JP4233140B2 - Tundish - Google Patents

Tundish Download PDF

Info

Publication number
JP4233140B2
JP4233140B2 JP08078998A JP8078998A JP4233140B2 JP 4233140 B2 JP4233140 B2 JP 4233140B2 JP 08078998 A JP08078998 A JP 08078998A JP 8078998 A JP8078998 A JP 8078998A JP 4233140 B2 JP4233140 B2 JP 4233140B2
Authority
JP
Japan
Prior art keywords
wall
temperature measuring
storage chamber
tundish
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08078998A
Other languages
Japanese (ja)
Other versions
JPH11277190A (en
Inventor
英司 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP08078998A priority Critical patent/JP4233140B2/en
Publication of JPH11277190A publication Critical patent/JPH11277190A/en
Application granted granted Critical
Publication of JP4233140B2 publication Critical patent/JP4233140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶鋼等の金属溶湯の連続鋳造に用いるタンディッシュに関する。
【0002】
【従来の技術】
溶鋼などの金属溶湯を連続的に鋳造する連続鋳造技術が知られている。連続鋳造技術によれば、溶鋼などの金属溶湯を貯留した容器状のタンディッシュを用い、底のない水冷鋳型の上方にタンディッシュを配置した状態で、タンディッシュの底の吐出孔を開放操作し、吐出孔から金属溶湯を吐出し、その金属溶湯を水冷鋳型に注入して連続的な金属片を形成し、その金属片をピンチロールで引っ張り搬送しつつ、冷却スプレー帯で冷却する。
【0003】
連続鋳造技術では、タンディッシュに貯留されている金属溶湯の温度は、金属製品の品質に大きな影響を与える。そのため、タンディッシュに貯留されている金属溶湯に浸漬可能な測温プローブを別に設け、クレーンで測温プローブを持ち上げつつ、測温を行っている。
【0004】
【発明が解決しようとする課題】
上記した測温プローブは高温の金属溶湯に浸漬されるため、高い耐熱性が要請される。故に、耐熱スリーブで多重に覆う等の高耐熱構造が必要となり、大型化、複雑化する傾向がある。
【0005】
本発明は上記した方式とは異なり、タンディッシュの溶鋼などの金属溶湯を貯留する貯留室を区画する耐火壁である堰壁の側面部を利用して、金属溶湯の測温を行うようにしたタンディッシュを提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明のタンディッシュは、連続鋳造装置の上方に配置され、金属溶湯を貯留する貯留室を区画する耐火壁と貯留室に貯留した金属溶湯を連続鋳造装置に吐出する吐出孔とをもつ容器状をなすタンディッシュであって、耐火壁は、貯留室を複数の室に仕切る堰壁であり、金属溶湯の温度を測定する測温手段をもち、堰壁は、貯留室に連通して開口するように堰壁の側面部に形成された測温開口をもち、測温手段の先端部は、貯留室に連通して開口する測温開口から貯湯室内の金属溶湯の温度を測定することを特徴とするものである。
【0007】
金属溶湯の温度は測温手段により測定される。本発明では、測温手段の耐溶湯保護部として、耐火壁の一部である堰壁が利用される。
【0008】
【発明の実施の形態】
本発明のタンディッシュによれば、測温手段は一般的には熱電対を利用して構成できる。測温手段は、測温の際に耐火壁である堰壁に装着する形態としても良いし、あるいは、耐火壁に一体的に埋設されている形態としても良い。堰壁は、流動性をもつキャスタブル耐火材を固化して形成した不定形耐火物で形成できる。場合によっては、定形耐火物で形成することもできる。耐火壁の材質は特に限定されず、タンディッシュにおいて従来より用いられているものを採用でき、例えばアルミナ系、ジルコニア系、マグネシア系、クロムマグネシア系、クロムアルミナ系等を採用できる。
【0009】
好ましい態様によれば、測温手段をもつ堰壁の側面部は、貯留室に連通する測温開口をもち、測温手段の先端部は、測温開口で露出して貯留室内の溶鋼等の金属溶湯と接触可能である。先端部が測温開口に露出した測温手段により、貯留室の金属溶湯を測温できる。
【0010】
また、測温手段をもつ堰壁は、貯留室を複数の室に仕切る堰壁である。堰壁はタンディッシュに対して脱着可能に交換できる方式であることが好ましい。この堰壁は、一般的には、流動性をもつキャスタブル耐火材を鋳込み成形した後に乾燥固化したプレキャストブロックで形成することができる。
【0011】
好ましい態様によれば、測温手段をもつ堰壁は、測温開口をもつ他に、一端が測温開口に連通する挿入通路と、挿入通路の他端で開口する差込開口とをもつ。この場合には、測温手段が差込開口から挿入通路に脱着可能に差し込まれる。
【0012】
【実施例】
(第1実施例)
以下、本発明の第1実施例を図1〜図3を参照して説明する。
【0013】
本実施例のタンディッシュ1の拡大断面を図1に示し、タンディッシュ1の平面図を図2に示す。タンディッシュ1は、連続鋳造装置の上方に配置される大型容器であり、外殻を形成する鉄皮10と、高温の溶鋼(1500〜1650℃)を貯留する貯留室11を区画する耐火壁12と、貯留室11に貯留した溶鋼を連続鋳造装置に吐出する吐出孔13とをもつ。タンディッシュ1の底部に装備された油圧駆動式のスライディングノズル1cにより、吐出孔13は開閉される。
【0014】
耐火壁12は、鉄皮10の内面に被覆された内張壁14と、内張壁14とは別体をなし内張壁14に脱着可能に装着された堰壁15とを備えている。堰壁15はアルミナ系のプレキャストブロック(重量比でアルミナ60〜70%)で形成されており、貯留室11を複数の室に仕切り、非金属介在物を除去する作用をもつ。堰壁15は、吊り具15aが設けられた上面部15b、下面部15c、側面部15dと、斜面部15eをもつ。堰壁15では、上面部15bの長さが約900mm、厚みが約60mmである。
【0015】
堰壁15の側面部15dには、貯留室11に連通するほぼ円形状をなす測温開口20(内径:60mm)が形成されている。更に堰壁15の内部には、断面円形状をなす空洞である挿入通路22(内径:35mm)が形成されている。
【0016】
挿入通路22の一端は測温開口20に連通している。挿入通路22の他端には円形状をなす差込開口23が形成されている。差込開口23は堰壁15の上面部15bに形成されている。
【0017】
堰壁15の製造にあたっては、中子を型枠に配置した状態で、流動性をもつキャスタブル耐火材を型枠内に鋳込み成形し、乾燥固化後に脱枠すると共に中子を抜き取り、測温開口20、挿入通路22、差込開口23をもつプレキャストブロックを形成する。
【0018】
測温手段としての測温プローブ3は堰壁15に対して別体をなしており、図3に示すように、耐熱性をもつ保護筒30と、保護筒30の中空室30kにホルダ36と共に挿入された熱電対32とを備えている。熱電対32を構成する第1導線32a及び第2導線32cは、結合部32dで結合されている。保護筒30は、Mo−ZrOを基材とするセラミックス筒部30rと、セラミックス筒部30rにネジ構造で連設されたステンレス鋼を基材とする金属筒部30sとで構成されている。堰壁15の差込開口23から測温プローブ3が脱着可能に差し込まれると、測温プローブ3の先端部3wが測温開口20から露出し、貯留室11内の溶鋼と接触する。従って測温プローブ3で貯留室11の溶鋼の連続的な測温が可能となる。
【0019】
連続鋳造が終了したら、堰壁15の差込開口23から測温プローブ3を取り外す。次の連続鋳造の際に、堰壁15の差込開口23から測温プローブ3を再び差し込み、貯留室11の溶鋼を測温する。このように測温時に、堰壁15の差込開口23から測温プローブ3を差し込み、溶鋼を測温するようにすれば、測温プローブ3に対する溶湯保護部として、タンディッシュ1の堰壁15の一部を利用できる。故に、測温プローブ3の耐溶湯構造や耐熱構造の簡素化、測温プローブ3の長寿命化に有利である。具体的には、高価なMo−ZrOを基材とするセラミックス筒部30rにおける耐熱機能の簡素化、ステンレス鋼を基材とする金属筒部30sにおける耐熱機能の簡素化に有利である。
【0020】
(第2実施例)
本発明の第2実施例を図4に示す。本実施例は第1実施例と基本的には同様の構成であり、同一の部分には同一の符号を付する。但し、長さ方向に貫通する耐火物製のパイプ状をなす埋設筒40が堰体15の内部に埋設されている。埋設筒40の内壁面40tにより挿入通路22が区画されている。埋設筒40は堰壁15の材質よりも、溶鋼に対して耐食性、耐スポーリング性が良い材質、具体的にはジルコニアを基材として形成されている。また強度上有利な材質で埋設筒40を形成すれば、挿入通路22付近の強度確保に有利である。
【0021】
(第3実施例)
本発明の第3実施例を図5及び図6に示す。本実施例においても堰壁15はタンディッシュ1の内張壁14とは別体をなしており、内張壁14に脱着可能に装着される。堰壁15は、キャスタブル材を鋳込み成形して形成したプレキャストブロック(重量比でアルミナ60〜70%)で形成されている。本実施例では、先端部43aが閉止された有底形状の埋設筒43が堰壁15の内部に一体的に埋設されている。埋設筒43の先端部43aは堰壁15の測温開口20から露出しており、貯留室11内の溶鋼と接触する。埋設筒43の先端部43aは閉止されているため、埋設筒43の内部43fには溶鋼が進入しない。この埋設筒43は、Mo−ZrOを基材とするセラミックス筒部43bと、セラミックス筒部43bに連設されたステンレス鋼を基材とする金属筒部43cとで構成されている。
【0022】
実使用の際には、堰壁15に埋設されている埋設筒43の内部43fに、測温手段としての熱電対装置5を差し込み、貯留室11の溶鋼の連続的な測温を行う。測温の際には、熱電対装置5の先端部5wは埋設筒43に覆われており、溶鋼には直接に接触しない。そのため熱電対装置5の耐溶鋼構造や耐熱構造の簡素化、熱電対装置5の長寿命化に有利である。
【0023】
本実施例では、堰壁15の寿命よりも埋設筒43の寿命が長くなるように、埋設筒43の材質が選択されている。
【0024】
堰壁15が損傷したら、堰壁15をタンディッシュ1から取り外して解体する。この場合には、堰壁15に埋設されていた埋設筒43を堰壁15から取り外し、新しい堰壁15を製造するに際に埋設筒43を再度の使用に供する。
【0025】
なお埋設筒43のセラミックス筒部43bの材質をMo−ZrOに代えて、窒化アルミニウム、窒化珪素にすることもできる。
【0026】
また堰壁15に埋設されている埋設筒43の寿命を堰壁15の寿命に合わせて終了するように、埋設筒43の材質を選択することもできる。この場合には、埋設筒43を構成する基材としてムライト質、ハイアルミナ質を選択できる。
【0027】
(第4実施例)
本発明の第4実施例を図7に示す。図7は堰壁15の平面図を示す。本実施例の堰壁15では、挿入通路22、測温開口20が形成されている部分は、厚肉部15mとされている。これにより挿入通路22付近の強度増加を図り得る。更に、挿入通路22に挿入される測温手段に対する耐溶鋼保護性を一層向上させるのにも有利である。
【0028】
(適用例)
適用例を図8に示す。この例の連続鋳造装置は、溶鋼を強制冷却する水冷鋳型100と、連続鋳造片を冷却スプレーで冷却する冷却スプレー帯101と、連続鋳造片を引っ張るピンチロール102と、連続鋳造片を曲げる整直ロール103とを備えている。本実施例に係るタンディッシュ1が水冷鋳型100の上方に配置されている。そして数10トン用の取鍋106をタンディッシュ1の上方に配置した状態で、取鍋106の底部に装備したロングノズル107により、取鍋106の溶鋼をタンディッシュ1の貯留室11に供給する。更に、タンディッシュ1の底部に装備したスライディングノズルから、タンディッシュ1の貯留室11の溶鋼を水冷鋳型100に供給する。溶鋼は水冷鋳型100により冷却されて外殻から凝固して連続鋳造片W1となり、下方に搬送される。
【0029】
【発明の効果】
本発明のタンディッシュによれば、溶鋼などの金属溶湯を貯留する貯留室を区画する耐火壁である堰壁の側面部を利用して、貯留室の溶鋼などの金属溶湯を測温できる。
【0030】
本発明のタンディッシュによれば、測温手段の溶湯保護部として、耐熱性をもつ耐火壁である堰壁の側面部を利用できるため、測温手段における耐金属溶湯構造や耐熱構造の簡素化、測温手段の長寿命化に有利である。
【図面の簡単な説明】
【図1】堰壁をもつタンディッシュの拡大横断面図である。
【図2】堰壁をもつタンディッシュの平面図である。
【図3】測温プローブの要部の断面図である。
【図4】別例に係る堰壁をもつタンディッシュの拡大横断面図である。
【図5】他の別例に係る堰壁の側面図である。
【図6】堰壁に形成した測温開口付近の拡大図である。
【図7】更に他の別例に係る堰壁の平面図である。
【図8】連続鋳造装置の上方にタンディッシュを配置し、連続鋳造を行っている状態を示す概略図である。
【符号の説明】
図中、1はタンディッシュ、11は貯留室、12は耐火壁、13は吐出孔、15は堰壁、20は測温開口、22は挿入通路、23は差込開口、3は測温プローブを示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tundish used for continuous casting of a molten metal such as molten steel.
[0002]
[Prior art]
A continuous casting technique for continuously casting a molten metal such as molten steel is known. According to continuous casting technology, a container-shaped tundish that stores molten metal such as molten steel is used, and the tundish is placed above a water-cooled mold without a bottom, and the discharge hole at the bottom of the tundish is opened. The molten metal is discharged from the discharge hole, the molten metal is poured into a water-cooled mold to form a continuous metal piece, and the metal piece is pulled and conveyed by a pinch roll and cooled by a cooling spray zone.
[0003]
In continuous casting technology, the temperature of the molten metal stored in the tundish greatly affects the quality of the metal product. Therefore, a temperature measuring probe that can be immersed in the molten metal stored in the tundish is provided separately, and the temperature is measured while the temperature measuring probe is lifted by a crane.
[0004]
[Problems to be solved by the invention]
Since the temperature measuring probe described above is immersed in a high-temperature molten metal, high heat resistance is required. Therefore, a high heat-resistant structure such as multiple covering with a heat-resistant sleeve is required, and there is a tendency to increase in size and complexity.
[0005]
Unlike the above-described method, the present invention measures the temperature of the molten metal by utilizing the side portion of the dam wall that is a fire wall that partitions the storage chamber for storing the molten metal such as tundish molten steel. The task is to provide tundish.
[0006]
[Means for Solving the Problems]
The tundish of the present invention is disposed above the continuous casting apparatus, and has a refractory wall that divides a storage chamber for storing the molten metal, and a container shape having a discharge hole for discharging the molten metal stored in the storage chamber to the continuous casting apparatus. The fire wall is a weir wall that partitions the storage chamber into a plurality of chambers, and has a temperature measuring means for measuring the temperature of the molten metal, and the weir wall opens to communicate with the storage chamber has temperature measuring opening formed in one side surface of the weir wall so the distal end portion of the temperature measuring means measuring the temperature of the communication with the hot water storage chamber of the molten metal from the temperature measuring aperture opening into the reservoir chamber It is a feature.
[0007]
The temperature of the molten metal is measured by a temperature measuring means. In the present invention, a dam wall which is a part of the fireproof wall is used as the molten metal protective part of the temperature measuring means.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the tundish of the present invention, the temperature measuring means can be generally configured using a thermocouple. The temperature measuring means may be mounted on a dam wall that is a fireproof wall during temperature measurement, or may be embedded in the fireproof wall integrally. The dam wall can be formed of an amorphous refractory formed by solidifying a castable refractory material having fluidity. In some cases, it may be formed of a regular refractory. The material of the fireproof wall is not particularly limited, and those conventionally used in tundish can be adopted. For example, alumina, zirconia, magnesia, chromium magnesia, chromium alumina, and the like can be adopted.
[0009]
According to a preferred embodiment, the side surface of the weir wall having the temperature measuring means has a temperature measuring opening communicating with the storage chamber, and the tip of the temperature measuring means is exposed at the temperature measuring opening and is made of molten steel or the like in the storage chamber. Can contact with molten metal. The temperature of the molten metal in the storage chamber can be measured by the temperature measuring means whose tip is exposed to the temperature measuring opening.
[0010]
Also, weir wall having a temperature measuring means, Ru weir wall der dividing the storage chamber into a plurality of chambers. It is preferable that the dam wall be of a system that can be detachably exchanged with the tundish. In general, the dam wall can be formed of a precast block that is cast and formed from a castable refractory material having fluidity and then dried and solidified.
[0011]
According to a preferred embodiment, the weir wall having the temperature measuring means has, in addition to the temperature measuring opening, an insertion passage whose one end communicates with the temperature measuring opening and an insertion opening which opens at the other end of the insertion passage. In this case, the temperature measuring means is detachably inserted into the insertion passage from the insertion opening.
[0012]
【Example】
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
[0013]
An enlarged cross section of the tundish 1 of the present embodiment is shown in FIG. 1, and a plan view of the tundish 1 is shown in FIG. The tundish 1 is a large container disposed above the continuous casting apparatus, and has a steel wall 10 that forms an outer shell and a fire wall 12 that partitions a storage chamber 11 that stores high-temperature molten steel (1500 to 1650 ° C.). And a discharge hole 13 for discharging the molten steel stored in the storage chamber 11 to the continuous casting apparatus. The discharge hole 13 is opened and closed by a hydraulically driven sliding nozzle 1 c provided at the bottom of the tundish 1.
[0014]
The refractory wall 12 includes a lining wall 14 coated on the inner surface of the iron skin 10, and a dam wall 15 that is separate from the lining wall 14 and is detachably attached to the lining wall 14. The dam wall 15 is formed of an alumina-based precast block (alumina 60 to 70% by weight), and has a function of partitioning the storage chamber 11 into a plurality of chambers and removing non-metallic inclusions. The dam wall 15 has an upper surface portion 15b, a lower surface portion 15c, a side surface portion 15d, and a slope portion 15e provided with a hanging tool 15a. In the dam wall 15, the upper surface portion 15 b has a length of about 900 mm and a thickness of about 60 mm.
[0015]
A temperature measuring opening 20 (inner diameter: 60 mm) having a substantially circular shape communicating with the storage chamber 11 is formed in the side surface portion 15d of the dam wall 15. Further, an insertion passage 22 (inner diameter: 35 mm) that is a cavity having a circular cross section is formed inside the dam wall 15.
[0016]
One end of the insertion passage 22 communicates with the temperature measurement opening 20. A circular insertion opening 23 is formed at the other end of the insertion passage 22. The insertion opening 23 is formed in the upper surface portion 15 b of the dam wall 15.
[0017]
In the manufacture of the dam wall 15, a castable refractory material having fluidity is cast and molded in the mold with the core placed in the mold, and after drying and solidification, the frame is removed and the temperature is measured. 20, a precast block having an insertion passage 22 and an insertion opening 23 is formed.
[0018]
The temperature measuring probe 3 as a temperature measuring means is a separate body from the dam wall 15, and as shown in FIG. 3, a heat-resistant protective cylinder 30 and a hollow chamber 30 k of the protective cylinder 30 together with a holder 36. And an inserted thermocouple 32. The first conducting wire 32a and the second conducting wire 32c constituting the thermocouple 32 are coupled by a coupling portion 32d. The protective cylinder 30 includes a ceramic cylinder part 30r using Mo-ZrO 2 as a base material and a metal cylinder part 30s using a stainless steel base material connected to the ceramic cylinder part 30r in a screw structure. When the temperature measuring probe 3 is detachably inserted from the insertion opening 23 of the weir wall 15, the distal end portion 3 w of the temperature measuring probe 3 is exposed from the temperature measuring opening 20 and contacts the molten steel in the storage chamber 11. Accordingly, the temperature measurement probe 3 can continuously measure the temperature of the molten steel in the storage chamber 11.
[0019]
When the continuous casting is completed, the temperature measuring probe 3 is removed from the insertion opening 23 of the weir wall 15. At the time of the next continuous casting, the temperature measuring probe 3 is inserted again from the insertion opening 23 of the weir wall 15 to measure the temperature of the molten steel in the storage chamber 11. Thus, when the temperature measuring probe 3 is inserted from the insertion opening 23 of the weir wall 15 and the temperature of the molten steel is measured at the time of temperature measurement, the weir wall 15 of the tundish 1 serves as a molten metal protection portion for the temperature measuring probe 3. A part of can be used. Therefore, it is advantageous in simplifying the molten metal structure and heat-resistant structure of the temperature measuring probe 3 and extending the life of the temperature measuring probe 3. Specifically, it is advantageous for simplification of the heat resistance function in the ceramic cylinder portion 30r based on expensive Mo—ZrO 2 and simplification of the heat resistance function in the metal cylinder portion 30s based on stainless steel.
[0020]
(Second embodiment)
A second embodiment of the present invention is shown in FIG. This embodiment basically has the same configuration as that of the first embodiment, and the same portions are denoted by the same reference numerals. However, a buried cylinder 40 in the form of a refractory pipe penetrating in the length direction is buried in the weir body 15. The insertion passage 22 is defined by the inner wall surface 40t of the buried cylinder 40. The buried cylinder 40 is made of a material having better corrosion resistance and spalling resistance to molten steel than the material of the dam wall 15, specifically, zirconia as a base material. Further, if the buried tube 40 is formed of a material advantageous in strength, it is advantageous in securing strength in the vicinity of the insertion passage 22.
[0021]
(Third embodiment)
A third embodiment of the present invention is shown in FIGS. Also in this embodiment, the dam wall 15 is separate from the lining wall 14 of the tundish 1 and is detachably attached to the lining wall 14. The dam wall 15 is formed of a precast block (alumina 60 to 70% by weight) formed by casting a castable material. In the present embodiment, a bottomed buried cylinder 43 with the distal end portion 43 a closed is integrally buried in the dam wall 15. The distal end portion 43 a of the buried cylinder 43 is exposed from the temperature measurement opening 20 of the dam wall 15 and is in contact with the molten steel in the storage chamber 11. Since the distal end portion 43 a of the buried cylinder 43 is closed, the molten steel does not enter the inside 43 f of the buried cylinder 43. The buried cylinder 43 is composed of a ceramic cylinder part 43b using Mo—ZrO 2 as a base material and a metal cylinder part 43c using stainless steel as a base material connected to the ceramic cylinder part 43b.
[0022]
In actual use, the thermocouple device 5 as a temperature measuring means is inserted into the interior 43 f of the embedded cylinder 43 embedded in the dam wall 15 to continuously measure the temperature of the molten steel in the storage chamber 11. At the time of temperature measurement, the tip portion 5w of the thermocouple device 5 is covered with the buried cylinder 43 and does not directly contact the molten steel. Therefore, it is advantageous for simplifying the molten steel structure and heat-resistant structure of the thermocouple device 5 and extending the life of the thermocouple device 5.
[0023]
In the present embodiment, the material of the embedded cylinder 43 is selected so that the lifetime of the embedded cylinder 43 is longer than the lifetime of the dam wall 15.
[0024]
If the dam wall 15 is damaged, the dam wall 15 is removed from the tundish 1 and disassembled. In this case, the buried cylinder 43 buried in the dam wall 15 is removed from the dam wall 15 and the buried cylinder 43 is used again when the new dam wall 15 is manufactured.
[0025]
Note the material of the ceramic tube portion 43b of the buried pipe 43 in place of the Mo-ZrO 2, aluminum nitride may be silicon nitride.
[0026]
In addition, the material of the buried cylinder 43 can be selected so that the life of the buried cylinder 43 buried in the dam wall 15 is terminated in accordance with the life of the dam wall 15. In this case, mullite and high alumina can be selected as the base material constituting the buried cylinder 43.
[0027]
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIG. FIG. 7 shows a plan view of the weir wall 15. In the dam wall 15 of the present embodiment, the portion where the insertion passage 22 and the temperature measurement opening 20 are formed is a thick portion 15m. As a result, the strength in the vicinity of the insertion passage 22 can be increased. Furthermore, it is advantageous to further improve the resistance to molten steel protection against the temperature measuring means inserted into the insertion passage 22.
[0028]
(Application example)
An application example is shown in FIG. The continuous casting apparatus of this example includes a water-cooled mold 100 for forcibly cooling molten steel, a cooling spray band 101 for cooling a continuous cast piece with a cooling spray, a pinch roll 102 for pulling the continuous cast piece, and a straightening for bending the continuous cast piece. And a roll 103. The tundish 1 according to the present embodiment is disposed above the water-cooled mold 100. Then, with the ladle 106 for several tens of tons disposed above the tundish 1, the molten steel in the ladle 106 is supplied to the storage chamber 11 of the tundish 1 by the long nozzle 107 equipped at the bottom of the ladle 106. . Further, the molten steel in the storage chamber 11 of the tundish 1 is supplied to the water-cooled mold 100 from a sliding nozzle provided at the bottom of the tundish 1. The molten steel is cooled by the water-cooled mold 100 and solidifies from the outer shell to form a continuous cast piece W1, which is conveyed downward.
[0029]
【The invention's effect】
According to the tundish of the present invention, the temperature of the molten metal such as molten steel in the storage chamber can be measured by using the side surface portion of the dam wall that is a refractory wall that partitions the storage chamber for storing the molten metal such as molten steel.
[0030]
According to the tundish of the present invention, the side surface portion of the dam wall, which is a heat-resistant fire wall , can be used as the molten metal protection portion of the temperature measuring means, so the metal-resistant molten metal structure and the heat resistant structure in the temperature measuring means can be simplified. It is advantageous for extending the life of the temperature measuring means.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a tundish having a dam wall.
FIG. 2 is a plan view of a tundish having a dam wall.
FIG. 3 is a cross-sectional view of a main part of a temperature measuring probe.
FIG. 4 is an enlarged cross-sectional view of a tundish having a dam wall according to another example.
FIG. 5 is a side view of a dam wall according to another example.
FIG. 6 is an enlarged view of the vicinity of a temperature measurement opening formed in a dam wall.
FIG. 7 is a plan view of a dam wall according to still another example.
FIG. 8 is a schematic view showing a state where a tundish is disposed above the continuous casting apparatus and continuous casting is performed.
[Explanation of symbols]
In the figure, 1 is a tundish, 11 is a storage chamber, 12 is a refractory wall, 13 is a discharge hole, 15 is a weir wall, 20 is a temperature measuring opening, 22 is an insertion passage, 23 is an insertion opening, and 3 is a temperature measuring probe. Indicates.

Claims (4)

連続鋳造装置の上方に配置され、金属溶湯を貯留する貯留室を区画する耐火壁と該貯留室に貯留した金属溶湯を連続鋳造装置に吐出する吐出孔とをもつ容器状をなすタンディッシュであって、
該耐火壁は、該貯留室を複数の室に仕切る堰壁であり、該金属溶湯の温度を測定する測温手段をもち、
該堰壁は、該貯留室に連通して開口するように該堰壁の側面部に形成された測温開口をもち、該測温手段の先端部は、該貯留室に連通して開口する該測温開口から該貯湯室内の金属溶湯の温度を測定することを特徴とするタンディッシュ。
A tundish that is disposed above the continuous casting apparatus and has a refractory wall that divides a storage chamber for storing molten metal and a discharge hole that discharges the molten metal stored in the storage chamber to the continuous casting apparatus. And
The fire wall is a weir wall that partitions the storage chamber into a plurality of chambers, and has a temperature measuring means for measuring the temperature of the molten metal,
The weir wall has a temperature measuring opening formed at one side surface of the weir wall so as to open to communicate with the storage chamber, and the tip of the temperature measuring means opens to communicate with the storage chamber. A tundish characterized in that the temperature of the molten metal in the hot water storage chamber is measured from the temperature measuring opening.
該測温手段の先端部は、該測温開口で露出して該貯留室内の金属溶湯と接触可能であることを特徴とする請求項1に記載のタンディッシュ。2. The tundish according to claim 1, wherein a tip end portion of the temperature measuring means is exposed at the temperature measuring opening and can contact the molten metal in the storage chamber. 測温手段をもつ堰壁は、一端が該測温開口に連通する挿入通路と、該堰壁の上面部に形成され該挿入通路の他端で開口する差込開口とをもち、
該測温手段が該差込開口から該挿入通路に脱着可能に差し込まれることを特徴とする請求項1に記載のタンディッシュ。
The weir wall having the temperature measuring means has an insertion passage whose one end communicates with the temperature measurement opening, and an insertion opening which is formed in the upper surface portion of the weir wall and opens at the other end of the insertion passage,
The tundish according to claim 1, wherein the temperature measuring means is detachably inserted into the insertion passage from the insertion opening.
耐火物製のパイプ状の埋設筒が該堰壁の内部に埋設されて、該埋設筒の内壁面により該挿入通路が区画されていることを特徴とする請求項3に記載のタンディッシュ。4. The tundish according to claim 3, wherein a pipe-like buried cylinder made of refractory is buried in the dam wall, and the insertion passage is defined by the inner wall surface of the buried cylinder.
JP08078998A 1998-03-27 1998-03-27 Tundish Expired - Lifetime JP4233140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08078998A JP4233140B2 (en) 1998-03-27 1998-03-27 Tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08078998A JP4233140B2 (en) 1998-03-27 1998-03-27 Tundish

Publications (2)

Publication Number Publication Date
JPH11277190A JPH11277190A (en) 1999-10-12
JP4233140B2 true JP4233140B2 (en) 2009-03-04

Family

ID=13728228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08078998A Expired - Lifetime JP4233140B2 (en) 1998-03-27 1998-03-27 Tundish

Country Status (1)

Country Link
JP (1) JP4233140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803730B2 (en) * 2011-02-18 2015-11-04 Jfeスチール株式会社 How to reuse tundish weir

Also Published As

Publication number Publication date
JPH11277190A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
EP2399106B1 (en) Temperature measuring device
US9829385B2 (en) Container for molten metal, use of the container and method for determining an interface
JP2646022B2 (en) Immersion pouring nozzle for metallurgical vessels
US4640447A (en) Molten metal immersion pouring spout
US4043543A (en) Tundish with weirs
US20150300741A1 (en) Gas purging plug comprising wear indicators
CN112059127A (en) Continuous temperature measuring device for tundish molten steel
JP4233140B2 (en) Tundish
JP4218993B2 (en) Cast iron casting method
JPH10197353A (en) Sensor for measurement of temperature of molten metal
US4756355A (en) Refractory hollowware and method of casting using hollowware to remove non-metallic inclusions from molten metal
JPS58132358A (en) Casting nozzle for continuous casting device
JPS6021170A (en) Nozzle for continuous casting
JP3886447B2 (en) Double-layer porous mass brick
JPS59225862A (en) Immersion nozzle for continuous casting device
JP2006312188A (en) Continuous casting nozzle
JP2562906B2 (en) Molten metal sampling container
US5675097A (en) Apparatus for obtaining sample coupon for metallographic evaluation
JPH06226413A (en) Method for measuring molten steel temperature in continuous casting
JP2573626Y2 (en) Nozzle for molten metal container
Kappmeyer et al. Refractories for continuous casting
SU969451A1 (en) Casting mold
RU2167030C1 (en) Tundish
SU1071213A3 (en) Method and apparatus for continuous casting of thin-walled pipes
SU450637A1 (en) Metal rod melted

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061211

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term