JP4228333B2 - Organic photoconductor for electrophotography - Google Patents

Organic photoconductor for electrophotography Download PDF

Info

Publication number
JP4228333B2
JP4228333B2 JP2001000784A JP2001000784A JP4228333B2 JP 4228333 B2 JP4228333 B2 JP 4228333B2 JP 2001000784 A JP2001000784 A JP 2001000784A JP 2001000784 A JP2001000784 A JP 2001000784A JP 4228333 B2 JP4228333 B2 JP 4228333B2
Authority
JP
Japan
Prior art keywords
compound
resin
photosensitive layer
layer
transport material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001000784A
Other languages
Japanese (ja)
Other versions
JP2002207303A (en
Inventor
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2001000784A priority Critical patent/JP4228333B2/en
Publication of JP2002207303A publication Critical patent/JP2002207303A/en
Application granted granted Critical
Publication of JP4228333B2 publication Critical patent/JP4228333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子写真方式のプリンター、複写機などに用いられる電子写真用有機感光体に係わり、特には感度が高く応答性に優れた有機感光体に関するものである。
【0002】
【従来の技術】
従来、電子写真用有機感光体(以下有機感光体とも称する)に用いられる感光物質としては、セレンあるいはセレン合金、酸化亜鉛、硫化カドミウム等の無機系光導電性物質を主成分とする感光層を有する無機系の感光体が広く用いられてきた。しかし、近年、製造コストが安く、公害や環境汚染も防止できることから、種々の有機系光導電性物質を感光層材料に用いた電子写真用有機感光体の研究、開発が活発に行われ、既に実用化もされている。
【0003】
最近では、感度および耐久性といった性能を向上させるために、感光層として、電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層とを積層させた機能分離積層型感光体が主流となっている。その中でも有機顔料を電荷発生物質として蒸着層または結着樹脂中に分散させた電荷発生層と、低分子有機化合物を電荷輸送物質として結着樹脂中に分散または溶解させた電荷輸送層とをこの順に積層させた有機系積層型感光体が数多く開発され、主流となっている。
【0004】
このような有機感光体は電子を移動させる高性能の電荷輸送物質が無いため、正孔輸送物質を含む電荷輸送層を上層側とする負帯電型として構成される。ところが、この負帯電型の感光体はその表面を均一に帯電させる高電圧コロナ放電システムを必要としたり、その結果として、多量のオゾンを発生して環境条件を悪化させるといった問題がある。このオゾンはマイナスコロナ放電の際に特に多く発生することが知られている。
【0005】
この問題を改善するために、正帯電型の有機感光体が種々提案されているが、以下に述べる問題点が未だ充分に解消されていない。すなわち、負帯電型で、前述した積層順の場合には、電荷輸送物質として正孔輸送能を持つ物質を使用するのに対し、正帯電型で、同じ積層順とするには、電子輸送能を持つ物質が必要である。しかし、前述のように電子輸送物質は優れた特性を有するものが極めで少なく、また、比較的性能の良いものは毒性または発ガン性を有するものが多く、実用的でない。また、積層順を逆にすると、薄膜の電荷発生層が上層になるので、膜減りによる耐久性の劣化が問題となり、やはり実用的ではない。
【0006】
近年、有機化合物の分子式において、電子受容性にかかわる部分に溶解性基を導入することにより電子輸送能を改善したいくつかの電子輸送物質が提案されている。たとえば、特開平1−206349号公報、特開平3−290666号公報、特開平4−360148号公報、特開平5−92936号公報、特開平5−279582号公報、特開平7−179775号公報、特開平9−151157号公報、特開平10−73937号公報、電子写真学会誌 第30巻 策3号p266−273およびp274−281(1991)、“Japan HardCopy’92”論文集1992年7月6日、7日、8日JAホール(東京・大手町)p173−p176、“Japan Hard Copy’97”論文集1997年7月9日、10日、11日 JAホール(東京・大手町)p21−p24、“Pan−Pacific lmaging Conference/Japan Hard Copy’98”予稿集July15−17,1998JA HALL,Tokyo Japan p207−p210を挙げることができる。
【0007】
しかしながら、上記文献に示されたいずれの化合物においても、既存の電荷発生物質と組み合せた場合は、感度、電気特性が十分なものではなく、実用的にはまだ問題を有すると言わざるを得ないのが現状である。
【0008】
さらに近年は、特にオフイス内のネットワーク化による印刷枚数の増加、あるいは電子写真による軽印刷機の急発展等、電子写真方式のプリンターはますます高感度、高速応答性が求められている。特に、プリンターの高速化、印刷枚数の増加に伴い、正帯電型感光体を用いても、オゾンの発生が無視できないケースも見られるようになってきており、その対策が求められている。また、有機感光層を形成する際の製造効率の向上のために長期間にわたる塗布液の有効性を維持するポットライフの確保や、一般的な使用環境における感光層中の有機材料の品質劣化防止のために感光層に使われる有機材料に酸化防止機能を持たせることなどが不可欠であり、いずれも適切な酸化防止対策が求められている。これらの要求に応えるには、感光層に各種の酸化防止剤を添加することが有効であり、従来も用いられてきた。
【0009】
【発明が解決しようとする課題】
しかしながら、従来はこのような添加剤としては、正孔に対して捕獲中心として作用する電子供与性の酸化防止剤が用いられていたが、その添加量を増加させた場合、正孔が感光層中に空間電荷として残留し、感光体の残留電位を上昇させるという問題が発生した。この問題の発生を抑制するためには、その添加量を実質上、制限せざるを得ず、感光体特性を改善するための制限要素となっていた。
【0010】
本発明は上述の点に鑑みてなされたものであり、酸化防止剤の添加量を増加させても、感光体の残留電位等の特性を阻害することなく、対オゾン性にも優れた電子写真用有機感光体を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1に記載の発明によれば、導電性支持体上に、電荷発生物質、電子輸送物質、正孔輸送物質、結着樹脂を含有する感光層を具備する電子写真用有機感光体において、電子輸送物質がキノン化合物と、このキノン化合物を還元したフェノール化合物とを含むこととすることにより、前記目的が達成される。
請求項2に記載の発明によれば、電子輸送物質中のフェノール化合物/キノン化合物が重量比率で1以下である請求項1記載の電子写真用有機感光体とすることが好ましい。
【0012】
一般に電子輸送物質(アクセプター性化合物)に用いられる化合物は、電子吸引性の官能基(A)と電子移動性の高い共役構造を持つ骨格(X)で構成されるものが多い。特に電子吸引基としては芳香族化合物のC=O基の有効性が高く、多くの電子輸送物質に用いられる。一方、酸化防止剤は前述のように電子供与性であり、特にフェノール基を含む構造が代表的なものである。酸化防止機能は、このフェノール基等、電子供与性の官能基が優先的に酸化を受けることにより他の材料の酸化を抑制するものである。
【0013】
本発明における電子輸送物質(キノン化合物)をX=Oとし、このキノン化合物を還元して得られるフェノール化合物をX−OHと表すと、このフェノール化合物は、一般の酸化防止剤と同様に感光層中で優先的に酸化されることにより、他の材料の酸化を防止するとともに、自らはキノン化合物である電子輸送物質に変換される。
2(X−OH)+O→ 2(X=O)+H2
【0014】
電子輸送物質のキノン化合物を還元して得られるフェノール化合物は、酸化防止機能を持つにもかかわらず、従来の酸化防止剤と異なり、その添加量を多くしても残留電位の上昇が少ない特徴を有することが分かった。このような特徴を示すメカニズムは必ずしも明らかではないが、つぎのように推察される。前記フェノール化合物は、通常の酸化防止剤に比べて、共役構造の多い骨格(X)を有しており、捕獲された正孔が分子内を有効に移動することにより空間電荷が形成され難くなるためと考えられる。また、酸化により生じたキノン化合物は、それ自身、電子輸送物質でもあるため、これも残留電位上昇の抑制に有効に作用する。さらに、フェノール化合物がキノン化合物と同じ分子骨格をもち酸化されると同じキノン化合物となるので、異なる電子輸送物質を混合したときにしばしば生ずる移動度の低下などの不利益を回避できると考えられる。
【0015】
本発明にかかるキノン化合物と、このキノン化合物を還元したフェノール化合物との混合はどのような比率であっても、本発明の効果が認められるが、本発明にかかる電子輸送物質中のフェノール化合物/キノン化合物が重量比率で1以下である場合に特に好ましい効果が得られる。
【0016】
【発明の実施の形態】
以下、この発明にかかる電子写真用有機感光体の具体的な実施例について、図面を用いて詳細に説明する。
この発明は以下に説明する実施例に限定されるものではない。
【0017】
図1は本発明にかかる電子写真用有機感光体10の模式的断面図であり、導電性支持体1、中間層2、感光層3、保護層4からなる電子写真用有機感光体10の要部を模式的に示す。この構成で設けられている中間層と保護層は必要に応じて設けられるものであり、設けられない場合もある。感光層3は電荷発生機能と電子輸送機能を有する単層型感光層である。ここでは単層型感光層を用いて説明するが、本発明はけっして単層型に限られるものではなく、積層型の電子写真用有機感光体にも同様に有効である。
【0018】
さらに本発明における電子写真用有機感光体は、He−Neレーザー、半導体レーザー(波長780nm、680nm等)、LED、ハロゲンランプ等の露光光源、コロトロン、スコロトロン等の非接触帯電方式およびローラー、ブラシ等の接触帯電方式、さらには磁性一成分、非磁性一成分、二成分現像方式を具備する各種複写機、プリンター、ファクシミリに適用され、顕著な効果が得られる。
【0019】
(導電性支持体)
導電性支持体1は、感光体の電極としての役目と同時に他の各層を保持する支持体である。形状は円筒状、板状、フィルム状のいずれでも良く、材質的にはアルミニウム、ステンレス鋼、ニッケルなどの金属、あるいはガラス、樹脂体などの表面に導電処理を施したものが用いられる。
【0020】
(中間層)
中間層2は、樹脂を主成分とする層やアルマイト等の金属酸化皮膜からなり、導電性支持体1から感光層3への不要な電荷の注入防止、支持体表面の凹凸欠陥の被覆、導電性支持体1と感光層3との接着性向上等の目的で必要に応じて設けられる。中間層2を採用せず、感光層3を導電性支持体1上に直接形成することも可能である。
【0021】
本発明における中間層2に用いられる結着樹脂としては、塩化ビニルと酢酸ビニルとその他の樹脂成分の共重合体、または、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを1種または、2種以上適宜組み合わせて使用することが可能である。
【0022】
さらに、本発明における中間層2には、金属酸化物微粒子として酸化チタンを含有させることが好ましいが、同様な微粒子として、酸化ケイ素(シリカ)、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫化物、窒化ケイ素、窒化アルミニウム等の金属窒化物等の微粒子を前記酸化チタンと組み合わせて含有させてもよい。これらの微粒子の含有量は、層を形成できる範囲で任意に設定できる。
【0023】
結着樹脂を主成分とする中間層2の場合、正孔輸送性の付与、電荷トラップの低減等を目的として、正孔輸送物質を含有させることができる。正孔輸送物質の含有量は、中間層2の固形分に対して、0.1〜60重量%、好適には、5〜40重量%である。また、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。これらの中間層2は、一層でも用いられるが、異なる種類の層を二層以上積層させて用いてもよい。
【0024】
中間層2の膜厚は、中間層2の組成にも依存するが、繰り返し連続使用したとき残留電位が増大するなどの悪影響が出ない範囲で任意に設定できる。
【0025】
(感光層)
感光層3は、主として、電荷発生物質、正孔輸送物質、電子輸送物質(アクセプタ性化合物)、および結着樹脂からなる単層構造であるが、積層型にしてもよい。
【0026】
電荷発生物質としては、特に制限はないが、例えばフタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、多環キノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を使用することができ、これら電荷発生物質を単独または、2種以上を組み合わせて使用することが可能である。
【0027】
特に、本発明の電子写真用有機感光体には、アゾ顔料としては、ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料としては、N,N−bis(3.5−dimetylphenyl)−3,4:9,10−perylene bis(carboximid)、フタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンが好ましく、さらには、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、アモルフアスチタニルフタロシアニン、特開平8−209023号公報に記載のCuKα:X線回折スペクトルにてブラッグ角2θが9.60度を最大ピークとするチタニルフタロシアニンを用いると感度、耐久性および画質の点で著しく改善された効果を示す。電荷発生物質の含有量は、感光層の固形分に対して、0.1〜20重量%、好適には、0.5〜10重量%である。
【0028】
正孔輸送物質としては、特に制限はないが、例えばヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物、ポリ−N−ビニルカルバゾール、ポリシラン等を使用することができ、これら正孔輸送物質を単独または、2種以上を組み合わせて使用することが可能である。本発明において用いられる正孔輸送物質としては、光照射時に発生した正孔の輸送能力が優れているほか、電荷発生物質との組み合せに好適なものが好ましい。正孔輸送物質の含有量は、感光層の固形分に対して、5〜80重量%、好適には、10〜60重量%である。
【0029】
キノン系電子輸送物質としては、特に制限はないが、ニトロアントラキノン、ジニトロアントラキノン、キノン系化合物、ベンゾキノン系化合物、ジフエノキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、スチルベンキノン系化合物、アゾキノン系化合物等の電子輸送物質(アクセプタ性化合物)を使用することができる。これら電子輸送物質を単独または、2種以上組み合わせて使用することが可能である。電子輸送物質の含有量は、感光層の固形分に対して、1〜50重量%、好適には、5〜40重量%である。
【0030】
結着樹脂としては、下記一般式(1)に示したビスフェノールZ型ポリカーボネート樹脂を単独、もしくは、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などの樹脂と適宜組み合せて使用することが可能である。また、分子量の異なる同種の樹脂を混合して用いてもよい。結着樹脂の含有量は、感光層の固形分に対して、10〜90重量%、好適には、20〜80重量%であり、結着樹脂内における一般式(1)のポリカーボネート樹脂の占める割合は、1重量%〜100重量%、さらに好適には20重量%〜80重量%の範囲である。
【0031】
【化1】

Figure 0004228333
感光層の膜厚は実用的に有効な表面電位を維持するためには3〜100μmの範囲が好ましく、より好適には10〜50μmである。
【0032】
これらの感光層中には、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることもできる。このような目的に用いられる化合物としては、トコフエロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化合物、ジエーテル化合物、ベンゾフエノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。また、感光層中には、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。
【0033】
本発明にかかるフェノール化合物は、本発明にかかる前記各キノン化合物の合成過程における中間生成物として得られるものである。また、このキノン化合物を還元することによっても容易に入手することが可能である。
【0034】
さらに、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子、または、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を含有してもよい。また、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
【0035】
(保護層)
保護層4は、耐刷性を向上させること等を目的とし、必要に応じ設けることができ、結着樹脂を主成分とする層や、アモルフアスカーボン等の無機薄膜からなる。また結着樹脂中には、導電性の向上や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子、または、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を含有してもよい。
【0036】
また、電荷輸送性を付与する目的で、上記感光層に用いられる正孔輸送物質、電子輸送物質を含有させたり、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。さらに、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
【0037】
(形成方法)
感光体の各層を塗布によって形成する場合は、上記構成材料を適当な溶剤とともに、ペイントシェーカー、ボールミル、超音波分散等の公知の方法により、溶解、分散させ、塗布液を作製し、浸漬塗布、スプレー塗布、ブレード塗布、ロール塗布、スパイラル塗布、スライドホッパ塗布等の公知の塗布方法により形成したのち、乾燥すればよい。
【0038】
塗布液を作製するための溶剤としては、種々の有機溶剤が使用可能である。中間層塗布液に用いられる有機溶剤としては、特に制限はないが、一般的にはジメチルエーテル、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン、テトラヒドロビラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、メチルイソプロピルケトン等のケトン系溶剤を単独または2種類以上を混合して用いることが有効であり、さらに、他の有機溶剤との混合も可能である。
【0039】
感光層塗布液に用いられる有機溶剤としては、中間層に対する溶解性が低く、感光層に用いられる材料を溶解するものが好ましい。特には、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素を単独、もしくは適宜組み合せて使用することが有効であり、さらに、他の有機溶剤との混合も可能である。
【0040】
保護層塗布液に用いられる有機溶剤としては、特に制限はないが、感光層を溶解せず、保護層に用いられる材料を溶解するものであれば何れでもよい。
【0041】
【実施例】
以下、本文中「部」とは「重量部」を、「%」は「重量%」をそれぞれ表す。
(実施例1)
アルミニウム製円筒状導電性支持体上に、下記組成の中間層、感光層を順次、浸漬塗布機を用いて形成した。
【0042】
(中間層)
以下に示す材料を十分攪拌溶解して調製した塗布液を用いて成膜し、100℃で30分乾燥して膜厚0.2μmの中間層を形成した。
塩化ビニル−酢酸ビニル−ビニルアルコール共重合体(SOLBIN A:日信化学(株))
(塩化ビニル92%酢酸ビニル3%ビニルアルコール5%) 50部
メチルエチルケトン 950部
【0043】
(感光層)
以下に示す材料のうち、結着樹脂以外のものをペイントシェーカーにて1時間分散した後、結着樹脂を加えて十分攪拌溶解し、さらに1時間分散して調製した塗布液を用いて成膜し、100℃で、60分乾燥して膜厚25μmの単層型感光層を形成した。
Figure 0004228333
【0044】
【化2】
Figure 0004228333
【化3】
Figure 0004228333
【化4】
Figure 0004228333
以上のように電子写真用有機感光体を作製した。
【0045】
(実施例2)
実施例1の感光層組成を下記のように変更した以外は、実施例1と同様に感光体を作製した。
Figure 0004228333
【0046】
【化5】
Figure 0004228333
【化6】
Figure 0004228333
【0047】
(実施例3)
実施例1の感光層組成を下記のように変更した以外は、実施例1と同様に感光体を作製した。
Figure 0004228333
【0048】
【化7】
Figure 0004228333
【化8】
Figure 0004228333
【化9】
Figure 0004228333
【0049】
(比較例1)
実施例1の感光層組成を下記のように変更した以外は、実施例1と同様に感光体を作製した。
Figure 0004228333
【0050】
【化10】
Figure 0004228333
【0051】
(比較例2)
実施例1の感光層組成を下記のように変更した以外は、実施例1と同様に感光体を作製した。
Figure 0004228333
【0052】
(比較例3)
実施例1の感光層組成を下記のように変更した以外は、実施例1と同様に感光体を作製した。
Figure 0004228333
【0053】
【化11】
Figure 0004228333
【0054】
(比較例4)
実施例1の感光層組成を下記のように変更した以外は、実施例1と同様に感光体を作製した。
Figure 0004228333
【0055】
(評価方法)
電気特性について、各試料につき、オゾン暴露試験の前後で、静的電気特性を測定した。測定はコロナ放電で、試料を600Vに帯電させて行った。測定項目は、暗中での電位保持率(5秒後の電位の%表示)、半減衰露光量(μJ/cm2)、残留電位(5μJ/cm2の光を5秒間照射した後の電位)である。
対オゾン耐久性について、各試料をオゾン濃度100ppmの環境下に2時間暴露して、暴露前と、暴露後3時間の特性変化を測定した。
これらの評価結果を表1に示す。
【0056】
【表1】
Figure 0004228333
【0057】
上記のように、実施例で示した試料では、いずれも残留電位が40V以下であり、かつオゾン暴露後も特性の変化がほとんど認められない。これに対して、本発明のフェノール化合物を従来の酸化防止剤に置き換えた比較例1,3,4では、残留電位が暴露前で50V以上となった。また、酸化防止剤の量を減らした比較例2では、残留電位は低いものの、オゾン暴露により保持率が、90%以上という良品基準に対し、85%に低下するという不具合が生じた。この比較例2の結果については、酸化防止剤が少ないために感光層に含まれる有機材料がオゾン暴露により、酸化され変質したためと考えられる。通常、残留電位50V以上、保持率90%未満の感光体はいずれも画像特性に問題があり、好ましくない。
【0058】
【発明の効果】
本発明によれば、導電性支持体上に、電荷発生物質、電子輸送物質、正孔輸送物質、結着樹脂を含有する感光層を具備する電子写真用有機感光体において、電子輸送物質がキノン化合物と、このキノン化合物を還元したフェノール化合物とを含むこととしたので、酸化防止剤の添加量を増加させても、感光体の残留電位等の特性を阻害することなく、対オゾン性にも優れた電子写真用有機感光体を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる電子写真用感光体の模式的断面図である。
【符号の説明】
1 導電性支持体
2 中間層
3 感光層
4 保護層
10 電子写真用有機感光体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic organic photoreceptor for use in electrophotographic printers, copying machines, and the like, and more particularly to an organic photoreceptor having high sensitivity and excellent responsiveness.
[0002]
[Prior art]
Conventionally, as a photosensitive material used for an electrophotographic organic photoreceptor (hereinafter also referred to as an organic photoreceptor), a photosensitive layer mainly composed of an inorganic photoconductive material such as selenium or a selenium alloy, zinc oxide, cadmium sulfide or the like is used. Inorganic photoconductors have been widely used. However, in recent years, manufacturing costs are low, and pollution and environmental pollution can be prevented. Therefore, organic photoconductors for electrophotography using various organic photoconductive substances as photosensitive layer materials have been actively researched and developed. It has also been put into practical use.
[0003]
Recently, in order to improve performance such as sensitivity and durability, a function-separated laminated type photoreceptor in which a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material are laminated as a photosensitive layer. Has become the mainstream. Among these, a charge generation layer in which an organic pigment is dispersed as a charge generation material in a vapor deposition layer or a binder resin, and a charge transport layer in which a low molecular weight organic compound is dispersed or dissolved in a binder resin as a charge transport material. Many organic laminated type photoconductors laminated in order have been developed and become mainstream.
[0004]
Since such an organic photoreceptor does not have a high-performance charge transport material that moves electrons, it is configured as a negatively charged type having a charge transport layer containing a hole transport material as an upper layer side. However, this negatively charged photoreceptor requires a high voltage corona discharge system that uniformly charges the surface thereof, and as a result, there is a problem that a large amount of ozone is generated and environmental conditions are deteriorated. It is known that a lot of ozone is generated particularly during negative corona discharge.
[0005]
In order to improve this problem, various positively charged organic photoconductors have been proposed, but the problems described below have not been solved sufficiently. That is, in the case of the negatively charged type and the stacking order described above, a substance having a hole transporting ability is used as the charge transporting substance. A substance with is needed. However, as described above, there are very few electron transport materials having excellent characteristics, and those with relatively good performance are often toxic or carcinogenic and are not practical. Also, if the stacking order is reversed, the charge generation layer of the thin film becomes the upper layer, so that durability deterioration due to film reduction becomes a problem, which is also impractical.
[0006]
In recent years, several electron transport materials have been proposed in which the electron transport ability is improved by introducing a soluble group into a part related to electron acceptability in the molecular formula of an organic compound. For example, JP-A-1-206349, JP-A-3-290666, JP-A-4-360148, JP-A-5-92936, JP-A-5-279582, JP-A-7-179775, JP-A-9-151157, JP-A-10-73937, Journal of Electrophotographic Society, Vol. 30, No. 3, p266-273 and p274-281 (1991), “Japan HardCopy '92”, July 6, 1992 Sunday, 7th, 8th JA Hall (Otemachi, Tokyo) p173-p176, "Japan Hard Copy '97", July 9, 10th, 11th, 1997 JA Hall (Otemachi, Tokyo) p21- p24, “Pan-Pacific lapping Conference / Japan Hard Copy '98” Examples include July 15-17, 1998 JA HALL, Tokyo Japan p207-p210.
[0007]
However, in any compound shown in the above document, when combined with an existing charge generating material, sensitivity and electrical characteristics are not sufficient, and it must be said that there are still problems in practical use. is the current situation.
[0008]
Furthermore, in recent years, particularly, an increase in the number of printed sheets due to networking in an office, or rapid development of a light printing machine using electrophotography, demands increasingly higher sensitivity and faster response. In particular, with the increase in the speed of printers and the increase in the number of printed sheets, there are cases in which the generation of ozone cannot be ignored even when a positively charged photoreceptor is used, and countermeasures are required. In addition, in order to improve the production efficiency when forming the organic photosensitive layer, ensuring the pot life that maintains the effectiveness of the coating solution over a long period of time, and preventing the deterioration of the quality of the organic material in the photosensitive layer in general use environment Therefore, it is indispensable that the organic material used for the photosensitive layer has an anti-oxidation function, and appropriate anti-oxidation measures are required. In order to meet these demands, it is effective to add various antioxidants to the photosensitive layer, which has been used conventionally.
[0009]
[Problems to be solved by the invention]
However, conventionally, as such an additive, an electron-donating antioxidant that acts as a trap center for holes has been used. However, when the additive amount is increased, the holes are exposed to the photosensitive layer. There remains a problem in that the residual charge remains in the space and raises the residual potential of the photoreceptor. In order to suppress the occurrence of this problem, the amount of addition has to be substantially limited, which has been a limiting factor for improving the photoreceptor characteristics.
[0010]
The present invention has been made in view of the above points, and even when the amount of addition of an antioxidant is increased, an electrophotography having excellent ozone resistance without impairing characteristics such as the residual potential of the photoreceptor. It is an object of the present invention to provide an organic photoreceptor for use.
[0011]
[Means for Solving the Problems]
According to the invention described in claim 1, in an electrophotographic organic photoreceptor comprising a photosensitive layer containing a charge generating material, an electron transport material, a hole transport material, and a binder resin on a conductive support, The object is achieved when the electron transport material contains a quinone compound and a phenol compound obtained by reducing the quinone compound.
According to the invention described in claim 2, it is preferable that the organic photoconductor for electrophotography according to claim 1 wherein the phenol compound / quinone compound in the electron transport material is 1 or less by weight.
[0012]
In general, many compounds used for an electron transporting substance (acceptor compound) are composed of an electron-withdrawing functional group (A) and a skeleton (X) having a conjugated structure with high electron mobility. In particular, as an electron withdrawing group, the effectiveness of the C═O group of the aromatic compound is high, and it is used for many electron transport materials. On the other hand, the antioxidant is electron-donating as described above, and a structure containing a phenol group is typical. The antioxidant function suppresses oxidation of other materials by preferentially oxidizing the electron-donating functional group such as the phenol group.
[0013]
When the electron transport material (quinone compound) in the present invention is X = O, and the phenol compound obtained by reducing this quinone compound is represented by X-OH, this phenol compound is a photosensitive layer in the same manner as a general antioxidant. By being preferentially oxidized, the other materials are prevented from being oxidized and converted into an electron transport material which is a quinone compound.
2 (X—OH) + O → 2 (X═O) + H 2 O
[0014]
The phenolic compound obtained by reducing the quinone compound, which is an electron transporting substance, has an antioxidant function, but unlike conventional antioxidants, it has a feature that the residual potential does not increase even if the amount added is increased. It turns out to have. Although the mechanism showing such a feature is not necessarily clear, it is presumed as follows. The phenol compound has a skeleton (X) with a lot of conjugated structure as compared with a normal antioxidant, and it becomes difficult for space charges to be formed due to the effective movement of trapped holes in the molecule. This is probably because of this. In addition, since the quinone compound produced by oxidation is itself an electron transport material, it also effectively acts to suppress the increase in residual potential. Furthermore, since the phenol compound has the same molecular skeleton as that of the quinone compound and is oxidized, it becomes the same quinone compound. Therefore, it is considered that disadvantages such as a decrease in mobility that often occur when different electron transport materials are mixed can be avoided.
[0015]
Although the effect of the present invention is recognized regardless of the mixing ratio of the quinone compound according to the present invention and the phenol compound obtained by reducing the quinone compound, the phenol compound in the electron transport material according to the present invention / A particularly preferable effect is obtained when the quinone compound is 1 or less by weight.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of the organic photoconductor for electrophotography according to the present invention will be described below in detail with reference to the drawings.
The present invention is not limited to the embodiments described below.
[0017]
FIG. 1 is a schematic cross-sectional view of an electrophotographic organic photoreceptor 10 according to the present invention, and shows the essential features of an electrophotographic organic photoreceptor 10 comprising a conductive support 1, an intermediate layer 2, a photosensitive layer 3, and a protective layer 4. A part is shown typically. The intermediate layer and the protective layer provided in this configuration are provided as necessary and may not be provided. The photosensitive layer 3 is a single-layer type photosensitive layer having a charge generation function and an electron transport function. Although a single-layer type photosensitive layer will be described here, the present invention is by no means limited to a single-layer type, and is equally effective for a laminated type electrophotographic photoreceptor.
[0018]
Further, the electrophotographic organic photoconductor in the present invention includes He-Ne laser, semiconductor laser (wavelength 780 nm, 680 nm, etc.), exposure light source such as LED, halogen lamp, non-contact charging method such as corotron, scorotron, roller, brush, etc. The present invention can be applied to various copiers, printers, and facsimiles having a contact charging system, and a magnetic one-component, non-magnetic one-component, and two-component development system, and a remarkable effect can be obtained.
[0019]
(Conductive support)
The conductive support 1 is a support that holds the other layers simultaneously with the role as an electrode of the photoreceptor. The shape may be any of a cylindrical shape, a plate shape, and a film shape, and the material used is a metal such as aluminum, stainless steel, or nickel, or a surface such as glass or a resin body that has been subjected to a conductive treatment.
[0020]
(Middle layer)
The intermediate layer 2 is composed of a resin-based layer or a metal oxide film such as alumite, which prevents injection of unnecessary charges from the conductive support 1 to the photosensitive layer 3, covers irregularities on the surface of the support, and conducts electricity. It is provided as necessary for the purpose of improving the adhesion between the conductive support 1 and the photosensitive layer 3. It is also possible to form the photosensitive layer 3 directly on the conductive support 1 without employing the intermediate layer 2.
[0021]
As the binder resin used for the intermediate layer 2 in the present invention, a copolymer of vinyl chloride, vinyl acetate and other resin components, or a polycarbonate resin, a polyester resin, a polyvinyl acetal resin, a polyvinyl butyral resin, a polyvinyl alcohol resin, Vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, polystyrene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin, polyacetal resin, polyarylate resin, polysulfone resin, methacrylic acid One or a combination of two or more of ester polymers and copolymers thereof can be used.
[0022]
Further, the intermediate layer 2 in the present invention preferably contains titanium oxide as metal oxide fine particles, but similar fine particles include silicon oxide (silica), zinc oxide, calcium oxide, aluminum oxide (alumina), oxidation. Fine particles such as metal oxides such as zirconium, metal sulfides such as barium sulfate and calcium sulfate, and metal nitrides such as silicon nitride and aluminum nitride may be contained in combination with the titanium oxide. The content of these fine particles can be arbitrarily set as long as the layer can be formed.
[0023]
In the case of the intermediate layer 2 containing a binder resin as a main component, a hole transport material can be contained for the purpose of imparting hole transportability, reducing charge trapping, and the like. The content of the hole transport material is 0.1 to 60% by weight, preferably 5 to 40% by weight, based on the solid content of the intermediate layer 2. Further, if necessary, other known additives may be contained within a range that does not significantly impair the electrophotographic characteristics. These intermediate layers 2 are used even in a single layer, but two or more different types of layers may be laminated.
[0024]
The film thickness of the intermediate layer 2 depends on the composition of the intermediate layer 2 but can be arbitrarily set within a range where no adverse effect such as an increase in residual potential occurs when it is repeatedly used continuously.
[0025]
(Photosensitive layer)
The photosensitive layer 3 has a single-layer structure mainly composed of a charge generation material, a hole transport material, an electron transport material (acceptor compound), and a binder resin, but may be a laminated type.
[0026]
The charge generation material is not particularly limited, and for example, phthalocyanine pigments, azo pigments, anthanthrone pigments, perylene pigments, perinone pigments, polycyclic quinone pigments, squarylium pigments, thiapyrylium pigments, quinacridone pigments and the like can be used. These charge generation materials can be used alone or in combination of two or more.
[0027]
In particular, in the organic photoconductor for electrophotography of the present invention, as an azo pigment, a disazo pigment, a trisazo pigment, and a perylene pigment are N, N-bis (3.5-dimethylphenyl) -3,4: 9,10. -Perylene bis (carboximid), as the phthalocyanine-based pigment, metal-free phthalocyanine, copper phthalocyanine, titanyl phthalocyanine is preferable, X-type metal-free phthalocyanine, τ-type metal-free phthalocyanine, ε-type copper phthalocyanine, α-type titanyl phthalocyanine, β-type titanyl phthalocyanine, Y-type titanyl phthalocyanine, amorph astanyl phthalocyanine, and a titanyl phthalocyanine having a Bragg angle 2θ of 9.60 degrees as the maximum peak in the CuKα: X-ray diffraction spectrum described in JP-A-8-209023 The use of a screen shows significantly improved effects in terms of sensitivity, durability and image quality. The content of the charge generating material is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, based on the solid content of the photosensitive layer.
[0028]
Although there is no restriction | limiting in particular as a positive hole transport material, For example, a hydrazone compound, a pyrazoline compound, a pyrazolone compound, an oxadiazole compound, an oxazole compound, an arylamine compound, a benzidine compound, a stilbene compound, a styryl compound, poly-N-vinylcarbazole Polysilane and the like can be used, and these hole transport materials can be used alone or in combination of two or more. As the hole transporting material used in the present invention, those that are excellent in the ability to transport holes generated during light irradiation and that are suitable for combination with a charge generating material are preferable. The content of the hole transport material is 5 to 80% by weight, preferably 10 to 60% by weight, based on the solid content of the photosensitive layer.
[0029]
The quinone electron transport material is not particularly limited, but nitroanthraquinone, dinitroanthraquinone, quinone compound, benzoquinone compound, diphenoquinone compound, naphthoquinone compound, anthraquinone compound, stilbenequinone compound, azoquinone compound, etc. An electron transport material (acceptor compound) can be used. These electron transport materials can be used alone or in combination of two or more. The content of the electron transport material is 1 to 50% by weight, preferably 5 to 40% by weight, based on the solid content of the photosensitive layer.
[0030]
As the binder resin, the bisphenol Z-type polycarbonate resin represented by the following general formula (1) is used alone, or polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin. , Polypropylene resins, polystyrene resins, acrylic resins, polyurethane resins, epoxy resins, melamine resins, silicone resins, polyamide resins, polyacetal resins, polyarylate resins, polysulfone resins, polymers of methacrylic acid esters and copolymers thereof And can be used in appropriate combinations. Moreover, you may mix and use the same kind of resin from which molecular weight differs. The content of the binder resin is 10 to 90% by weight, preferably 20 to 80% by weight, based on the solid content of the photosensitive layer, and is occupied by the polycarbonate resin of the general formula (1) in the binder resin. The proportion ranges from 1% to 100% by weight, more preferably from 20% to 80% by weight.
[0031]
[Chemical 1]
Figure 0004228333
The film thickness of the photosensitive layer is preferably in the range of 3 to 100 [mu] m, more preferably 10 to 50 [mu] m, in order to maintain a practically effective surface potential.
[0032]
These photosensitive layers may contain a deterioration inhibitor such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light. The compounds used for such purposes include chromanol derivatives and esterified compounds such as tocopherol, polyarylalkane compounds, hydroquinone derivatives, ether compounds, diether compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives, phosphones. Examples include acid esters, phosphites, phenol compounds, hindered phenol compounds, linear amine compounds, cyclic amine compounds, hindered amine compounds, and the like. The photosensitive layer may contain a leveling agent such as silicone oil or fluorine oil for the purpose of improving the leveling property of the formed film and imparting lubricity.
[0033]
The phenol compound according to the present invention is obtained as an intermediate product in the process of synthesizing each quinone compound according to the present invention. It can also be easily obtained by reducing this quinone compound.
[0034]
Furthermore, metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, barium sulfate, calcium sulfate for the purpose of reducing friction coefficient and imparting lubricity Metal sulfate such as silicon nitride, fine particles of metal nitride such as silicon nitride and aluminum nitride, fluorine resin particles such as tetrafluoroethylene resin, fluorine comb-type graft polymerization resin, and the like. Further, if necessary, other known additives may be contained within a range that does not significantly impair the electrophotographic characteristics.
[0035]
(Protective layer)
The protective layer 4 is provided for the purpose of improving printing durability and can be provided as necessary, and is composed of a layer mainly composed of a binder resin and an inorganic thin film such as amorphous carbon. In addition, in the binder resin, silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), oxidation for the purpose of improving conductivity, reducing the friction coefficient, and imparting lubricity. Metal oxides such as zirconium, metal sulfates such as barium sulfate and calcium sulfate, metal nitride fine particles such as silicon nitride and aluminum nitride, fluorine resin particles such as tetrafluoroethylene resin, fluorine comb-type graft You may contain polymeric resin etc.
[0036]
In addition, for the purpose of imparting charge transportability, a hole transport material or an electron transport material used in the photosensitive layer is included, or for the purpose of improving the leveling property of the formed film or imparting lubricity, A leveling agent such as a fluorinated oil may be contained. Further, if necessary, other known additives may be contained within a range that does not significantly impair the electrophotographic characteristics.
[0037]
(Formation method)
When each layer of the photoreceptor is formed by coating, the above constituent materials are dissolved and dispersed by a known method such as paint shaker, ball mill, ultrasonic dispersion, etc. together with a suitable solvent to prepare a coating solution, dip coating, After forming by a known coating method such as spray coating, blade coating, roll coating, spiral coating or slide hopper coating, it may be dried.
[0038]
Various organic solvents can be used as the solvent for preparing the coating solution. The organic solvent used for the intermediate layer coating solution is not particularly limited, but generally ether solvents such as dimethyl ether, diethyl ether, 1,4-dioxane, tetrahydrofuran, tetrahydrobirane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, It is effective to use ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, and methyl isopropyl ketone alone or in combination of two or more, and further, mixing with other organic solvents is also possible.
[0039]
As the organic solvent used in the photosensitive layer coating solution, a solvent that has low solubility in the intermediate layer and dissolves the material used in the photosensitive layer is preferable. In particular, it is effective to use halogenated hydrocarbons such as dichloromethane, dichloroethane, trichloroethane, chloroform, chlorobenzene, etc. alone or in appropriate combination, and further, mixing with other organic solvents is possible.
[0040]
The organic solvent used in the protective layer coating solution is not particularly limited, and any organic solvent can be used as long as it dissolves the material used for the protective layer without dissolving the photosensitive layer.
[0041]
【Example】
Hereinafter, “parts” in the text means “parts by weight”, and “%” means “% by weight”.
(Example 1)
An intermediate layer and a photosensitive layer having the following composition were sequentially formed on an aluminum cylindrical conductive support using a dip coater.
[0042]
(Middle layer)
A film was formed using a coating solution prepared by sufficiently stirring and dissolving the materials shown below, and dried at 100 ° C. for 30 minutes to form an intermediate layer having a thickness of 0.2 μm.
Vinyl chloride-vinyl acetate-vinyl alcohol copolymer (SOLBIN A: Nissin Chemical Co., Ltd.)
(Vinyl chloride 92% Vinyl acetate 3% Vinyl alcohol 5%) 50 parts Methyl ethyl ketone 950 parts
(Photosensitive layer)
Of the materials shown below, materials other than the binder resin are dispersed in a paint shaker for 1 hour, then the binder resin is added, sufficiently stirred and dissolved, and further formed for 1 hour with a coating solution prepared. Then, it was dried at 100 ° C. for 60 minutes to form a single-layer type photosensitive layer having a film thickness of 25 μm.
Figure 0004228333
[0044]
[Chemical formula 2]
Figure 0004228333
[Chemical 3]
Figure 0004228333
[Formula 4]
Figure 0004228333
As described above, an electrophotographic organic photoreceptor was prepared.
[0045]
(Example 2)
A photoconductor was prepared in the same manner as in Example 1 except that the composition of the photosensitive layer in Example 1 was changed as follows.
Figure 0004228333
[0046]
[Chemical formula 5]
Figure 0004228333
[Chemical 6]
Figure 0004228333
[0047]
(Example 3)
A photoconductor was prepared in the same manner as in Example 1 except that the composition of the photosensitive layer in Example 1 was changed as follows.
Figure 0004228333
[0048]
[Chemical 7]
Figure 0004228333
[Chemical 8]
Figure 0004228333
[Chemical 9]
Figure 0004228333
[0049]
(Comparative Example 1)
A photoconductor was prepared in the same manner as in Example 1 except that the composition of the photosensitive layer in Example 1 was changed as follows.
Figure 0004228333
[0050]
[Chemical Formula 10]
Figure 0004228333
[0051]
(Comparative Example 2)
A photoconductor was prepared in the same manner as in Example 1 except that the composition of the photosensitive layer in Example 1 was changed as follows.
Figure 0004228333
[0052]
(Comparative Example 3)
A photoconductor was prepared in the same manner as in Example 1 except that the composition of the photosensitive layer in Example 1 was changed as follows.
Figure 0004228333
[0053]
Embedded image
Figure 0004228333
[0054]
(Comparative Example 4)
A photoconductor was prepared in the same manner as in Example 1 except that the composition of the photosensitive layer in Example 1 was changed as follows.
Figure 0004228333
[0055]
(Evaluation methods)
Regarding electrical characteristics, static electrical characteristics were measured for each sample before and after the ozone exposure test. The measurement was performed by corona discharge with the sample charged to 600V. Measurement items are potential holding ratio in the dark (indicated by% of potential after 5 seconds), half-attenuated exposure (μJ / cm 2 ), residual potential (potential after irradiation with 5 μJ / cm 2 light for 5 seconds) It is.
With respect to ozone durability, each sample was exposed to an environment with an ozone concentration of 100 ppm for 2 hours, and the characteristic change before and after exposure for 3 hours was measured.
These evaluation results are shown in Table 1.
[0056]
[Table 1]
Figure 0004228333
[0057]
As described above, in all the samples shown in the examples, the residual potential is 40 V or less, and almost no change in characteristics is observed after ozone exposure. In contrast, in Comparative Examples 1, 3, and 4 in which the phenolic compound of the present invention was replaced with a conventional antioxidant, the residual potential was 50 V or higher before exposure. In Comparative Example 2 in which the amount of the antioxidant was reduced, although the residual potential was low, there was a problem that the retention rate decreased to 85% with respect to the non-defective product standard of 90% or more due to ozone exposure. Regarding the result of Comparative Example 2, it is considered that the organic material contained in the photosensitive layer was oxidized and deteriorated by exposure to ozone because there were few antioxidants. Usually, any photoreceptor having a residual potential of 50 V or more and a retention rate of less than 90% has a problem in image characteristics and is not preferable.
[0058]
【The invention's effect】
According to the present invention, in an organic photoconductor for electrophotography comprising a photosensitive layer containing a charge generating material, an electron transport material, a hole transport material, and a binder resin on a conductive support, the electron transport material is a quinone. Since the compound and a phenol compound obtained by reducing this quinone compound are included, even if the amount of addition of the antioxidant is increased, the residual potential of the photoconductor is not impaired and the ozone resistance is also prevented. An excellent organic photoconductor for electrophotography can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an electrophotographic photoreceptor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Intermediate | middle layer 3 Photosensitive layer 4 Protective layer 10 Organic photoconductor for electrophotography

Claims (2)

導電性支持体上に、電荷発生物質、電子輸送物質、正孔輸送物質、結着樹脂を含有する感光層を具備する電子写真用有機感光体において、電子輸送物質がキノン化合物と、このキノン化合物を還元したフェノール化合物とを含むことを特徴とする電子写真用有機感光体。An electrophotographic organic photoreceptor comprising a photosensitive layer containing a charge generation material, an electron transport material, a hole transport material, and a binder resin on a conductive support, wherein the electron transport material is a quinone compound and the quinone compound An organic photoreceptor for electrophotography, comprising a phenol compound obtained by reducing 電子輸送物質中のフェノール化合物/キノン化合物が重量比率で1以下であることを特徴とする請求項1記載の電子写真用有機感光体。2. The organic photoconductor for electrophotography according to claim 1, wherein the phenol compound / quinone compound in the electron transport material is 1 or less by weight.
JP2001000784A 2001-01-05 2001-01-05 Organic photoconductor for electrophotography Expired - Lifetime JP4228333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000784A JP4228333B2 (en) 2001-01-05 2001-01-05 Organic photoconductor for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000784A JP4228333B2 (en) 2001-01-05 2001-01-05 Organic photoconductor for electrophotography

Publications (2)

Publication Number Publication Date
JP2002207303A JP2002207303A (en) 2002-07-26
JP4228333B2 true JP4228333B2 (en) 2009-02-25

Family

ID=18869512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000784A Expired - Lifetime JP4228333B2 (en) 2001-01-05 2001-01-05 Organic photoconductor for electrophotography

Country Status (1)

Country Link
JP (1) JP4228333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266991B2 (en) * 2008-09-11 2013-08-21 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2002207303A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
JP5534030B2 (en) Electrophotographic photoreceptor and method for producing the same
JP6432694B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP4336559B2 (en) Electrophotographic photoreceptor and method for producing the same
JPWO2013157145A1 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP2021128347A (en) Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic device
TWI414913B (en) Photographic photoreceptor for electrophotography and method of manufacturing the same
JP6311839B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP2001142235A (en) Electrophotographic photoreceptor
CN110392865B (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP4228333B2 (en) Organic photoconductor for electrophotography
JP3791227B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2000204083A (en) New stilbenequinone compound, electrophotographic photoreceptor and electrophotographic device
JP2000147806A (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP4461623B2 (en) Electrophotographic photoreceptor
EP1243974B1 (en) Single-layer type electrophotosensitive material
WO2019142342A1 (en) Electrophotographic photoreceptor, method for manufacturing same, and electrophotography device
US20040180279A1 (en) Electrophotographic photoconductor and method of manufacturing the same
JP3941720B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2005062221A (en) Single layer type positive charge electrophotographic photoreceptor
JP2002174919A (en) Contact electrification monolayer positive chargeable organic photoreceptor, manufacture of the same and image forming member
WO2020152846A1 (en) Electrophotographic photoreceptor, manufacturing method therefor, and electrophotographic device
JP2006047404A (en) Electrophotographic photoreceptor for liquid development and electrophotographic apparatus equipped with the photoreceptor
JP2002221808A (en) Positively chargeable monolayer organic photoreceptor
JP2004212651A (en) Coating liquid for charge transport layer, method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2002214806A (en) Monolayer positive electrifying type organic photoreceptor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4228333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term