JP4231134B2 - Highly dispersible magnesium hydroxide cake and method for producing the same - Google Patents

Highly dispersible magnesium hydroxide cake and method for producing the same Download PDF

Info

Publication number
JP4231134B2
JP4231134B2 JP31836498A JP31836498A JP4231134B2 JP 4231134 B2 JP4231134 B2 JP 4231134B2 JP 31836498 A JP31836498 A JP 31836498A JP 31836498 A JP31836498 A JP 31836498A JP 4231134 B2 JP4231134 B2 JP 4231134B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
cake
slurry
range
highly dispersible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31836498A
Other languages
Japanese (ja)
Other versions
JP2000128526A (en
Inventor
圭資 藤井
豊隆 内田
高行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP31836498A priority Critical patent/JP4231134B2/en
Publication of JP2000128526A publication Critical patent/JP2000128526A/en
Application granted granted Critical
Publication of JP4231134B2 publication Critical patent/JP4231134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分散性水酸化マグネシウムケーク及びその製造方法に関するものである。
【0002】
【従来の技術】
排煙の脱硫剤などに用いられている水酸化マグネシウムスラリーは、水酸化マグネシウム粒子を水に分散させたものであり、海水あるいは塩化マグネシウム水溶液(苦汁またはかん水)に水酸化カルシウムを加えて水酸化マグネシウムを生成させ、次いで、シックナーで濃縮して製造するのが一般的である。従って、水酸化マグネシウムスラリーは、海に近い場所で製造されて、使用場所へタンク等に入れて輸送されている。
【0003】
水酸化マグネシウムスラリーは水酸化マグネシウムの含有量が30%程度であり、その残りの成分は水である。従って、水酸化マグネシウムスラリーを濾過して水酸化マグネシウムケークにし、これを輸送して、そして使用の際に、水に分散させてスラリーに戻すことができれば、輸送コストを低減することができ、また、水酸化マグネシウムケークを梱包し保管することで保管場所も小さくすることができる。
しかし、水酸化マグネシウムケークを水に投入して攪拌機で攪拌しただけでは、水酸化マグネシウム粒子を均一に分散させてスラリーに戻しにくいことは既に知られている。
【0004】
水に分散しやすい水酸化マグネシウムケークの検討がされており、例えば、特公昭58−43329号公報では、水酸化マグネシウムスラリーを加圧脱水し、含水率40〜15%の水酸化マグネシウムケークとした後、このケークを粒度20mm以下に破砕する水酸化マグネシウムケークの製造方法が提案されている。この製造方法により製造した水酸化マグネシウムケークは、水に投入して攪拌機で攪拌するだけでスラリーにすることができるとされている。
【0005】
【発明が解決しようとする課題】
本発明者の研究によると、水酸化マグネシウムケークを脱水する際の条件によって、分散性の高いケークと分散性の低いケークとが得られることが明らかになった。さらに検討を重ねた結果、分散性の低い水酸化マグネシウムケークは、ケークの通気率が分散性の高いケークと比較して低いことが判明した。このことから、分散性の低い水酸化マグネシウムケークは、水酸化マグネシウムの粒子と粒子との間に隙間がない(凝集している)ので、水がケーク内に侵入しにくいために分散性が低く、一方分散性の高いケークは、水酸化マグネシウムの粒子と粒子との間に隙間があり、水がその隙間からケーク内に侵入するので分散性が高くなると考えられる。
従って、本発明の目的は、水に投入して攪拌機で攪拌するだけで容易に分散する水酸化マグネシウムケーク、すなわち、通気率の高い水酸化マグネシウムケーク及び、その製造方法を提供することである。
【0006】
【課題を解決するための手段】
本発明は、水分率が10〜35重量%の範囲内にあり、JIS R 2115に記載された方法(但し、乾燥前処理は実施しない)で測定した通気率が、1×10-4〜1×10-12の範囲内にあり、空隙率が10〜60%の範囲内にあることを特徴とする高分散性水酸化マグネシウムケークにある。
【0007】
本発明は、上記の水酸化マグネシウムケークの製造方法と、上記の水酸化マグネシウムケークを用いた水酸化マグネシウムスラリーの製造方法にもある。
【0008】
【発明の実施の形態】
本発明の高分散性水酸化マグネシウムケークは、水分率が10〜35%、好ましくは、15〜30%の範囲にあるので、水酸化マグネシウムスラリーと比較して輸送コストを低減することができ、ケークの状態で梱包し保管することで保管場所を小さくすることができる。なお、本発明における水分率とは、水酸化マグネシウムケークを105℃で乾燥したときの減量を乾燥前の水酸化マグネシウムケークの重量で割った値である。
本発明の水酸化マグネシウムケークは、通気率が1×10-4〜1×10-1(好ましくは、1×10-3〜1×10-2)m2 の範囲内にあるので、ケークを水に投入すると水酸化マグネシウムの粒子間に水が侵入し、攪拌機で攪拌するだけで分散する。なお、本発明における通気率は、JIS R 2115(耐火れんがの通気率の試験方法)に記載された方法に基づいて測定した値であり、水酸化マグネシウムケークを乾燥させないで、以下の方法により測定した値である。
(1)水酸化マグネシウムケークを直径50mm、高さ10〜50mmの円柱状にしたもの試験片とし、周囲を完全に密閉できる試料ホルダーに試験片を設置する。尚、試験片の通気方向は、濾過時の加圧方向と同一方向になるようにする。
(2)試験片の一方の面に気体(空気)を流し、試験片の二つの面の圧力を測定する。
(3)下記の式(1)より、気体の試験片の通気率(μ)を算出する。
式(1) μ=V/t×η×L/S×1/(P1 −P2 )×2×P/(P1 +P2
ここで、Pは絶対圧力(N/mm2 )、tは試験時間(s)、Vは絶対圧力Pにおいて、時間t内に通過する気体の容積(mm3 )、Sは気体が通過する試験片の面積(1960mm2 )、Lは試験片の厚さ(mm)、P1 は気体を流した側の絶対圧力(N/mm2 )、P2 は気体が通過した側の絶対圧力(N/mm2 、ηは試験温度での気体の動粘度(Pa・s)である。
【0009】
さらに本発明の水酸化マグネシウムケークは、下記の式(2)で算出される空隙率が10〜60%(より好ましくは、15〜35%)の範囲内にあることが好ましい。
式(2) 空隙率(%)=(V0 −a−b)/V0 ×100
ここで、V0 は水酸化マグネシウムケークの見かけ体積(cm3 )、aはケーク中に存在する水の体積(cm3 )、bはケーク中の水酸化マグネシウムの体積(cm3 )である。
【0010】
本発明の高分散性水酸化マグネシウムケークは、水酸化マグネシウムスラリーを加圧濾過して得られたケークに、圧搾空気を吹き付けることにより製造することができる。すなわち、水酸化マグネシウム粒子間の空隙を維持できる程度に、水酸化マグネシウムスラリーを加圧濾過し、次いで加圧濾過して得られたケークに圧搾空気を吹き付けて、水酸化マグネシウム粒子間の空隙に付着している水分を吹き飛ばすことにより、本発明の高分散性水酸化マグネシウムケークを製造することができる。加圧濾過して得られたケークを水で洗浄して、圧搾空気を吹き付けても良い。
以上のようにして製造した水酸化マグネシウムケークは、圧搾空気を吹き付けることにより、ケーク内を空気が通過できるように空隙が形成されるので通気率が高くなる。また、水酸化マグネシウム粒子の凝集を起こりにくくするために、スラリーは、体積粒子径で0.5μm未満の粒子の含有量が30%以下であることが好ましい。
【0011】
加圧濾過では、水酸化マグネシウムスラリーを0.5〜5MPa、好ましくは1〜2MPaの範囲内の圧力で濾過する。この加圧濾過により製造される水酸化マグネシウムケークの水分率は、30〜40%の範囲内であることが好ましい。水分率を低くしすぎると、水酸化マグネシウムケーク中の空隙がつぶれて、後に圧搾空気を吹き付けても粒子間に空隙が得られなくなり、ケークの通気率が低くなる。また、加圧濾過により製造された板状の水酸化マグネシウムケークの厚さは10〜50mmの範囲内であることが好ましい。ケークの厚さが、厚すぎると空隙に付着している水分を除去するために、圧搾空気の圧力を高く設定する必要がある。
【0012】
加圧濾過で得られた水酸化マグネシウムケークは、ケークの一方の面(加圧方向と同一の方向)に圧搾空気を吹き付けることによりさらに脱水する。この圧搾空気の圧力は2〜15×105 Paの範囲が好ましく、4〜7×105 Paの範囲であることがより好ましい。
【0013】
【実施例】
(水酸化マグネシウムスラリーの製造)
海水に水酸化カルシウムを加えて、水酸化マグネシウムを生成させ、次いで、シックナーで濃縮して水酸化マグネシウムスラリーを製造した。スラリー中の水酸化マグネシウム量は36重量%、体積粒子径が0.5μm未満の水酸化マグネシウム粒子の含有率は5%であった。また、スラリーの粘度は194mPa・s及び目開き45μmの篩に通過した水酸化マグネシウムの割合は99.9%であった。粘度はB型粘度計で測定した(回転数60rpm、No.3ローター)。
【0014】
(実施例1)
上記の水酸化マグネシウムスラリーを1.5MPaで加圧濾過し厚さ30mm、水分率32%のケークとし、次いで、このケークに5.5×105 Paの圧搾空気を加圧方向と同一の方向に10分間吹き付けて脱水して水酸化マグネシウムケークを製造した。得られた水酸化マグネシウムケークは、水分率20.9%、通気率4.81×10-32 、空隙率26%であった。
【0015】
(実施例2)
上記の水酸化マグネシウムスラリーを、0.7MPaで加圧濾過し厚さ40mmの水分率35%のケークとし、次いで、このケークに4×105 Paの圧搾空気を加圧方向と同一の方向に20分間吹き付けて脱水して水酸化マグネシウムケークを製造した。得られた水酸化マグネシウムケークは、水分率25.6%、通気率4.54×10-32 、空隙率17%であった。
【0016】
(比較例1)
上記の水酸化マグネシウムスラリーを、チューブ型加圧脱水装置で10MPaで5分間、加圧して脱水し水酸化マグネシウムケークを製造した。得られた水酸化マグネシウムケークは、水分率26%、通気率5×10-152 以下、空隙率3%であった。
【0017】
(比較例2)
上記の水酸化マグネシウムスラリーを、減圧濾過装置で15分間濾過して水酸化マグネシウムケークを製造した。得られた水酸化マグネシウムケークは、水分率35%、通気率5×10-152 以下、空隙率1%以下であった。
【0018】
(評価及び結果)
1.視覚評価
上記の実施例1及び比較例1で製造した水酸化マグネシウムケーク100gを破砕しないで、水を500ml入れた1Lビーカーに投入して静置し、投入後2時間までケークの状態を目視で観察した。そして4枚羽根攪拌機を用い、250rpmで5分間攪拌し、攪拌後1時間静置してその状態を目視で観察した。
その結果、実施例1の水酸化マグネシウムケークは、水に投入してから30秒後には気泡の発生に伴いケークが分散し、投入してから60秒後に気泡の発生は止まったが、その後もケークは徐々に崩れて、投入してから2時間後では投入前の形状を維持できなかった。そして、この状態のままで攪拌すると、水酸化マグネシウムケークは均一に分散し、攪拌後1時間静置すると、水酸化マグネシウムの粒子が均一に沈降した。
一方、比較例1の水酸化マグネシウムケークは、水に投入して10分後でもケークにひびが入っている程度であり、投入してから2時間後でも、ほとんど投入前の形状を維持していた。そして、この状態のままで攪拌すると、水酸化マグネシウムケークはわずかに分散するが、ケークの一部は分散せずに残存し、攪拌だけではケークを完全に分散させることはできなかった。そして、攪拌後1時間静置しても、水酸化マグネシウムケークの残存物が確認できた。
【0019】
2.分散性評価
水酸化マグネシウムの濃度が36重量%になり、かつ水と水酸化マグネシウムとの総重量が128kgになるように、上記の実施例1及び比較例1で製造した水酸化マグネシウムケークと水を量り取った。尚、実施例1の水酸化マグネシウムケークは破砕を行わずケークをそのまま(体積平均粒子径は50mm以上)で使用し、一方、比較例1の水酸化マグネシウムケークは、分散性を高くするためにケークを破砕して目開き20mmの篩を通過したものを使用した。
量り取った水を容量200Lの容器に入れ、次いで、直径10cmの3枚羽根を240rpmで回転させながら、量り取ったケーク全量を投入開始から4分間で投入完了するように容器に投入した。
ケーク投入後5、10、20、30、60分ごとにこの混合溶液をサンプリングして、上記スラリーと同様にして、混合溶液の粘度及び目開き45μmの篩透過率を測定した。その結果を表1に示す。
【0020】
【表1】

Figure 0004231134
【0021】
表1より、実施例1の水酸化マグネシウムケークでは、破砕しなくてもケークを水に投入して5分で篩透過率及び粘度が脱水前のスラリーとほぼ同じ混合溶液(スラリー)になっていることがわかる。
【0022】
【発明の効果】
本発明の高分散性水酸化マグネシウムケークは、破砕しなくても攪拌機で攪拌するだけで水に容易に分散し、本発明のケークを水に分散させて製造したスラリーは、篩通過率及び粘度が従来の排煙脱硫剤などに用いられている水酸化マグネシウムスラリー(脱水前のスラリー)と比較しても変化がない。従って、本発明の高分散性水酸化マグネシウムケークは、排煙脱硫剤用の水酸化マグネシウムスラリーの原料として使用することができる。
本発明の高分散性水酸化マグネシウムケークを排煙脱硫剤用の水酸化マグネシウムスラリーの原料として使用することで、輸送コストを低減することができ、さらに、水酸化マグネシウムケークの状態で梱包し保管することで保管場所も小さくすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly dispersible magnesium hydroxide cake and a method for producing the same.
[0002]
[Prior art]
Magnesium hydroxide slurry used in flue gas desulfurization agents is a dispersion of magnesium hydroxide particles in water, and calcium hydroxide is added to seawater or magnesium chloride aqueous solution (bitter or brackish water) for hydroxylation. It is common to produce magnesium and then concentrate it with a thickener. Therefore, the magnesium hydroxide slurry is manufactured at a location close to the sea and transported in a tank or the like to a use location.
[0003]
The magnesium hydroxide slurry has a magnesium hydroxide content of about 30%, and the remaining component is water. Therefore, if the magnesium hydroxide slurry can be filtered into a magnesium hydroxide cake, which can be transported and dispersed in water and returned to the slurry for use, transportation costs can be reduced, and By packing and storing magnesium hydroxide cake, the storage location can be reduced.
However, it is already known that magnesium hydroxide particles are not easily dispersed and returned to a slurry simply by adding magnesium hydroxide cake into water and stirring with a stirrer.
[0004]
Magnesium hydroxide cake that is easy to disperse in water has been studied. For example, in Japanese Examined Patent Publication No. 58-43329, magnesium hydroxide slurry is pressurized and dehydrated to obtain a magnesium hydroxide cake having a water content of 40 to 15%. Thereafter, a method for producing a magnesium hydroxide cake is proposed in which the cake is crushed to a particle size of 20 mm or less. It is said that the magnesium hydroxide cake produced by this production method can be made into a slurry simply by adding it to water and stirring it with a stirrer.
[0005]
[Problems to be solved by the invention]
According to the research of the present inventors, it has been clarified that a highly dispersible cake and a low dispersible cake can be obtained depending on the conditions for dehydrating the magnesium hydroxide cake. As a result of further studies, it was found that a magnesium hydroxide cake with low dispersibility has a lower air permeability of the cake than a cake with high dispersibility. For this reason, a magnesium hydroxide cake with low dispersibility has no gap (aggregates) between the magnesium hydroxide particles, so that it is difficult for water to enter the cake. On the other hand, a highly dispersible cake has a gap between magnesium hydroxide particles, and water penetrates into the cake through the gap, so that the dispersibility is considered to be high.
Accordingly, an object of the present invention is to provide a magnesium hydroxide cake that can be easily dispersed by simply adding it to water and stirring it with a stirrer, that is, a magnesium hydroxide cake having a high air permeability, and a method for producing the same.
[0006]
[Means for Solving the Problems]
In the present invention, the moisture content is in the range of 10 to 35% by weight, and the air permeability measured by the method described in JIS R 2115 (however, pre-drying treatment is not performed) is 1 × 10 −4 to 1 × 10 -1 Ri range near the m 2, the highly dispersed magnesium hydroxide cake porosity and said near Rukoto within 10-60%.
[0007]
The present invention also resides in a method for producing the above magnesium hydroxide cake and a method for producing a magnesium hydroxide slurry using the above magnesium hydroxide cake .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The highly dispersible magnesium hydroxide cake of the present invention has a moisture content of 10 to 35%, preferably in the range of 15 to 30%. Therefore, the transportation cost can be reduced as compared with the magnesium hydroxide slurry. By packing and storing in the cake state, the storage location can be reduced. The moisture content in the present invention is a value obtained by dividing the weight loss when the magnesium hydroxide cake is dried at 105 ° C. by the weight of the magnesium hydroxide cake before drying.
The magnesium hydroxide cake of the present invention has an air permeability in the range of 1 × 10 −4 to 1 × 10 −1 (preferably 1 × 10 −3 to 1 × 10 −2 ) m 2. When it is put into water, water enters between the particles of magnesium hydroxide and is dispersed only by stirring with a stirrer. The air permeability in the present invention is a value measured based on the method described in JIS R 2115 (Test method for air permeability of refractory brick), and measured by the following method without drying the magnesium hydroxide cake. It is the value.
(1) A magnesium hydroxide cake having a cylindrical shape with a diameter of 50 mm and a height of 10 to 50 mm is used as a test piece, and the test piece is placed on a sample holder that can be completely sealed. It should be noted that the aeration direction of the test piece is set in the same direction as the pressure direction during filtration.
(2) A gas (air) is flowed on one side of the test piece, and the pressures on the two sides of the test piece are measured.
(3) The air permeability (μ) of the gas test piece is calculated from the following equation (1).
Formula (1) μ = V / t × η × L / S × 1 / (P 1 −P 2 ) × 2 × P / (P 1 + P 2 )
Here, P is the absolute pressure (N / mm 2 ), t is the test time (s), V is the volume of the gas passing in time t at the absolute pressure P (mm 3 ), and S is the test through which the gas passes. The area of the piece (1960 mm 2 ), L is the thickness of the test piece (mm), P 1 is the absolute pressure (N / mm 2 ) on the gas flow side, and P 2 is the absolute pressure (N / Mm 2 , η is the kinematic viscosity (Pa · s) of the gas at the test temperature.
[0009]
Further, in the magnesium hydroxide cake of the present invention, the porosity calculated by the following formula (2) is preferably in the range of 10 to 60% (more preferably 15 to 35%).
Formula (2) Porosity (%) = (V 0 −ab) / V 0 × 100
Here, V 0 is the apparent volume (cm 3 ) of the magnesium hydroxide cake, a is the volume of water present in the cake (cm 3 ), and b is the volume of magnesium hydroxide (cm 3 ) in the cake.
[0010]
The highly dispersible magnesium hydroxide cake of the present invention can be produced by blowing compressed air onto a cake obtained by pressure filtration of a magnesium hydroxide slurry. That is, the magnesium hydroxide slurry is pressure filtered to such an extent that the gaps between the magnesium hydroxide particles can be maintained, and then compressed air is blown onto the cake obtained by pressure filtration to form gaps between the magnesium hydroxide particles. By blowing off the adhering water, the highly dispersible magnesium hydroxide cake of the present invention can be produced. The cake obtained by pressure filtration may be washed with water and sprayed with compressed air.
The magnesium hydroxide cake produced as described above has a high air permeability because air gaps are formed so that air can pass through the cake by blowing compressed air. Moreover, in order to make aggregation of magnesium hydroxide particles difficult to occur, the slurry preferably has a content of particles having a volume particle diameter of less than 0.5 μm of 30% or less.
[0011]
In pressure filtration, the magnesium hydroxide slurry is filtered at a pressure in the range of 0.5 to 5 MPa, preferably 1 to 2 MPa. The moisture content of the magnesium hydroxide cake produced by this pressure filtration is preferably in the range of 30 to 40%. If the moisture content is too low, the voids in the magnesium hydroxide cake are crushed, and even if compressed air is blown later, voids cannot be obtained between the particles, and the air permeability of the cake becomes low. The thickness of the plate-like magnesium hydroxide cake produced by pressure filtration is preferably in the range of 10 to 50 mm. If the thickness of the cake is too thick, it is necessary to set the pressure of the compressed air high in order to remove moisture adhering to the gap.
[0012]
The magnesium hydroxide cake obtained by pressure filtration is further dehydrated by spraying compressed air on one side of the cake (the same direction as the pressure direction). The pressure of the compressed air is preferably in the range of 2-15 × 10 5 Pa, and more preferably in the range of 4-7 × 10 5 Pa.
[0013]
【Example】
(Manufacture of magnesium hydroxide slurry)
Calcium hydroxide was added to seawater to form magnesium hydroxide, and then concentrated with a thickener to produce a magnesium hydroxide slurry. The amount of magnesium hydroxide in the slurry was 36% by weight, and the content of magnesium hydroxide particles having a volume particle diameter of less than 0.5 μm was 5%. The slurry had a viscosity of 194 mPa · s and a ratio of magnesium hydroxide passed through a sieve having an opening of 45 μm was 99.9%. The viscosity was measured with a B-type viscometer (rotation speed: 60 rpm, No. 3 rotor).
[0014]
Example 1
The magnesium hydroxide slurry is subjected to pressure filtration at 1.5 MPa to obtain a cake having a thickness of 30 mm and a moisture content of 32%. Next, 5.5 × 10 5 Pa of compressed air is applied to the cake in the same direction as the pressure direction. And dried for 10 minutes to produce a magnesium hydroxide cake. The obtained magnesium hydroxide cake had a moisture content of 20.9%, an air permeability of 4.81 × 10 −3 m 2 and a porosity of 26%.
[0015]
(Example 2)
The magnesium hydroxide slurry is subjected to pressure filtration at 0.7 MPa to obtain a cake having a thickness of 35% and a moisture content of 35%. Next, 4 × 10 5 Pa of compressed air is applied to the cake in the same direction as the pressure direction. A magnesium hydroxide cake was produced by spraying for 20 minutes for dehydration. The obtained magnesium hydroxide cake had a moisture content of 25.6%, an air permeability of 4.54 × 10 −3 m 2 , and a porosity of 17%.
[0016]
(Comparative Example 1)
The magnesium hydroxide slurry was pressurized and dehydrated with a tube-type pressure dehydrator at 10 MPa for 5 minutes to produce a magnesium hydroxide cake. The obtained magnesium hydroxide cake had a moisture content of 26%, an air permeability of 5 × 10 −15 m 2 or less, and a porosity of 3%.
[0017]
(Comparative Example 2)
The magnesium hydroxide slurry was filtered with a vacuum filtration device for 15 minutes to produce a magnesium hydroxide cake. The obtained magnesium hydroxide cake had a moisture content of 35%, an air permeability of 5 × 10 −15 m 2 or less, and a porosity of 1% or less.
[0018]
(Evaluation and results)
1. Visual evaluation 100 g of the magnesium hydroxide cake produced in Example 1 and Comparative Example 1 was not crushed but placed in a 1 L beaker containing 500 ml of water and allowed to stand, and the state of the cake was visually observed for up to 2 hours after the addition. Observed. Then, using a four-blade stirrer, the mixture was stirred at 250 rpm for 5 minutes, allowed to stand for 1 hour after stirring, and the state was visually observed.
As a result, in the magnesium hydroxide cake of Example 1, the cake was dispersed with the generation of bubbles 30 seconds after the addition to water, and the generation of bubbles stopped 60 seconds after the addition. The cake gradually collapsed, and the shape before the addition could not be maintained 2 hours after the addition. When stirring in this state, the magnesium hydroxide cake was uniformly dispersed, and when allowed to stand for 1 hour after stirring, the magnesium hydroxide particles uniformly settled.
On the other hand, the magnesium hydroxide cake of Comparative Example 1 is only cracked in the cake even after 10 minutes after being put into water, and even before 2 hours after being thrown in, the shape before charging is almost maintained. It was. When stirring in this state, the magnesium hydroxide cake was slightly dispersed, but a part of the cake remained without being dispersed, and the cake could not be completely dispersed only by stirring. And even if it left still for 1 hour after stirring, the residue of magnesium hydroxide cake has been confirmed.
[0019]
2. Evaluation of Dispersibility Magnesium hydroxide cake and water produced in Example 1 and Comparative Example 1 above so that the concentration of magnesium hydroxide is 36% by weight and the total weight of water and magnesium hydroxide is 128 kg. Weighed out. In addition, the magnesium hydroxide cake of Example 1 is used without being crushed, and the cake is used as it is (volume average particle diameter is 50 mm or more), while the magnesium hydroxide cake of Comparative Example 1 is used to increase dispersibility. The cake was crushed and passed through a sieve having an opening of 20 mm.
The weighed water was put into a container with a capacity of 200 L, and then, the three pieces of 10 cm diameter blades were rotated at 240 rpm, and the whole amount of the cake weighed was put into the container so that the charging was completed in 4 minutes from the start of charging.
The mixed solution was sampled every 5, 10, 20, 30, and 60 minutes after the cake was added, and the viscosity of the mixed solution and the sieve transmittance of 45 μm were measured in the same manner as the slurry. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0004231134
[0021]
From Table 1, in the magnesium hydroxide cake of Example 1, even if it is not crushed, the cake is put into water, and the mixed solution (slurry) becomes almost the same as the slurry before dehydration in 5 minutes after passing the cake into water. I understand that.
[0022]
【The invention's effect】
The highly dispersible magnesium hydroxide cake of the present invention is easily dispersed in water just by stirring with a stirrer without being crushed, and the slurry produced by dispersing the cake of the present invention in water has a sieve passing rate and viscosity. However, there is no change even when compared with a magnesium hydroxide slurry (slurry before dehydration) used in a conventional flue gas desulfurization agent. Therefore, the highly dispersible magnesium hydroxide cake of the present invention can be used as a raw material for magnesium hydroxide slurry for flue gas desulfurization agents.
By using the highly dispersible magnesium hydroxide cake of the present invention as a raw material of the magnesium hydroxide slurry for the flue gas desulfurization agent, the transportation cost can be reduced, and further, the magnesium hydroxide cake is packed and stored. By doing so, the storage location can also be reduced.

Claims (5)

水分率が10〜35重量%の範囲内にあり、JIS R 2115に記載された方法(但し、乾燥前処理は実施しない)で測定した通気率が、1×10-4〜1×10-12の範囲内にあり、空隙率が10〜60%の範囲内にあることを特徴とする高分散性水酸化マグネシウムケーク。The air permeability measured by the method described in JIS R 2115 (however, pre-drying treatment is not performed) is 1 × 10 −4 to 1 × 10 −1 when the moisture content is in the range of 10 to 35% by weight. Ri range near the m 2, highly dispersible magnesium hydroxide cake porosity and said near Rukoto the range of 10% to 60%. 水酸化マグネシウムスラリー製造用であることを特徴とする請求項1に記載の高分散性水酸化マグネシウムケーク。The highly dispersible magnesium hydroxide cake according to claim 1, which is used for producing a magnesium hydroxide slurry . 体積粒子径が0.5μm未満の粒子の含有量が30%以下であることを特徴とする請求項1に記載の高分散性水酸化マグネシウムケーク。 Highly dispersible magnesium hydroxide cable click of claim 1 volume particle size of the content of less than 0.5μm particles, characterized in der Rukoto than 30%. 水酸化マグネシウムスラリーを加圧濾過して得られた水酸化マグネシウムケークに、加圧方向と同一の方向に圧搾空気を吹き付けて水分率を10〜35重量%の範囲内にすることを特徴とする請求項1に記載の高分散性水酸化マグネシウムケークの製造方法。The magnesium hydroxide cake obtained by pressure filtration of the magnesium hydroxide slurry is sprayed with compressed air in the same direction as the pressurizing direction so that the moisture content is within a range of 10 to 35% by weight. The manufacturing method of the highly dispersible magnesium hydroxide cake of Claim 1. 水酸化マグネシウムスラリーを加圧濾過して得られた水酸化マグネシウムケークに、加圧方向と同一の方向に圧搾空気を吹き付けて水分率を10〜35重量%の範囲内にして、JIS R 2115に記載された方法(但し、乾燥前処理は実施しない)で測定した通気率が1×10The magnesium hydroxide cake obtained by pressure filtration of the magnesium hydroxide slurry is blown with compressed air in the same direction as the pressurizing direction so that the moisture content is within the range of 10 to 35% by weight. Air permeability measured by the method described (however, pre-drying treatment is not performed) is 1 × 10 -4-Four 〜1×10~ 1x10 -1-1 m 22 の範囲内にあり、空隙率が10〜60%の範囲内にある水酸化マグネシウムケークとして輸送し、次いでその水酸化マグネシウムケークを水に分散させて水酸化マグネシウムスラリーを得ることからなる水酸化マグネシウムスラリーの製造方法。The magnesium hydroxide is transported as a magnesium hydroxide cake having a porosity in the range of 10 to 60% and then dispersed in water to obtain a magnesium hydroxide slurry. A method for producing a slurry.
JP31836498A 1998-10-21 1998-10-21 Highly dispersible magnesium hydroxide cake and method for producing the same Expired - Fee Related JP4231134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31836498A JP4231134B2 (en) 1998-10-21 1998-10-21 Highly dispersible magnesium hydroxide cake and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31836498A JP4231134B2 (en) 1998-10-21 1998-10-21 Highly dispersible magnesium hydroxide cake and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000128526A JP2000128526A (en) 2000-05-09
JP4231134B2 true JP4231134B2 (en) 2009-02-25

Family

ID=18098333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31836498A Expired - Fee Related JP4231134B2 (en) 1998-10-21 1998-10-21 Highly dispersible magnesium hydroxide cake and method for producing the same

Country Status (1)

Country Link
JP (1) JP4231134B2 (en)

Also Published As

Publication number Publication date
JP2000128526A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
KR100255465B1 (en) Fine particles of petaloid porous hydroxyapatite and process for producing the same
CN105060307B (en) A kind of high-specific surface area white carbon and its production method
KR100404401B1 (en) Gel Composition Containing Carbonaceous Compound
JP3411585B2 (en) Composition comprising liquid absorbed on carrier based on precipitated silica
RU2007141649A (en) DEPOSITED CALCIUM-CARBONATE PIGMENT, SPECIALLY APPLICABLE AS COATING FOR PAPER INTENDED FOR Dye-PRINTING
RU2007141650A (en) DEPOSITED CALCIUM-CARBONATE PIGMENT, SPECIALLY APPLICABLE AS COATING FOR PAPER INTENDED FOR Dye-PRINTING
ZA200603827B (en) Composition containing a synthetic resin and a filler, methods for producing the composition and films obtained from this composition
EP0736501B1 (en) Process for spraying concrete or mortar
JP2008506807A (en) Method for producing self-binding pigment particles which are a dried product, an aqueous suspension or a dispersion, and contain an inorganic substance and a binder
CA2881281C (en) Precipitated silicas, their use to strengthen polymers, and their manufacturing process
Jimoh et al. Aragonite precipitated calcium carbonate from magnesium rich carbonate rock for polyethersulfone hollow fibre membrane application
FI105545B (en) Precipitated calcium carbonate
KR101474041B1 (en) Highly dispersible fine powder of alkaline earth metal carbonate and process for producing the same
CN108190935B (en) Preparation method of strip-shaped and sheet-shaped calcium carbonate ultrafine particles
JP4231134B2 (en) Highly dispersible magnesium hydroxide cake and method for producing the same
KR20150040800A (en) Mixed calcium and magnesium compound and method for producing same
KR100440996B1 (en) Composition comprising a liquid absorbed on a support based on precipitate silica
JP6080980B2 (en) Preparation of silica-alumina composition
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP5473340B2 (en) INORGANIC OXIDE PARTICLES WITH POLYMERIZATION INITIAL GROUP, PROCESS FOR PRODUCING THE SAME, POLYMER-MODIFIED INORGANIC OXIDE PARTICLES OBTAINED BY USING THE INORGANIC OXIDE PARTICLE, AND PROCESS FOR PRODUCING THE SAME
JPS58185432A (en) Spherical secondary particle of calcium silicate and preparation thereof
JP2015510866A (en) Method for producing precipitated silica using mixer or extruder
JP3884635B2 (en) Calcium carbonate porous particles and production method thereof
US5584924A (en) Opacifying kaolin clay pigments having improved rheology and process for the manufacture thereof
JPH0262483B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees