand colloid mill, vibration mill, homogenizer, etc. Or a method of preparing an organic silver salt by mixing photosensitive silver halide that has been prepared at any timing during the preparation of the organic silver salt. There is no particular limitation as long as it appears.
The preferred addition time of the silver halide of the present invention to the image-forming layer coating solution is from 180 minutes before application to immediately before application, preferably from 60 minutes to 10 seconds before application. There is no particular limitation as long as the effects of the invention are sufficiently exhibited. Specific mixing methods include mixing in a tank in which the average residence time calculated from the addition flow rate and the amount of liquid delivered to the coater is the desired time, and by N. Harnby, F. Edwards, AWNienow, Takahashi There is a method of using a static mixer or the like described in Chapter 8 of “Liquid mixing technology” (published by Nikkan Kogyo Shimbun, 1989).
[0030]
<About spectral sensitizing dyes>
The spectral sensitizing dye in the present invention is not particularly limited as long as it can spectrally sensitize the silver halide grains in a desired (600 nm or more) wavelength region when adsorbed on the silver halide grains. As the sensitizing dye, a cyanine dye, a merocyanine dye, a complex cyanine dye, a complex merocyanine dye, a hoholor cyanine dye, a styryl dye, a hemicyanine dye, an oxonol dye, a hemioxonol dye, or the like can be used. Useful sensitizing dyes used in the present invention are described in, for example, the references described or cited in RESEARCH DISCLOSURE Item 17643IV-A (December 1978 p.23), Item1831X (August 1979 p.437) Has been. In particular, a sensitizing dye having a spectral sensitivity suitable for the spectral characteristics of the light sources of various laser imagers, scanners, image setters and plate-making cameras can be advantageously selected.
[0031]
As an example of spectral sensitization to red light, a so-called red light source such as a He-Ne laser, a red semiconductor laser, or an LED is disclosed in Japanese Patent Application Laid-Open No. 54-18726. Compounds, compounds of I-1 to I-35 described in JP-A-6-75322, compounds of I-1 to I-34 described in JP-A-7-287338, dyes described in JP-B-55-39818 1 to 20, compounds of I-1 to I-37 described in JP-A-62-284343 and compounds of I-1 to I-34 described in JP-A-7-287338 are advantageously selected.
[0032]
For semiconductor laser light sources in the wavelength region of 750-1400 nm, various known dyes including cyanine, merocyanine, styryl, hemicyanine, oxonol, hemioxonol and xanthene dyes can be spectrally sensitized. it can. Useful cyanine dyes are, for example, cyanine dyes having basic nuclei such as thiazoline nucleus, oxazoline nucleus, pyrroline nucleus, pyridine nucleus, oxazole nucleus, thiazole nucleus, selenazole nucleus and imidazole nucleus. Useful merocyanine dyes are preferably acidic nuclei such as thiohydantoin nucleus, rhodanine nucleus, oxazolidinedione nucleus, thiazolinedione nucleus, barbituric acid nucleus, thiazolinone nucleus, malononitrile nucleus and pyrazolone nucleus in addition to the basic nuclei described above. Including. Of the above-mentioned cyanine and merocyanine dyes, those having an imino group or a carboxyl group are particularly effective. For example, U.S. Pat.Nos. 3,761,279, 3,719,495, 3,877,943, British Patents 1,466,201, 1,469,117, 1,422,057, JP-B-3-10391, 6-52387, JP-A-5-341432 and 6 -194781 and 6-301141 may be appropriately selected from known dyes.
[0033]
Particularly preferred as the structure of the dye used in the present invention is a cyanine dye having a thioether bond-containing substituent (for example, JP-A Nos. 62-58239, 3-138638, 3-138642, and 4- No. 255840, No. 5-72659, No. 5-72661, No. 6-222491, No. 2-230506, No. 6-258757, No. 6-317868, No. 6-324425, and No. 7- 500926, a dye described in US Pat. No. 5,541,054), a dye having a carboxylic acid group (for example, dyes described in JP-A-3-163440, 6-301141, US Pat. No. 5,441,899), a merocyanine dye, Multinuclear merocyanine dyes and polynuclear cyanine dyes (JP-A-47-6329, 49-105524, 51-127719, 52-80829, 54-61517, 59-214846, 60-6750) No. 63-159841, JP-A-6-35109, JP-A-6-59381, JP-A-7-65537, JP-A-7-65537, JP-T 55-50111, British Patent 1,467,638, US Patent 5,281,515 Dyes described in .
Further, as dyes forming J-band, dyes described in Example 5 of US Pat. Nos. 5,510,236 and 3,871,887, JP-A-2-96131 and JP-A-59-48753 are disclosed, which are used in the present invention. be able to.
In the present invention, among these, a merocyanine dye having an absorption maximum at 600 nm or more and 1000 nm or less, which has not been used for addition prior to chemical sensitization because of its weak adsorption, has a residual color and sensitivity, in particular. preferable. In the case of such a merocyanine dye, the effect is remarkable as compared with the cyanine dye.
[0034]
These sensitizing dyes may be used alone or in combination of two or more. A combination of sensitizing dyes is often used for the purpose of supersensitization. Along with the sensitizing dye, the emulsion itself may contain a dye having no spectral sensitizing action or a substance that does not substantially absorb visible light and exhibits supersensitization. Useful sensitizing dyes, combinations of dyes exhibiting supersensitization, and substances exhibiting supersensitization are listed in Research Disclosure 176, 17643 (issued in December, 1978), page 23, Section IV, or JP-B 49-25500 No. 43-4933, JP-A-59-19032, 59-192242 and the like.
[0035]
In order to add sensitizing dyes to silver halide emulsions, they may be dispersed directly in the emulsion, or water, methanol, ethanol, propanol, acetone, methyl cellosolve, 2,2,3,3 -Solvent alone such as tetrafluoropropanol, 2,2,2-trifluoroethanol, 3-methoxy-1-propanol, 3-methoxy-1-butanol, 1-methoxy-2-propanol, N, N-dimethylformamide Alternatively, it may be dissolved in a mixed solvent and added to the emulsion.
[0036]
Further, as disclosed in US Pat. No. 3,469,987, etc., a dye is dissolved in a volatile organic solvent, the solution is dispersed in water or a hydrophilic colloid, and this dispersion is added to the emulsion. As disclosed in Japanese Patent Publication Nos. 44-23389, 44-27555, 57-22091, etc., the dye is dissolved in an acid and the solution is added to the emulsion, or the acid or base is added. Add to emulsion as aqueous solution by coexistence, and add aqueous solution or colloidal dispersion in the presence of surfactant as disclosed in US Pat. Nos. 3,822,135, 4,006,025, etc. As disclosed in JP-A-53-102733 and JP-A-58-105141, a method in which a dye is directly dispersed in a hydrophilic colloid, and the dispersion is added to an emulsion. As disclosed in US Pat. Construed, it is also possible to use a method of adding the solution to the emulsion. In addition, ultrasonic waves can be used for the solution.
[0037]
The time when the sensitizing dye used in the present invention is added to the silver halide emulsion of the present invention may be during any step of emulsion preparation as long as it exists during chemical sensitization. For example, as disclosed in the specifications of U.S. Pat.Nos. 2,735,766, 3,628,960, 4,183,756, 4,225,666, JP-A-58-184142, 60-196749, etc., a silver halide grain forming step As disclosed in the specification of JP-A-58-113920, etc., during or before the desalting period, during the desalting step and / or after the desalting period and before the start of chemical ripening, It may be added immediately before aging or at a time during the process. Further, as disclosed in the specifications of U.S. Pat.No. 4,225,666, JP-A-58-7629, etc., the same compound alone or in combination with a compound of a different structure, for example, during the particle formation step and the chemical ripening step It may be added separately during or after chemical ripening, or before or during chemical ripening, or after completion of the process, or the type of compound and combination of compounds to be added dividedly. May be added.
Various addition methods can be employed as described above, but it is necessary to add such that a spectral sensitizing dye is present during chemical sensitization. In the present invention, it is preferably added at a time after desalting and before the start of chemical sensitization.
[0038]
The amount of the spectral sensitizing dye used in the present invention may be a desired amount in accordance with the performance such as sensitivity and fog, but 10 per mol of silver halide in the photosensitive layer. -6 ~ 1 mole is preferred, 10 -Four ~Ten -1 Mole is more preferred.
[0039]
<Oxidizing agent>
Examples of the oxidizing agent for silver (in this case, a very small silver nucleus of the order of several atoms serving as a physical development nucleus) include hydrogen peroxide solution, mercury, bromosuccinimides, polyhalides, disulfide compounds and iodine described later. , Bromine, chlorine, etc. Further, the compounds represented by the general formulas (i), (ii), and (iii) described in JP-A-2-105139, and thiosulfones represented by specific exemplified compounds 1-1 to 33, 2-1 to 25, and 3-1 to 9 Acid compounds can be preferably used.
These addition times can be selected at any subsequent stage during grain formation and after the end of chemical sensitization. Preferably, an oxidizing agent is present during grain formation and at the end. The amount of addition can be selected in any way depending on the oxidizing power of the oxidizing agent, but is preferably about 1/10000 to 1/10 mol per 1 mol of silver.
[0040]
<Improvement of {100} surface ratio>
When it becomes fine particles, the crystal habit becomes unstable, and in the formation of silver halide fine particles, the grains are rounded even under growth conditions that usually produce cubic crystals. However, the {100} plane is known as a system with little inherent desensitization and good color sensitization efficiency, and rounding of the particles causes a significant decrease in sensitivity. In order to prevent this, various measures are required in the formation of fine particles, and at least the {100} plane ratio is more than 50%. It turned out to be important.
[0041]
As a method for increasing the {100} plane ratio, as shown in the examples of the present invention, growth is performed at a low temperature, and pKa of benzimidazoles or the like as a crystal habit controlling agent is 6.0 or less (that is, water washing pH 5. It is retained at a relatively high temperature as in the present invention by adsorbing a {100} face adsorbing compound or mercapto compound (mostly removed by precipitation, desalting and washing steps of 0 or less). In the chemical sensitization step, it was proved effective to add a dye before the start of chemical sensitization. The amount of these adsorbents used is preferably about 1/100000 to 1/10 mole per mole of silver halide.
[0042]
<Triazine compound>
In the present invention, it is preferable to add a triazine compound for the purpose of performance stability after emulsion formation. Specific examples thereof are compounds represented by the general formula (iii) described in JP-A-6-11791. Illustrative compounds ii-1 to iii-21 described in the patent can be preferably used, but are not limited thereto. The next stage of the addition can be any process such as particle formation-desalting / washing / dispersing / chemical ripening, but preferably after the desalting / washing process. The amount added is not particularly limited, but is preferably about 1/10000 to 1/100 mol per mol of silver halide.
[0043]
<Organic fatty acid silver>
The organic fatty silver salt that can be used in the present invention is relatively stable to light, but at 80 ° C. or in the presence of an exposed photocatalyst (such as a latent image of photosensitive silver halide) and a reducing agent. It is a silver salt that forms a silver image when heated further. The organic fatty acid silver salt is particularly preferably a silver salt of a long-chain fatty carboxylic acid (having 10 to 30, preferably 15 to 28 carbon atoms). The organic fatty acid silver salt can preferably constitute about 5 to 70% by weight of the image forming layer. Preferred examples of the organic fatty acid silver include silver behenate, silver arachidate, silver stearate, silver oleate, silver laurate, silver caproate, silver myristate, silver palmitate, silver maleate, silver fumarate, tartaric acid. Includes silver, silver linoleate, silver butyrate and silver camphorate, mixtures thereof, and the like.
[0044]
The organic fatty acid silver preferably used in the present invention is prepared by reacting a silver nitrate with a solution or suspension of an alkali metal salt (including Na salt, K salt, Li salt, etc.) of the organic fatty acid shown above. Can do. The organic fatty acid alkali metal salt of the present invention is obtained by subjecting the organic fatty acid to an alkali treatment. The organic fatty acid silver of the present invention (hereinafter sometimes simply referred to as organic silver or organic acid silver) can be produced in a palindromic or continuous manner in any suitable container. Stirring in the reaction vessel can be performed by any stirring method depending on the required properties of the particles. The organic acid silver can be prepared by adding a silver nitrate aqueous solution gradually or rapidly to a reaction vessel containing an organic acid alkali metal salt solution or suspension, or an organic acid prepared in advance in a reaction vessel containing a silver nitrate aqueous solution. Any of the method of adding an alkali metal salt solution or suspension gradually or rapidly, and the method of simultaneously adding an aqueous silver nitrate solution and an organic acid alkali metal salt solution or suspension to a reaction vessel are preferably used. Can do.
[0045]
The silver nitrate aqueous solution and the organic acid alkali metal salt solution or suspension can be used at an arbitrary concentration for controlling the particle size of the organic acid silver to be adjusted, and can be added at an arbitrary addition rate. As a method for adding the silver nitrate aqueous solution and the organic acid alkali metal salt solution or suspension, it can be added by a method of adding at a constant addition rate, an accelerated addition method or a slow addition method by an arbitrary time function. Moreover, you may add to a liquid level with respect to a reaction liquid, and may add in a liquid. In the case of a method in which a silver nitrate aqueous solution and an organic acid alkali metal salt solution or suspension prepared in advance are simultaneously added to the reaction vessel, either the silver nitrate aqueous solution or the organic acid alkali metal salt solution or suspension is preceded. Although it can be added, it is preferable to add the silver nitrate aqueous solution in advance. The leading degree is preferably from 0 to 50%, particularly preferably from 0 to 25% of the total amount added. Further, as described in JP-A-9-27643 and the like, a method of adding while controlling the pH or silver potential of the reaction solution during the reaction can be preferably used.
[0046]
The pH of the silver nitrate aqueous solution or organic acid alkali metal salt solution or suspension added can be adjusted according to the required properties of the particles. Any acid or alkali can be added for pH adjustment. Depending on the required properties of the grains, for example, the temperature in the reaction vessel can be arbitrarily set to control the grain size of the organic acid silver to be adjusted. Alternatively, the suspension can be adjusted to an arbitrary temperature. The organic acid alkali metal salt solution or suspension is preferably heated and kept at 50 ° C. or higher in order to ensure fluidity of the liquid.
[0047]
The organic acid silver used in the present invention is third. Class It is preferably prepared in the presence of alcohol. Third used in the present invention Class Alcohols preferably have a total carbon number of 15 or less, particularly preferably 10 or less. Preferred third Class Examples of the alcohol include tert-butanol, but the present invention is not limited thereto.
[0048]
Third used in the present invention Class The alcohol may be added at any time during the preparation of the organic acid silver, but it is preferably added during the preparation of the organic acid alkali metal salt to dissolve and use the organic acid alkali metal salt. The third aspect of the present invention Class The amount of alcohol used can be arbitrarily used in the range of 0.01 to 10 by weight with respect to H2O as a solvent in the preparation of the organic acid silver, but is preferably in the range of 0.03 to 1.
[0049]
Although there is no restriction | limiting in particular as a shape of the organic silver salt which can be used for this invention, The acicular crystal | crystallization which has a short axis and a long axis is preferable. In the present invention, the minor axis is preferably 0.01 μm to 0.20 μm, the major axis is 0.10 μm to 5.0 μm, the minor axis is 0.01 μm to 0.15 μm, and the major axis is more preferably 0.10 μm to 4.0 μm. The particle size distribution of the organic silver salt is preferably monodispersed. Monodispersion is preferably 100% or less, more preferably 80% or less, and even more preferably 50% of the value obtained by dividing the standard deviation of the lengths of the short and long axes by the short and long axes, respectively. It is as follows. The method for measuring the shape of the organic silver salt can be determined from a transmission electron microscope image of the organic silver salt dispersion. Another method for measuring monodispersity is to calculate the standard deviation of the volume weighted average diameter of the organic silver salt, and the percentage (coefficient of variation) of the value divided by the volume weighted average diameter is preferably 100% or less, more Preferably it is 80% or less, more preferably 50% or less. As a measuring method, for example, it is obtained from the particle size (volume weighted average diameter) obtained by irradiating an organic silver salt dispersed in a liquid with laser light and obtaining an autocorrelation function with respect to the temporal change of the fluctuation of the scattered light. Can do.
[0050]
The organic silver salt that can be used in the present invention can be preferably desalted. There is no particular limitation on the method for performing desalting, and a known method can be used, but a known filtration method such as centrifugal filtration, suction filtration, ultrafiltration, and flock-forming water washing by agglomeration method can be preferably used.
[0051]
In the present invention, for the purpose of obtaining an organic silver salt solid dispersion having a high S / N, a small particle size, and no aggregation, it contains an organic silver salt as an image forming medium and substantially contains a photosensitive silver salt. It is preferable to use a dispersion method in which a pressure drop is performed after converting a non-aqueous dispersion into a high-speed flow.
[0052]
And after passing through such a process, it mixes with photosensitive silver salt aqueous solution, and manufactures the photosensitive image forming medium coating liquid. When a photothermographic material is produced using such a coating solution, a photothermographic material having low haze and low fog and high sensitivity can be obtained. On the other hand, when the photosensitive silver salt coexists when it is converted into a high-pressure and high-speed flow and dispersed, the fog rises and the sensitivity is remarkably lowered. Further, when an organic solvent is used as a dispersion medium instead of water, haze increases, fogging increases, and sensitivity tends to decrease. On the other hand, if the conversion method in which a part of the organic silver salt in the dispersion is converted into a photosensitive silver salt is used instead of the method of mixing the aqueous photosensitive silver salt solution, the sensitivity is lowered.
In the above, the aqueous dispersion dispersed by converting to high pressure and high speed is substantially free of photosensitive silver salt, and its water content is 0.1 mol% with respect to the non-photosensitive organic silver salt. In the following, no positive photosensitive silver salt is added.
[0053]
In the present invention, for example, “Dispersion Rheology and Dispersion Technology” (Toshio Kajiuchi, Hiroki Arai, 1991, Shinyamasha) Publishing Co., Ltd., p357-p403), “Progress of Chemical Engineering, Vol. 24” (Chemical Engineering Society, Tokai Branch, 1990, Tsuji Shoten, p184-p185), etc., but the dispersion method in the present invention Pressurizes an aqueous dispersion containing at least an organic silver salt with a high-pressure pump or the like and feeds it into a pipe, then passes it through a narrow slit provided in the pipe, and then causes a sudden pressure drop in the dispersion. This is a method for performing fine dispersion.
[0054]
For high-pressure homogenizers to which the present invention relates, generally, (a) “shearing force” generated when the dispersoid passes through a narrow gap at high pressure and high speed, and (b) the dispersoid is released from high pressure to normal pressure. It is thought that the fine particles are dispersed by the dispersion force such as “cavitation force” generated during the process. In the old days, this type of dispersing device includes a gorin homogenizer. In this device, the liquid to be dispersed sent at a high pressure is converted into a high-speed flow in a narrow gap on the cylindrical surface, and this force is applied to the surrounding wall surface. Colliding and emulsifying / dispersing by the impact force. Working pressure is generally 100-600kg / cm 2 The flow velocity is in the range of several m to 30 m / sec. In order to increase the dispersion efficiency, a high flow velocity portion having a saw blade shape to increase the number of collisions has been devised. On the other hand, devices that can disperse at higher pressures and higher flow rates have been developed in recent years. Typical examples are microfluidizers (Microfluidics International Corporation) and nanomizers (specialized machines). Industrial Co., Ltd.).
[0055]
Dispersing devices suitable for the present invention include microfluidizer M-110S-EH (with G10Z interaction chamber), M-110Y (with H10Z interaction chamber), M-140K (manufactured by Microfluidics International Corporation) G10Z with interaction chamber), HC-5000 (with L30Z or H230Z interaction chamber), HC-8000 (with E230Z or L30Z interaction chamber) and the like.
[0056]
Using these devices, pressurize an aqueous dispersion containing at least an organic silver salt with a high-pressure pump and feed it into the pipe, and then apply a desired pressure by passing it through a narrow slit provided in the pipe. Then, an organic silver salt dispersion most suitable for the present invention can be obtained by causing a rapid pressure drop in the dispersion by a method such as rapidly returning the pressure in the pipe to atmospheric pressure.
[0057]
Prior to the dispersion operation, the raw material liquid is preferably predispersed. As a pre-dispersing means, known dispersing means (for example, high speed mixer, homogenizer, high speed impact mill, Banbury mixer, homomixer, kneader, ball mill, vibration ball mill, planetary ball mill, attritor, sand mill, bead mill, colloid mill, jet mill) , Roller mill, tron mill, high-speed stone mill). In addition to mechanical dispersion, it may be coarsely dispersed in a solvent by controlling the pH, and then finely divided by changing the pH in the presence of a dispersion aid. At this time, an organic solvent may be used as a solvent used for the coarse dispersion, and the organic solvent is usually removed after the formation of fine particles.
[0058]
In the organic silver salt dispersion of the present invention, it is possible to disperse to a desired particle size by adjusting the flow rate, the differential pressure at the time of pressure drop and the number of treatments, but from the viewpoint of photographic characteristics and particle size, the flow rate is 200 m. / Sec ~ 600m / sec, differential pressure at the time of pressure drop is 900 ~ 3000kg / cm 2 Is preferred, the flow rate is 300m / sec to 600m / sec, and the differential pressure at the time of pressure drop is 1500 to 3000kg / cm 2 More preferably, it is the range. The number of distributed treatments can be selected as necessary. Usually, the number of treatments of 1 to 10 is selected, but the number of treatments of about 1 to 3 is selected from the viewpoint of productivity. Increasing the temperature of such an aqueous dispersion under high pressure is not preferable from the viewpoint of dispersibility and photographic characteristics. At high temperatures exceeding 90 ° C, the particle size tends to increase and fog tends to increase. is there. Therefore, the present invention includes a cooling step in the step before the conversion to the high pressure and the high flow rate, the step after the pressure drop, or both of these steps. It is preferable to be kept in the range of ˜90 ° C., more preferably in the range of 5 to 80 ° C., particularly preferably in the range of 5 to 65 ° C. Especially 1500 ~ 3000kg / cm 2 It is effective to install the above cooling process at the time of high pressure dispersion in the above range. Depending on the required heat exchange amount, the cooler can be appropriately selected from a double pipe, a double pipe using a static mixer, a multi-tube heat exchanger, a serpentine heat exchanger, and the like. Further, in order to increase the efficiency of heat exchange, a suitable tube thickness, wall thickness, material, etc. may be selected in consideration of the operating pressure. As the refrigerant used in the cooler, use a 20 ° C well water, 5-10 ° C cold water treated with a freezer, or -30 ° C ethylene glycol / water, etc. You can also
[0059]
In the dispersion operation of the present invention, it is preferable to disperse the organic silver salt in the presence of an aqueous solvent-soluble dispersant (dispersion aid). Examples of the dispersing aid include polyacrylic acid, acrylic acid copolymer, maleic acid copolymer, maleic acid monoester copolymer, acrylomethylpropanesulfonic acid copolymer, and the like, carboxymethyl Semi-synthetic anionic polymers such as starch and carboxymethyl cellulose, anionic polymers such as alginic acid and pectic acid, compounds described in JP-A-7-350753, or known anionic, nonionic, cationic surfactants and other polyvinyls A known polymer such as alcohol, polyvinylpyrrolidone, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, or a polymer compound existing in nature such as gelatin can be appropriately selected and used. Le compounds, particularly preferred water-soluble cellulose derivatives.
[0060]
Dispersing aid is generally mixed with organic silver salt powder or wet cake organic silver salt before dispersion, and sent to the disperser as a slurry. It is good also as an organic silver salt powder or a wet cake by heat-treating and the process by a solvent. The pH may be controlled with an appropriate pH adjuster before, during or after dispersion.
[0061]
In addition to mechanical dispersion, it may be coarsely dispersed in a solvent by controlling the pH, and then finely divided by changing the pH in the presence of a dispersion aid. At this time, an organic solvent may be used as a solvent used for the coarse dispersion, and the organic solvent is usually removed after the formation of fine particles.
[0062]
The prepared dispersion is stored with stirring for the purpose of suppressing sedimentation of fine particles during storage, or stored in a highly viscous state (for example, in a gelatinized state using gelatin) with a hydrophilic colloid. You can also In addition, a preservative can be added for the purpose of preventing the propagation of various bacteria during storage.
[0063]
The particle size (volume weighted average diameter) of the organic silver salt solid fine particle dispersion of the present invention is such that, for example, a solid fine particle dispersion dispersed in a liquid is irradiated with laser light, and the autocorrelation function with respect to the time variation of the fluctuation of the scattered light. Can be determined from the particle size (volume weighted average diameter) obtained. A solid fine particle dispersion having an average particle size of 0.05 μm to 10.0 μm is preferable. More preferably, the average particle size is 0.1 μm or more and 5.0 μm or less, and still more preferably the average particle size is 0.1 μm or more and 2.0 μm or less.
[0064]
The particle size distribution of the organic silver salt is preferably monodispersed. Specifically, the percentage (variation coefficient) of the value obtained by dividing the standard deviation of the volume weighted average diameter by the volume weighted average diameter is 80% or less, more preferably 50% or less, and still more preferably 30% or less.
[0065]
The method for measuring the shape of the organic silver salt can be determined from a transmission electron microscope image of the organic silver salt dispersion.
[0066]
<Reducing agent>
The photothermographic material of the present invention contains a reducing agent (for silver ions) for the organic silver salt. The reducing agent for the organic silver salt may be any substance, preferably an organic substance, that reduces silver ions to metallic silver. Conventional photographic developers such as phenidone, hydroquinone and catechol are useful, but hindered phenol reducing agents are preferred. The reducing agent is preferably contained in an amount of 5 to 50% by mole, more preferably 10 to 40% by mole, based on 1 mole of silver on the surface having the image forming layer. The addition layer of the reducing agent may be any layer on the surface having the image forming layer. When it is added to a layer other than the image forming layer, it is preferably used in a larger amount of 10 to 50 mol% with respect to 1 mol of silver. The reducing agent may be a so-called precursor that is derivatized so as to have an effective function only during development.
[0067]
In photothermographic materials using organic silver salts, a wide range of reducing agents are disclosed in JP-A-46-6074, 47-1238, 47-33621, 49-46427, 49-115540, 50-14334, 50-36110, 50-14771, 51-32632, 51-1023721, 51-32324, 51-51933, 52-84727, 55- 108654, 56-146133, 57-82828, 57-82829, JP-A-6-3793, U.S. Pat.No. 3,667,9586, 3,679,426, 3,751,252, 3,751,255, 3,761,270 No. 3,782,949, No. 3,839,048, No. 3,928,686, No. 5,464,738, German Patent No. 2321328, European Patent No. 692732, and the like. For example, amide oximes such as phenylamidooxime, 2-thienylamidooxime and p-phenoxyphenylamidooxime; azines such as 4-hydroxy-3,5-dimethoxybenzaldehyde azine; 2,2′-bis (hydroxymethyl) propionyl a combination of an aliphatic carboxylic acid aryl hydrazide and ascorbic acid, such as a combination of β-phenylhydrazine and ascorbic acid; a combination of polyhydroxybenzene and hydroxylamine, reductone and / or hydrazine (eg hydroquinone and bis (ethoxy Ethyl) hydroxylamine, piperidinohexose reductone or formyl-4-methylphenylhydrazine in combination); phenylhydroxamic acid, p-hydroxyphenylhydroxamic acid and β-arininhydroxam Hydroxamic acids such as acids; combinations of azines and sulfonamidophenols (eg, phenothiazine and 2,6-dichloro-4-benzenesulfonamidophenol); ethyl-α-cyano-2-methylphenyl acetate, ethyl-α- Α-cyanophenylacetic acid derivatives such as cyanophenylacetate; 2,2′-dihydroxy-1,1′-binaphthyl, 6,6′-dibromo-2,2′-dihydroxy-1,1′-binaphthyl and bis (2 Bis-β-naphthol as exemplified by -hydroxy-1-naphthyl) methane; bis-β-naphthol and 1,3-dihydroxybenzene derivatives (eg 2,4-dihydroxybenzophenone or 2 ′, 4′-dihydroxy Combination of acetophenone, etc .; 5-pyrazolone, such as 3-methyl-1-phenyl-5-pyrazolone; dimethylaminohexose reductone, anhydrodihydroaminohexose reda Ton and anhydrodihydropiperidone hexose reductone, such as reductone; 2,6-dichloro-4-benzenesulfonamidophenol and sulfonamidophenol reducing agents such as p-benzenesulfonamidophenol; 2-phenylindane 1,3-dione and the like; 2,2-dimethyl-7-t-butyl-6-hydroxychroman and other chromans; 2,6-dimethoxy-3,5-dicarboethoxy-1,4-dihydropyridine and other 1 2,4-dihydropyridine; bisphenol (eg, bis (2-hydroxy-3-t-butyl-5-methylphenyl) methane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 4,4-ethylidene -Bis (2-t-butyl-6-methylphenol), 1,1, -bis (2-hydroxy-3,5-dimethylpheni-3,5,5-trimethylhexane and 2,2-bis (3, (5-dimethyl-4-hydroxyphenyl) propanol etc.) Ascorbic acid derivatives (eg 1-ascorbyl palmitate, ascorbyl stearate); and aldehydes and ketones such as benzyl and biacetyl; 3-pyrazolidone and certain indan-1,3-diones; chromanol (such as tocopherol), etc. There is. Particularly preferred reducing agents are bisphenol and chromanol.
[0068]
The reducing agent of the present invention may be added by any method such as a solution, a powder, or a solid fine particle dispersion. The solid fine particle dispersion is performed by a known finer means (for example, ball mill, vibration ball mill, sand mill, colloid mill, jet mill, roller mill, etc.). A dispersion aid may be used when dispersing the solid fine particles.
[0069]
Inclusion of an additive known as a “toning agent” that improves the image may increase the optical density. The toning agent may also be advantageous in forming a black silver image. The toning agent is preferably contained in an amount of 0.1 to 50 mol%, more preferably 0.5 to 20 mol%, per mol of silver on the surface having the image forming layer. The toning agent may be a so-called precursor that is derivatized so as to have an effective function only during development.
[0070]
In photothermographic materials using organic silver salts, a wide range of color toning agents are disclosed in JP-A-46-6077, 47-10282, 49-5019, 49-5020, 49-91215, 49-91215, 50-2524, 50-32927, 50-67132, 50-67641, 50-114217, 51-3223, 51-27923, 52- 1478, 52-99813, 53-1020, 53-76020, 54-156524, 54-156525, 61-183642, JP 4-56848, JP-B 49- No. 10727, No. 54-20333, US Pat. Nos. 3,080,254, 3,446,648, 3,782,941, 4,123,282, 4,510,236, British Patent 1380795, Belgian Patent 841910 and the like. Examples of toning agents are phthalimide and N-hydroxyphthalimide; succinimide, pyrazolin-5-one, and quinazolinone, 3-phenyl-2-pyrazolin-5-one, 1-phenylurazole, quinazoline and 2,4-thiazolidinedione Cyclic imides such as: naphthalimide (eg, N-hydroxy-1,8-naphthalimide); cobalt complex (eg, cobalt hexamine trifluoroacetate); 3-mercapto-1,2,4-triazole, 2,4 Mercaptans, exemplified by -dimercaptopyrimidine, 3-mercapto-4,5-diphenyl-1,2,4-triazole and 2,5-dimercapto-1,3,4-thiadiazole; N- (aminomethyl) aryldi Carboximide, (eg, (N, N-dimethylaminomethyl) phthalimide and N, N- (dimethylaminomethyl) -naphthalene-2,3-dicarboximide); Blocked pyrazoles, isothiuronium derivatives and certain photobleaching agents (e.g., N, N'-hexamethylenebis (1-carbamoyl-3,5-dimethylpyrazole), 1,8- (3,6-diazaoctane) bis (Isothiuronium trifluoroacetate) and 2-tribromomethylsulfonyl)-(benzothiazole)); and 3-ethyl-5 [(3-ethyl-2-benzothiazolinylidene) -1-methylethylidene]- 2-thio-2,4-oxazolidinedione; phthalazinone, phthalazinone derivatives or metal salts, or 4- (1-naphthyl) phthalazinone, 6-chlorophthalazinone, 5,7-dimethoxyphthalazinone and 2,3-dihydro- Derivatives such as 1,4-phthalazinedione; combinations of phthalazinone and phthalic acid derivatives (eg, phthalic acid, 4-methylphthalic acid, 4-nitrophthalic acid and tetrachlorophthalic anhydride); Gins, phthalazine derivatives or metal salts (eg 6-isopropylphthalazine, 6-methylphthalazine, 4- (1-naphthyl) phthalazine, 6-chlorophthalazine, 5,7-dimethoxyphthalazine and 2,3-dihydro Phthalazines); combinations of phthalazines and phthalic acid derivatives (eg, phthalic acid, 4-methylphthalic acid, 4-nitrophthalic acid and tetrachlorophthalic anhydride); quinazolinedione, benzoxazine or naphthoxazine derivatives; Rhodium complexes that function not only in situ but also as a source of halide ions for silver halide formation, such as ammonium hexachlororhodium (III), rhodium bromide, rhodium nitrate and potassium hexachlororhodium (III); inorganic Peroxides and persulfates such as ammonium disulfide and peroxide Hydrogen oxide; 1,3-benzoxazine-2,4-dione, 8-methyl-1,3-benzoxazine-2,4-dione, 6-nitro-1,3-benzoxazine-2,4-dione, etc. Benzoxazine-2,4-diones of pyrimidines and asymmetric-triazines such as 2,4-dihydroxypyrimidine, 2-hydroxy-4-aminopyrimidine, azauracil, and tetraazapentalene derivatives such as 3,4 6-dimercapto-1,4-diphenyl-1H, 4H-2,3a, 5,6a-tetraazapentalene, and 1,4-di (o-chlorophenyl) -3,6-dimercapto-1H, 4H-2 , 3a, 5,6a-tetraazapentalene).
[0071]
The toning agent of the present invention may be added by any method such as a solution, a powder, or a solid fine particle dispersion. The solid fine particle dispersion is performed by a known finer means (for example, ball mill, vibrating ball mill, sand mill, colloid mill, jet mill, roller mill, etc.). A dispersion aid may be used when dispersing the solid fine particles.
[0072]
<About water-soluble and / or water-dispersible polymers>
The effect of the present invention is that when the organic silver salt-containing layer is formed by applying and drying using a coating solution in which 30 wt% or more of the solvent is water, the binder of the organic silver salt-containing layer (hereinafter referred to as “the present invention”). This polymer is improved when it is made of a polymer latex that is soluble or dispersible in an aqueous solvent (aqueous solvent) and has an equilibrium water content of 2 wt% or less at 25 ° C. and 60% RH. The most preferable form is one prepared so that the ionic conductivity is 2.5 mS / cm or less, and as such a preparation method, there is a method of purifying using a separation functional membrane after polymer synthesis.
[0073]
The aqueous solvent in which the polymer of the present invention is soluble or dispersible here is water or a mixture of 70 wt% or less of a water-miscible organic solvent in water. Examples of the water-miscible organic solvent include alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol, cellosolvs such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, ethyl acetate and dimethylformamide.
In the case of a system in which the polymer is not dissolved thermodynamically and exists in a so-called dispersed state, the term aqueous solvent is used here.
[0074]
In the present invention, “equilibrium water content at 25 ° C. and 60% RH” means the weight W1 of the polymer in a humidity-controlled equilibrium under an atmosphere of 25 ° C. and 60% RH and the weight W0 of the polymer in an absolutely dry state at 25 ° C. It can be expressed as follows.
Equilibrium moisture content at 25 ° C 60% RH = [(W1-W0) / W0] x 100 (wt%)
For the definition and measurement method of the moisture content, for example, Polymer Engineering Course 14, Polymer Material Testing Method (Edited by Polymer Society, Jinshokan) can be referred to.
The equilibrium water content of the polymer of the present invention at 25 ° C. and 60% RH is preferably 2 wt% or less, more preferably 0.01 wt% or more and 1.5 wt% or less, and further preferably 0.02 wt% or more and 1 wt% or less.
The polymer of the present invention is not particularly limited as long as it is soluble or dispersible in the aforementioned aqueous solvent and has an equilibrium water content of 2 wt% or less at 25 ° C. and 60% RH. Of these polymers, a polymer dispersible in an aqueous solvent is particularly preferred.
[0075]
Examples of the dispersed state include latex in which fine particles of solid polymer are dispersed and polymer molecules dispersed in a molecular state or forming micelles, and all are preferable.
[0076]
In a preferred embodiment of the present invention, a hydrophobic polymer such as an acrylic resin, a polyester resin, a rubber-based resin (for example, an SBR resin), a polyurethane resin, a vinyl chloride resin, a vinyl acetate resin, a vinylidene chloride resin, or a polyolefin resin is preferably used. it can. The polymer may be a linear polymer, a branched polymer, or a crosslinked polymer. The polymer may be a so-called homopolymer obtained by polymerizing a single monomer, or a copolymer obtained by polymerizing two or more monomers. In the case of a copolymer, it may be a random copolymer or a block copolymer. The molecular weight of the polymer is 5,000 to 100,000, preferably 10,000 to 200,000 in terms of number average molecular weight. When the molecular weight is too small, the mechanical strength of the emulsion layer is insufficient, and when the molecular weight is too large, the film formability is poor, which is not preferable.
[0077]
As the polymer of the present invention, these polymers are dispersed in an aqueous dispersion medium. Here, the aqueous system means a dispersion medium in which 30% by weight or more of the composition is water. The dispersion state may be any one such as an emulsified dispersion, a micelle-dispersed, or a polymer having a hydrophilic portion in the molecule dispersed in the molecular state, and among these, latex is particularly preferable. .
[0078]
Specific examples of preferred polymers include the following. In the following, it represents using raw material monomers, the numerical value in parentheses is wt%, and the molecular weight is the number average molecular weight.
Latex of P-1; -MMA (70) -EA (27) -MAA (3)-(molecular weight 37000)
P-2; -MMA (70) -2EHA (20) -St (5) -AA (5)-latex (molecular weight 40000)
Latex of P-3; -St (50) -Bu (47) -MAA (3)-(molecular weight 45000)
Latex of P-4; -St (68) -Bu (29) -AA (3)-(molecular weight 60000)
P-5; -St (70) -Bu (27) -IA (3)-latex (molecular weight 120,000)
P-6; -St (75) -Bu (24) -AA (1)-latex (molecular weight 108000)
Latex of P-7; -St (60) -Bu (35) -DVB (3) -MAA (2)-(molecular weight 150,000)
Latex of P-8; -St (70) -Bu (25) -DVB (2) -AA (3)-(molecular weight 280000)
P-9; -VC (50) -MMA (20) -EA (20) -AN (5) -AA (5)-latex (molecular weight 80000)
Latex of P-10; -VDC (85) -MMA (5) -EA (5) -MMA (5)-(molecular weight 67000)
Latex of P-11; -Et (90) -MAA (10)-(molecular weight 12000)
[0079]
The abbreviations for the above structures represent the following monomers. MMA; methyl methacrylate, EA; ethyl acrylate, MAA; methacrylic acid, 2EHA; 2 ethylhexyl acrylate, St; styrene, Bu; butadiene, AA; acrylic acid, DVB; divinylbenzene, VC; vinyl chloride, AN; acrylonitrile, VDC; Vinylidene chloride, Et; ethylene, IA; itaconic acid.
[0080]
The polymers described above are also commercially available, and the following polymers can be used. Examples of acrylic resins include polyester resins such as Ceviane A-4635,46583, 4601 (manufactured by Daicel Chemical Industries, Ltd.), Nipol Lx811, 814, 821, 820, 857 (manufactured by Nippon Zeon Co., Ltd.). Examples of polyurethane resins include FINETEX ES650, 611, 675, 850 (Dainippon Ink Chemical Co., Ltd.), WD-size, WMS (Eastman Chemical), HYDRAN AP10, 20, Examples of rubber resins such as 30, 40 (above Dainippon Ink Chemical Co., Ltd.) include LACSTAR 7310K, 3307B, 4700H, 7132C (above Dainippon Ink Chemical Co., Ltd.), Nipol Lx416, 410, 438C , 2507 (manufactured by Nippon Zeon Co., Ltd.), etc. Examples of vinyl chloride resins are G351, G576 (manufactured by Nippon Zeon Co., Ltd.), etc., examples of vinylidene chloride resins are L502, L513 (above Asahi Kasei Kogyo) Examples of olefin resins such as Chemipearl S120 and SA100 And Kami Mitsui Petrochemical Co., Ltd.).
These polymers may be used alone as a polymer latex, or two or more kinds may be blended as necessary.
[0081]
The polymer latex used in the present invention is particularly preferably a styrene-butadiene copolymer latex. The weight ratio of the styrene monomer unit to the butadiene monomer unit in the styrene-butadiene copolymer is preferably 40:60 to 95: 5. The proportion of the styrene monomer unit and the butadiene monomer unit in the copolymer is preferably 60 to 99 wt%. The preferred molecular weight range is the same as described above.
Examples of the styrene-butadiene copolymer latex preferably used in the present invention include P-3 to P-8 described above, LACSTAR-3307B, 7132C, and Nipol Lx416, which are commercially available products.
[0082]
If necessary, a hydrophilic polymer such as gelatin, polyvinyl alcohol, methylcellulose, or hydroxypropylcellulose may be added to the organic silver salt-containing layer of the light-sensitive material of the present invention. The amount of these hydrophilic polymers added is preferably 30 wt% or less, more preferably 20 wt% or less of the total binder of the organic silver salt-containing layer.
The organic silver salt-containing layer of the present invention is formed using a polymer latex, and the amount of binder in the organic silver salt-containing layer is such that the weight ratio of the total binder / organic silver salt is 1/110 to 10-10. / 1, more preferably in the range of 1/5 to 4/1.
Such an organic silver salt-containing layer is usually a photosensitive layer (emulsion layer) containing a photosensitive silver halide which is a photosensitive silver salt. In such a case, the total binder / silver halide is used. Is preferably in the range of 400-5, more preferably 200-10.
[0083]
The total binder amount of the image forming layer of the present invention is 0.2 to 30 g / m. 2 , More preferably 1-15 g / m 2 The range of is preferable. The image forming layer of the present invention may contain a crosslinking agent for crosslinking, a surfactant for improving coating properties, and the like.
[0084]
In the present invention, the solvent of the organic silver salt-containing layer coating solution of the light-sensitive material (here, for simplicity, the solvent and the dispersion medium are collectively referred to as a solvent) is an aqueous solvent containing 30 wt% or more of water. As a component other than water, any water-miscible organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, methyl cellosolve, ethyl cellosolve, dimethylformamide, and ethyl acetate may be used. The water content of the solvent of the coating solution is preferably 50 wt% or more, more preferably 70 wt% or more. Examples of preferred solvent compositions include water / methyl alcohol = 90/10, water / methyl alcohol = 70/30, water / methyl alcohol / dimethylformamide = 80/15/5, water / methyl alcohol / ethyl cellosolve = 85/10/5, water / methyl alcohol / isopropyl alcohol = 85/10/5.
[0085]
The silver halide emulsions and / or organic silver salts in the present invention are further protected against the formation of additional fog by antifoggants, stabilizers and stabilizer precursors, and against reduced sensitivity during inventory storage. Can be stabilized. Suitable antifoggants, stabilizers and stabilizer precursors that can be used alone or in combination are the thiazonium salts described in U.S. Patent Nos. 2,131,038 and 2,694,716, U.S. Patent Nos. 2,886,437 and 2,444,605. Azaindene described in U.S. Pat.No. 2,728,663, mercury salt described in U.S. Pat.No. 3,287,135, sulfocatechol described in U.S. Pat.No. 3,235,652, oxime, nitrone, nitro described in U.S. Pat. Indazole, polyvalent metal salts described in U.S. Pat.No. 2,839,405, thiuonium salts described in U.S. Pat.No. 3,220,839, and palladium, platinum and gold salts described in U.S. Pat.Nos. 2,566,263 and 2,597,915, U.S. Pat. Halogen-substituted organic compounds described in US Pat. Nos. 4,108,665 and 4,442,202, U.S. Pat.Nos. 4,128,557 and 4,137,079, 4,138,365 and And triazine described in U.S. Pat. No. 4,459,350, and phosphorus compounds described in U.S. Pat. No. 4,411,985.
[0086]
The antifoggant preferably used in the present invention is an organic halide, such as JP-A-50-119624, JP-A-50-120328, JP-A-51-121332, JP-A-54-58022, JP-A-56-70543, 56-99335, 59-90842, 61-129642, 62-129845, JP-A-6-208191, 7-5621, 7-2781, 8-15809, US Examples thereof include compounds disclosed in Japanese Patent Nos. 5340712, 5369000, and 5464737.
[0087]
The antifoggant of the present invention may be added by any method such as a solution, powder or solid fine particle dispersion. The solid fine particle dispersion is performed by a known finer means (for example, ball mill, vibration ball mill, sand mill, colloid mill, jet mill, roller mill, etc.). A dispersion aid may be used when dispersing the solid fine particles.
[0088]
Although not necessary to practice the present invention, it may be advantageous to add mercury (II) salts to the emulsion layers as antifoggants. Preferred mercury (II) salts for this purpose are mercury acetate and mercury bromide. The amount of mercury used in the present invention is preferably 1 × 10 5 per mole of silver applied. -9 Mol ~ 1 × 10 -3 Mole, more preferably 1 × 10 -9 Mol ~ 1 × 10 -Four The range of moles.
[0089]
The photothermographic material in the invention may contain benzoic acids for the purpose of increasing sensitivity and preventing fog. The benzoic acid derivatives of the present invention may be any benzoic acid derivative. Examples of preferred structures include U.S. Pat. Nos. 4,784,939, 4,152,160, Japanese Patent Application Nos. 8-512242, 8-151241, and 8-98051. And the compounds described in the above. The benzoic acids of the present invention may be added to any part of the light-sensitive material, but the addition layer is preferably added to the layer having the photosensitive layer, and more preferably added to the organic silver salt-containing layer. . The benzoic acid of the present invention may be added at any step of preparing the coating solution, and when added to the organic silver salt-containing layer, any step from the preparation of the organic silver salt to the preparation of the coating solution may be used. It is preferable that the salt is prepared and immediately before coating. As a method for adding the benzoic acid of the present invention, any method such as powder, solution, fine particle dispersion and the like may be used. Moreover, you may add as a solution mixed with other additives, such as a sensitizing dye, a reducing agent, and a color toning agent. The benzoic acid of the present invention may be added in any amount, but 1 × 10 6 per mole of silver. -6 Preferred is 1 mol or more and 2 mol or less. -3 More preferably, it is more than mol and less than 0.5 mol.
[0090]
In the present invention, a mercapto compound, a disulfide compound, and a thione compound can be contained in order to suppress or promote development and control development, to improve spectral sensitization efficiency, and to improve storage stability before and after development. .
When a mercapto compound is used in the present invention, any structure may be used, but those represented by Ar-SM and Ar-SS-Ar are preferred. In the formula, M is a hydrogen atom or an alkali metal atom, and Ar is an aromatic ring or condensed aromatic ring having one or more nitrogen, sulfur, oxygen, selenium or tellurium atoms. Preferably, the heteroaromatic ring is benzimidazole, naphthimidazole, benzothiazole, naphthothiazole, benzoxazole, naphthoxazole, benzoselenazole, benzotelrazole, imidazole, oxazole, pyrazole, triazole, thiadiazole, tetrazole, triadipyrimidine, pyridazine , Pyrazine, pyridine, purine, quinoline or quinazolinone. The heteroaromatic ring can be, for example, halogen (eg, Br and Cl), hydroxy, amino, carboxy, alkyl (eg, having one or more carbon atoms, preferably 1 to 4 carbon atoms) and alkoxy ( For example, it may have one selected from a substituent group consisting of one or more carbon atoms, preferably one having 1 to 4 carbon atoms. Mercapto-substituted heteroaromatic compounds include 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2-mercapto-5-methylbenzimidazole, 6-ethoxy-2-mercaptobenzothiazole, 2, 2'-dithiobis- (benzothiazole, 3-mercapto-1,2,4-triazole, 4,5-diphenyl-2-imidazolethiol, 2-mercaptoimidazole, 1-ethyl-2-mercaptobenzimidazole, 2-mercapto Quinoline, 8-mercaptopurine, 2-mercapto-4 (3H) -quinazolinone, 7-trifluoromethyl-4-quinolinethiol, 2,3,5,6-tetrachloro-4-pyridinethiol, 4-amino-6 -Hydroxy-2-mercaptopyrimidine monohydrate 2-amino-5-mercapto-1,3,4-thiadiazole, 3-amino-5-mercapto-1,2,4-triazole, 4-hydroxy 2-mercaptopyrimidine, 2-mercaptopyrimidine, 4,6-diamino-2-mercapto, pyrimidine, 2-mercapto-4-methylpyrimidine hydrochloride, 3-mercapto-5-phenyl-1,2,4-triazole, Examples include 2-mercapto-4-phenyloxazole, but the present invention is not limited to these.
[0091]
The addition amount of these mercapto compounds is preferably in the range of 0.001 to 1.0 mol per mol of silver in the emulsion layer, and more preferably 0.01 to 0.3 mol per mol of silver.
[0092]
In the photosensitive layer of the present invention, a polyhydric alcohol (for example, glycerin and diol of the kind described in US Pat. No. 2,960,404), a plasticizer and a lubricant described in US Pat. Nos. 2,588,765 and 3,121,060 are used. Fatty acids or esters, silicone resins described in British Patent No. 955,061 and the like can be used.
[0093]
The image forming material in the present invention can be provided with a surface protective layer for the purpose of preventing adhesion of the image forming layer.
The binder for the surface protective layer of the present invention may be any polymer, but the polymer having a carboxylic acid residue is 100 mg / m. 2 More than 5g / m 2 It is preferable to include the following. As the polymer having a carboxyl residue, a natural polymer (gelatin, alginic acid, etc.), a modified natural polymer (carboxymethylcellulose, phthalated gelatin, etc.), a synthetic polymer (polymethacrylate, polyacrylate, polyalkylmethacrylate / acrylate) Copolymer, polystyrene / polymethacrylate copolymer, etc.). The carboxy residue content of the polymer is 1 x 10 per 100 g of polymer. -2 It is preferable that it is at least 1.4 mol. In addition, the carboxylic acid residue may form a salt with an alkali metal ion, an alkaline earth metal ion, an organic cation or the like.
[0094]
Any adhesion preventing material may be used as the surface protective layer of the present invention. Examples of anti-adhesion materials include wax, silica particles, styrene-containing elastomeric block copolymers (eg, styrene-butadiene-styrene, styrene-isoprene-styrene), cellulose acetate, cellulose acetate butyrate, cellulose propionate, and these There is a mixture. In addition, a crosslinking agent for crosslinking, a surfactant for improving coating properties, and the like may be added to the surface protective layer.
[0095]
In the image forming layer or the protective layer of the image forming layer in the present invention, a light absorbing substance and a filter dye as described in U.S. Pat.Nos. 3,253,921, 2,274,782, 2,527,583 and 2,956,879 are used. Can be used in photographic elements including. For example, a dye can be mordanted as described in US Pat. No. 3,282,699. The amount of filter dye used is preferably an absorbance at an exposure wavelength of 0.1 to 3.0, particularly preferably 0.2 to 1.5.
The image-forming layer of the image-forming layer or emulsion layer in the present invention contains a matting agent such as starch, titanium dioxide, zinc oxide, silica, and beads of the type described in US Pat. Nos. 2,992,101 and 2,701,245. Polymer beads and the like can be contained. The emulsion surface may have any matte degree as long as no stardust failure occurs, but the Beck smoothness is preferably 200 seconds to 10,000 seconds, and more preferably 300 seconds to 10,000 seconds.
[0096]
The photothermographic material of the present invention is a so-called single-sided photosensitive material having a photosensitive layer containing at least one silver halide emulsion on one side of a support and a back layer on the other side. It is preferable.
[0097]
In the present invention, a matte agent may be added to the single-sided photosensitive material for improving the transportability. The matting agent is generally fine particles of an organic or inorganic compound that is insoluble in water. Any matting agent can be used.For example, the organic matting agents described in U.S. Pat.Nos. 1,939,213, 2,701,245, 2,322,037, 3,262,782, 3,539,344, 3,767,448, etc. Those well known in the art such as the inorganic matting agents described in the respective specifications such as 1,260,772, 2,192,241, 3,257,206, 3,370,951, 3,523,022, and 3,769,020 can be used. For example, specific examples of organic compounds that can be used as matting agents include water-dispersible vinyl polymers such as polymethyl acrylate, polymethyl methacrylate, polyacrylonitrile, acrylonitrile-α-methylstyrene copolymer, polystyrene. , Styrene-divinylbenzene copolymer, polyvinyl acetate, polyethylene carbonate, polytetrafluoroethylene, etc. Examples of cellulose derivatives include methylcellulose, cellulose acetate, cellulose acetate propionate, etc. Examples of starch derivatives include carboxy starch, carboxynitrophenyl Preferably used for starch, urea-formaldehyde-starch reactants, gelatin hardened with known hardeners and hardened gelatin into cocapsulated hardened microcapsules Can be. Examples of inorganic compounds that can be preferably used include silicon dioxide, titanium dioxide, magnesium dioxide, aluminum oxide, barium sulfate, calcium carbonate, silver chloride desensitized by a known method, silver bromide, gala diatomaceous earth, and the like. The above matting agents can be used by mixing different kinds of substances as required. The size and shape of the matting agent are not particularly limited, and those having an arbitrary particle size can be used. In the practice of the present invention, it is preferable to use one having a particle size of 0.1 μm to 30 μm.
[0098]
Further, the particle size distribution of the matting agent may be narrow or wide. On the other hand, since the matting agent greatly affects the haze and surface gloss of the light-sensitive material, the particle size, shape, and particle size distribution can be brought into a state as required by preparing the matting agent or mixing a plurality of matting agents. preferable.
[0099]
In the present invention, the matte degree of the back layer is preferably Beck smoothness of 250 seconds or less and 10 seconds or more, more preferably 180 seconds or less and 50 seconds or more.
In the present invention, the matting agent is preferably contained in the outermost surface layer of the photosensitive material, the layer functioning as the outermost surface layer, or a layer close to the outer surface, and is contained in a layer acting as a so-called protective layer. It is preferable.
[0100]
In the present invention, a suitable binder for the back layer is transparent or translucent and generally colorless, and is a natural polymer synthetic resin, polymer and copolymer, or other media for forming a film such as gelatin, gum arabic, poly (vinyl alcohol), Hydroxyethyl cellulose, cellulose acetate, cellulose acetate butyrate, poly (vinyl pyrrolidone), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (vinyl chloride), poly (methacrylic acid), copoly (styrene- Maleic anhydride), copoly (styrene-acrylonitrile), copoly (styrene-butadiene), poly (vinyl acetal) s (eg, poly (vinyl formal) and poly (vinyl butyral)), poly (esters), poly (urethanes) ) Kind, fe Carboxymethyl resins, poly (vinylidene chloride), poly (epoxides), poly (carbonates), poly (vinyl acetate), cellulose esters, and polyamides. The binder may be coated from water or an organic solvent or emulsion.
[0101]
In the present invention, the back layer preferably has a maximum absorption in the desired wavelength range of 0.3 or more and 2 or less, more preferably 0.5 or more and 2 or less, and an absorption in the visible region after treatment of 0.001 or more. It is preferably less than 5, more preferably a layer having an optical density of 0.001 or more and less than 0.3. Examples of the antihalation dye used for the back layer are the same as those of the antihalation layer described above.
[0102]
Backside resistive heating layers such as those shown in U.S. Pat. Nos. 4,460,681 and 4,374,921 can also be used in photosensitive photothermographic image systems.
[0103]
A hardener may be used in each layer such as the photosensitive layer, protective layer, and back layer of the present invention. Examples of hardeners include “THE THEORY OF THE PHOTOGRAPHIC PROCESS FOURTH EDITION” by James (Macmillan Publishing Co., Inc., published in 1977). Each method is described on pages 77 to 87. Preferably used are polyvalent metal ions, polyisocyanates such as US Pat. No. 4,281,060 and JP-A-6-208193, epoxy compounds such as US Pat. No. 4,791,042, and vinyl sulfone compounds such as JP-A 62-89048. It is done.
The hardening agent is added as a solution, and the addition time of the solution into the protective layer coating solution is from 180 minutes before application, preferably from 60 minutes to 10 seconds before application. As long as the effects of the present invention are sufficiently exhibited, there is no particular limitation. Specific mixing methods include mixing in a tank in which the average residence time calculated from the addition flow rate and the amount of liquid delivered to the coater is the desired time, and by N. Harnby, F. Edwards, AWNienow, Takahashi There is a method of using a static mixer or the like described in Chapter 8 of “Liquid mixing technology” (published by Nikkan Kogyo Shimbun, 1989).
[0104]
In the present invention, a surfactant may be used for the purpose of improving coating properties and charging. As an example of the surfactant, any nonionic, anionic, cationic, or fluorine-based one can be used as appropriate. Specifically, fluorine-based polymer surfactants described in JP-A-62-170950, US Pat. No. 5,380,644, etc., fluorine-based surfactants described in JP-A-60-244945, JP-A-63-188135, etc. Surfactants, polysiloxy acid surfactants described in U.S. Pat. No. 3,885,965, polyalkylene oxides and anionic surfactants described in JP-A-6-301140 and the like can be mentioned.
[0105]
Examples of the solvent used in the present invention include New Edition Solvent Pocket Book (Ohm, published in 1994), but the present invention is not limited thereto. The boiling point of the solvent used in the present invention is preferably 40 ° C. or higher and 180 ° C. or lower. Examples of the solvent of the present invention include hexane, cyclohexane, toluene, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, ethyl acetate, 1,1,1-trichloroethane, tetrahydrofuran, triethylamine, thiophene, trifluoroethanol, perfluoropentane, xylene. , N-butanol, phenol, methyl isobutyl ketone, cyclohexanone, butyl acetate, diethyl carbonate, chlorobenzene, dibutyl ether, anisole, ethylene glycol diethyl ether, N, N-dimethylformamide, morpholine, propane sultone, perfluorotributylamine, water, etc. Is mentioned.
[0106]
The photographic emulsion for heat development in the present invention can be coated on various supports. Typical supports include polyester films, primed polyester films, poly (ethylene terephthalate) fill polyethylene naphthalate films, cellulose nitrate films, cellulose ester films, poly (vinyl acetal) films, polycarbonate films and related or resinous materials As well as glass, paper, metal and the like. By flexible substrates, in particular partially acetylated or baryta and / or α-olefin polymers, in particular polymers of α-olefins having 2 to 10 carbon atoms such as polyethylene, polypropylene, ethylene-butene copolymers. A coated paper support is typically used. The support may be transparent or opaque, but is preferably transparent.
[0107]
The light-sensitive material in the present invention is an antistatic or conductive layer, for example, a soluble salt (for example, chloride, nitrate, etc.), a vapor-deposited metal layer, an ionic polymer as described in US Pat. Nos. 2,861,056 and 3,206,312 or A layer containing an insoluble inorganic salt as described in US Pat. No. 3,428,451 may be included.
[0108]
As a method for obtaining a color image using the heat-developable photosensitive material in the present invention, there is a method described in JP-A-7-13295, page 10, left column, line 43 to 11, left column, line 40. Examples of color dye image stabilizers include British Patent No. 1,326,889, U.S. Patent No. 3,432,300, No. 3,698,909, No. 3,574,627, No. 3,573,050, No. 3,764,337 and No. 4,042,394. Yes.
[0109]
The photothermographic material in the invention may be applied by any method. Specifically, various coating operations are used, including extrusion coating, slide coating, curtain coating, dip coating, knife coating, flow coating, or extrusion coating using a hopper of the type described in U.S. Pat. Stephen F. Kistler and Petert M. Schweizer “LIQUID FILM COATING” (CHAPMAN & HALL, 1997) pages 399 to 536, preferably used for extrusion coating or slide coating, particularly preferably used for slide coating It is done. An example of the shape of the slide coater used for slide coating is shown in Figure 11b.1 on page 427 of the same book. If desired, two or more layers can be simultaneously coated by the method described in pages 399 to 536 of the same document, the method described in US Pat. No. 2,761,791 and British Patent No. 837,095.
[0110]
Additional layers in the photothermographic material of the present invention, such as a dye-receiving layer for receiving a moving dye image, an opacifying layer when reflective printing is desired, a protective topcoat layer, and a primer known in the photothermographic art Layers can be included. The light-sensitive material of the present invention can preferably form an image with only one light-sensitive material, and it is preferable that a functional layer necessary for image formation such as an image receiving layer does not become another light-sensitive material.
[0111]
Additional layers in the photothermographic material of the present invention, such as a dye-receiving layer for receiving a moving dye image, an opacifying layer when reflective printing is desired, a protective topcoat layer, and a primer known in the photothermographic art Layers can be included. The light-sensitive material of the present invention can preferably form an image with only one light-sensitive material, and it is preferable that a functional layer necessary for image formation such as an image receiving layer does not become another light-sensitive material.
[0112]
The photosensitive material of the present invention may be developed by any method, but is usually developed by raising the temperature of the photosensitive material exposed imagewise. The preferred development temperature is 80 to 250 ° C, more preferably 100 to 140 ° C. The development time is preferably 1 to 180 seconds, more preferably 10 to 90 seconds.
[0113]
The light-sensitive material of the present invention may be exposed by any method, but laser light is preferred as the exposure light source.
As the laser beam according to the present invention, a gas laser, a YAG laser, a dye laser, a semiconductor laser and the like are preferable. A semiconductor laser and a second harmonic generation element can also be used.
The photosensitive material of the present invention has a low haze upon exposure and tends to generate interference fringes. As this interference fringe generation prevention technology, a laser beam disclosed in Japanese Patent Laid-Open No. 5-113548 is incident obliquely on the photosensitive material, or a multimode laser disclosed in WO95 / 31754 is used. Methods are known and these techniques are preferably used.
In order to expose the photosensitive material of the present invention, SPIE vol.169 Laser Printing, pages 116-128 (1979), JP-A-4-51043, WO95 / 31754, etc. It is preferable to make the scanning line invisible.
[0114]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0115]
Example 1
<< PET support creation >>
Using terephthalic acid and ethylene glycol, PET having an intrinsic viscosity of IV = 0.66 (measured in phenol / tetrachloroethane = 6/4 (weight ratio) at 25 ° C.) was obtained according to a conventional method. After pelletizing this, it was dried at 130 ° C for 4 hours, then melted at 300 ° C, extruded from a T-die, and then rapidly cooled to create an unstretched film having a thickness of 175 µm after heat setting. .
[0116]
This was longitudinally stretched 3.3 times using rolls with different peripheral speeds and then stretched 4.5 times with a tenter. The temperatures at this time were 110 ° C. and 130 ° C., respectively. Thereafter, the film was heat-fixed at 240 ° C. for 20 seconds and relaxed by 4% in the lateral direction at the same temperature. After slitting the chuck part of the tenter, knurling is performed on both ends, and 4kg / cm 2 And a roll having a thickness of 175 μm was obtained.
[0117]
<Surface corona treatment>
Using a solid state corona treatment machine 6KVA model manufactured by Pillar, both surfaces of the support were treated at room temperature at 20 m / min. From the current and voltage readings at this time, the support is 0.375 kV · A · min / m 2 It was found that the process was done. The treatment frequency at this time was 9.6 kHz, and the gap clearance between the electrode and the dielectric roll was 1.6 mm.
[0118]
<< Creation of undercoat support >>
(Preparation of undercoat coating liquid A)
Polyester copolymer aqueous dispersion pesresin A-515GB (30%, manufactured by Takamatsu Yushi Co., Ltd.) 200ml, polystyrene fine particles (average particle size 0.2μm) 1g, surfactant 1 (1wt%) 20ml was added, Distilled water was added to make 1000 ml of the undercoat coating solution A.
[0119]
(Preparation of undercoat coating solution B)
200 ml of styrene-butadiene copolymer aqueous dispersion (styrene / butadiene / itaconic acid = 47/50/3 (weight ratio), concentration 30 wt%), 0.1 g of polystyrene fine particles (average particle size 2.5 μm) in 680 ml of distilled water Then, distilled water was further added to make 1000 ml of the undercoat coating solution B.
[0120]
(Preparation of undercoat coating liquid C)
Dissolve 10 g of inert gelatin in 500 ml of distilled water, and add 40 g of an aqueous dispersion (40 wt%) of tin oxide-antimony oxide composite fine particles described in JP-A-61-20033, to which distilled water is added. Was added to make 1000 ml to prepare an undercoat coating solution C.
[0121]
(Create an undercoat support)
After applying the above corona discharge treatment, the wet coating amount of the undercoat coating solution A is 5 ml / m with a bar coater. 2 And then dried at 180 ° C. for 5 minutes. The dry film thickness was about 0.3 μm. Next, this back surface (back surface) was subjected to corona discharge treatment, and then the undercoat coating solution B was applied at a wet coating amount of 5 ml / m by a bar coater. 2 Then, apply to a dry film thickness of about 0.3 μm, dry at 180 ° C. for 5 minutes, and then apply the undercoat coating solution C on this with a bar coater to a wet coating amount of 3 ml / m. 2 Then, it was coated so that the dry film thickness was about 0.03 μm and dried at 180 ° C. for 5 minutes to prepare an undercoat support.
[0122]
<< Preparation of organic acid silver dispersion >>
Henkel behenic acid (product name Edenor C22-85R) 43.8 g, distilled water 730 ml, tert-butanol 60 ml was stirred at 79 ° C. and 1N NaOH aqueous solution 117 ml was added over 55 minutes, and reacted for 240 minutes. Next, 112.5 ml of an aqueous solution containing 19.2 g of silver nitrate was added over 45 seconds, left as it was for 20 minutes, and the temperature was lowered to 30 ° C. Thereafter, the solid content was separated by suction filtration, and the solid content was washed with water until the filtrate had a conductivity of 30 μS / cm. The solid content thus obtained was handled as a wet cake without drying, and 7.4 g of polyvinyl alcohol (trade name: PVA-205) and water were added to the wet cake equivalent to 100 g of the dry solid content to make the total amount 385 g. And pre-dispersed with a homomixer.
[0123]
Next, the pre-dispersed stock solution is subjected to a pressure of 1750 kg / m of the disperser (trade name: Microfluidizer M-110S-EH, manufactured by Microfluidics International Corporation, using G10Z interaction chamber). 2 Was adjusted three times to obtain a silver behenate dispersion B. The silver behenate particles contained in the silver behenate dispersion thus obtained were needle-like particles having an average minor axis of 0.04 μm, an average major axis of 0.8 μm, and a variation coefficient of 30%. The particle size was measured by a MasterSizerX manufactured by Malvern Instruments Ltd. The cooling operation was carried out by installing a serpentine heat exchanger before and after the interaction chamber, and adjusting the temperature of the refrigerant to set the desired dispersion temperature.
[0124]
<< Preparation of 25% reducing agent dispersion >>
Add 176 g of water to 80 g of 1,1-bis (2-hydroxy-3,5-dimethylphenyl) -3,5,5-trimethylhexane and 64 g of 20% aqueous solution of modified POVAL MP203 manufactured by Kuraray Co., Ltd. and mix well. To make a slurry. 800 g of zirconia beads having an average diameter of 0.5 mm were prepared, put in a vessel together with the slurry, and dispersed for 5 hours with a disperser (1/4 G sand grinder mill: manufactured by Imex Co., Ltd.) to obtain a reducing agent dispersion. The reducing agent particles contained in the reducing agent dispersion thus obtained had an average particle size of 0.72 μm.
[0125]
<Preparation of 20% dispersion of mercapto compound>
224 g of water was added to 64 g of 3-mercapto-4-phenyl-5-heptyl-1,2,4-triazole and 32 g of 20% aqueous solution of modified POVAL MP203 manufactured by Kuraray Co., Ltd., and mixed well to prepare a slurry. 800 g of zirconia beads having an average diameter of 0.5 mm were prepared, put in a vessel together with the slurry, and dispersed for 10 hours with a disperser (1/4 G sand grinder mill: manufactured by IMEX Co., Ltd.) to obtain a mercapto dispersion. The mercapto compound particles contained in the mercapto compound dispersion thus obtained had an average particle size of 0.67 μm.
[0126]
<< Preparation of 30% dispersion of organic polyhalogen compound >>
Add 224 g of water to 48 g of tribromomethylphenylsulfone, 48 g of 3-tribromomethylsulfonyl-4-phenyl-5-tridecyl-1,2,4-triazole, and 48 g of 20% aqueous solution of Kuraray's modified Poval MP203. Mix well to make a slurry. 800 g of zirconia beads having an average diameter of 0.5 mm were prepared, put into a vessel together with the slurry, and dispersed for 5 hours with a disperser (1/4 G sand grinder mill: manufactured by IMEX Co., Ltd.) to obtain a polyhalogen compound dispersion. The polyhalogen compound particles contained in the polyhalogen compound dispersion thus obtained had an average particle size of 0.74 μm.
[0127]
<< Preparation of methanol solution of phthalazine compound >>
26 g of 6-isopropylphthalazine was dissolved in 100 ml of methanol and used.
[0128]
<< Preparation of 20% dispersion of pigment >>
A slurry was prepared by adding 250 g of water to 64 g of I. Pigment Blue 60 and 6.4 g of Kamor Corp. demole N and mixing well. 800 g of zirconia beads having an average diameter of 0.5 mm were prepared, put in a vessel together with the slurry, and dispersed for 25 hours with a disperser (1/4 G sand grinder mill: manufactured by IMEX Co., Ltd.) to obtain a pigment dispersion. The pigment particles contained in the pigment dispersion thus obtained had an average particle size of 0.21 μm.
[0129]
<< Preparation of silver halide grains 1 >>
Add 6.7cc of 1wt% potassium bromide solution to 1421cc of distilled water, add 8.2cc of 1N nitric acid and 8g of phthalated gelatin, and stir the solution at 30 ° C while stirring in a titanium-coated stainless steel reactor. A solution a1 in which distilled water was added to 37.04 g of silver nitrate and diluted to 159 cc and a solution b1 in which 32.6 g of potassium bromide was diluted to a volume of 200 cc with distilled water were prepared, and the pAg was maintained at 8.1 by the control double jet method. Then, the whole amount of the solution a1 was added at a constant flow rate over 1 minute. (Solution b1 was added by the controlled double jet method) Thereafter, 30 cc of a 3.5% aqueous hydrogen peroxide solution was added, and 36 cc of a 3 wt% aqueous solution of benzimidazole was further added. After that, the solution a1 is again diluted with distilled water to 317.5 cc, and the solution b1 is finally 1 × 10 5 per mol of silver. -Four Dissolving tripotassium hexachloroiridate to a molar ratio and diluting with distilled water to 400cc, twice the amount of solution b1, using b2 while maintaining pAg at 8.25 by the controlled double jet method Then, the entire amount of solution a2 was added over 10 minutes at a constant flow rate. (Solution b2 is added by the controlled double jet method) After that, 50cc of 0.5% methanol solution of 2-mercapto-5-methylbenzimidazole is added, and the pH is lowered to 7.5 with silver nitrate, and then the pH is adjusted with 1N sulfuric acid. Adjust to 3.8, stop stirring, perform precipitation / desalting / washing steps, add 3.5 g of deionized gelatin, add 1N sodium hydroxide, adjust to pH 6.0, pAg 8.2 at 40 ° C. Thus, a silver halide dispersion was prepared.
[0130]
Grains in the resulting silver halide emulsion are pure silver bromide grains having an average sphere equivalent diameter of 0.022 μm and a sphere equivalent diameter variation coefficient of 20%. The particle size and the like were determined from an average of 1000 particles using an electron microscope. The [100] face ratio of the particles was determined to be 75% using the Kubelka-Munk method.
[0131]
The emulsion was heated to 50 ° C. with stirring, 5 cc of a 0.5 wt% methanol solution of N, N′-dihydroxy-N ″, N ″ -diethylmelamine and 5 cc of a 3.5 wt% methanol solution of phenoxyethanol were added, One minute later, sodium benzenethiosulfonate is 3 × 10 to 1 mole of silver. -Five Mole was added. After 2 minutes, a solid dispersion of spectral sensitizing dye A (gelatin aqueous solution) was added at 5 × 10 5 per mol of silver. -3 2 minutes later, tellurium sensitizer B was added 5 × 10 5 per mole of silver. -Five Mole was added and aged for 50 minutes. Immediately after ripening, 2-mercapto-5-methylbenzimidazole was added at 1 x 10 per mole of silver. -3 Molten addition was carried out to lower the temperature, the chemical sensitization was completed, and silver halide grains 1 were prepared.
[0132]
Chemical sensitizer and sensitizing dye to give optimum sensitivity in the same manner as Emulsion 1 except that the grain size was changed by changing the liquid temperature during grain formation and the sensitometry described below. Emulsions 2 to 5 shown in Table 1 were prepared in exactly the same manner except that the amount was adjusted. Emulsions 6 to 10 corresponding to the emulsions 1 to 5 were prepared in the same manner except that the addition of the sensitizing dye was changed after the chemical sensitization was completed. The {100} face ratio of Emulsion 3 was 83%.
[0133]
[0134]
<Preparation of emulsion layer coating solution>
(Emulsion layer coating solution No. 1) 103 g of the organic acid silver dispersion obtained above and 5 g of a 20 wt% aqueous solution of polyvinyl alcohol PVA-205 (manufactured by Kuraray Co., Ltd.) were mixed and kept at 40 ° C. 23.2 g of% reducing agent dispersion, 4.8 g of 5% aqueous dispersion of pigment CI Pigment Blue 60, 10.7 g of 30% organic polyhalide dispersion, and 3.1 g of 20% mercapto compound dispersion were added. Then, after adding 106g of SBR latex 40wt% which carried out the ultrafiltration purification kept at 40 degreeC and stirring sufficiently, 6 ml of methanol solutions of the phthalazine compound were added, and the organic acid silver containing liquid was obtained. In addition, the silver halide grains 1 to 10 are thoroughly stirred in advance and mixed with an organic acid silver-containing solution with a static mixer immediately before coating to prepare an emulsion layer coating solution. m 2 The solution was fed so that Of this, 0.1 g / m 2 The portion is the amount of silver halide coated silver.
[0135]
The viscosity of the emulsion layer coating solution was 85 [mPa · s] at 40 ° C. as measured with a Tokyo Keiki B-type viscometer (No. 1 rotor, the same applies to the following viscosity measurements). The viscosity of the coating solution at 25 ° C using an RFS fluid spectrometer manufactured by Rheometrics Far East Co., Ltd. is 1500, 220, 70, 40 at shear rates of 0.1, 1, 10, 100, and 1000 [1 / second], respectively. 20 [mPa · s].
[0136]
The SBR latex purified by ultrafiltration was obtained as follows.
The following SBR latex diluted 10-fold with distilled water is used for ultrafiltration purification module, FS03-FC-FUY03A1 (Daisen Membrane System Co., Ltd.) until ionic conductivity reaches 1.5mS / cm The diluted product was used, and the latex concentration was 40%.
(SBR latex: Latex of -St (68) -Bu (29) -AA (3)-) Average particle size 0.1μm, concentration 45%, ionic conductivity 4.2mS / cm (measurement of ionic conductivity is Toa Denpa Kogyo) A latex stock solution (40%) was measured at 25 ° C. using a conductivity meter CM-30S manufactured by Co., Ltd.), pH 8.2.
[0137]
<Preparation of emulsion surface intermediate layer coating solution>
(Interlayer coating solution)
772 g of 10 wt% aqueous solution of polyvinyl alcohol PVA-205 (Kuraray Co., Ltd.), methyl methacrylate / styrene / 2-ethylhexyl acrylate / hydroxyethyl methacrylate / acrylic acid copolymer (copolymerization weight ratio 59/9/26/5 / 1) 2 ml of 5% aqueous solution of Aerosol OT (American Cyanamid Co.), 226 g of latex 27.5% solution, 4 g of benzyl alcohol, 1 g of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate Add 10 mg of benzoisothiazolinone to make an intermediate coating solution, 5 ml / m 2 Then, the solution was fed to the coating die.
The viscosity of the coating solution was 21 [mPa · s] at 40 ° C. with a B-type viscometer.
[0138]
<< Preparation of emulsion surface protective layer first layer coating solution >>
(Protective layer first layer coating solution No. 1)
Dissolve 80 g of inert gelatin in water, add 138 ml of a 10% methanol solution of phthalic acid, 28 ml of 1N sulfuric acid, 5 ml of 5 wt% aqueous solution of Aerosol OT (American Cyanamid Co., Ltd.), and 1 g of phenoxyethanol, totaling 1000 g Add water to make a coating solution, 10ml / m 2 Then, the solution was fed to the coating die.
The viscosity of the coating solution was 17 [mPa · s] at 40 ° C. with a B-type viscometer.
[0139]
<< Preparation of emulsion surface protective layer second layer coating solution >>
(Protective layer second layer coating solution)
Dissolve 100g of inert gelatin in water, 20ml of 5% solution of N-perfluorooctylsulfonyl-N-propylalanine potassium salt, 16ml of 5wt% solution of Aerosol OT (American Cyanamid), polymethyl methacrylate 25g of fine particles (average particle size 4.0μm), 44ml of 1N sulfuric acid, 10mg of benzoisothiazolinone with water added to a total amount of 1555g, 445ml of an aqueous solution containing 4wt% chromium alum and 0.67wt% phthalic acid 10 ml / m with a surface protective layer coating solution mixed with a static mixer immediately before coating 2 Then, the solution was fed to the coating die.
The viscosity of the coating solution was 9 [mPa · s] at 40 ° C. with a B-type viscometer.
[0140]
<Preparation of back surface coating solution>
(Preparation of solid fine particle dispersion of base precursor)
64 g of the base precursor compound and 10 g of the surfactant Demol N manufactured by Kao Corporation were mixed with 246 ml of distilled water, and the mixture was bead-dispersed using a sand mill (1/4 Gallon sand grinder mill, manufactured by Imex Corporation). A solid fine particle dispersion of a base precursor having an average particle size of 0.2 μm was obtained.
[0141]
(Preparation of dye solid fine particle dispersion)
9.6 g of cyanine dye compound and 5.8 g of sodium p-alkylbenzenesulfonate are mixed with 305 ml of distilled water, and the mixture is dispersed in beads using a sand mill (1/4 Gallon sand grinder mill, manufactured by IMEX Co., Ltd.) to obtain an average particle size. A 0.2 μm dye solid fine particle dispersion was obtained.
[0142]
(Preparation of antihalation layer coating solution)
Gelatin 17 g, polyacrylamide 9.6 g, solid fine particle dispersion 70 g of the above-mentioned base precursor, solid fine particle dispersion 56 g of the above dye, polymethyl methacrylate fine particles (average particle size 6.5 μm) 1.5 g, sodium polyethylene sulfonate 2.2 g, colored dye 0.2% 1% aqueous solution of the compound, H 2 An antihalation layer coating solution was prepared by mixing 844 ml of O.
[0143]
(Preparation of back surface protective layer coating solution)
Keep container at 40 ° C, gelatin 50g, polystyrene sodium sulfonate 0.2g, N, N'-ethylenebis (vinyl sulfonic acetamide) 2.4g, sodium t-octylphenoxyethoxyethane sulfonate 1g, benzoisothiazolinone 30mg, C 8 F 17 SO Three K 32mg, C 8 F 17 SO 2 N (C Three H 7 ) (CH 2 CH 2 O) Four (CH 2 ) Four -SO Three 64 mg Na, H 2 A protective layer coating solution was prepared by mixing 950 ml of O.
[0144]
[Chemical 1]
[0145]
[Chemical formula 2]
[0146]
<< Preparation of photothermographic material >>
An antihalation layer coating solution is applied to the undercoated support and the solid content of the solid fine particle dye is 0.4 g / m. 2 The back surface protective layer coating solution has a gelatin coating amount of 1 g / m. 2 After the simultaneous multilayer coating and drying to form an antihalation back layer, an emulsion layer, an intermediate layer, a protective layer first layer, and a protective layer second layer in this order from the undercoat surface to the surface opposite to the back surface Samples of the photothermographic material were prepared by simultaneous multilayer coating by the slide bead coating method. The emulsion surface was coated without winding after coating the back surface.
[0147]
The coating was performed at a speed of 160 m / min, the distance between the coating die tip and the support was set to 0.18 mm, and the pressure in the decompression chamber was set to 392 Pa lower than the atmospheric pressure. In the subsequent chilling zone, wind with a dry bulb temperature of 18 ° C and a wet bulb temperature of 12 ° C was blown for 30 seconds at an average wind speed of 7m / sec. Then, a dry air having a dry bulb temperature of 30 ° C. and a wet bulb temperature of 18 ° C. was blown for 200 seconds at a blowing air velocity of 20 m / sec from the hole to volatilize the solvent in the coating solution.
[0148]
(Evaluation of photographic performance)
After exposing the photographic material at an inclination of 30 degrees with respect to the normal line with a 647 nm Kr laser sensitometer (maximum output 500 mW), the photographic material was processed (developed) at 120 ° C for 15 seconds, and the resulting image was evaluated for density The total was done. The measurement results were evaluated by Dmin and sensitivity (the reciprocal of the ratio of the exposure amount giving a density 1.0 higher than Dmin). Regarding the sensitivity, the sensitivity of the photographic material 1 was set to 100.
[0149]
The evaluation results are shown in Table 2.
[0150]
[0151]
From Table 2, it can be seen that the effects of the present invention give a high maximum concentration, especially in the ultrafine particle region of 50 nm or less, with low covering and high relative sensitivity.
[0152]
Example 2
In the light-sensitive material 8 of Example 1, the silver halide coating amount was 0.17 g / m in terms of silver amount. 2 The photosensitive material 11 having almost the same sensitivity and maximum density as the photosensitive material 1 was produced. In the light-sensitive material 9, the silver halide coating amount is 0.25 g / m in terms of silver amount. 2 Thus, a coated sample 12 having the maximum density and sensitivity substantially the same as those of the photosensitive material 3 was prepared.
[0153]
(Evaluation of light irradiation image storage stability)
The photographic material exposed and developed in the same manner as in the photographic evaluation was pasted on a Schaukasten having a luminance of 1000 lux and allowed to stand for 10 days.
◎ ・ ・ ・ There is almost no change.
○: There is a slight color change, but I do not care.
Δ: Although there is discoloration in the image area, it is practically acceptable.
× ・ ・ ・ Dmin changes color and density cannot be increased.
The results are shown in Table 3.
[0154]
[0155]
As is apparent from Table 3, the photosensitive material of the present invention exhibited excellent performance in image storability under light irradiation when desired sensitivity and maximum density were obtained.
[0156]
Example 3
In the preparation of emulsions 1 to 5 of Example 1, an emulsion was prepared using sodium thiosulfate as a sulfur sensitizer instead of tellurium sensitizer and approximately equimolar amount of triphenylphosphine selenide as a selenium sensitizer. Except for the adjustment, emulsions 11 to 20 were prepared in the same manner, and using this, coated samples 13 to 22 were prepared in the same manner as in Example 1, and the same sensitometry as in Example 1 was made. The experiment was conducted. Table 4 shows the prepared samples and the results of sensitometry. The sensitivity is a relative sensitivity when the sample 1 is 120.
[0157]
[0158]
Example 4
In the preparation of Emulsions 2 and 5 of Example 1, yellow blood salt was added in place of the iridium compound and iridium compound, and the addition amount was changed as shown in Table 5 to prepare Emulsions 21 to 30. The same sensitometric experiment as in Example 1 was performed. The results are shown in Table 5.
[0159]
[0160]
Example 5
Samples were prepared in the same manner as in the preparation of Emulsions 1 to 3 in Example 1, except that Emulsions 31 to 33 from which the hydrogen peroxide solution as the oxidizing agent had been removed were prepared.
(Evaluation of forced aging storage)
Each sensitive material is cut into 30.5cm x 25.4cm, rounded corners with an inner diameter of 0.5cm, left for one day at 25 ° C-50% RH, and 10 photographic materials each made of moisture-proof material The product was sealed in a box and further placed in a 35.1 cm × 26.9 cm × 3.0 cm cosmetic box and aged for 5 days at 50 ° C. (forced aging). The same process as the evaluation of photographic properties was performed, and the density of the fog portion was measured.
Table 6 shows the change in the covering after the storage of the samples 1 to 3 and the newly prepared samples 33 to 35 for comparison.
[0161]
[0162]
From the results in Table 6, it can be seen that the emulsion of the present invention is suppressed in covering over time by the addition of an oxidizing agent during grain formation.
[0163]
Example 6
In the emulsions 2 and 5 of Example 1, a silver iodobromide emulsion having an iodide content as shown in Table 7 was prepared by adding potassium iodide to the solution b2, and the others were exactly the same. 34-41 were created. Using this, coating samples 36 to 43 were prepared in exactly the same manner as in Example 1, and the sensitometric experiment of Example 1 and the light irradiation image storage stability evaluation described in Example 2 were performed.
The results are shown in Table 7.
[0164]
[0165]
From the results of Table 7, the particles having an average sphere equivalent diameter of 50 nm or less of the present invention have an iodine content of 5 mol% or less, maintain sensitivity, are uncovered, and are excellent in image storability.
() Shows the emulsion
[0166]
Example 7
The same coated sample as in Emulsion 2 of Example 1 except that spectrally increasing dye A was replaced with equimolar amounts of the following spectral sensitizing dye B and tellurium sensitizer B was replaced with equimolar amounts of tellurium sensitizer C. 44 was prepared and evaluated in the same manner as in Example 6. However, for exposure, two 660 nm diode lasers with 35 mW output are combined (Gaussian beam spot 1 / e). 2 100 μm), and exposed from the normal direction in a single mode. After exposure, the photographic material was processed (heat development) at 118 ° C. for 5 seconds and subsequently at 122 ° C. for 12 seconds. The performance was equivalent to the coated sample (2).
[0167]
[Chemical 3]
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09870899A JP4233171B2 (en) | 1998-04-07 | 1999-04-06 | Photothermographic material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-95080 | 1998-04-07 | ||
JP9508098 | 1998-04-07 | ||
JP09870899A JP4233171B2 (en) | 1998-04-07 | 1999-04-06 | Photothermographic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11352627A JPH11352627A (en) | 1999-12-24 |
JP4233171B2 true JP4233171B2 (en) | 2009-03-04 |
Family
ID=26436369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09870899A Expired - Fee Related JP4233171B2 (en) | 1998-04-07 | 1999-04-06 | Photothermographic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4233171B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4369876B2 (en) | 2004-03-23 | 2009-11-25 | 富士フイルム株式会社 | Silver halide photosensitive material and photothermographic material |
JP4433918B2 (en) | 2004-07-15 | 2010-03-17 | コニカミノルタエムジー株式会社 | Image forming method |
US20060057512A1 (en) | 2004-09-14 | 2006-03-16 | Fuji Photo Film Co., Ltd. | Photothermographic material |
US7220536B2 (en) | 2004-10-22 | 2007-05-22 | Konica Minolta Medical & Graphic, Inc. | Silver salt photothermographic dry imaging material, thermal development method of the same, and thermal development apparatus for the same |
-
1999
- 1999-04-06 JP JP09870899A patent/JP4233171B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11352627A (en) | 1999-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3907837B2 (en) | Image recording material | |
JP3907833B2 (en) | Image recording material | |
JP3973798B2 (en) | Method for preparing non-photosensitive fatty acid silver salt particles | |
JP3894395B2 (en) | Method for preparing fatty acid silver salt and photothermographic material | |
JP4233171B2 (en) | Photothermographic material | |
JP3922796B2 (en) | Photothermographic material | |
JP4216438B2 (en) | Method for producing silver halide emulsion | |
US6143489A (en) | Photothermographic element | |
JPH11349591A (en) | Preparation of fatty acid silber salt and thermally developable photosensitive material | |
JP3890379B2 (en) | Method for producing photothermographic material | |
US6432627B1 (en) | Photothermographic element | |
JP3860338B2 (en) | Method for producing photothermographic material | |
JP4049890B2 (en) | Fatty acid silver salt particle aqueous dispersion, method for redispersing fatty acid silver salt particles, photothermographic material, and method for producing photothermographic material | |
JP3907143B2 (en) | Silver halide photographic material | |
JP2000072711A (en) | Production of nonphotosensitive fatty acid silver salt and production of heat developing photosensitive material | |
JP4246291B2 (en) | Recording material | |
JP3893576B2 (en) | Recording material | |
JPH11327076A (en) | Heat developable photosensitive material | |
JPH11343420A (en) | Purification of latex, latex, photosensitive material and heat-developable photosensitive material | |
JP2000112059A (en) | Heat-developable photosensitive material and its production | |
US6677111B1 (en) | Silver halide emulsion, production process thereof, and silver halide photographic light-sensitive material and photothermographic material using the same | |
JP2000010229A (en) | Heat developing recording material | |
JPH11305380A (en) | Production of heat developable photosensitive material | |
JP2000098531A (en) | Image forming method | |
JPH11316441A (en) | Heat developing photosensitive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040623 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060815 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061016 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061226 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4233171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |