JP4228827B2 - Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof - Google Patents

Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof Download PDF

Info

Publication number
JP4228827B2
JP4228827B2 JP2003283846A JP2003283846A JP4228827B2 JP 4228827 B2 JP4228827 B2 JP 4228827B2 JP 2003283846 A JP2003283846 A JP 2003283846A JP 2003283846 A JP2003283846 A JP 2003283846A JP 4228827 B2 JP4228827 B2 JP 4228827B2
Authority
JP
Japan
Prior art keywords
resonance frequency
diaphragm
ultrasonic
piezoelectric
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003283846A
Other languages
Japanese (ja)
Other versions
JP2005051687A (en
Inventor
山中  浩
康史 正木
四輩 熊
耕作 北田
甲志 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003283846A priority Critical patent/JP4228827B2/en
Publication of JP2005051687A publication Critical patent/JP2005051687A/en
Application granted granted Critical
Publication of JP4228827B2 publication Critical patent/JP4228827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、圧電素子を用いて計測対象物までの距離を検出する圧電型超音波センサに関する。   The present invention relates to a piezoelectric ultrasonic sensor that detects a distance to a measurement object using a piezoelectric element.

従来から、計測対象物の位置や形状を計測するセンサとして、計測対象物からの反射超音波を受信する圧電型超音波センサが知られている。このセンサは、圧電素子を用いた超音波受信素子により、超音波の発射から反射波を受信するまでの時間によって、計測対象物までの距離を検出する。超音波は、光に比べて伝搬速度が遅いため、距離計測が容易である。また、例えば特許文献1に記載されているように、圧電素子を用いた超音波受信素子をアレイ状に配列し、各超音波受信素子の出力に対して遅延処理を行うことにより、電気的に走査を行うことにより、計測対象物までの距離だけでなく、その形状なども検出することが可能である。   Conventionally, a piezoelectric ultrasonic sensor that receives reflected ultrasonic waves from a measurement object is known as a sensor that measures the position and shape of the measurement object. This sensor detects the distance to the measurement object by the time from the emission of the ultrasonic wave to the reception of the reflected wave by the ultrasonic wave receiving element using the piezoelectric element. Since ultrasonic waves have a slower propagation speed than light, distance measurement is easy. Further, as described in Patent Document 1, for example, ultrasonic receiving elements using piezoelectric elements are arranged in an array, and a delay process is performed on the output of each ultrasonic receiving element to electrically By performing scanning, it is possible to detect not only the distance to the measurement object but also the shape thereof.

これら従来の圧電型超音波センサでは、例えばシリコン基板上に凹部を形成して、ダイアフラムを設け、さらに、ダイアフラムの片面に、圧電材料の薄膜及び圧電材料の薄膜の両面に形成された電極で構成された超音波受信素子を設けている。計測対象物からの反射波を受けると、ダイアフラムが振動し、その振動に応じて圧電材料が電圧を発生する。従って、電極間の電圧を測定することにより、測定対象物からの反射波を受信したことがわかる。


























In these conventional piezoelectric ultrasonic sensors, for example, a concave portion is formed on a silicon substrate, a diaphragm is provided, and a piezoelectric material thin film and electrodes formed on both surfaces of the piezoelectric material thin film are formed on one side of the diaphragm. An ultrasonic receiving element is provided. When the reflected wave from the measurement object is received, the diaphragm vibrates, and the piezoelectric material generates a voltage according to the vibration. Therefore, by measuring the voltage between the electrodes, it can be seen that the reflected wave from the measurement object has been received.


























従来の圧電型超音波センサでは、媒質中を伝播する音波の周波数によって、さまざまな振動形態を示す。例えば、単層ダイフラムの超音波受信素子の共振周波数frは式1で与えられる。 Conventional piezoelectric ultrasonic sensors exhibit various forms of vibration depending on the frequency of sound waves propagating in the medium. For example, the resonance frequency fr of the ultrasonic receiving device of a single layer die A Fulham is given by Equation 1.

式1から分かるように、超音波受信素子の共振周波数frは、ダイアフラムの形状のばらつきや、圧電材料の薄膜の厚さのばらつきなどの影響を受ける。特に、複数の超音波受信素子をアレイ状に配列した圧電型超音波センサでは、各超音波受信素子の共振周波数が同じになるように製作することは非常に困難であり、一般的に、各超音波受信素子の共振周波数にばらつきが生じている。また、単一の超音波受信素子を有する超音波センサにおいても、量産される各超音波センサの共振周波数特性を揃えることは困難である。共振周波数のばらつきは、特定の周波数の音波が入力されたときに、その周波数に対する電気変換効率(感度)の違いとなって現れる。そのため、仮に全ての各超音波受信素子の共振周波数が揃っていると仮定した場合に比べて、物体の位置の確認精度が低いという問題点を有していた。この点に関しては、特許文献1の超音波センサであっても同様である。
特開2002−156451号公報
As can be seen from Equation 1, the resonance frequency fr of the ultrasonic receiving element is affected by variations in the shape of the diaphragm and variations in the thickness of the thin film of the piezoelectric material. In particular, in a piezoelectric ultrasonic sensor in which a plurality of ultrasonic receiving elements are arranged in an array, it is very difficult to manufacture each ultrasonic receiving element so that the resonance frequency is the same. There is a variation in the resonance frequency of the ultrasonic receiving element. In addition, even in an ultrasonic sensor having a single ultrasonic receiving element, it is difficult to align the resonance frequency characteristics of each mass produced ultrasonic sensor. The variation in the resonance frequency appears as a difference in electrical conversion efficiency (sensitivity) with respect to the frequency when a sound wave having a specific frequency is input. For this reason, there has been a problem that the accuracy of checking the position of the object is lower than when it is assumed that the resonance frequencies of all the ultrasonic receiving elements are uniform. The same applies to the ultrasonic sensor disclosed in Patent Document 1.
JP 2002-156451 A

本発明は、上記の問題を解決するためになされたものであり、複数の超音波受信素子をアレイ状に配列し、各超音波受信素子がほぼ同じ共振周波数を有する圧電型超音波センサ及びその共振周波数調節方法を提供することを目的とする。   The present invention has been made to solve the above-described problem. A plurality of ultrasonic receiving elements are arranged in an array, and each ultrasonic receiving element has substantially the same resonance frequency, and its An object of the present invention is to provide a resonance frequency adjusting method.

上記目的を達成するために請求項1の発明は、圧電型超音波センサであって、複数のダイアフラムが形成された基板と、前記基板の一面に形成された圧電材料の薄膜と、前記圧電材料の薄膜のうち1つのダイアフラムに対応する部分の両面にそれぞれ形成された金属薄膜の電極を備え、
1つのダイアフラムに対応し、前記圧電材料の薄膜及び互いに対向する2つの電極の領域で構成される超音波受信素子がアレイ状に配置され、1つの超音波受信素子に対して、直流電圧を印加し又は前記ダイアフラムを境として、その両側の部分の気圧に差を設け、あるいはこれらを組み合わせることにより、その超音波受信素子におけるダイアフラムの形状又は内部応力を変化させることを特徴とする
In order to achieve the above object, the invention of claim 1 is a piezoelectric ultrasonic sensor, wherein a substrate on which a plurality of diaphragms are formed, a thin film of piezoelectric material formed on one surface of the substrate, and the piezoelectric material Of the thin film of the metal thin film electrode formed on both sides of the portion corresponding to one diaphragm,
Corresponding to one diaphragm, ultrasonic receiving elements composed of a thin film of the piezoelectric material and two electrode regions facing each other are arranged in an array, and a DC voltage is applied to one ultrasonic receiving element. as or border the diaphragm, a difference in air pressure of a portion of both sides is provided, or by combining these, and wherein the changing the shape or the internal stress of the diaphragm at the ultrasonic wave receiving element.

請求項2の発明は、請求項1の圧電型超音波センサにおいて、前記直流電圧を、一旦所定の電圧よりも高い電圧まで上げた後、徐々に所定の電圧まで下げるようにして印加することを特徴とするAccording to a second aspect of the present invention, in the piezoelectric ultrasonic sensor according to the first aspect, the DC voltage is once increased to a voltage higher than a predetermined voltage and then applied so as to gradually decrease to a predetermined voltage. Features .

請求項3の発明は、請求項1又は請求項2の圧電型超音波センサにおいて、所望する共振周波数よりも共振周波数の高い超音波受信素子を形成し、その超音波受信素子に圧縮応力を加えて、前記所望する共振周波数とすることを特徴とするAccording to a third aspect of the present invention, in the piezoelectric ultrasonic sensor according to the first or second aspect, an ultrasonic receiving element having a resonance frequency higher than a desired resonance frequency is formed, and compressive stress is applied to the ultrasonic receiving element. The desired resonance frequency is set .

請求項4の発明は、請求項の圧電型超音波センサにおいて、前記基板のダイアフラムを形成するための凹部をガラス板で覆い、前記凹部内の圧力を外部の気圧とは異なる値とすることを特徴とするA fourth aspect of the present invention, the piezoelectric ultrasonic sensor according to claim 1, the recess for forming the diaphragm of the substrate covered with a glass plate, be different values of external pressure the pressure in said recess It is characterized by .

請求項5の発明は、複数のダイアフラムが形成された基板と、前記基板の一面に形成された圧電材料の薄膜と、前記圧電材料の薄膜のうち1つのダイアフラムに対応する部分の両面にそれぞれ形成された金属薄膜の電極を備え、1つのダイアフラムに対応し、前記圧電材料の薄膜及び互いに対向する2つの電極の領域で構成される超音波受信素子がアレイ状に配列された圧電型超音波センサの共振周波数調節方法であって、 いずれかの超音波受信素子の共振周波数を基準とし、前記基準の共振周波数と異なる共振周波数を有する超音波受信素子に対して、直流電圧を印加し又は前記ダイアフラムを境として、その両側の部分の気圧に差を設け、あるいはこれらを組み合わせることにより、各超音波波受信素子の共振周波数をほぼ同じ値とすることを特徴とするThe invention of claim 5 is formed on both surfaces of a substrate on which a plurality of diaphragms are formed, a thin film of piezoelectric material formed on one surface of the substrate, and a portion corresponding to one diaphragm of the thin film of piezoelectric material. A piezoelectric ultrasonic sensor comprising an electrode of a metal thin film and an ultrasonic receiving element corresponding to one diaphragm and arranged in the form of an array of the piezoelectric material thin film and two electrode regions facing each other A resonance frequency adjusting method according to claim 1, wherein a direct-current voltage is applied to an ultrasonic receiving element having a resonance frequency different from the reference resonance frequency based on a resonance frequency of any of the ultrasonic receiving elements, or the diaphragm By setting a difference in the air pressure on both sides of the boundary, or combining these, the resonance frequency of each ultrasonic wave receiving element is made substantially the same value It is characterized by that .

請求項6の発明は、請求項5の圧電型超音波センサの共振周波数調節方法において、各超音波受信素子の共振周波数のうち最も小さい値を基準値とし、前記基準値よりも大きい共振周波数を有する超音波受信素子に対して、圧縮応力を加えることを特徴とするAccording to a sixth aspect of the present invention, in the method for adjusting the resonance frequency of the piezoelectric ultrasonic sensor according to the fifth aspect, the smallest value among the resonance frequencies of the respective ultrasonic receiving elements is used as a reference value, and a resonance frequency larger than the reference value is set. A compressive stress is applied to the ultrasonic receiving element .

請求項7の発明は、圧電型超音波センサの共振周波数調節方法であって、複数のダイアフラムが形成された基板と、前記基板の一面に形成された圧電材料の薄膜と、前記圧電材料の薄膜のうち1つのダイアフラムに対応する部分の両面にそれぞれ形成された金属薄膜の電極を備え、1つのダイアフラムに対応し、前記圧電材料の薄膜及び互いに対向する2つの電極の領域で構成される超音波受信素子がアレイ状に配置され、1つの超音波受信素子に対して、直流電圧を印加し又は前記ダイアフラムを境として、その両側の部分の気圧に差を設け、あるいはこれらを組み合わせることにより、その超音波受信素子の共振周波数を変化させることを特徴とするThe invention of claim 7 is a method for adjusting the resonance frequency of a piezoelectric ultrasonic sensor, a substrate on which a plurality of diaphragms are formed, a piezoelectric material thin film formed on one surface of the substrate, and the piezoelectric material thin film. Of the thin film formed on both surfaces of the portion corresponding to one diaphragm, and composed of the thin film of piezoelectric material and the two electrode regions facing each other. The receiving elements are arranged in an array, and a direct current voltage is applied to one ultrasonic receiving element, or the pressure on both sides of the diaphragm is set as a boundary, or by combining these, The resonance frequency of the ultrasonic receiving element is changed .

請求項1の発明によれば、ダイアフラムの形状のばらつきや、圧電材料の薄膜の厚さのばらつきなどによって、超音波受信素子の共振周波数が所望する値とは異なる場合に、外力を加えることにより、その超音波受信素子におけるダイアフラムの形状又は内部応力を変化させ、見かけの縦弾性係数を変化させているので、超音波受信素子の共振周波数をほぼ所望する値に調節することができる。その結果、超音波受信素子がアレイ状に配列された圧電型超音波センサにおいては、各超音波受信素子の共振周波数をほぼ同じ値に揃えることができ、物体の位置の確認精度を向上させることができる。また、超音波受信素子を構成する互いに対向する電極間に直流電圧を印加して電位差を与える場合、圧電効果により圧電材料の薄膜に歪みを生じさせる。この歪みは、4辺が拘束されたダイアフラムでは、内部応力として働く。電極間に印加する直流電圧の極性により、圧縮応力又は引張り応力とすることが可能である。印加する直流電圧の値及び極性を適宜制御することにより、超音波受信素子の共振周波数を所望する値に調節することが可能である。あるいは、ダイアフラムを境として、その両側の部分に気圧差を設ける場合、ダイアフラムの全体に荷重をかけ、その超音波受信素子におけるダイアフラムの形状又は内部応力を変化させている。そのため、この構成によっても、ダイアフラムの見かけの縦弾性係数を変化させることができ、超音波受信素子の共振周波数をほぼ所望する値に調節することができる。 According to the first aspect of the present invention, an external force is applied when the resonance frequency of the ultrasonic receiving element is different from a desired value due to variations in the shape of the diaphragm or variations in the thickness of the thin film of the piezoelectric material. Since the apparent longitudinal elastic modulus is changed by changing the shape or internal stress of the diaphragm in the ultrasonic receiving element, the resonance frequency of the ultrasonic receiving element can be adjusted to a substantially desired value. As a result, in the piezoelectric ultrasonic sensor in which the ultrasonic receiving elements are arranged in an array, the resonance frequency of each ultrasonic receiving element can be made substantially the same value, and the accuracy of checking the position of the object can be improved. Can do. In addition, when a direct-current voltage is applied between electrodes facing each other constituting the ultrasonic receiving element to give a potential difference, the piezoelectric material causes distortion in the thin film of the piezoelectric material. This strain acts as an internal stress in the diaphragm in which four sides are constrained. Depending on the polarity of the DC voltage applied between the electrodes, it is possible to set the compression stress or the tensile stress. By appropriately controlling the value and polarity of the DC voltage to be applied, the resonance frequency of the ultrasonic receiving element can be adjusted to a desired value. Alternatively, when a pressure difference is provided on both sides of the diaphragm as a boundary, a load is applied to the entire diaphragm to change the shape or internal stress of the diaphragm in the ultrasonic receiving element. Therefore, even with this configuration, the apparent longitudinal elastic modulus of the diaphragm can be changed, and the resonance frequency of the ultrasonic receiving element can be adjusted to a substantially desired value.

請求項の発明によれば、圧電効果のヒステリシス特性に対して、一旦電圧を所定の電圧よりも高くして飽和領域まで到達させた後、電圧を徐々に所定の電圧まで下げるので、ヒステリシス特性曲線の同じ部分を用いて圧電材料の薄膜の歪みを制御することができ、電圧の値と内部応力との関係を一意的に決定することができる。その結果、超音波受信素子の共振周波数を正確に所望する値に調節することが可能である。 According to the invention of claim 2 , with respect to the hysteresis characteristic of the piezoelectric effect, the voltage is made higher than the predetermined voltage once to reach the saturation region, and then the voltage is gradually lowered to the predetermined voltage. The same portion of the curve can be used to control the strain of the thin film of piezoelectric material and the relationship between the voltage value and the internal stress can be uniquely determined. As a result, it is possible to accurately adjust the resonance frequency of the ultrasonic receiving element to a desired value.

請求項の発明によれば、一般的に、引張り応力に弱く破損しやすいという圧電材料の性質に対して、圧縮応力を働かせる方向に内部応力を作用させるので、圧電材料の薄膜の破損を防止して、超音波センサの信頼性を向上させつつ、同時に共振周波数を所望する値に調節することができる。 According to the invention of claim 3 , in general, the internal stress is applied in the direction in which the compressive stress is applied to the property of the piezoelectric material which is weak against the tensile stress and easily damaged, so that the thin film of the piezoelectric material is prevented from being damaged. Thus, while improving the reliability of the ultrasonic sensor, the resonance frequency can be adjusted to a desired value at the same time.

請求項の発明によれば、例えば、大気圧とは異なる気圧の状態で、基板のダイアフラムを形成するための凹部をガラス板で覆い、その後大気圧下で使用することにより、容易にダイアフラムを境として、その両側の部分の気圧に差を設けることができる。 According to the invention of claim 4 , for example, the concave portion for forming the diaphragm of the substrate is covered with a glass plate at a pressure different from the atmospheric pressure, and then the diaphragm is easily used under atmospheric pressure. As a boundary, a difference can be provided in the air pressure on both sides.

請求項の発明によれば、超音波受信素子がアレイ状に配列された圧電型超音波センサにおいて、いずれかの超音波受信素子の共振周波数を基準とし、前記基準の共振周波数と異なる共振周波数を有する超音波受信素子に対して外力を加えることにより、各超音波受信素子の共振周波数をほぼ同じ値に揃えることができ、超音波センサによる物体の位置の確認精度を向上させることができる。 According to the fifth aspect of the present invention, in the piezoelectric ultrasonic sensor in which the ultrasonic receiving elements are arranged in an array, the resonance frequency different from the reference resonance frequency with reference to the resonance frequency of any of the ultrasonic receiving elements. By applying an external force to the ultrasonic receiving element having the above, the resonance frequency of each ultrasonic receiving element can be made substantially the same value, and the accuracy of confirming the position of the object by the ultrasonic sensor can be improved.

請求項の発明によれば、各超音波受信素子の共振周波数のうち最も小さい値を基準値とし、基準値よりも大きい共振周波数を有する超音波受信素子に対して、圧縮応力を加えるので、圧電材料の薄膜の破損を防止して、超音波センサの信頼性を向上させることができる。 According to the invention of claim 6 , since the smallest value among the resonance frequencies of each ultrasonic receiving element is used as a reference value, compressive stress is applied to the ultrasonic receiving element having a resonance frequency higher than the reference value. It is possible to prevent damage to the thin film of the piezoelectric material and improve the reliability of the ultrasonic sensor.

請求項の発明によれば、超音波受信素子がアレイ状に配列された圧電型超音波センサにおいては、各超音波受信素子の共振周波数をほぼ同じ値に揃えることができるAccording to the invention of claim 7, in the piezoelectric ultrasonic sensor ultrasonic receiving elements are arranged in an array, as possible out to align the resonance frequency of the ultrasonic receiving elements substantially equal.

本発明を実施するための最良の形態について図面を参照して説明する。本発明の第1の実施の形態に係る圧電型超音波センサの構成を図1に示す。第1の実施の形態に係る圧電型超音波センサ1は、例えば4×4の計16個の超音波受信素子2がマトリックス状に配列されたアレイ型の超音波センサである。   The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of the piezoelectric ultrasonic sensor according to the first embodiment of the present invention. The piezoelectric ultrasonic sensor 1 according to the first embodiment is an array type ultrasonic sensor in which, for example, a total of 16 4 × 4 ultrasonic receiving elements 2 are arranged in a matrix.

次に、1つの超音波受信素子2の構成を図2に示す。図2に示すように、シリコン基板3の片面側から、上記マトリックス状配列に対応して、略矩形(正方形)断面を有する凹部4が形成され、凹部4の底に肉厚の薄いダイアフラム5が形成されている。シリコン基板3の平坦面側には、ダイアフラム5に対応して、金属薄膜による略矩形(正方形又は長方形)の下部電極6が形成され、さらに、下部電極6の上から圧電材料の薄膜7が形成されている。さらに、圧電材料の薄膜7を介して下部電極6に対向するように、略矩形(正方形又は長方形)の上部電極8が形成されている。そして、下部電極6と上部電極8に配線を接続し、これらの間から信号を取り出す。   Next, the configuration of one ultrasonic receiving element 2 is shown in FIG. As shown in FIG. 2, a concave portion 4 having a substantially rectangular (square) cross section is formed from one side of the silicon substrate 3 corresponding to the matrix arrangement, and a thin diaphragm 5 is formed at the bottom of the concave portion 4. Is formed. A substantially rectangular (square or rectangular) lower electrode 6 made of a metal thin film is formed on the flat surface side of the silicon substrate 3 corresponding to the diaphragm 5, and a piezoelectric material thin film 7 is formed on the lower electrode 6. Has been. Furthermore, a substantially rectangular (square or rectangular) upper electrode 8 is formed so as to face the lower electrode 6 through the thin film 7 of piezoelectric material. And wiring is connected to the lower electrode 6 and the upper electrode 8, and a signal is taken out between these.

ところで、上記のように、式1で示される超音波受信素子の共振周波数frは、ダイアフラム5の形状のばらつきや、圧電材料の薄膜7の厚さのばらつきなどの影響を受けるので、一般的に、複数の超音波受信素子2をアレイ状に配列した圧電型超音波センサ1では、各超音波受信素子2の共振周波数にばらつきが生じていると考えられる。第1の実施の形態では、圧電材料による圧電効果を利用し、外力として下部電極6と上部電極8の間にあらかじめ直流電圧を印加して電位差を与え、圧電材料の薄膜7に歪みを生じさせる。この圧電材料の薄膜7の歪みは、4辺が拘束されたダイアフラム5では、内部応力として働く。下部電極6と上部電極8の間に印加する直流電圧の極性により、圧縮応力又は引張り応力とすることが可能である。それによって、ダイアフラム5の形状又は内部応力が変化し、見かけの縦弾性係数が変化するので、印加する直流電圧の値及び極性を適宜選択することにより、超音波受信素子2の共振周波数を所望する値に調節することができる。このような共振周波数の調節を各超音波受信素子2に対して行うことにより、全ての超音波受信素子2の共振周波数をほぼ同じ値に揃えることができ、圧電型超音波センサ1による物体の位置の確認精度を向上させることができる。   By the way, as described above, the resonance frequency fr of the ultrasonic receiving element represented by the equation 1 is affected by variations in the shape of the diaphragm 5 and variations in the thickness of the thin film 7 of the piezoelectric material. In the piezoelectric ultrasonic sensor 1 in which a plurality of ultrasonic receiving elements 2 are arranged in an array, it is considered that the resonance frequency of each ultrasonic receiving element 2 varies. In the first embodiment, the piezoelectric effect of the piezoelectric material is used, and a direct current voltage is applied in advance between the lower electrode 6 and the upper electrode 8 as an external force to give a potential difference, thereby causing distortion in the thin film 7 of the piezoelectric material. . The distortion of the piezoelectric material thin film 7 acts as internal stress in the diaphragm 5 in which four sides are constrained. Depending on the polarity of the DC voltage applied between the lower electrode 6 and the upper electrode 8, a compressive stress or a tensile stress can be obtained. As a result, the shape or internal stress of the diaphragm 5 changes, and the apparent longitudinal elastic modulus changes. Therefore, the resonance frequency of the ultrasonic receiving element 2 is desired by appropriately selecting the value and polarity of the DC voltage to be applied. Can be adjusted to the value. By performing such adjustment of the resonance frequency for each ultrasonic receiving element 2, the resonance frequencies of all the ultrasonic receiving elements 2 can be made substantially the same value, and the object of the object by the piezoelectric ultrasonic sensor 1 can be adjusted. Position confirmation accuracy can be improved.

周知のように、圧電材料に所定の極性の電圧を印加して歪みを発生させた後、逆極性の電圧を印加して逆向きの歪みを発生させても、図3に示すヒステリシス特性により、元の状態には戻らない。そこで、この圧電型超音波センサ1を使用する際、必ず一旦電圧を所定の電圧(所定の共振周波数が得られる電圧)よりも高くして飽和領域まで到達させた後、電圧を徐々に所定の電圧まで下げることが好ましい。このようにすれば、ヒステリシス特性曲線の同じ部分を用いて圧電材料の薄膜7の歪みを制御することができ、下部電極6と上部電極8の間に印加する電圧の値と、ダイアフラム5に発生する内部応力との関係を一意的に決定することができる。その結果、超音波受信素子2の共振周波数を正確に所望する値に調節することができる。なお、このような制御は、必ずしも全ての場合に行う必要はなく、圧電型超音波センサ1に要求される検出精度(物体の位置の確認精度)や、超音波受信素子2の共振周波数のばらつきの範囲などに応じて、必要な場合にのみ行えばよい。   As is well known, after applying a voltage of a predetermined polarity to a piezoelectric material to generate distortion, applying a reverse polarity voltage to generate reverse distortion causes the hysteresis characteristics shown in FIG. It does not return to the original state. Therefore, when the piezoelectric ultrasonic sensor 1 is used, the voltage is always made higher than a predetermined voltage (a voltage at which a predetermined resonance frequency is obtained) to reach the saturation region, and then the voltage is gradually increased to a predetermined value. It is preferable to reduce the voltage. In this way, the distortion of the piezoelectric material thin film 7 can be controlled using the same part of the hysteresis characteristic curve, and the value of the voltage applied between the lower electrode 6 and the upper electrode 8 is generated in the diaphragm 5. The relationship with the internal stress to be determined can be uniquely determined. As a result, the resonance frequency of the ultrasonic receiving element 2 can be accurately adjusted to a desired value. Such control is not necessarily performed in all cases, and the detection accuracy required for the piezoelectric ultrasonic sensor 1 (accuracy of checking the position of the object) and the variation in the resonance frequency of the ultrasonic receiving element 2 are not necessarily required. This may be done only when necessary, depending on the range of.

さらに、一般的に、圧電材料は、圧縮応力には強いけれども、引張り応力には弱く、破損しやすいことが知られている。個々の超音波受信素子2についていえば、所望する共振周波数よりも共振周波数の高い超音波受信素子2を形成し、その超音波受信素子に圧縮応力を加えて、所望する共振周波数となるように調節すればよい。このようにすれば、圧電材料の薄膜7に引張り応力が働く可能性がほとんどなくなり、圧電材料の薄膜7の破損を防止しつつ、各超音波受信素子2の共振周波数を調節することができる。また、アレイ状に配列された複数の超音波素子2の全体についていえば、各超音波受信素子2の共振周波数のうち最も小さい値を基準値とし、基準値よりも大きい共振周波数を有する超音波受信素子2に対して圧縮応力を加えるので、特定の超音波受信素子2の破損を防止して、超音波センサ1全体の信頼性を向上させることができると共に、圧電型超音波センサ1による物体の位置の確認精度を向上させることができる。   Further, it is generally known that a piezoelectric material is strong against compressive stress but weak against tensile stress and easily damaged. With regard to the individual ultrasonic receiving elements 2, the ultrasonic receiving element 2 having a resonance frequency higher than the desired resonance frequency is formed, and compressive stress is applied to the ultrasonic receiving element so that the desired resonance frequency is obtained. Adjust it. In this way, there is almost no possibility of tensile stress acting on the thin film 7 of the piezoelectric material, and the resonance frequency of each ultrasonic receiving element 2 can be adjusted while preventing the thin film 7 of the piezoelectric material from being damaged. In addition, regarding the entirety of the plurality of ultrasonic elements 2 arranged in an array, an ultrasonic wave having a resonance frequency higher than the reference value, with the smallest value among the resonance frequencies of each ultrasonic receiving element 2 being a reference value. Since compressive stress is applied to the receiving element 2, damage to the specific ultrasonic receiving element 2 can be prevented and the reliability of the entire ultrasonic sensor 1 can be improved, and an object formed by the piezoelectric ultrasonic sensor 1 can be improved. The accuracy of confirming the position of can be improved.

ここで、複数の超音波受信素子2がアレイ状に配列された圧電型超音波センサ1において、各超音波受信部2の共振周波数が揃っていない場合に、共振周波数の調節を必要とする理由について簡単に説明する。図4に示すように、2つの超音波受信素子2aと2bの距離をL、各超音波受信素子2X及び2Yに入射する反射波の方位角をθとすると、一方の超音波受信素子2bに反射波が到達する時間は、他方の超音波受信素子2aに反射波が到達する時間よりも距離D(D=L・sinθ)分だけ遅くなる。また、各超音波受信素子2aと2bの感度も、共振周波数のばらつきなどによって若干異なっている。超音波受信素子2aによる受信波形をf(t)、超音波受信素子2bによる受信波形をf(t)とすると、各受信波形f(t)及びf(t)は、それぞれ図5(a)に示すような波形となり、以下の式2及び式3で表される。

Figure 0004228827
Here, in the piezoelectric ultrasonic sensor 1 in which a plurality of ultrasonic receiving elements 2 are arranged in an array, the resonance frequency needs to be adjusted when the resonance frequencies of the ultrasonic receiving units 2 are not aligned. A brief explanation will be given. As shown in FIG. 4, when the distance between the two ultrasonic receiving elements 2a and 2b is L, and the azimuth angle of the reflected wave incident on each ultrasonic receiving element 2X and 2Y is θ, one ultrasonic receiving element 2b The time for the reflected wave to reach is delayed by the distance D (D = L · sin θ) than the time for the reflected wave to reach the other ultrasonic receiving element 2a. Further, the sensitivity of each of the ultrasonic receiving elements 2a and 2b is slightly different due to variations in the resonance frequency. Assuming that the received waveform by the ultrasonic receiving element 2a is f a (t) and the received waveform by the ultrasonic receiving element 2b is f b (t), the received waveforms f a (t) and f b (t) are respectively shown in FIG. The waveform is as shown in 5 (a), and is expressed by the following Equation 2 and Equation 3.
Figure 0004228827

このような受信波形f(t)とf(t)を合成すると、式4に示すようになる。式4のsin成分に着目すると、式2及び式3と同様の波形を表している。ところが、これにcos成分が掛かっているため、図5(b)に示すように、周波数1/T=(ω−ω)/4πの振幅変動成分によるゴースト(うなり)が発生する。その結果、圧電型超音波センサ1による物体の位置の確認精度が低下する。ここで、2つの超音波受信素子2aと2bの共振周波数を揃えると、ω≒ωとなり、cos成分をほぼ定数にすることができ、振幅変動成分によるゴーストの発生を低減もしくは防止することができる。その結果、圧電型超音波センサ1による物体の位置の確認精度を向上させることができる。従って、各超音波受信部2の共振周波数をほぼ同じ値に揃える必要がある。 When such received waveforms f a (t) and f b (t) are synthesized, the result is as shown in Expression 4. When attention is paid to the sine component of Expression 4, waveforms similar to those of Expression 2 and Expression 3 are represented. However, since a cos component is applied to this, a ghost (beat) due to an amplitude fluctuation component of frequency 1 / T = (ω a −ω b ) / 4π occurs as shown in FIG. As a result, the accuracy of confirming the position of the object by the piezoelectric ultrasonic sensor 1 is lowered. Here, when the resonance frequencies of the two ultrasonic receiving elements 2a and 2b are made uniform, ω a ≈ω b , the cos component can be made substantially constant, and generation of a ghost due to an amplitude variation component can be reduced or prevented. Can do. As a result, the accuracy of confirming the position of the object by the piezoelectric ultrasonic sensor 1 can be improved. Therefore, it is necessary to make the resonance frequencies of the respective ultrasonic receivers 2 substantially the same value.

次に、本発明の第2の実施の形態について説明する。上記第1の実施の形態では、圧電材料の薄膜7に外力として直流電圧を印加して、圧電素子の薄膜7に歪みを生じさせ、それによってダイアフラム5の見かけの縦弾性係数を変化させたが、第2の実施の形態では、ダイアフラム5の両側に気圧差を設けて、ダイアフラム5の薄肉部の全体に荷重をかけて、見かけの縦弾性係数を変化させている。   Next, a second embodiment of the present invention will be described. In the first embodiment, a direct-current voltage is applied as an external force to the thin film 7 of the piezoelectric material to cause distortion in the thin film 7 of the piezoelectric element, thereby changing the apparent longitudinal elastic modulus of the diaphragm 5. In the second embodiment, an atmospheric pressure difference is provided on both sides of the diaphragm 5 so that a load is applied to the entire thin portion of the diaphragm 5 to change the apparent longitudinal elastic modulus.

第2の実施の形態における圧電型超音波センサ1の1つの超音波受信素子2の構成を図6に示す。図6から分かるように、シリコン基板3に形成された凹部4の開口をガラス板9で塞ぎ、凹部4の内部の気圧P1を大気圧P0とは異なる値(例えば、P0>P1)に設定している。このような構成により、ダイアフラム5の全体に、圧力差による荷重が加えられることになる。   FIG. 6 shows the configuration of one ultrasonic receiving element 2 of the piezoelectric ultrasonic sensor 1 according to the second embodiment. As can be seen from FIG. 6, the opening of the recess 4 formed in the silicon substrate 3 is closed with a glass plate 9, and the pressure P1 inside the recess 4 is set to a value different from the atmospheric pressure P0 (for example, P0> P1). ing. With such a configuration, a load due to a pressure difference is applied to the entire diaphragm 5.

このような超音波センサ1の製造方法としては、例えばシリコン基板3上に下部電極6、圧電材料の薄膜7及び上部電極8を形成した後、製造装置内の圧力をP1に設定し、その状態でガラス板9をシリコン基板3の凹部4が形成されている側に接着などにより固定する。そうすると、凹部4の内部には、気圧P1の気体が封止されることになる。そして、大気圧P0の下で圧電型超音波センサ1を使用することにより、ダイアフラム5の見かけの縦弾性係数が変化され、超音波受信素子2の共振周波数を所望する値にすることができる。   As a method of manufacturing such an ultrasonic sensor 1, for example, after forming the lower electrode 6, the thin film 7 of piezoelectric material and the upper electrode 8 on the silicon substrate 3, the pressure in the manufacturing apparatus is set to P1, and the state Then, the glass plate 9 is fixed to the side of the silicon substrate 3 where the concave portion 4 is formed by adhesion or the like. If it does so, the gas of the atmospheric | air pressure P1 will be sealed in the inside of the recessed part 4. FIG. Then, by using the piezoelectric ultrasonic sensor 1 under the atmospheric pressure P0, the apparent longitudinal elastic modulus of the diaphragm 5 is changed, and the resonance frequency of the ultrasonic receiving element 2 can be set to a desired value.

なお、アレイ状に配置された個々の超音波受信素子2について、第2の実施の形態による手法で共振周波数を同じ値に揃えることは、工数及びコストの面で必ずしも有利であるとはいえない。そこで、第2の実施形態による手法を用いて所望する共振周波数よりも共振周波数の高い複数の超音波受信素子2を形成し、各超音波受信素子2に対して上記第1の実施の形態による手法を用いて圧縮応力を加えて、所望する共振周波数を得るようにしてもよい。   For the individual ultrasonic receiving elements 2 arranged in an array, it is not necessarily advantageous in terms of man-hours and costs to make the resonance frequency the same value by the method according to the second embodiment. . Therefore, a plurality of ultrasonic receiving elements 2 having a resonance frequency higher than a desired resonance frequency are formed using the method according to the second embodiment, and each ultrasonic receiving element 2 is in accordance with the first embodiment. A compression stress may be applied using a technique to obtain a desired resonance frequency.

さらに、ダイアフラム5の形状を長方形とし、異なる振動モードにおける共振周波数を互いに近づけ、共振点のQ値を下げるように構成してもよい。上記式1におけるaを長方形の短辺とし、bを長辺とする。m=1及びn=2の振動モード(図7中Xで示すモード)とm=2及びn=1の振動モード(図7中Yで示す振動モード)の共振周波数の値が近づき、様々な振動モードに対応して超音波を検出することが可能となる(ブロードバンド化)。   Further, the diaphragm 5 may have a rectangular shape so that the resonance frequencies in different vibration modes are close to each other and the Q value of the resonance point is lowered. In Equation 1, a is a rectangular short side and b is a long side. The resonance frequency values of the vibration mode of m = 1 and n = 2 (mode indicated by X in FIG. 7) and the vibration mode of m = 2 and n = 1 (vibration mode indicated by Y in FIG. 7) approach each other. It becomes possible to detect ultrasonic waves corresponding to the vibration mode (broadband).

なお、上記各実施の形態では、超音波受信素子2がマトリックス状に配列されたアレイ型の超音波センサを例示したが、本発明はこれに限定されるものではなく、超音波受信素子を1つしか有していない圧電型超音波センサにも適用できることは言うまでもない。その場合、量産される各超音波センサの共振周波数特性を揃えることができる。   In each of the above embodiments, the array type ultrasonic sensor in which the ultrasonic receiving elements 2 are arranged in a matrix is illustrated, but the present invention is not limited to this, and the ultrasonic receiving element is 1 Needless to say, the present invention can also be applied to a piezoelectric ultrasonic sensor having only one. In that case, the resonance frequency characteristics of each ultrasonic sensor to be mass-produced can be made uniform.

本発明の第1の実施の形態に係る圧電型超音波センサの構成を示す正面図The front view which shows the structure of the piezoelectric ultrasonic sensor which concerns on the 1st Embodiment of this invention 第1の実施の形態における圧電型超音波センサの1つの超音波受信素子の構成を示す側部断面図Side surface sectional drawing which shows the structure of one ultrasonic receiving element of the piezoelectric ultrasonic sensor in 1st Embodiment 圧電材料のヒステリシス特性を示すグラフGraph showing hysteresis characteristics of piezoelectric material 2つの超音波受信素子に入射する反射波の時間的な遅れを説明した図The figure explaining the time delay of the reflected wave which injects into two ultrasonic receiving elements (a)は単一の超音波受信素子による受信波形を示す波形図、(b)は2つの超音波受信素子による受信波形を合成した波形図(A) is a waveform diagram showing a received waveform by a single ultrasonic receiving element, (b) is a waveform diagram obtained by combining received waveforms by two ultrasonic receiving elements. 本発明の第2の実施の形態における圧電型超音波センサの1つの超音波受信素子の構成を示す側部断面図Side surface sectional drawing which shows the structure of one ultrasonic receiving element of the piezoelectric type ultrasonic sensor in the 2nd Embodiment of this invention ダイアフラムの形状を長方形とした場合の振動モードと共振周波数の関係を示すグラフGraph showing the relationship between vibration mode and resonance frequency when the diaphragm shape is rectangular

符号の説明Explanation of symbols

1 圧電型超音波センサ
2 超音波受信素子
3 シリコン基板
4 凹部
5 ダイアフラム
6 下部電極
7 圧電材料の薄膜
8 上部電極
9 ガラス板
DESCRIPTION OF SYMBOLS 1 Piezoelectric ultrasonic sensor 2 Ultrasonic receiving element 3 Silicon substrate 4 Recessed part 5 Diaphragm 6 Lower electrode 7 Thin film of piezoelectric material 8 Upper electrode 9 Glass plate

Claims (7)

複数のダイアフラムが形成された基板と、前記基板の一面に形成された圧電材料の薄膜と、前記圧電材料の薄膜のうち1つのダイアフラムに対応する部分の両面にそれぞれ形成された金属薄膜の電極を備え、
1つのダイアフラムに対応し、前記圧電材料の薄膜及び互いに対向する2つの電極の領域で構成される超音波受信素子がアレイ状に配置され、
1つの超音波受信素子に対して、直流電圧を印加し又は前記ダイアフラムを境として、その両側の部分の気圧に差を設け、あるいはこれらを組み合わせることにより、その超音波受信素子におけるダイアフラムの形状又は内部応力を変化させることを特徴とする圧電型超音波センサ。
A substrate having a plurality of diaphragms formed thereon; a piezoelectric material thin film formed on one surface of the substrate; and a metal thin film electrode formed on both surfaces of a portion of the piezoelectric material corresponding to one diaphragm. Prepared,
Corresponding to one diaphragm, ultrasonic receiving elements composed of a thin film of the piezoelectric material and two electrode regions facing each other are arranged in an array,
Applying a DC voltage to one ultrasonic receiving element or providing a difference in air pressure on both sides of the diaphragm as a boundary, or combining them, the shape of the diaphragm in the ultrasonic receiving element or A piezoelectric ultrasonic sensor characterized by changing an internal stress.
前記直流電圧を、一旦所定の電圧よりも高い電圧まで上げた後、徐々に所定の電圧まで下げるようにして印加することを特徴とする請求項に記載の圧電型超音波センサ。 2. The piezoelectric ultrasonic sensor according to claim 1 , wherein the direct current voltage is once increased to a voltage higher than a predetermined voltage and then gradually decreased to a predetermined voltage. 所望する共振周波数よりも共振周波数の高い超音波受信素子を形成し、その超音波受信素子に圧縮応力を加えて、前記所望する共振周波数とすることを特徴とする請求項1又は請求項2に記載の圧電型超音波センサ。 Than the desired resonant frequency to form a high ultrasonic wave receiving element resonance frequencies, the addition of compressive stress in the ultrasonic receiving device, to claim 1 or claim 2 characterized in that said desired resonant frequency The piezoelectric ultrasonic sensor described. 前記基板のダイアフラムを形成するための凹部をガラス板で覆い、前記凹部内の圧力を外部の気圧とは異なる値とすることを特徴とする請求項に記載の圧電型超音波センサ。 Piezoelectric ultrasonic sensor according to claim 1, wherein the recesses for forming the diaphragm of the substrate covered with a glass plate, characterized by different values of external pressure the pressure in the recess. 複数のダイアフラムが形成された基板と、前記基板の一面に形成された圧電材料の薄膜と、前記圧電材料の薄膜のうち1つのダイアフラムに対応する部分の両面にそれぞれ形成された金属薄膜の電極を備え、1つのダイアフラムに対応し、前記圧電材料の薄膜及び互いに対向する2つの電極の領域で構成される超音波受信素子がアレイ状に配列された圧電型超音波センサの共振周波数調節方法であって、
いずれかの超音波受信素子の共振周波数を基準とし、前記基準の共振周波数と異なる共振周波数を有する超音波受信素子に対して、直流電圧を印加し又は前記ダイアフラムを境として、その両側の部分の気圧に差を設け、あるいはこれらを組み合わせることにより、各超音波波受信素子の共振周波数をほぼ同じ値とすることを特徴とする圧電型超音波センサの共振周波数調節方法。
A substrate having a plurality of diaphragms formed thereon; a piezoelectric material thin film formed on one surface of the substrate; and a metal thin film electrode formed on both surfaces of a portion of the piezoelectric material corresponding to one diaphragm. A method of adjusting the resonance frequency of a piezoelectric ultrasonic sensor corresponding to one diaphragm, wherein the ultrasonic receiving elements are arranged in an array in the form of a thin film of the piezoelectric material and two electrode regions facing each other. And
With reference to the resonance frequency of any of the ultrasonic receiving elements, a direct current voltage is applied to the ultrasonic receiving element having a resonance frequency different from the reference resonance frequency , or the portions on both sides of the diaphragm are used as a boundary. A method for adjusting the resonance frequency of a piezoelectric ultrasonic sensor, characterized in that the resonance frequency of each ultrasonic wave receiving element is made substantially the same value by providing a difference in atmospheric pressure or combining them .
各超音波受信素子の共振周波数のうち最も小さい値を基準値とし、前記基準値よりも大きい共振周波数を有する超音波受信素子に対して、圧縮応力を加えることを特徴とする請求項に記載の圧電型超音波センサの共振周波数調節方法。 A reference value the smallest value of the resonance frequencies of the ultrasonic receiving device, according to claim 5, characterized in that to the ultrasonic receiving elements having a larger resonance frequency than the reference value, applying a compressive stress Method for adjusting resonance frequency of piezoelectric type ultrasonic sensor. 複数のダイアフラムが形成された基板と、前記基板の一面に形成された圧電材料の薄膜と、前記圧電材料の薄膜のうち1つのダイアフラムに対応する部分の両面にそれぞれ形成された金属薄膜の電極を備え、1つのダイアフラムに対応し、前記圧電材料の薄膜及び互いに対向する2つの電極の領域で構成される超音波受信素子がアレイ状に配置され、1つの超音波受信素子に対して、直流電圧を印加し又は前記ダイアフラムを境として、その両側の部分の気圧に差を設け、あるいはこれらを組み合わせることにより、その超音波受信素子の共振周波数を変化させることを特徴とする圧電型超音波センサの共振周波数調節方法。 A substrate having a plurality of diaphragms formed thereon; a piezoelectric material thin film formed on one surface of the substrate; and a metal thin film electrode formed on both surfaces of a portion of the piezoelectric material corresponding to one diaphragm. An ultrasonic receiving element that corresponds to one diaphragm and that is composed of a thin film of the piezoelectric material and two electrode regions facing each other is arranged in an array, and a DC voltage is applied to one ultrasonic receiving element. The piezoelectric ultrasonic sensor is characterized in that the resonance frequency of the ultrasonic receiving element is changed by applying a difference between the pressures on both sides of the diaphragm or by combining them with the diaphragm as a boundary . Resonance frequency adjustment method.
JP2003283846A 2003-07-31 2003-07-31 Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof Expired - Fee Related JP4228827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283846A JP4228827B2 (en) 2003-07-31 2003-07-31 Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283846A JP4228827B2 (en) 2003-07-31 2003-07-31 Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof

Publications (2)

Publication Number Publication Date
JP2005051687A JP2005051687A (en) 2005-02-24
JP4228827B2 true JP4228827B2 (en) 2009-02-25

Family

ID=34268616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283846A Expired - Fee Related JP4228827B2 (en) 2003-07-31 2003-07-31 Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof

Country Status (1)

Country Link
JP (1) JP4228827B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552883B2 (en) * 2006-04-19 2010-09-29 株式会社デンソー Vibration detection method
JP4702164B2 (en) * 2006-04-26 2011-06-15 株式会社デンソー Ultrasonic sensor and manufacturing method thereof
US7730785B2 (en) 2006-04-26 2010-06-08 Denso Corporation Ultrasonic sensor and manufacture method of the same
JP2007306043A (en) * 2006-05-08 2007-11-22 Denso Corp Ultrasonic sensor
JP5325630B2 (en) * 2009-03-27 2013-10-23 株式会社東芝 Microphone device and adjusting device and adjusting method thereof
JP5990930B2 (en) * 2012-02-24 2016-09-14 セイコーエプソン株式会社 Ultrasonic transducer element chip and probe, electronic device and ultrasonic diagnostic apparatus
JP7192510B2 (en) * 2018-02-05 2022-12-20 株式会社デンソー ultrasonic sensor
CN110875110A (en) * 2018-08-29 2020-03-10 射洪福临磁材有限公司 VN particle-containing neodymium iron boron magnetic material and preparation method thereof
JP7211220B2 (en) 2019-04-05 2023-01-24 株式会社デンソー ultrasonic sensor
JP7226154B2 (en) * 2019-07-10 2023-02-21 株式会社デンソー ultrasonic sensor
CN112857276B (en) * 2021-03-21 2023-05-16 中北大学 Surface acoustic wave strain sensor and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308577B1 (en) * 1996-09-30 2001-10-30 Motorola, Inc. Circuit and method of compensating for membrane stress in a sensor
JPH10185727A (en) * 1996-12-27 1998-07-14 Toyota Central Res & Dev Lab Inc Piezoelectric converter
JP4074493B2 (en) * 2001-08-31 2008-04-09 日本碍子株式会社 Ceramic element
JP2003284182A (en) * 2002-03-25 2003-10-03 Osaka Industrial Promotion Organization Ultrasonic wave sensor element, ultrasonic wave array sensor system, and adjustment method of resonance frequency therefor

Also Published As

Publication number Publication date
JP2005051687A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US4885781A (en) Frequency-selective sound transducer
JP4635996B2 (en) Ultrasonic sensor
US9636709B2 (en) Ultrasonic generation device
JP5183640B2 (en) Ultrasonic imaging device
US7888844B2 (en) Temperature control of micromachined transducers
JP4228827B2 (en) Piezoelectric ultrasonic sensor and method for adjusting resonance frequency thereof
DE102017223869A1 (en) MEMS device and mobile device with the MEMS device
US11950511B2 (en) Micromachined ultrasonic transducer (MUT), method for manufacturing the MUT, and method for designing the MUT
JP6123171B2 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic inspection equipment
CN109909140B (en) Piezoelectric micromechanical ultrasonic transducer and preparation method thereof
KR19990083114A (en) A piezo-electric acceleration sensor, the manufacturing method thereof, and the method of detecting acceleration
KR101431370B1 (en) Acoustic transducer, and microphone using the acoustic transducer
US8299685B2 (en) High power ultrasonic transducer
KR20100042596A (en) Pressure sensor and pressure receiving means
JPWO2007091609A1 (en) Ultrasonic sensor
US20190129019A1 (en) Ultrasonic Device And Ultrasonic Measuring Apparatus
EP2661102A1 (en) Vibration device and electronic apparatus
CN110944274B (en) Tunable MEMS piezoelectric transducer with mass load based on Pitton-mode
Pala et al. Radius of curvature measurement using piezoelectric micromachined ultrasonic transducers
JPH02248867A (en) Acceleration sensor
WO2015137425A1 (en) Ultrasonic distance measuring device and ultrasonic distance measuring method
JP4254411B2 (en) Piezoelectric ultrasonic sensor
JP2011108680A (en) Method of manufacturing multilayer substrate, method of manufacturing diaphragm, and method of manufacturing pressure sensor
US20170040527A1 (en) Piezoelectric element, probe, ultrasonic measurement device, electronic apparatus, polarization processing method, and initialization device
US20230320228A1 (en) Piezoelectric film integrated device, manufacturing method thereof, and acoustic oscillation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees