JP4228195B2 - Subconjunctival drug delivery system - Google Patents

Subconjunctival drug delivery system Download PDF

Info

Publication number
JP4228195B2
JP4228195B2 JP2003043585A JP2003043585A JP4228195B2 JP 4228195 B2 JP4228195 B2 JP 4228195B2 JP 2003043585 A JP2003043585 A JP 2003043585A JP 2003043585 A JP2003043585 A JP 2003043585A JP 4228195 B2 JP4228195 B2 JP 4228195B2
Authority
JP
Japan
Prior art keywords
drug
fine particles
delivery system
injection
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043585A
Other languages
Japanese (ja)
Other versions
JP2003313119A (en
Inventor
光明 桑野
和人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santen Pharmaceutical Co Ltd
Original Assignee
Santen Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santen Pharmaceutical Co Ltd filed Critical Santen Pharmaceutical Co Ltd
Priority to JP2003043585A priority Critical patent/JP4228195B2/en
Publication of JP2003313119A publication Critical patent/JP2003313119A/en
Application granted granted Critical
Publication of JP4228195B2 publication Critical patent/JP4228195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、網膜、脈絡膜、視神経等の後眼部へのドラッグデリバリーシステムに関するものである。
【0002】
【従来の技術】
網膜、脈絡膜および視神経等の後眼部における疾患には難治性疾患が多く、その効果的な治療法の開発が望まれている。眼疾患に対しては、薬物を点眼投与して治療するのがもっとも一般的であるが、網膜、脈絡膜および視神経等の後眼部へは薬物がほとんど移行しない。また、移行しても組織中の薬物濃度を持続させるのは極めて困難である。
【0003】
そこで、後眼部疾患に対する薬物の投与方法として、静脈注射、経口投与、硝子体注射が試みられている。静脈注射や経口投与では、ターゲット部位である後眼部への薬物の移行量は極微量であり、且つ、期待しない薬物の全身作用(副作用)が強く現れることもある。
【0004】
硝子体注射は、眼内に薬物を直接注入するので、後眼部への薬物移行量は静脈注射や経口投与に比べ多い。硝子体注射による後眼部デリバリーについては非特許文献1に総説としてまとめられている。しかし、硝子体注射は高度な技術を必要とする投与法であり、相当の苦痛を伴うので患者の負担も大きく、複数回の投与は極めて困難である。
【0005】
これらの投与法に対し、結膜下注射は、手技は比較的簡便で、硝子体注射に比べ眼組織の障害が少なく、且つ患者への負担も少ない。結膜下注射後の後眼部への薬物の移行性も報告されているが(非特許文献2参照)、半減期は非常に短く、薬物の後眼部組織中濃度を長期間持続させるのは困難であった。そこで、薬物の組織中濃度を持続させるためには頻回投与が必要となるが、頻回投与は患者への負担が大きくなる。
【0006】
頻回投与を回避するため、眼内での薬物濃度を持続させる方法としては、薬物−高分子結合体を静脈内投与する方法や(非特許文献3参照)、薬物を含有したマイクロスフェアーを硝子体に注入する方法(特許文献1参照)等が知られている。
【0007】
【非特許文献1】
Jounal of ocular pharmacology and therapeutics,(2001) 17/4 ,393-401
【0008】
【非特許文献2】
Invest. Ophthalmol. Visual Sci. 18(3) 250-255, 1979
【0009】
【非特許文献3】
Invest. Ophthalmol. Visual Sci. 40(11), 2690-2696, 1999
【0010】
【特許文献1】
特開2000−247871
【0011】
【発明が解決する課題】
上記のように、従来の技術では、結膜下注射した薬物の組織中濃度を持続させることは困難であり、結膜下注射による後眼部への持続的ドラッグデリバリーシステムの開発が望まれていた。
【0012】
【課題を解決するための手段】
そこで本発明者らは鋭意研究を行った結果、薬物を含有させた徐放性微粒子を結膜下投与すれば、後眼部への持続的ドラッグデリバリーシステムとして非常に有用であることを見出した。
すなわち、請求項1に係る発明は、薬物を含有する微粒子を結膜下に投与することを特徴とする後眼部への持続的ドラッグデリバリーシステムであって、
該微粒子の粒子径が50nm〜75μmであり、
該微粒子が生体分解性または生体溶解性高分子で形成された、ドラッグデリバリーシステムである。
請求項2に係る発明は、薬物を含有させた微粒子を含む注射剤であって、後眼部への持続的な薬物の移行を可能にする結膜下注射剤であって、
該微粒子の粒子径が50nm〜75μmであり、
該微粒子が生体分解性または生体溶解性高分子で形成された、注射剤である。
請求項3に係る発明は、後眼部が網膜、脈絡膜、視神経、硝子体または水晶体である請求項1記載のドラッグデリバリーシステムまたは請求項2記載の結膜下注射剤である。
請求項4に係る発明は、薬物が網膜、脈絡膜、視神経、硝子体または水晶体疾患の治療または予防のための薬物である請求項1記載のドラッグデリバリーシステムまたは請求項2記載の結膜下注射剤である。
請求項5に係る発明は、薬物が抗炎症剤、免疫抑制剤、抗ウイルス剤、抗癌剤、血管新生抑制剤、抗血栓剤、視神経保護剤、抗菌剤または抗真菌剤である請求項1記載のドラッグデリバリーシステムまたは請求項2記載の結膜下注射剤である。
【0013】
【発明の実施の形態】
本発明は、薬物を含有させた微粒子を結膜下に投与するために用いられる後眼部へのドラッグデリバリーシステムに関するものである。本発明はまた、薬物を含有させた微粒子を含む注射剤であって後眼部への薬物の移行を可能にする結膜下注射剤に関するものである。薬物含有微粒子を結膜下に投与することにより、静脈注射や経口投与に比べて後眼部への移行性がよく、全身への副作用も少ない。また硝子体注射に比べて、手技が簡便で患者への負担も少ない。さらに、薬物を微粒子に含有させることによって、ターゲット組織中の薬物濃度を長期間維持することができる。
【0014】
本発明において、微粒子を形成する材料としては生体分解性または生体溶解性高分子が好ましく、具体例としては、ポリ乳酸、乳酸−グリコール酸共重合体、乳酸−カプロラクトン共重合体、ポリアンハイドライド、ポリオルソエステル、ポリイプシロンカプロラクトン、ポリアクリルシアノアクリレート、ポリハイドロキシアルカノエート、ポリフォスフォエステル、ポリアミノ酸、ポリα-ヒドロキシ酸等の生体分解性高分子;ゼラチン、コラーゲン、ヒアルロン酸、デキストラン、でんぷん、アルギン酸ナトリウム、寒天、プルラン、アルブミン、カラギーナン、ペクチン、キサンタンガム、ジェランガム、カゼイン、キトサン、フィブリノーゲン等の天然高分子;メタアクリル酸コポリマー、ポリビニルアルコール、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースアセテート、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドン、ポリエチレングリコール、ポリN-アルキルアクリルアミド等の合成高分子が挙げられる。
【0015】
これらの高分子物質の分子量については、特に制限は無く、微粒子に含有させる薬物の種類、薬物の有効治療濃度、薬物の放出期間などにより適宜選択できる。
【0016】
本発明における微粒子の粒子径は、好ましくは50nm〜150μmである。粒子径50nm以下の微粒子は製造困難であり、粒子径150μm以上では粒子が大きすぎて注射剤として好ましくない。より好ましい粒子径は200nm〜75μmである。
【0017】
本発明のドラッグデリバリーシステムは、網膜、脈絡膜および視神経の疾患の治療または予防のために用いられる。具体的な疾患例としては、種々の原因による炎症、ウイルスや細菌の感染症、網膜脈絡膜の血管新生に起因する疾患、網膜の虚血に起因する疾患、緑内障に起因する視神経障害が挙げられる。さらに具体的に述べると、ぶどう膜炎、サイトメガロウイルス網膜炎、加齢性黄斑変性症、糖尿病性網膜症、増殖性硝子体網膜症、網膜剥離、網膜色素変性症、網膜中心静脈閉塞症、網膜中心動脈閉塞症等が挙げられる。
【0018】
微粒子に含有させる薬物については特に制限は無く、対象疾患に適した薬物を選択することができる。具体的にはベタメサゾン、デキサメサゾン、トリアムシノロン、プレドニゾロン、フルオロメトロン、ハイドロコルチゾン、プロゲステロン等のステロイド剤またはそれらの誘導体;ブロモフェナック、ジクロフェナック等の抗炎症剤;TNF-α阻害剤、PDE-IV阻害剤、ICE阻害剤等のサイトカイン抑制剤;シクロスポリン、タクロリムス等の免疫抑制剤;ガンシクロビル、アシクロビル、インターフェロンβ等の抗ウイルス剤;オフロキサシン、クラリスロマイシン、エリスロマイシン等の抗菌剤;フルオロウラシル、メトトレキサート、MMP阻害剤等の抗癌剤;エンドスタチン、VEGF阻害剤、アンチセンスオリゴヌクレオチド、PKC阻害剤、接着因子阻害剤、血管静止性ステロイド等の血管新生阻害剤;MK-801、チモロール、クレアチン、タウリン、BDNF等の神経保護剤・神経栄養因子、アセタゾラミド等の炭酸脱水酵素阻害剤、ウロキナーゼ等の血栓溶解剤等が挙げられる。薬物含有微粒子としては、微粒子内に均一に分散させたマトリックス型、あるいは薬物をコアとして微粒子でカプセル化したカプセル型が好ましい。
【0019】
微粒子に含有する薬物量は、薬物の種類、有効治療濃度、薬物の放出期間、症状等に応じて適宜増減すればよい。薬物の含有量は微粒子の0.01〜95重量%、好ましくは、0.1〜20重量%である。
【0020】
本発明における微粒子は公知のミルを用いた粉砕法、相分離法(コアセルベーション法)、スプレードライング法、超臨界流体法、界面沈着法、界面反応法を用いて製造することができるが、これらに限定されるものではない。より具体的には、界面沈着法である液中乾燥法(J. Control. Release,2,343-352,(1985))、界面反応法である界面重合法(Int.J.Pharm., 28,125-132 (1986))、自己乳化溶媒拡散法(J.Control. Release,25,89-98(1993))等が挙げられる。これらの製造法から、微粒子の粒子径や含有する薬物の種類、性質や含有量などを考慮し、適当な製造法を適宜選択すればよい。
【0021】
微粒子の具体的な製造例として、薬物として抗炎症剤であるベタメサゾンを含有し、微粒子の材料としてポリ乳酸を用いた、薬物含有微粒子の製造例を後述の実施例に示す。
【0022】
本発明の効果は、後述の網脈絡膜薬物濃度測定試験の項で詳細に説明するが、薬物の例としてベタメサゾンを用い、ベタメサゾンを含有させた微粒子を結膜下に投与して網脈絡膜中の薬物濃度を測定したところ、網脈絡膜中の薬物濃度が持続されることを見出した。
【0023】
本発明のドラッグデリバリーシステムにおける微粒子は結膜下へ投与される。結膜下への投与方法は、通常行われている結膜下注射を用いればよい。従来技術の項で述べたように、結膜下注射は、手技は比較的簡便で、且つ患者への負担も少ない。
【0024】
さらに、本発明のシステムを用いると、ターゲット部位である網膜、脈絡膜または視神経等の後眼部に効率よく薬物を送達できるので、薬物の投与量を低減でき、副作用の軽減効果も期待できる。
【0025】
本発明のドラッグデリバリーシステムに使用する微粒子は、結膜下に投与されるため、投与剤型としては注射剤が好ましい。注射剤は汎用されている注射剤の製剤化技術を用いて調製できる。例えば、塩化ナトリウム等の浸透圧調整剤、リン酸ナトリウム等の緩衝剤、ポリソルベート80等の界面活性剤、メチルセルロース等の増粘剤等の通常用いられる添加剤および微粒子を注射用蒸留水に加えて製剤を調製すればよい。また、針を用いない高圧式注射器を用いれば、注射剤とせずに微粒子をそのまま投与することが可能である。
【0026】
以下に、微粒子の製造例、製剤の調製例、薬物濃度測定試験および脈絡膜血管新生阻害試験の結果を示す。
【0027】
【実施例】
1.薬物含有微粒子の製造方法
本発明のドラッグデリバリーシステムに使用できる微粒子の製造例を以下に示す。
【0028】
ベタメサゾン(0.025g)および重量平均分子量20000のポリ乳酸(0.25g)をベンジルアルコール(1.5mL)に溶解し、得られた溶液を薬物/ポリマー溶液とした。2.0%(w/v)ポリビニルアルコール水溶液(30mL)をホモジナイザーにてホモジナイズし(5000rpm)、そこに薬物/ポリマー溶液を滴下した。この混合物を滴下終了後から5分間ホモジナイズし、O/Wエマルジョンを調製した。超純水(300mL)を撹拌機を用いて撹拌(300rpm)し、そこに調製したO/Wエマルジョンを滴下し、摘下終了後から一時間撹拌した。撹拌終了後、得られた懸濁液を遠心分離し、上澄みを除去した。沈殿物を洗浄するため、超純水(30mL)を加えて沈殿を分散させ、再度遠心分離し上澄みを除去した。この操作をもう一度行った。洗浄した沈殿物を篩に掛けることにより、粒子径50nm〜75μmの粒子を得た。得られた粒子を凍結乾燥することにより、ベタメサゾン含有マイクロスフェアを得た。
【0029】
2.製剤の調製方法
ベタメサゾン含有マイクロスフェアー粉末(442 mg)を溶媒(0.4%(w/v) ポリソルベート80/2.6%(w/v)グリセリン水溶液)4mLに分散させ、得られた分散液をベタメサゾン含有マイクロスフェアー注射剤とした。
【0030】
3.網脈絡内薬物濃度測定試験
ベタメサゾン含有マイクロスフェアー注射剤を用い、下記の方法に従ってベタメサゾンの網脈絡膜内濃度を測定した。対照としてベタメサゾン懸濁剤を用い下記のように濃度測定を行った。ベタメサゾンの網脈絡膜内濃度をマイクロスフェアー投与群と懸濁剤投与群で比較した。ベタメサゾン懸濁剤は、ベタメサゾン濃度が1%(w/v)になるように、ベタメサゾンを溶媒(0.4%(w/v) ポリソルベート80/2.6%(w/v)グリセリン水溶液)に懸濁させたものである。
【0031】
1)日本白色ウサギの両眼に塩酸オキシブプロカイン(0.5%(w/v))点眼液を点眼し眼表面を麻酔した。
【0032】
2)27G針の注射器を用い、ベタメサゾン含有マイクロスフェアー注射剤を上部結膜下に一眼当たり100μL投与した。マイクロスフェアー中のベタメサゾン含有率は約4.6%(w/v)であるので、ベタメサゾンの投与量は約500μgとなる。対照群には、27G針の注射器を用い、1%(w/v)ベタメサゾン懸濁剤を上部結膜下に一眼当たり50μL投与した。
【0033】
3)ウサギを投与後2、7、14、21、28日目に屠殺し、それぞれ眼球摘出後、網脈絡膜を回収し、網脈絡膜内のベタメサゾン濃度を高速液体クロマトグラフで測定した。
【0034】
薬物の経時的濃度推移の結果を表1に示す。表1から明らかなように、ベタメサゾン懸濁剤では、網脈絡膜内ベタメサゾン濃度は7日後には約0.96μg/g組織 であったが、14日後には検出限界以下であった。これに対し、ベタメサゾン含有マイクロスフェアーでは網脈絡膜内ベタメサゾン濃度は28日後でも約0.09μg/g組織 であり、網脈絡膜中薬物濃度が維持されていた。
【0035】
【表1】

Figure 0004228195
【0036】
4.脈絡膜血管新生阻害試験
ベタメサゾン含有マイクロスフェアー注射剤の脈絡膜血管新生阻害効果について、レーザー誘発ラット脈絡膜血管新生モデルを用いて下記の方法で検討を行った。対照として溶媒(0.4%(w/v) ポリソルベート80/2.6%(w/v)グリセリン水溶液)のみを含有させたマイクロスフェアー注射剤を用い、下記のように操作を行った。
【0037】
1)ラットに5%(w/v)塩酸ケタミン注射液および2%(w/v)塩酸キシラジン注射液の混合液(7:1)1ml/kgを筋肉内投与することによりラットを全身麻酔し、0.5%(w/v)トロピカミド/0.5%(w/v)塩酸フェニレフリン点眼液を両眼に点眼して散瞳させた後、クリプトンレーザー光凝固装置により光凝固を行った。光凝固は、焦点を網膜深層に合わせて太い網膜血管を避け、1眼につき8ヶ所散在状に実施した(凝固条件:スポットサイズ100μm、出力100mW、凝固時間0.1秒)。光凝固後、眼底撮影を行い、レーザー照射部位を確認した。
【0038】
2)光凝固直後に30G針を装着したマイクロシリンジを用い、ベタメサゾン含有マイクロスフェアー注射剤をラット上部結膜下に一眼当たり50μl投与した。対照群には、溶媒(0.4%(w/v) ポリソルベート80/2.6%(w/v)グリセリン水溶液)のみを含有させたマイクロスフェアー注射剤を上部結膜下に一眼当たり50μL投与した。
【0039】
3)光凝固14および28日後に10%(w/v)フルオレセイン水溶液0.1mlを尾静脈から注入して、蛍光眼底撮影を行った。蛍光眼底撮影で蛍光漏出が認められなかったスポットを陰性、蛍光漏出が認められたスポットを陽性と判定した。下記の計算式に従い、レーザー照射8ヶ所のスポットに対する陽性スポット数の割合から新生血管発現率(%)を算出した。なお、軽度過蛍光を示すものは2スポットの発生で1カウントの陽性とした。
【0040】
【式1】
新生血管発現率(%)=
(蛍光漏出スポット数/レーザー照射スポット数)×100
得られた結果は平均値±標準誤差で表示した。統計解析はスチューデントt検定を用いた。有意水準は両側5%とした。
【0041】
ベタメサゾン含有マイクロスフェアーの脈絡膜血管新生阻害効果を表2に示す。光凝固14日後の対照群の血管新生発現率60.9±4.4%に対し、ベタメサゾン含有マイクロスフェアー群の血管新生発現率は12.5±2.4%であり、統計学的に有意な脈絡膜血管新生阻害作用を示した。また、光凝固28日後においても対照群の血管新生発現率73.4±6.0%に対し、ベタメサゾン含有マイクロスフェアー群の血管新生発現率は12.5±2.4%であり、統計学的に有意な脈絡膜血管新生阻害作用を示した。以上の結果より、ベタメサゾン含有マイクロスフェアーは結膜下投与により、投与14および28日後においても脈絡膜血管新生阻害作用を示すことが判明した。
【0042】
【表2】
Figure 0004228195
【0043】
【発明の効果】
本発明により、結膜下投与による後眼部への優れたドラッグデリバリーシステムを提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drug delivery system to the posterior eye segment such as the retina, choroid, and optic nerve.
[0002]
[Prior art]
There are many intractable diseases as diseases in the posterior segment of the eye such as the retina, choroid and optic nerve, and the development of an effective treatment method is desired. For eye diseases, it is most common to administer the drug by instillation, but the drug hardly transfers to the posterior segment of the eye such as the retina, choroid and optic nerve. In addition, it is extremely difficult to maintain the drug concentration in the tissue even after migration.
[0003]
Therefore, intravenous injection, oral administration, and vitreous injection have been attempted as methods for administering drugs for posterior ocular diseases. In intravenous injection or oral administration, the amount of drug transferred to the posterior eye region, which is the target site, is extremely small, and an unexpected systemic action (side effect) of the drug may appear strongly.
[0004]
In vitreous injection, since the drug is directly injected into the eye, the amount of drug transferred to the posterior segment is larger than that of intravenous injection or oral administration. Non-patent literature 1 summarizes the posterior segment delivery by vitreous injection. However, vitreous injection is an administration method that requires advanced techniques and involves considerable pain, so the burden on the patient is large and multiple administrations are extremely difficult.
[0005]
In contrast to these administration methods, subconjunctival injection has a relatively simple procedure, causes less damage to the ocular tissue and less burden on the patient than vitreous injection. Although drug transferability to the posterior segment after subconjunctival injection has also been reported (see Non-Patent Document 2), the half-life is very short, It was difficult. Thus, frequent administration is required to maintain the drug concentration in the tissue, but frequent administration increases the burden on the patient.
[0006]
In order to avoid frequent administration, as a method of maintaining the drug concentration in the eye, a method of administering a drug-polymer conjugate intravenously (see Non-Patent Document 3), a microsphere containing a drug, A method of injecting into the vitreous body (see Patent Document 1) is known.
[0007]
[Non-Patent Document 1]
Jounal of ocular pharmacology and therapeutics, (2001) 17/4, 393-401
[0008]
[Non-Patent Document 2]
Invest. Ophthalmol. Visual Sci. 18 (3) 250-255, 1979
[0009]
[Non-Patent Document 3]
Invest. Ophthalmol. Visual Sci. 40 (11), 2690-2696, 1999
[0010]
[Patent Document 1]
JP2000-247871
[0011]
[Problems to be solved by the invention]
As described above, in the conventional technique, it is difficult to maintain the tissue concentration of the drug injected subconjunctivally, and it has been desired to develop a continuous drug delivery system to the posterior eye region by subconjunctival injection.
[0012]
[Means for Solving the Problems]
Thus, as a result of intensive studies, the present inventors have found that if sustained-release fine particles containing a drug are administered under the conjunctiva, they are very useful as a sustained drug delivery system to the posterior segment of the eye.
That is, the invention according to claim 1 is a continuous drug delivery system to the posterior eye part, characterized by administering fine particles containing a drug under the conjunctiva,
The particle diameter of the fine particles is 50 nm to 75 μm,
A drug delivery system in which the microparticles are formed of a biodegradable or biosoluble polymer.
The invention according to claim 2 is an injection containing fine particles containing a drug, which is a subconjunctival injection that enables continuous drug transfer to the posterior eye part,
The particle diameter of the fine particles is 50 nm to 75 μm,
It is an injection in which the fine particles are formed of a biodegradable or biosoluble polymer.
The invention according to claim 3 is the drug delivery system according to claim 1 or the subconjunctival injection according to claim 2, wherein the posterior eye portion is the retina, choroid, optic nerve, vitreous body or crystalline lens.
The invention according to claim 4 is the drug delivery system according to claim 1 or the subconjunctival injection according to claim 2, wherein the drug is a drug for the treatment or prevention of a retina, choroid, optic nerve, vitreous or lens disease. is there.
In the invention according to claim 5, the drug is an anti-inflammatory agent, immunosuppressive agent, antiviral agent, anticancer agent, angiogenesis inhibitor, antithrombotic agent, optic neuroprotective agent, antibacterial agent or antifungal agent. A drug delivery system or the subconjunctival injection according to claim 2.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a drug delivery system for the posterior eye segment used for administering fine particles containing a drug under the conjunctiva. The present invention also relates to an injectable preparation containing fine particles containing a drug, which allows transfer of the drug to the posterior eye segment. By administering the drug-containing microparticles subconjunctivally, the transfer to the posterior eye segment is better than that by intravenous injection or oral administration, and there are few side effects on the whole body. Compared to vitreous injection, the procedure is simple and the burden on the patient is small. Furthermore, the drug concentration in the target tissue can be maintained for a long time by containing the drug in the fine particles.
[0014]
In the present invention, the material forming the fine particles is preferably a biodegradable or biosoluble polymer. Specific examples include polylactic acid, lactic acid-glycolic acid copolymer, lactic acid-caprolactone copolymer, polyanhydride, poly Biodegradable polymers such as orthoester, polyepsilon caprolactone, polyacryl cyanoacrylate, polyhydroxyalkanoate, polyphosphoester, polyamino acid, poly α-hydroxy acid; gelatin, collagen, hyaluronic acid, dextran, starch, alginic acid Natural polymers such as sodium, agar, pullulan, albumin, carrageenan, pectin, xanthan gum, gellan gum, casein, chitosan, fibrinogen; methacrylic acid copolymer, polyvinyl alcohol, hydroxypropi Methylcellulose, hydroxypropyl methyl cellulose acetate, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinylpyrrolidone, polyethylene glycol, synthetic polymer poly N- alkyl acrylamide.
[0015]
The molecular weight of these polymer substances is not particularly limited, and can be appropriately selected depending on the type of drug contained in the fine particles, the effective therapeutic concentration of the drug, the drug release period, and the like.
[0016]
The particle diameter of the fine particles in the present invention is preferably 50 nm to 150 μm. Fine particles having a particle size of 50 nm or less are difficult to produce, and particles having a particle size of 150 μm or more are not preferable as an injection because the particles are too large. A more preferable particle diameter is 200 nm to 75 μm.
[0017]
The drug delivery system of the present invention is used for the treatment or prevention of diseases of the retina, choroid and optic nerve. Specific examples of the disease include inflammation caused by various causes, viral and bacterial infections, diseases caused by retinal choroidal neovascularization, diseases caused by retinal ischemia, and optic neuropathy caused by glaucoma. More specifically, uveitis, cytomegalovirus retinitis, age-related macular degeneration, diabetic retinopathy, proliferative vitreoretinopathy, retinal detachment, retinitis pigmentosa, central retinal vein occlusion, Examples include central retinal artery occlusion.
[0018]
There is no restriction | limiting in particular about the drug contained in microparticles | fine-particles, The drug suitable for an object disease can be selected. Specifically, steroidal agents such as betamethasone, dexamethasone, triamcinolone, prednisolone, fluorometholone, hydrocortisone, progesterone or their derivatives; anti-inflammatory agents such as bromofenac, diclofenac; TNF-α inhibitors, PDE-IV inhibitors Cytokine inhibitors such as cyclosporine and tacrolimus; antiviral agents such as ganciclovir, acyclovir and interferon β; antibacterial agents such as ofloxacin, clarithromycin and erythromycin; fluorouracil, methotrexate and MMP inhibitors Anti-cancer agents such as: endostatin, VEGF inhibitor, antisense oligonucleotide, PKC inhibitor, adhesion factor inhibitor, angiogenesis inhibitors such as vasostatic steroids; MK-801, timolol, creatine, taurine, BDNF, etc. Neuroprotective agents, neurotrophic factors, carbonic anhydrase inhibitors such as acetazolamide, and thrombolytic agents such as urokinase. The drug-containing fine particles are preferably a matrix type uniformly dispersed in the fine particles, or a capsule type in which a drug is encapsulated with fine particles as a core.
[0019]
The amount of drug contained in the microparticles may be appropriately increased or decreased according to the type of drug, effective therapeutic concentration, drug release period, symptoms, and the like. The content of the drug is 0.01 to 95% by weight of the fine particles, preferably 0.1 to 20% by weight.
[0020]
Fine particles in the present invention can be produced using a known milling method, phase separation method (coacervation method), spray drying method, supercritical fluid method, interface deposition method, interface reaction method, It is not limited to these. More specifically, the in-liquid drying method (J. Control. Release, 2,343-352, (1985)), which is an interfacial deposition method, and the interfacial polymerization method (Int. J. Pharm., 28, 125-132), which is an interfacial reaction method. (1986)), self-emulsifying solvent diffusion method (J. Control. Release, 25, 89-98 (1993)) and the like. From these production methods, an appropriate production method may be selected as appropriate in consideration of the particle size of the fine particles, the kind, properties, and content of the drug to be contained.
[0021]
As a specific production example of the fine particles, a production example of the drug-containing fine particles containing betamethasone which is an anti-inflammatory agent as a drug and using polylactic acid as a material of the fine particles will be described in Examples described later.
[0022]
The effect of the present invention will be described in detail in the section of the reticulochoroid drug concentration measurement test described later. Was measured, and it was found that the drug concentration in the retina choroid was sustained.
[0023]
The microparticles in the drug delivery system of the present invention are administered subconjunctivally. As a subconjunctival administration method, a conventional subconjunctival injection may be used. As described in the section of the prior art, subconjunctival injection has a relatively simple procedure and a low burden on the patient.
[0024]
Furthermore, when the system of the present invention is used, the drug can be efficiently delivered to the posterior eye part such as the retina, choroid or optic nerve, which is the target site, so that the dose of the drug can be reduced and the side effect can be expected to be reduced.
[0025]
Since the microparticles used in the drug delivery system of the present invention are administered subconjunctivally, the dosage form is preferably an injection. An injection can be prepared using a widely used injection formulation technique. For example, commonly used additives such as osmotic pressure adjusting agents such as sodium chloride, buffering agents such as sodium phosphate, surfactants such as polysorbate 80, thickeners such as methylcellulose, and fine particles are added to distilled water for injection. What is necessary is just to prepare a formulation. If a high-pressure syringe without a needle is used, it is possible to administer the microparticles as they are without using an injection.
[0026]
The results of the fine particle production example, preparation preparation example, drug concentration measurement test and choroidal neovascularization inhibition test are shown below.
[0027]
【Example】
1. Method for Producing Drug-Containing Fine Particles An example of producing fine particles that can be used in the drug delivery system of the present invention is shown below.
[0028]
Betamethasone (0.025 g) and polylactic acid (0.25 g) having a weight average molecular weight of 20000 were dissolved in benzyl alcohol (1.5 mL), and the resulting solution was used as a drug / polymer solution. A 2.0% (w / v) aqueous polyvinyl alcohol solution (30 mL) was homogenized with a homogenizer (5000 rpm), and the drug / polymer solution was added dropwise thereto. This mixture was homogenized for 5 minutes after completion of the dropwise addition to prepare an O / W emulsion. Ultrapure water (300 mL) was stirred (300 rpm) using a stirrer, and the prepared O / W emulsion was added dropwise thereto, followed by stirring for 1 hour after the end of plucking. After completion of the stirring, the obtained suspension was centrifuged, and the supernatant was removed. In order to wash the precipitate, ultrapure water (30 mL) was added to disperse the precipitate, and centrifuged again to remove the supernatant. This operation was performed once again. The washed precipitate was sieved to obtain particles having a particle diameter of 50 nm to 75 μm. The obtained particles were freeze-dried to obtain betamethasone-containing microspheres.
[0029]
2. Formulation Preparation Method Betamethasone-containing microsphere powder (442 mg) was dispersed in 4 mL of a solvent (0.4% (w / v) polysorbate 80 / 2.6% (w / v) glycerin aqueous solution), and the resulting dispersion was obtained. The liquid was a betamethasone-containing microsphere injection.
[0030]
3. Intrareticular Drug Concentration Measurement Test Betamethasone-containing microsphere injection was used to measure the concentration of betamethasone in the retina-choroid according to the following method. Concentration measurement was performed as follows using a betamethasone suspension as a control. The concentration of betamethasone in the retina choroid was compared between the microsphere administration group and the suspension administration group. In the betamethasone suspension, betamethasone in a solvent (0.4% (w / v) polysorbate 80 / 2.6% (w / v) glycerin aqueous solution) so that the concentration of betamethasone is 1% (w / v). Suspended.
[0031]
1) Oxybuprocaine hydrochloride (0.5% (w / v)) ophthalmic solution was instilled into both eyes of Japanese white rabbits to anesthetize the ocular surface.
[0032]
2) Using a 27G needle syringe, betamethasone-containing microsphere injection was administered 100 μL per eye under the upper conjunctiva. Since the betamethasone content in the microspheres is about 4.6% (w / v), the dose of betamethasone is about 500 μg. In the control group, a 27G needle syringe was used, and 1% (w / v) betamethasone suspension was administered at 50 μL per eye under the upper conjunctiva.
[0033]
3) The rabbits were sacrificed 2, 7, 14, 21, and 28 days after administration, and after resection of each eyeball, the retina choroid was recovered, and the betamethasone concentration in the retina choroid was measured by high performance liquid chromatography.
[0034]
The results of changes in drug concentration over time are shown in Table 1. As is clear from Table 1, in the betamethasone suspension, the concentration of betamethasone in the retina choroid was about 0.96 μg / g tissue after 7 days, but was below the detection limit after 14 days. On the other hand, in the betamethasone-containing microsphere, the concentration of betamethasone in the retina choroid was about 0.09 μg / g tissue even after 28 days, and the drug concentration in the retina choroid was maintained.
[0035]
[Table 1]
Figure 0004228195
[0036]
4). Choroidal neovascularization inhibition test The choroidal neovascularization inhibitory effect of betamethasone-containing microsphere injection was examined by the following method using a laser-induced rat choroidal neovascularization model. A microsphere injection containing only a solvent (0.4% (w / v) polysorbate 80 / 2.6% (w / v) glycerin aqueous solution) was used as a control, and the operation was performed as follows.
[0037]
1) The rats were anesthetized by intramuscular administration of 1 ml / kg of a mixed solution (7: 1) of 5% (w / v) ketamine hydrochloride injection and 2% (w / v) xylazine hydrochloride injection. Then, 0.5% (w / v) tropicamide / 0.5% (w / v) phenylephrine hydrochloride ophthalmic solution was instilled into both eyes to make mydriatics, and then photocoagulated with a krypton laser photocoagulator. The photocoagulation was carried out at 8 spots per eye while focusing on the deep retina and avoiding thick retinal blood vessels (coagulation conditions: spot size 100 μm, output 100 mW, coagulation time 0.1 seconds). After photocoagulation, fundus photography was performed to confirm the laser irradiation site.
[0038]
2) Using a microsyringe equipped with a 30G needle immediately after photocoagulation, 50 μl of a betamethasone-containing microsphere injection was administered per eye under the rat upper conjunctiva. In the control group, a microsphere injection containing only a solvent (0.4% (w / v) polysorbate 80 / 2.6% (w / v) glycerin aqueous solution) was administered at 50 μL per eye under the upper conjunctiva. did.
[0039]
3) After 14 and 28 days of photocoagulation, 0.1 ml of 10% (w / v) fluorescein aqueous solution was injected from the tail vein, and fluorescence fundus photography was performed. Spots where fluorescence leakage was not observed in fluorescence fundus photography were determined to be negative, and spots where fluorescence leakage was observed were determined to be positive. According to the following calculation formula, the neovascularization rate (%) was calculated from the ratio of the number of positive spots to 8 spots irradiated with laser. In addition, the thing which shows mild hyperfluorescence was made into 1 count positive by generation | occurrence | production of 2 spots.
[0040]
[Formula 1]
Neovascular expression rate (%) =
(Number of fluorescent leakage spots / number of laser irradiation spots) × 100
The obtained results were expressed as an average value ± standard error. Statistical analysis used Student's t test. The significance level was 5% on both sides.
[0041]
Table 2 shows the choroidal neovascularization inhibitory effect of betamethasone-containing microspheres. The angiogenesis rate of the betamethasone-containing microsphere group was 12.5 ± 2.4% compared with the control group angiogenesis rate of 60.9 ± 4.4% after 14 days of photocoagulation. It showed a significant choroidal neovascularization inhibitory effect. In addition, even after 28 days of photocoagulation, the angiogenesis expression rate of the betamethasone-containing microsphere group was 12.5 ± 2.4%, whereas the angiogenesis expression rate of the control group was 73.4 ± 6.0%. It showed a clinically significant inhibitory effect on choroidal neovascularization. From the above results, it was found that betamethasone-containing microspheres exhibited choroidal neovascularization inhibitory effect even 14 and 28 days after administration by subconjunctival administration.
[0042]
[Table 2]
Figure 0004228195
[0043]
【The invention's effect】
According to the present invention, an excellent drug delivery system for the posterior eye segment by subconjunctival administration can be provided.

Claims (5)

薬物を含有する微粒子を結膜下に投与することを特徴とする後眼部への持続的ドラッグデリバリーシステムであって、
該微粒子の粒子径が50nm〜75μmであり、
該微粒子が生体分解性または生体溶解性高分子で形成された、ドラッグデリバリーシステム
A sustained drug delivery system for the posterior segment of the eye, characterized by administering fine particles containing a drug under the conjunctiva ,
The particle diameter of the fine particles is 50 nm to 75 μm,
A drug delivery system in which the fine particles are formed of a biodegradable or biosoluble polymer .
薬物を含有させた微粒子を含む注射剤であって、後眼部への持続的な薬物の移行を可能にする結膜下注射剤であって、
該微粒子の粒子径が50nm〜75μmであり、
該微粒子が生体分解性または生体溶解性高分子で形成された、注射剤
An injection containing fine particles containing a drug, and a subconjunctival injection that enables continuous drug transfer to the posterior eye ,
The particle diameter of the fine particles is 50 nm to 75 μm,
An injection wherein the fine particles are formed of a biodegradable or biosoluble polymer .
後眼部が網膜、脈絡膜、視神経、硝子体または水晶体である請求項1記載のドラッグデリバリーシステムまたは請求項2記載の結膜下注射剤。The drug delivery system according to claim 1 or the subconjunctival injection according to claim 2, wherein the posterior eye portion is a retina, choroid, optic nerve, vitreous body or crystalline lens. 薬物が網膜、脈絡膜、視神経、硝子体または水晶体疾患の治療または予防のための薬物である請求項1記載のドラッグデリバリーシステムまたは請求項2記載の結膜下注射剤。The drug delivery system according to claim 1 or the subconjunctival injection according to claim 2, wherein the drug is a drug for treating or preventing a retina, choroid, optic nerve, vitreous body or lens disease. 薬物が抗炎症剤、免疫抑制剤、抗ウイルス剤、抗癌剤、血管新生抑制剤、抗血栓剤、視神経保護剤、抗菌剤または抗真菌剤である請求項1記載のドラッグデリバリーシステムまたは請求項2記載の結膜下注射剤。The drug delivery system according to claim 1 or claim 2, wherein the drug is an anti-inflammatory agent, immunosuppressive agent, antiviral agent, anticancer agent, angiogenesis inhibitor, antithrombotic agent, optic neuroprotective agent, antibacterial agent or antifungal agent. Subconjunctival injection.
JP2003043585A 2002-02-22 2003-02-21 Subconjunctival drug delivery system Expired - Fee Related JP4228195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043585A JP4228195B2 (en) 2002-02-22 2003-02-21 Subconjunctival drug delivery system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-46355 2002-02-22
JP2002046355 2002-02-22
JP2003043585A JP4228195B2 (en) 2002-02-22 2003-02-21 Subconjunctival drug delivery system

Publications (2)

Publication Number Publication Date
JP2003313119A JP2003313119A (en) 2003-11-06
JP4228195B2 true JP4228195B2 (en) 2009-02-25

Family

ID=29551867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043585A Expired - Fee Related JP4228195B2 (en) 2002-02-22 2003-02-21 Subconjunctival drug delivery system

Country Status (1)

Country Link
JP (1) JP4228195B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0506983A (en) * 2004-01-20 2007-07-03 Allergan Inc localized eye therapy compositions, preferably comprising triamcinolone acetonide and hyaluronic acid
JP2006257080A (en) * 2005-02-18 2006-09-28 Santen Pharmaceut Co Ltd Method for reducing or avoiding adverse effect of steroid compound
CN101180086A (en) 2005-04-08 2008-05-14 苏尔莫迪克斯公司 Sustained release implants for subretinal delivery
JP4872076B2 (en) * 2005-09-15 2012-02-08 国立大学法人 長崎大学 Vitreous visualization agent
WO2009107753A1 (en) * 2008-02-29 2009-09-03 財団法人 名古屋産業科学研究所 Liposome for delivery to posterior segment of eye and pharmaceutical composition for disease in posterior segment of eye
KR20150139899A (en) * 2013-04-01 2015-12-14 알러간, 인코포레이티드 Microsphere drug delivery system for sustained intraocular release
EP3448359B1 (en) * 2016-04-29 2023-06-07 Laurentia Holding B.V. Liposomal corticosteroids for topical injection in inflamed lesions or areas
EP3515444A4 (en) * 2016-09-26 2020-06-03 Reyoung (Suzhou) Biology Science & Technology Co., Ltd Composition for treating ocular diseases and methods of usage and making
US20190062371A1 (en) * 2017-06-19 2019-02-28 Allegro Pharmaceuticals, Inc. Peptide compositions and related methods

Also Published As

Publication number Publication date
JP2003313119A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP5274315B2 (en) Drug delivery system with subconjunctival depot
EP1484054B1 (en) Drug delivery system for the subconjunctival administration of fine grains
US20060013859A1 (en) Drug delivery system using subconjunctival depot
Herrero-Vanrell et al. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies
CA2700072C (en) Steroid containing drug delivery systems
US20070224278A1 (en) Low immunogenicity corticosteroid compositions
Velez et al. New developments in sustained release drug delivery for the treatment of intraocular disease
Goyal et al. Current nanotechnological strategies for treating glaucoma
Iyer et al. Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration
EP1867334A1 (en) Method of relieving or avoiding side effect of steroid compound
JP4228195B2 (en) Subconjunctival drug delivery system
CA2536185C (en) Drug delivery system by administrating fine particles to sub-tenon
WO2007013590A1 (en) Non-invasive drug delivery system targeting posterior eye tissue using solid composition
JP4487141B2 (en) Drug delivery system for microtenon subcapsular administration
JP2006257080A (en) Method for reducing or avoiding adverse effect of steroid compound
JP5081413B2 (en) Non-invasive drug delivery system for posterior ocular tissue using solid composition
Herrero-Vanrell et al. Ocular pharmacokinetic drug, bioavailability and intraocular drug delivery systems
WO2002064114A1 (en) Novel ophthalmic compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees