JP4227646B2 - Electron beam source and electron beam application device - Google Patents

Electron beam source and electron beam application device Download PDF

Info

Publication number
JP4227646B2
JP4227646B2 JP2006514770A JP2006514770A JP4227646B2 JP 4227646 B2 JP4227646 B2 JP 4227646B2 JP 2006514770 A JP2006514770 A JP 2006514770A JP 2006514770 A JP2006514770 A JP 2006514770A JP 4227646 B2 JP4227646 B2 JP 4227646B2
Authority
JP
Japan
Prior art keywords
electron source
electron
magnetic pole
permanent magnet
extraction electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006514770A
Other languages
Japanese (ja)
Other versions
JPWO2005124815A1 (en
Inventor
卓 大嶋
藤枝  正
貴志夫 日高
光男 林原
秀男 戸所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2005124815A1 publication Critical patent/JPWO2005124815A1/en
Application granted granted Critical
Publication of JP4227646B2 publication Critical patent/JP4227646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof

Description

本発明は電子顕微鏡などの電子線応用装置およびその電子線源装置に係わる。   The present invention relates to an electron beam application apparatus such as an electron microscope and an electron beam source apparatus thereof.

高分解能の電子顕微鏡を得るためには電子源として輝度の高いものが必要であり、このためには先端の尖った針状のW金属の電界放射(以下、W−FEと略記)がもっぱら使われてきた。これをさらに高輝度化したものとしてカーボン・ナノチューブ(以下CNTと略記)による電子源が報告されている。針状の金属先端にCNTを接着し電子源とし、針状金属を支えるフィラメントに通電加熱して電子源の表面清浄化、いわゆるフラッシングを行って、電子源として使用する。この場合、W―FEに比べて電子の仮想光源径が小さくなることが高輝度化の原因である。Niels de JongeらによるNature第420巻(2002年11月)393〜395ページの「High brightness electron beam from a multi−walled carbon nanotube」に記載されている。   In order to obtain a high-resolution electron microscope, a high-luminance electron source is required. For this purpose, needle-shaped W metal field radiation (hereinafter abbreviated as W-FE) is used exclusively. I have been. An electron source using carbon nanotubes (hereinafter abbreviated as CNT) has been reported as a further increase in luminance. CNTs are bonded to the tip of a needle-like metal as an electron source, and the filament supporting the needle-like metal is energized and heated to clean the surface of the electron source, so-called flushing, and used as an electron source. In this case, the fact that the diameter of the virtual light source of electrons is smaller than that of W-FE is the cause of high brightness. Niels de Jong et al., Nature, Volume 420 (November 2002), pages 393-395, “High brightness from a multi-walled carbon nanotube”.

従来はこのような高性能の電子源を電子顕微鏡などの電子銃に適用する場合は、図2Aのような引出電極22とアノード電極23がバトラレンズを構成するものが一般的である。ここで、バトラレンズとは、2枚の円形の電極板を並行に配置した構造を有する静電レンズの一種で、2枚の円板の外側が平板状で、向かい合う内側が外周から中心にかけてなだらかに薄くなっているものを言う。2枚の円板には、電子線が通過するための開口を備えている。加工しやすいように、この形を多少変形させたレンズもバトラレンズないしバトラ型レンズと呼ばれる。電子銃に良く用いられる。   Conventionally, when such a high-performance electron source is applied to an electron gun such as an electron microscope, the extraction electrode 22 and the anode electrode 23 as shown in FIG. 2A generally form a Butler lens. Here, the butler lens is a kind of electrostatic lens having a structure in which two circular electrode plates are arranged in parallel. The outer sides of the two discs are flat and the inner sides facing each other are gently from the outer periphery to the center. Say what is thinner. The two discs are provided with openings through which electron beams pass. A lens obtained by slightly deforming this shape so as to be easily processed is also called a butler lens or a butler type lens. Often used for electron guns.

また、T. Kawasakiらによる論文Microbeam Analysis, 第3巻(1994年)287〜291ページの「Development and Application of a 350 kV Transmission Electron Microscope with a Magnetic Field Superimposed Field Emission Gun」には、より高輝度の電子銃構造が開示されている。図2Bに、Kawasakiに示された電子銃の概要図を示す。当文献に記載の電子銃では、電子源20から放出される電子線の引出電極を上部磁極24と兼用し、下部磁極25を上部磁極は同電位としている。Kawasakiに記載の電子銃では、W−FE電子源20と磁界レンズとを組み合わせて用いるため、電子線の取り込み角を大きくとっても収差の増大を抑えて電子線の大電流化が可能である。   T. The paper by Kawasaki et al. From Microbeam Analysis, Volume 3 (1994) pp. 287-291, “Development and Application of a 350 kV Transmission Electro Micro Scopy Micro Microscope”. It is disclosed. FIG. 2B shows a schematic diagram of the electron gun shown in Kawasaki. In the electron gun described in this document, an extraction electrode for an electron beam emitted from the electron source 20 is also used as the upper magnetic pole 24, and the lower magnetic pole 25 has the same potential as the upper magnetic pole. In the electron gun described in Kawasaki, since the W-FE electron source 20 and a magnetic lens are used in combination, an increase in aberration can be suppressed and an electron beam current can be increased even if the electron beam capture angle is large.

High brightness electron beam from a multi−walled carbon nanotube/Nature第420巻(2002年11月)393〜395頁High brightness electron beam from a multi-walled carbon nanotube / Nature 420 (November 2002) 393-395 T. Kawasaki, et al、Microbeam Analysis, 第3巻(1994年)287〜291頁T.A. Kawasaki, et al, Microbeam Analysis, Volume 3 (1994) pp. 287-291.

輝度の高い電子銃を実現するためには、電子の仮想光源径が小さな電子源を用いる必要がある。また、仮想光源径が小さな電子源の性能をフルに発揮させるためには、電子源の仮想光源径が小さくなった分だけ、電子銃自身の収差も小さくする必要がある。しかしながら、従来の電子銃では電子銃自身の収差が大きく、電子源から放出される電子の仮想光源径ないし電子源の先端の物理的な直径が100nm程度以下になると、電子線源の仮想光源径がいくら小さくなっても電子銃から放出される電子線の実効的な光源径は小さくならず、結果的に、輝度は高くならないという問題があった。これは図2Aの従来の電子銃のバトラレンズ構造において特に重大な問題であり、カーボンナノチューブや、先端径のきわめて細い電界放射電子源の高輝度特性を活用する大きな妨げとなっていた。   In order to realize an electron gun with high brightness, it is necessary to use an electron source with a small virtual light source diameter. Further, in order to make full use of the performance of an electron source with a small virtual light source diameter, it is necessary to reduce the aberration of the electron gun itself as much as the virtual light source diameter of the electron source is reduced. However, in the conventional electron gun, the aberration of the electron gun itself is large, and when the virtual light source diameter of the electrons emitted from the electron source or the physical diameter of the tip of the electron source is about 100 nm or less, the virtual light source diameter of the electron beam source However, no matter how small, the effective light source diameter of the electron beam emitted from the electron gun does not decrease, and as a result, there is a problem that the luminance does not increase. This is a particularly serious problem in the butler lens structure of the conventional electron gun shown in FIG. 2A, and has been a major obstacle to utilizing the high luminance characteristics of the carbon nanotube and the field emission electron source having a very thin tip diameter.

また、電子の仮想光源径を小さくするために物理的に電子源先端の直径を小さくすると、フラッシング時の熱によるフィラメントおよび電子源の針状金属の変形が顕著となり、フラッシングの度毎に光源の位置が移動するため、毎回軸調性が必要となるという問題もあった。   In addition, if the diameter of the electron source tip is physically reduced in order to reduce the virtual light source diameter of the electron, the deformation of the filament and the needle-shaped metal of the electron source due to the heat at the time of flushing becomes remarkable, and the light source Since the position moves, there is also a problem that the axial tonality is required every time.

一方、図2Bのように、コイル26や磁気回路を加えて高輝度化をねらった電子銃を用いた場合、電子銃自身の収差を小さくするためには焦点距離の小さい電子光学系が必要であるが、Kawasakiらによる電子銃構造では小さい光源径を生かせるほどの強い磁界を電子源近傍の微小空間のみに発生することは困難であった。また、この場合、構造が複雑で重量が増加するので振動しやすく、分解能が低下しやすいという問題があった。
そこで、本発明では、仮想光源径の小さな電子源と組み合わせてもその性能を落とすこと無く使用可能な、収差の小さな電子銃を提供することを目的とする。
On the other hand, as shown in FIG. 2B, in the case of using an electron gun aiming at high brightness by adding a coil 26 or a magnetic circuit, an electron optical system having a small focal length is necessary to reduce the aberration of the electron gun itself. However, in the electron gun structure by Kawasaki et al., It was difficult to generate a magnetic field strong enough to make use of a small light source diameter only in a minute space near the electron source. Further, in this case, there is a problem that the structure is complicated and the weight is increased, so that the structure is easily vibrated and the resolution is easily lowered.
Accordingly, an object of the present invention is to provide an electron gun with small aberration that can be used without degrading its performance even when combined with an electron source with a small virtual light source diameter.

電子源が磁界に浸された磁界重畳電子源と、当該電子源から電子線を引き出すための電界を印加する手段と、電子源に対して磁束を印加するための手段とを兼用する上部磁極及び下部磁極とを備え、当該上部磁極と下部磁極との間に電界を発生する電位差を与えることにより、収差の小さな電子銃を実現する。   A magnetic field superimposed electron source in which the electron source is immersed in a magnetic field, a means for applying an electric field for extracting an electron beam from the electron source, and an upper magnetic pole serving as a means for applying a magnetic flux to the electron source; An electron gun with a small aberration is realized by providing a lower magnetic pole and applying a potential difference for generating an electric field between the upper magnetic pole and the lower magnetic pole.

上部磁極と下部磁極に与える電位差により、電子源に対する電子の引き出し電界が発生する。また、上部・下部磁極と引出し電界の印加手段(引出し電極)とを兼用することにより電子銃全体の収差を小さくできる。これは、磁界の発生を、電子源に最も近い部品、すなわち引き出し電極でおこなうことにより、狭い領域で強い磁界が得られ、この結果、電子銃近傍に、焦点距離の短い電子レンズが形成されるためである。電子光学的に、焦点距離を短くすると収差は小さくなる。   Due to the potential difference applied to the upper magnetic pole and the lower magnetic pole, an electron extraction electric field for the electron source is generated. Further, the aberration of the entire electron gun can be reduced by combining the upper and lower magnetic poles and the means for applying the extraction electric field (extraction electrode). This is because a magnetic field is generated by a component closest to the electron source, that is, an extraction electrode, whereby a strong magnetic field is obtained in a narrow region. As a result, an electron lens having a short focal length is formed in the vicinity of the electron gun. Because. In terms of electro-optics, the aberration is reduced when the focal length is shortened.

磁界の発生源としては、前記電子源と同一の真空容器内に配置された永久磁石を用いるのが好ましい。磁束発生源としてはコイルを使用することも可能であるが、永久磁石を用いると、電子レンズとして実用的な0.8〜1.1T程度の磁束を発生するのに極めて小さな体積ですむという利点がある。電子源に磁界を与えるためには、前記電子源と前記磁界の発生源とを直接あるいはソフト磁性体からなる磁極を介して接続する。前記永久磁石の形状は、電子源先端から見た電子放出方向を中心軸として概ね軸対称形状に配置する。この結果、磁気の分極がこの中心軸方向もしくは半径方向の如き軸対称となり、低収差の電子レンズとして理想的な、軸対象の磁界が得られる。   As a magnetic field generation source, it is preferable to use a permanent magnet disposed in the same vacuum vessel as the electron source. Although it is possible to use a coil as the magnetic flux generation source, the use of a permanent magnet requires an extremely small volume to generate a magnetic flux of about 0.8 to 1.1 T, which is practical as an electron lens. There is. In order to apply a magnetic field to the electron source, the electron source and the magnetic field generating source are connected directly or via a magnetic pole made of a soft magnetic material. The shape of the permanent magnet is generally axisymmetric with the electron emission direction viewed from the electron source tip as the central axis. As a result, the magnetic polarization becomes axially symmetric as in the central axis direction or the radial direction, and an axial target magnetic field ideal as a low aberration electron lens can be obtained.

前記永久磁石ないし前記磁極に印加する電位は、電子源と同一もしくは引き出し電極と同一で用いる。このため、磁界を発生する磁極および磁石と、電子を引き出す電界を発生する電極とを同一の小さな空間で形成することが可能となるので、狭い領域で強い磁界が得られる。   The potential applied to the permanent magnet or the magnetic pole is the same as that of the electron source or the same as that of the extraction electrode. For this reason, since it is possible to form the magnetic pole and magnet which generate | occur | produce a magnetic field, and the electrode which generate | occur | produces the electric field which draws out an electron in the same small space, a strong magnetic field is obtained in a narrow area | region.

本発明の電子銃と組み合わせる電子源は、仮想光源径のなるべく小さな光源が好ましく、特に、電子源の先端部の物理的な直径が100nm以下の電界放射型電子源と組み合わせて用いると、収差が小さいという本発明の特徴を十分に生かすことができ、従来よりも高性能な電子銃が実現可能となる。   The electron source combined with the electron gun of the present invention is preferably a light source with a virtual light source diameter as small as possible, and particularly when used in combination with a field emission electron source having a physical diameter of the tip of the electron source of 100 nm or less. The small feature of the present invention can be fully utilized, and an electron gun with higher performance than before can be realized.

本発明により、カーボンナノチューブやW−FEのような光源径の小さい電子源を有効に利用することができるので、高性能の電子銃を形成できる。さらにこれを用いて、より高分解能の電子顕微鏡のような、高性能の電子線応用装置を得ることができる。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, an electron source having a small light source diameter, such as a carbon nanotube or W-FE, can be used effectively, so that a high-performance electron gun can be formed. Furthermore, by using this, a high-performance electron beam application apparatus such as a higher-resolution electron microscope can be obtained.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.

図1Aに本発明の実施例のひとつの概略を示す。下部磁極2と上部磁極1とその間にドーナツ形の永久磁石3からなる磁気回路が形成され、基本的に軸対称構造であり、中心軸上には電子源4が上部磁極1の下面に設置される。この上部磁極1と下部磁極2はパーメンジュール合金からなる。電子線を引き出すための対向電極として下部磁極2が設置されており、これは絶縁体5を介して上部磁極1と電気的に絶縁されており、両者に引出電圧Vの電位差が印加される。この構造のために、電子源4の近傍に引き出し電界と磁界が極めてコンパクトに配置される。ここで、電子源4は図1Bに示されるように、W針6とカーボンナノチューブ7からなっている。両者の接合は、図1Cに示すように、W針先端に設けた垂直のガイド壁8にW等の金属膜9により固定されている。電子源4の先端部分7は針状、棒状、円錐形状のものでもよくまたは表面コーティング層を設けた金属針でもよい。また、カーボンナノチューブはCVD、放電等により形成されることができる。FIG. 1A schematically shows one embodiment of the present invention. A magnetic circuit composed of a doughnut-shaped permanent magnet 3 is formed between the lower magnetic pole 2 and the upper magnetic pole 1, and basically has an axisymmetric structure. An electron source 4 is installed on the lower surface of the upper magnetic pole 1 on the central axis. The The upper magnetic pole 1 and the lower magnetic pole 2 are made of a permendur alloy. Are installed the lower magnetic pole 2 as a counter electrode for drawing electron beams, which are insulated upper magnetic pole 1 and electrically, the potential difference between the extraction voltages V 1 to both applied through the insulator 5 . Due to this structure, the extraction electric field and the magnetic field are arranged very compactly in the vicinity of the electron source 4. Here, the electron source 4 includes a W needle 6 and a carbon nanotube 7 as shown in FIG. 1B. As shown in FIG. 1C, the bonding between the two is fixed to a vertical guide wall 8 provided at the tip of the W needle by a metal film 9 such as W. The tip portion 7 of the electron source 4 may have a needle shape, a rod shape, a conical shape, or a metal needle provided with a surface coating layer. Carbon nanotubes can be formed by CVD, discharge, or the like.

図1Cに示す構成の作成にはSEM(走査電子顕微鏡)中で、電子ビームもしくはイオンビームを所望の領域に照射しながらW原子を含んだガス、具体的にはカルボニルタングステンを導入し、分解生成物のW金属膜を堆積させる方法を用いる。なお、金属膜として融点が400℃以上のものであれば、Al, Mo, Au等他のものを用いても同様の効果がある。永久磁石はSmとCoを主成分とする合金で、上部と下部がN極S極のいずれかに分極するように磁化されている。磁化の強度はほぼ材料の飽和磁気密度で用いると、長期間安定であり、この場合約1T程度である。絶縁体5はアルミナ等の硬く融点の高い絶縁体材料から選ばれる。   The structure shown in FIG. 1C is generated by introducing a gas containing W atoms, specifically carbonyl tungsten, while irradiating a desired region with an electron beam or ion beam in an SEM (scanning electron microscope), and generating the decomposition. A method of depositing a W metal film is used. As long as the metal film has a melting point of 400 ° C. or higher, the same effect can be obtained by using other materials such as Al, Mo, Au. The permanent magnet is an alloy mainly composed of Sm and Co, and is magnetized so that the upper part and the lower part are polarized to one of the N pole and the S pole. When used at the saturation magnetic density of the material, the magnetization strength is stable for a long time, and in this case, it is about 1T. The insulator 5 is selected from a hard insulator material having a high melting point such as alumina.

実際の応用装置において、図1Aの電子源を使うためには、組み立て後、真空排気しながら400℃程度のベーキングを1から20時間程度行い、内部の残留ガスや吸着物を蒸発させて除去する。次に、電子源先端を清浄化するフラッシングを短時間行う。本実施例では電子源からの放出電流Ieを増加させ、このジュール熱により先端を過熱する。加熱温度は500℃から2000℃の範囲である。この方法では、従来のフィラメント加熱のフラッシングと比べて高温になる部分が微小な電子源先端に限られるので変形が最小限に抑えられ、軸調整が不要となると言う利点がある。   In an actual application apparatus, in order to use the electron source of FIG. 1A, after assembling, baking at about 400 ° C. is performed for about 1 to 20 hours while evacuating, and internal residual gas and adsorbate are evaporated and removed. . Next, flushing for cleaning the tip of the electron source is performed for a short time. In this embodiment, the emission current Ie from the electron source is increased and the tip is overheated by this Joule heat. The heating temperature is in the range of 500 ° C to 2000 ° C. This method has the advantage that deformation is suppressed to a minimum and no shaft adjustment is required because the portion of the electron source that is at a higher temperature is limited to the tip of the minute electron source as compared with the conventional filament heating flushing.

ここで、図3Aと図3Bに示すように、中心軸上での上部磁極と下部磁極の距離H12と、電子源先端と下部磁極の距離H24と、下部磁極の開口径Deは、おおむね次式の関係にあることが望ましい。   Here, as shown in FIGS. 3A and 3B, the distance H12 between the upper magnetic pole and the lower magnetic pole on the central axis, the distance H24 between the tip of the electron source and the lower magnetic pole, and the opening diameter De of the lower magnetic pole are approximately as follows: It is desirable that

H12>H24>De/2
これは、下部磁極が引き出し電極をかねているためであり、例えば、図3Bのように非磁性の引き出し電極30を付けた場合は、この開口径がDeである。この場合、非磁性材料としては、Mo、Ti、オーステナイト系ステンレス鋼などが使われる。
H12>H24> De / 2
This is because the lower magnetic pole also serves as the extraction electrode. For example, when the nonmagnetic extraction electrode 30 is attached as shown in FIG. 3B, the opening diameter is De. In this case, Mo, Ti, austenitic stainless steel or the like is used as the nonmagnetic material.

図1A−1Cの構成の電子銃から得られる電子線の輝度は、従来の電子銃構造に比べて同一の放出電流で比べて10倍程度以上高いものが得られる。これは、本構造により電子源の極近傍に焦点距離の短い電子レンズが形成される結果、電子銃の収差を3nm以下に抑えられるためである。したがって、この電子源装置を電子銃に用いることで、TEM,SEMなどの顕微鏡の高分解能化、高速検査などが達成される。また、電子線のエネルギー幅は電子源先端の電界で変わり、電界が強いほどエネルギー幅が広くなる。このため、放出電流量Ieが大きくなるとエネルギー幅が広がると言う、図4に示す傾向があるので、高輝度化していくとエネルギー幅が広がるという問題があったが、本発明を適用すると、同じ輝度をより低いIeで達成できるのでエネルギー幅を狭くできると言う利点がある。例えば、従来の高輝度電子銃ではエネルギー幅0.8から1eVであったが本発明では0.2から0.3eVと、1/4から1/3に単色化できる。これは、電子光学系の色収差を1/4から1/3に低減できるので顕微鏡などの高分解能化に寄与できる。また、分析装置においてはエネルギーのそろった電子線が使えるので、たとえば電子エネルギー損失分光の一次ビームに適用すればエネルギー分解能を改善することができる。また、上部磁極を電子源の上部に配したことにより、電子源は磁界中に置かれることになり、短焦点化し電子光学系の収差を小さくすることができる。   The brightness of the electron beam obtained from the electron gun having the structure shown in FIGS. 1A to 1C is about 10 times higher than that of the conventional electron gun structure with the same emission current. This is because the electron lens having a short focal length is formed in the very vicinity of the electron source by this structure, so that the aberration of the electron gun can be suppressed to 3 nm or less. Therefore, by using this electron source device for an electron gun, high resolution and high-speed inspection of a microscope such as TEM and SEM can be achieved. The energy width of the electron beam varies depending on the electric field at the tip of the electron source, and the stronger the electric field, the wider the energy width. For this reason, there is a tendency that the energy width is widened when the emission current amount Ie is large, and therefore, there is a problem that the energy width is widened when the luminance is increased. Since the luminance can be achieved at a lower Ie, there is an advantage that the energy width can be narrowed. For example, in the conventional high-intensity electron gun, the energy range is 0.8 to 1 eV, but in the present invention, it can be monochromatic from 0.2 to 0.3 eV and from 1/4 to 1/3. This can contribute to high resolution of a microscope or the like because the chromatic aberration of the electron optical system can be reduced from ¼ to 3. Moreover, since an electron beam with uniform energy can be used in the analyzer, the energy resolution can be improved by applying it to the primary beam of electron energy loss spectroscopy, for example. Further, since the upper magnetic pole is arranged on the upper part of the electron source, the electron source is placed in the magnetic field, and the focal length can be shortened and the aberration of the electron optical system can be reduced.

なお、電子銃の焦点距離を小さくしたい用途において絶縁体5での磁気結合の損失が懸念されるような場合は、酸化鉄マグネシウム系のフェライトのような電気抵抗が高い磁性材料を用いても良い。その場合電子源はより強い磁界中に置かれるので電子銃の焦点距離が小さくなるという利点がある。   When there is a concern about loss of magnetic coupling in the insulator 5 in an application where the focal length of the electron gun is desired to be reduced, a magnetic material having a high electrical resistance such as iron oxide magnesium ferrite may be used. . In that case, since the electron source is placed in a stronger magnetic field, there is an advantage that the focal length of the electron gun is reduced.

Sm−Co系磁石は、磁束密度が0.8〜1.1T程度と非常に高くかつ保持力も高く、また、キュリー点が700℃以上と真空ベーク温度よりも高いので電子銃中に置いて用いることができる。ドーナツ型の両端面を分極させ、それぞれから上部磁極1と下部磁極2を用いて磁束を中心軸上に招き、電子源4近傍で大きな磁界を発生させる。これにより電子銃中にきわめて焦点距離の小さいレンズが形成される。磁界強度は、0.1T程度から3T程度まで可能なので、必要な磁界ごとに磁石のサイズ、各磁極の形状を前もって選択すればよい。磁石に用いた材料の化学量論的組成はSmCo5もしくはSm2Co17、あるいはこれらに近いものを用いても同様の効果がある。Sm−Co系の4割程度以下の、より磁場の弱い用途の場合はアルニコ磁石を使えばより安価なものが得られる。   The Sm-Co magnet has an extremely high magnetic flux density of about 0.8 to 1.1 T and a high holding power, and has a Curie point of 700 ° C. or higher, which is higher than the vacuum baking temperature. be able to. Both end faces of the donut shape are polarized, and a magnetic field is generated on the central axis by using the upper magnetic pole 1 and the lower magnetic pole 2 to generate a large magnetic field in the vicinity of the electron source 4. As a result, a lens having a very small focal length is formed in the electron gun. Since the magnetic field strength can be from about 0.1 T to about 3 T, the size of the magnet and the shape of each magnetic pole may be selected in advance for each required magnetic field. The same effect can be obtained when the stoichiometric composition of the material used for the magnet is SmCo5, Sm2Co17, or a material close thereto. In the case of an application with a weak magnetic field of about 40% or less of the Sm-Co system, a cheaper one can be obtained by using an alnico magnet.

また、アルニコ磁石では温度変化による磁束密度変化が小さいので、温度の変動が大きい環境で用いる用途に適している。なお、この場合に電子レンズの焦点距離を小さくするには、アルニコ磁石は保持力が小さいので、磁極間を長い形状として用いると良い。また、ベーキング温度が300℃より十分低い用途ではネオジウム鉄ボロン磁石、すなわち、Nd2Fe14Bを主としたものを用いると、安価のみならず、Sm−Co系よりも30%程度強い磁場が得られ、電子銃としてより焦点距離の短い物が得られる。磁石材料としては、プラセオジム磁石、プラチナ磁石、鉄クロムコバルト磁石など、用途に合った磁束密度と保持力と耐熱性があり、真空中で放出ガスの少ないものであれば同様の効果が得られる。   In addition, since an alnico magnet has a small change in magnetic flux density due to a change in temperature, it is suitable for use in an environment where the temperature varies greatly. In this case, in order to reduce the focal length of the electron lens, since the alnico magnet has a small holding force, it is preferable to use a long shape between the magnetic poles. In applications where the baking temperature is sufficiently lower than 300 ° C., using a neodymium iron boron magnet, that is, Nd 2 Fe 14 B mainly, a magnetic field that is about 30% stronger than Sm—Co is obtained in addition to low cost. A gun with a shorter focal length can be obtained. As a magnetic material, a praseodymium magnet, a platinum magnet, an iron-chromium-cobalt magnet, or the like has a magnetic flux density, a holding power, and heat resistance suitable for the application, and the same effect can be obtained as long as it emits less gas in a vacuum.

永久磁石の持つ磁化の精度は10%程度であり、また、磁束密度は温度で変化するため、より精度の高い磁界を制御する場合には調整用コイルを設ける。磁極2の外側でも内側でも良い。また、このコイルをヒーターと兼用しても良い。その場合、ヒーターとして使用する場合には数Aから10A程度の電流として、磁極2を200℃から400℃に加熱する。これは、真空立上時のベーキングとして使えるだけでなく、温度によって磁束密度を微調整する手段として用いることもできる。なお、この場合のヒーター線の被服は、セラミックスなどの耐熱性の高いものがよい。   Since the magnetization accuracy of the permanent magnet is about 10%, and the magnetic flux density changes with temperature, an adjustment coil is provided to control a magnetic field with higher accuracy. It may be outside or inside the magnetic pole 2. Further, this coil may also be used as a heater. In that case, when used as a heater, the magnetic pole 2 is heated from 200 ° C. to 400 ° C. with a current of several A to 10 A. This can be used not only as a baking at the time of starting up the vacuum, but also as a means for finely adjusting the magnetic flux density according to the temperature. In this case, the clothing of the heater wire is preferably a highly heat-resistant material such as ceramics.

ここでは、絶縁体5は下部磁極2を磁石3と上部磁極1に対して絶縁するために入れたが、上部磁極の電子源4に接続する中心付近と、下部磁極の中央の穴付近の双方に引出電圧をかけられる構造となっていれば同様の効果がある。例えば、図8のように磁石3を分割し、その間に絶縁体5を入れても良い。   Here, the insulator 5 is inserted in order to insulate the lower magnetic pole 2 from the magnet 3 and the upper magnetic pole 1, but both near the center of the upper magnetic pole connected to the electron source 4 and near the center hole of the lower magnetic pole. The same effect can be obtained if it has a structure in which an extraction voltage can be applied to. For example, the magnet 3 may be divided as shown in FIG. 8 and the insulator 5 may be inserted between them.

また、図9Aのように中心軸上に棒状の永久磁石3を置き、細い棒状の磁石で長手方向に磁化したものの端面上に発生する磁界を使っても前述のように高輝度化が達成される。図9Aでは、下部磁極はガイシ95にボルト96で固定され、両者の間にベース磁極91と絶縁体5が挟み込まれて固定される。永久磁石3は上部磁極1とともに磁石ホルダ92内に磁石おさえ94で固定される。この磁石おさえは、外周にねじが形成されており、ベース磁極91のめねじと噛み合う。また磁石ホルダ92は皿ねじ97によりベース磁極91に固定されている。この場合、下部磁極の内壁には磁石が無いので、図9Bのように穴を開けて真空排気のコンダクタンスを高めたり、あるいは図9Aのように非蒸発ゲッタ93を置いて外に巻いたコイル90の通電加熱により活性化させて真空ポンプとして作用させても良い。この場合、電子源4の周りはガス分子の少ない良好な状態が長時間保たれるという利点がある。   9A, the rod-shaped permanent magnet 3 is placed on the central axis, and the magnetic field generated on the end face of the magnet magnetized in the longitudinal direction by the thin rod-shaped magnet is used to achieve high brightness as described above. The In FIG. 9A, the lower magnetic pole is fixed to the insulator 95 with a bolt 96, and the base magnetic pole 91 and the insulator 5 are sandwiched and fixed therebetween. The permanent magnet 3 is fixed together with the upper magnetic pole 1 in the magnet holder 92 by a magnet holder 94. The magnet presser has a screw formed on the outer periphery, and meshes with the female screw of the base magnetic pole 91. The magnet holder 92 is fixed to the base magnetic pole 91 by a countersunk screw 97. In this case, since there is no magnet on the inner wall of the lower magnetic pole, a coil 90 is formed by opening a hole as shown in FIG. 9B to increase the conductance of evacuation, or by placing a non-evaporable getter 93 and winding it outside as shown in FIG. 9A. It may be activated by energizing and heating to act as a vacuum pump. In this case, there is an advantage that a good state with few gas molecules is maintained for a long time around the electron source 4.

本実施例においては電子源としてカーボンナノチューブを用いたが、電子放出源の光源径あるいは仮想光源径が小さく、3nm程度以下の場合には本発明を適用すれば、小さい光源径を損なうことなく電子線を発生できるので同様の効果がある。たとえば、Wの針で先端径が100nm以下のもの、あるいはこの先端にナノチップを形成したものでも光源径が小さいので同様の効果がある。ナノチップとは、W−FEの針を加熱しながら正電圧を印加して電界蒸発条件にすることにより針先端に数原子程度の突起を形成したものである。なお、W以外でも、Pt、Moなどの高融点金属を用いても良い。また、電子源の先端部分を化学的または電気化学的エッチングにより100nm以下に先鋭化することができる。   In this embodiment, carbon nanotubes are used as the electron source. However, when the light source diameter or virtual light source diameter of the electron emission source is small and is about 3 nm or less, the present invention is applied to the electron source without impairing the small light source diameter. Since a line can be generated, the same effect is obtained. For example, a W needle having a tip diameter of 100 nm or less or a nanotip formed on the tip has the same effect because the light source diameter is small. The nanotip is formed by forming a protrusion of about several atoms at the tip of the needle by applying a positive voltage while heating the W-FE needle to obtain a field evaporation condition. In addition to W, a refractory metal such as Pt or Mo may be used. Also, the tip portion of the electron source can be sharpened to 100 nm or less by chemical or electrochemical etching.

電子源の動作時の引出電圧Vは、実用的には、電子源がカーボンナノチューブの場合には、100Vから4kVの範囲、Wの針で先端径が100nmの場合は2kVから5kVの範囲で、電子源からの放出電流Ieを観察しながら、Ieが所望の値となるように決定される。このIeは、実用的には、カーボンナノチューブの場合は10nAから500μAの範囲、Wの針の場合10nAから30μAの範囲から選ばれる。上部磁極1は電子源1と同電位であり、加速電圧Voが印加される。実用的にはVoは、SEM(走査電子顕微鏡)用には−30kVから−30Vの範囲から、また、TEM(透過電子顕微鏡)用には、−30kVから−1000kVの範囲から選ばれる。The extraction voltage V 1 during operation of the electron source is practically in the range of 100 V to 4 kV when the electron source is a carbon nanotube, and in the range of 2 kV to 5 kV when the tip diameter is 100 nm with a W needle. While observing the emission current Ie from the electron source, Ie is determined to be a desired value. This Ie is practically selected from the range of 10 nA to 500 μA for carbon nanotubes and from 10 nA to 30 μA for W needles. The upper magnetic pole 1 is at the same potential as the electron source 1 and is applied with an acceleration voltage Vo. Practically, Vo is selected from the range of -30 kV to -30 V for SEM (scanning electron microscope) and from the range of -30 kV to -1000 kV for TEM (transmission electron microscope).

また、図10に示すような、従来のW−FE電子源構造の先端の細い場合に適用しても良い。ここでは、絶縁体よりなるステム100を貫通して固定されている2本の貫通電極101上にWフィラメント21が渡されており、このフィラメントにW−FE電子源20を固定した既存の電子源である。先端径は100nm程度以下である。磁気回路は上部磁極1の中心に貫通穴があり、この穴を通して電子源20が永久磁石3からの磁束を集中させた領域に挿入され、上部磁極1とステム100は継ぎ手102により固定される。   Further, the present invention may be applied to the case where the tip of the conventional W-FE electron source structure is thin as shown in FIG. Here, the W filament 21 is passed over the two through electrodes 101 fixed through the stem 100 made of an insulator, and an existing electron source in which the W-FE electron source 20 is fixed to the filament. It is. The tip diameter is about 100 nm or less. The magnetic circuit has a through hole at the center of the upper magnetic pole 1, and the electron source 20 is inserted into a region where the magnetic flux from the permanent magnet 3 is concentrated through this hole, and the upper magnetic pole 1 and the stem 100 are fixed by a joint 102.

このステム100の表面は金メッキされており、貫通電極101の一端と電気的に接続している。このため、上部磁極1、永久磁石3、電子源20は電気的に接続され加速電圧Voと同電位にある。下部磁極2を引き出し電極として、電子源20との間に引き出し電圧Vを印加して用いる。図10の構造は、従来のSEMやTEMなどの電子銃構造のわずかな改造で適用できるという利点がある。なお、この場合も先述のように、W針先端にナノチップを形成しても良い。The surface of the stem 100 is gold-plated and is electrically connected to one end of the through electrode 101. Therefore, the upper magnetic pole 1, the permanent magnet 3, and the electron source 20 are electrically connected and are at the same potential as the acceleration voltage Vo. As electrodes pull the lower magnetic pole 2, it is used to apply a drawer voltages V 1 between the electron source 20. The structure shown in FIG. 10 has an advantage that it can be applied with a slight modification of a conventional electron gun structure such as SEM or TEM. In this case, as described above, a nanotip may be formed at the tip of the W needle.

ここでは磁極のソフト磁性材料としてパーメンジュールを用いたが、必要な磁束密度により、他の金属材料、たとえば、パーマロイや純鉄等を用いても同様の効果がある。
より簡便な構成として、図11Aおよび図11Bのように中心軸上に棒状の磁石3を置き、細い棒状の磁石で長手方向に磁化したものの端面上に発生する磁界を使うことでも高輝度化が達成される。この場合、直接電子源を設置しかつ細長い形状を維持するには、欠けやすいSm−Co系よりも、アルニコ磁石、鉄クロムコバルト磁石などが適している。保持力が小さい材料の場合は形状を細長くする必要があるので、実用的には、太さが0.1mmの場合は、長さ1mm以上、より好適には5mmから10mm程度で用いると良い。電子源取付け位置はこの棒の径が太いほど許容範囲が広くなるので、製造しやすくなる。この場合、太すぎると電子源への電界集中が難しくなるので、実用的に直径は5mm程度以下がよく、この場合、細長い形状を得るためには長さ20mm以下程度とする。
Here, permendur is used as the soft magnetic material of the magnetic pole, but the same effect can be obtained by using other metal materials such as permalloy or pure iron depending on the required magnetic flux density.
As a simpler configuration, the brightness can be increased by placing a bar-shaped magnet 3 on the central axis as shown in FIGS. 11A and 11B and using a magnetic field generated on the end face of the magnet magnetized in the longitudinal direction by a thin bar-shaped magnet. Achieved. In this case, in order to directly install an electron source and maintain an elongated shape, an alnico magnet, an iron chrome cobalt magnet, or the like is more suitable than an Sm-Co system that is easily chipped. In the case of a material having a small holding force, the shape needs to be elongated. Therefore, practically, when the thickness is 0.1 mm, the length is 1 mm or more, more preferably about 5 mm to 10 mm. The electron source mounting position becomes easier to manufacture because the allowable range becomes wider as the diameter of the rod increases. In this case, since it is difficult to concentrate the electric field on the electron source if it is too thick, the diameter is practically about 5 mm or less. In this case, the length is about 20 mm or less in order to obtain an elongated shape.

また、円柱状の永久磁石3を半径方向に分極するように磁化しても、磁極により磁力線を電子放出方向の軸に対して軸対称に集中させれば同様の効果がある。例えば、円板の中心と外輪でSとNに分極した構造でも、図11Cのように上部磁極1と下部磁極2を設ければ図1の構造と同様の効果がある。この場合は磁石の作成が容易で、安価に作成できると言う利点がある。   Further, even if the cylindrical permanent magnet 3 is magnetized so as to be polarized in the radial direction, the same effect can be obtained by concentrating the magnetic lines of force by the magnetic poles symmetrically with respect to the axis in the electron emission direction. For example, even in a structure in which the center and outer ring of the disk are polarized to S and N, if the upper magnetic pole 1 and the lower magnetic pole 2 are provided as shown in FIG. 11C, the same effect as the structure of FIG. In this case, there is an advantage that a magnet can be easily produced and can be produced at low cost.

本実施例において磁気回路の磁束を永久磁石により発生させており、安価に製造できるという効果は、図2Bの従来例と比較して明らかである。すなわち、従来技術では、W−FEの使用に際しては電子銃内の雰囲気を超高真空領域(圧力10−8Pa台以下)として用いるため、準備として、200℃から400℃のベーキングが必要となるが、このために外部コイルを高温の耐熱材で被覆したものを用いるか、あるいは外部コイルを取り外し式とする必用があり、どちらにしても製造コストがかかるという問題があった。しかし、本発明を適用すれば、磁界発生するための永久磁石はキュリー点がベーキング温度に比べて十分高いものを選べば、特別な被覆や取り外す構造をとる必要が無いものである。In this embodiment, the magnetic flux of the magnetic circuit is generated by a permanent magnet, and the effect that it can be manufactured at a low cost is obvious as compared with the conventional example of FIG. 2B. That is, in the prior art, when using W-FE, since the atmosphere in the electron gun is used as an ultra-high vacuum region (pressure 10 −8 Pa or less), baking at 200 ° C. to 400 ° C. is required as preparation. However, for this purpose, it is necessary to use an external coil coated with a high-temperature heat-resistant material, or it is necessary to make the external coil detachable. However, if the present invention is applied, if a permanent magnet for generating a magnetic field is selected such that the Curie point is sufficiently higher than the baking temperature, there is no need to take a special coating or removal structure.

走査電子顕微鏡に適用した場合の一例の概略を図6に示す。
電子銃の組立工程では、電子源4の取付け位置の数十μm程度の誤差は避けられない。電子源4が電子光学系の軸中心からずれている場合、軸上で観測される電子線は、角度がずれたものが増える。さらに、電子源中の電子レンズの軸からずれたものが主になるので収差が大きくなると言う問題が出てくる。これは、磁界を重畳した結果、焦点距離が短くなり電子源位置の精度が厳しくなったためである。これを解決する方法として、機械的に合わせる方法と、電子光学系によるものがある。機械的に合わせる場合は、例えば図7のように電子源4を微動台70に乗せて位置を調整すればよい。
FIG. 6 shows an outline of an example when applied to a scanning electron microscope.
In the assembly process of the electron gun, an error of about several tens of μm in the mounting position of the electron source 4 is inevitable. When the electron source 4 is deviated from the axis center of the electron optical system, the number of electron beams observed on the axis is deviated from the angle. Further, since the main component is shifted from the axis of the electron lens in the electron source, there arises a problem that the aberration increases. This is because, as a result of superimposing the magnetic field, the focal length is shortened and the accuracy of the electron source position is strict. As a method for solving this problem, there are a mechanical matching method and an electron optical system. In the case of mechanical alignment, for example, the position may be adjusted by placing the electron source 4 on the fine movement base 70 as shown in FIG.

この場合、微動台70に電子源4を複数設置しておき、引き出し電極をじょうご型にして中心部分のみに強い電界がかかるようにしておけば、複数ある電子源4のうちの1本を選んで用いることができるので、電子銃をあけずに電子源が交換でき、長期間にわたり使用できると言う利点がある。一方、電子光学系により軸ずれを補正する方法としては、例えば、図5Aに示すように偏向器50により角度を補正する方法がある。偏向器50は紙面では一対だが、補正方向はx−yの2軸あるので二対設ける。偏向方式は、静電界でも磁界でも良い。さらに図5Bのように偏向器50を二段設けると、電子ビーム5の角度と位置の両方の補正ができるので、電子銃のレンズ中心により近いところを通過した電子線を使うことができ、収差の低減の点で望ましい。   In this case, if a plurality of electron sources 4 are installed on the fine movement base 70 and the extraction electrode is a funnel type so that a strong electric field is applied only to the central portion, one of the plurality of electron sources 4 is selected. Therefore, there is an advantage that the electron source can be exchanged without opening the electron gun and can be used for a long time. On the other hand, as a method of correcting the axis deviation by the electron optical system, for example, there is a method of correcting the angle by the deflector 50 as shown in FIG. 5A. Although there are a pair of deflectors 50 on the paper surface, there are two pairs of correction directions because there are two axes of xy correction directions. The deflection method may be an electrostatic field or a magnetic field. Further, if two deflectors 50 are provided as shown in FIG. 5B, both the angle and the position of the electron beam 5 can be corrected. Therefore, an electron beam that has passed closer to the lens center of the electron gun can be used, and aberrations can be used. It is desirable in terms of reduction of

図6の走査電子顕微鏡では、2段の偏向器により電子源の収差を抑え、アパーチャ61により余分な電子をさえぎり、対物レンズ66により電子ビーム10を収束させて試料67に照射する。電子ビーム10は走査用偏向器69により試料台68上の試料67表面上を走査しそこから発生する反射電子を上方の反射電子検出器29で、二次電子はExBフィルタ64で横に曲げて二次電子検出器63でそれぞれ検出して、これらを元にSEM像を得る。対物レンズの色収差を低減するためにブースター電極65に電圧Vbを印加し、試料67にリターディング電圧Vrを印加して、対物レンズ中の電子の速度を上げている。試料に照射する電子エネルギーは、|Vo|−|Vr|であり、10eVから5keV程度の範囲で用いる。また、対物レンズ中の電子エネルギーは、|Vo|+|Vb|であり、1kVから10kV程度の範囲で用いる。   In the scanning electron microscope of FIG. 6, the aberration of the electron source is suppressed by a two-stage deflector, excess electrons are blocked by the aperture 61, the electron beam 10 is converged by the objective lens 66, and the sample 67 is irradiated. The electron beam 10 is scanned on the surface of the sample 67 on the sample stage 68 by the scanning deflector 69, and the reflected electrons generated therefrom are bent by the upper reflected electron detector 29, and the secondary electrons are bent sideways by the ExB filter 64. Each is detected by the secondary electron detector 63, and an SEM image is obtained based on these. In order to reduce the chromatic aberration of the objective lens, the voltage Vb is applied to the booster electrode 65 and the retarding voltage Vr is applied to the sample 67 to increase the speed of electrons in the objective lens. The electron energy applied to the sample is | Vo | − | Vr |, which is used in the range of about 10 eV to 5 keV. The electron energy in the objective lens is | Vo | + | Vb |, and is used in the range of about 1 kV to 10 kV.

本発明の電子源は図2Bに示されるような従来のFE電子銃に比べて電子銃の収差をきわめて小さくできるので、電子源の小さいソースサイズを損なうことなく利用することができる。例えば、バーチャルソースサイズ3nmの電子源を用い、全体の電子レンズの縮小率1/2としたときに、試料上のプローブ径を1.5nmとすることができる。この結果、小さいソースサイズの電子源を利用できるので、より高分解能の顕微鏡観察が行える。   The electron source of the present invention can reduce the aberration of the electron gun as compared with the conventional FE electron gun as shown in FIG. 2B, so that it can be used without impairing the small source size of the electron source. For example, when an electron source having a virtual source size of 3 nm is used and the reduction ratio of the entire electron lens is halved, the probe diameter on the sample can be 1.5 nm. As a result, since an electron source with a small source size can be used, a higher-resolution microscope observation can be performed.

また、電子源4に重畳された磁界のためにより広い放射角の電子ビームを収束することができるので、例えばエミッション電流を0.1μAとしてもプローブ電流を10pA以上取り出すことができ、より高速で像観察することが可能となる。   Further, since the electron beam with a wider radiation angle can be converged due to the magnetic field superimposed on the electron source 4, for example, even if the emission current is 0.1 μA, the probe current can be taken out at 10 pA or more, and the image can be obtained at a higher speed. It becomes possible to observe.

さらに、試料照射エネルギーが3kV程度以下では色収差が支配的になっているため、電子源を従来と同一の輝度で用いることで、先述のように電子線が単色になるので、色収差を1/3から1/4に低減でき、飛躍的な高分解能化が達成される。このSEMは、電子ビームの損傷を受けやすい有機物の観察に適している。例えば、LSI工程での微細加工用レジストや層間絶縁材料の観察や長さ測定、あるいは、たんぱく質や生体や細胞の観察に有用である。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
Further, since the chromatic aberration is dominant when the sample irradiation energy is about 3 kV or less, the electron beam becomes monochromatic as described above by using the electron source with the same luminance as the conventional one. Can be reduced to ¼, and a dramatic increase in resolution can be achieved. This SEM is suitable for observing organic substances that are easily damaged by an electron beam. For example, it is useful for observing fine processing resists and interlayer insulating materials and measuring lengths in LSI processes, or for observing proteins, living bodies, and cells.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.

本発明の構成を説明するための図。The figure for demonstrating the structure of this invention. 本発明の構成を説明するための図。The figure for demonstrating the structure of this invention. 本発明の構成を説明するための図。The figure for demonstrating the structure of this invention. 従来技術の説明図。Explanatory drawing of a prior art. 従来技術の説明図。Explanatory drawing of a prior art. 本発明の一実施例の説明図。Explanatory drawing of one Example of this invention. 本発明の一実施例の説明図。Explanatory drawing of one Example of this invention. 本発明を説明するための特性図。The characteristic view for demonstrating this invention. 本発明に係わる偏向器の説明図。Explanatory drawing of the deflector concerning this invention. 本発明に係わる偏向器の説明図。Explanatory drawing of the deflector concerning this invention. 本発明に係わる装置の全体構成を示す図。The figure which shows the whole structure of the apparatus concerning this invention. 本発明の一部変形例を示す図。The figure which shows the partial modification of this invention. 本発明の他の一部変形例を示す図。The figure which shows the other partial modification of this invention. 本発明の他の実施例を示す図。The figure which shows the other Example of this invention. 本発明の他の実施例を示す図。The figure which shows the other Example of this invention. 本発明の更に他の実施例を示す図。The figure which shows the further another Example of this invention. 本発明の一部変形例を示す図。The figure which shows the partial modification of this invention. 本発明の一部変形例を示す図。The figure which shows the partial modification of this invention. 本発明の一部変形例を示す図。The figure which shows the partial modification of this invention.

符号の説明Explanation of symbols

1 上部磁極
2 下部磁極
3 永久磁石
4 電子源
5 絶縁体
6 W針
7 カーボンナノチューブ
8 ガイド壁
9 金属膜
11 アノード
10 電子線
20 W−FE電子源
21 Wフィラメント
22 引出電極
23 アノード
30 引き出し電極
50 偏向器
60 真空容器
61 アパーチャ
62 反射電子検出器
63 二次電子検出器
64 ExB
65 ブースター電極
66 対物レンズ
67 試料
68 試料ステージ
90 コイル
91 ベース磁極
92 磁石ホルダ
93 非蒸発ゲッタ
94 磁石おさえ
95 ガイシ
96 ボルト
97 皿ネジ
100 ステム
101 貫通電極
102 継ぎ手
DESCRIPTION OF SYMBOLS 1 Upper magnetic pole 2 Lower magnetic pole 3 Permanent magnet 4 Electron source 5 Insulator 6 W needle 7 Carbon nanotube 8 Guide wall 9 Metal film 11 Anode 10 Electron beam 20 W-FE electron source 21 W filament 22 Extraction electrode 23 Anode 30 Extraction electrode 50 Deflector 60 Vacuum container 61 Aperture 62 Backscattered electron detector 63 Secondary electron detector 64 ExB
65 Booster electrode 66 Objective lens 67 Sample 68 Sample stage 90 Coil 91 Base magnetic pole 92 Magnet holder 93 Non-evaporating getter 94 Magnet presser 95 Insulating 96 bolt 97 Countersunk screw 100 Stem 101 Through electrode 102 Joint

Claims (5)

先端部の直径が100nm以下の電界放射型電子源と引出電極があり前記電子源が磁界に浸された磁界重畳電子源において、磁界の発生源の主たるものは前記電子源と同一の真空容器内に置かれた永久磁石であり、前記永久磁石は電子源先端から見た電子放出方向を中心軸として概ね軸対称形状を持ち、磁気の分極はこの中心軸方向もしくは半径方向の如き軸対称であり、前記電子源に対して直接あるいはソフト磁性体からなる磁極を介して接続することにより磁束を与え、前記永久磁石及び前記磁極の電位を電子源と同一もしくは引出電極と同一で用いるようにし、前記永久磁石はドーナツ形の如き中空構造であり、永久磁石の電子放出方向側の端はソフト磁性体を主な成分とする下部磁極と磁気的に結合し、永久磁石のもう一方の側はソフト磁性体を主な成分とする上部磁極と磁気的に結合し、下部磁極は引出電極と同一体であるかもしくは接しており、上部磁極の電子放出方向側の中心に電子源を接続し、上部磁極と下部磁極の間に少なくとも一つの絶縁体もしくは高抵抗体を設け引出電極と電子源を電気的に絶縁し、両者の間に引き出し電圧Vを印加して用いるようにした、電子源装置。In a magnetic field superimposed electron source having a field emission electron source having a tip diameter of 100 nm or less and an extraction electrode, and the electron source is immersed in a magnetic field, the main source of the magnetic field is in the same vacuum container as the electron source. The permanent magnet has a substantially axisymmetric shape with the electron emission direction seen from the tip of the electron source as the central axis, and the magnetic polarization is axisymmetric as in the central axis direction or radial direction. A magnetic flux is provided by connecting to the electron source directly or via a magnetic pole made of a soft magnetic material, and the permanent magnet and the magnetic pole have the same potential as the electron source or the same as the extraction electrode, The permanent magnet has a hollow structure such as a donut shape, and the end of the permanent magnet on the electron emission direction side is magnetically coupled to the lower magnetic pole mainly composed of a soft magnetic material, and the other side of the permanent magnet is the soft magnet. It is magnetically coupled to the upper magnetic pole mainly composed of a ferromagnet, and the lower magnetic pole is the same as or in contact with the extraction electrode, and an electron source is connected to the center of the upper magnetic pole on the electron emission direction side. An electron source in which at least one insulator or high resistance is provided between the upper magnetic pole and the lower magnetic pole, the extraction electrode and the electron source are electrically insulated, and the extraction voltage V 1 is applied between them. apparatus. 請求項に記載の電子源装置において、
中心軸近傍での上部磁極と引出電極の間隔H12と、電子源先端と引出電極の距離H24と、引出電極の開口径Deは、H12>H24>De/2の関係にある、電子源装置。
The electron source device according to claim 1 ,
The electron source device in which the distance H12 between the upper magnetic pole and the extraction electrode in the vicinity of the central axis, the distance H24 between the tip of the electron source and the extraction electrode, and the opening diameter De of the extraction electrode are in the relationship of H12>H24> De / 2.
先端部の直径が100nm以下の電界放射型電子源と引出電極があり前記電子源が磁界に浸された磁界重畳電子源において、磁界の発生源の主たるものは前記電子源と同一の真空容器内に置かれた永久磁石であり、前記永久磁石は電子源先端から見た電子放出方向を中心軸として概ね軸対称形状を持ち、磁気の分極はこの中心軸方向もしくは半径方向の如き軸対称であり、前記電子源に対して直接あるいはソフト磁性体からなる磁極を介して接続することにより磁束を与え、前記永久磁石及び前記磁極の電位を電子源と同一もしくは引出電極と同一で用いるようにし、前記電子源は絶縁体からなるステムを貫通する2本の電極上に渡されたフィラメント上に固定され、前記永久磁石はドーナツ形の如き中空構造であり、永久磁石の電子放出方向側の端はソフト磁性体を主な成分とする下部磁極と、永久磁石のもう一方の側はソフト磁性体を主な成分とする上部磁極と磁気的に結合し、下部磁極は引出電極と同一体であるかもしくは接しており、上部磁極には貫通穴があり、上部磁極とステムは直接もしくは継ぎ手を介して接続され、上部磁極と下部磁極の間に少なくとも一つの絶縁体もしくは高抵抗体を設け引出電極と電子源を電気的に絶縁し、両者の間に引き出し電圧Vを印加して用いるようにした、電子源装置。In a magnetic field superimposed electron source having a field emission electron source having a tip diameter of 100 nm or less and an extraction electrode, and the electron source is immersed in a magnetic field, the main source of the magnetic field is in the same vacuum container as the electron source. The permanent magnet has a generally axisymmetric shape with the electron emission direction seen from the tip of the electron source as the central axis, and the magnetic polarization is axisymmetric as in the central axis direction or radial direction. A magnetic flux is provided by connecting to the electron source directly or via a magnetic pole made of a soft magnetic material, and the permanent magnet and the magnetic pole have the same potential as the electron source or the same as the extraction electrode, The electron source is fixed on a filament passed over two electrodes that penetrate the stem made of an insulator, and the permanent magnet has a hollow structure such as a donut shape. The other end of the permanent magnet is magnetically coupled to the upper magnetic pole whose main component is the soft magnetic material, and the lower magnetic pole is the same as the extraction electrode. The upper magnetic pole has a through hole, the upper magnetic pole and the stem are connected directly or via a joint, and at least one insulator or high resistance is provided between the upper magnetic pole and the lower magnetic pole. provided electrically insulates the extraction electrodes and the electron source, as adapted to use by applying a drawer voltages V 1 therebetween, the electron source device. 請求項1、2、3のいずれか1項に記載の電子源装置において、
少なくとも一つの磁極近傍に少なくとも一つのコイルを設置し、通電して用いるようにした、電子源装置。
The electron source device according to any one of claims 1, 2 , and 3 ,
An electron source device in which at least one coil is installed in the vicinity of at least one magnetic pole and is energized.
請求項1、2、3、4のいずれか1項に記載の電子源装置において、さらに、少なくともxとyそれぞれ一対の静電型もしくは磁界型の偏向器と、観察試料を置く手段と、反射電子、二次電子、吸収電流のうちの少なくとも一つを計測する手段と、を備えた、電子線装置。 5. The electron source device according to claim 1, further comprising at least a pair of electrostatic or magnetic deflectors each of x and y, means for placing an observation sample, and reflection An electron beam apparatus comprising: means for measuring at least one of electrons, secondary electrons, and absorbed current.
JP2006514770A 2004-06-16 2005-06-15 Electron beam source and electron beam application device Expired - Fee Related JP4227646B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004177745 2004-06-16
JP2004177745 2004-06-16
PCT/JP2005/010971 WO2005124815A1 (en) 2004-06-16 2005-06-15 Electron beam source, and electron-beam application device

Publications (2)

Publication Number Publication Date
JPWO2005124815A1 JPWO2005124815A1 (en) 2008-04-17
JP4227646B2 true JP4227646B2 (en) 2009-02-18

Family

ID=35509984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514770A Expired - Fee Related JP4227646B2 (en) 2004-06-16 2005-06-15 Electron beam source and electron beam application device

Country Status (2)

Country Link
JP (1) JP4227646B2 (en)
WO (1) WO2005124815A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021554A (en) * 2006-07-13 2008-01-31 Sumitomo Electric Ind Ltd Electron gun, and manufacturing method of electron gun
JP2008226760A (en) * 2007-03-15 2008-09-25 Onizuka Glass:Kk Cold cathode device, radiation radiating device, electron beam emission device, and light-emitting device
JP2009129548A (en) * 2007-11-20 2009-06-11 Hitachi High-Technologies Corp Electron emission element, electron gun, and electron beam application device using the same
DE102008049654A1 (en) * 2008-09-30 2010-04-08 Carl Zeiss Nts Gmbh Electron beam source and method of making the same
JP5194133B2 (en) * 2009-01-15 2013-05-08 株式会社日立ハイテクノロジーズ Ion beam equipment
JP5386229B2 (en) * 2009-05-22 2014-01-15 株式会社日立ハイテクノロジーズ Electron gun
JP5337083B2 (en) * 2010-03-12 2013-11-06 株式会社日立ハイテクノロジーズ Magnetic field immersion type electron gun and electron beam apparatus
JP5290238B2 (en) * 2010-05-21 2013-09-18 株式会社日立ハイテクノロジーズ electronic microscope
JP2013225521A (en) * 2013-06-17 2013-10-31 Hitachi High-Technologies Corp Electron gun
US9799484B2 (en) 2014-12-09 2017-10-24 Hermes Microvision, Inc. Charged particle source
DE102016217512B4 (en) 2016-09-14 2023-08-03 Volkswagen Aktiengesellschaft Hot forming tool for hot forming a sheet metal component
JP6777746B2 (en) 2016-09-23 2020-10-28 株式会社日立ハイテク electronic microscope
US20220108862A1 (en) * 2020-10-05 2022-04-07 Kla Corporation Electron source with magnetic suppressor electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229643A (en) * 1986-03-28 1987-10-08 Jeol Ltd Electron ray generating device
JPH09134665A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Electron beam device
JP2000285839A (en) * 1999-03-30 2000-10-13 Toshiba Corp Electron gun, and exposure device and exposure method using it
JP2004158357A (en) * 2002-11-07 2004-06-03 Ricoh Co Ltd Electron beam emission source, manufacturing method of electron beam emission source and electron beam lithography system

Also Published As

Publication number Publication date
JPWO2005124815A1 (en) 2008-04-17
WO2005124815A1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
JP4227646B2 (en) Electron beam source and electron beam application device
JP5239026B2 (en) Device for field emission of particles and manufacturing method
JP4795847B2 (en) Electron lens and charged particle beam apparatus using the same
Egerton Physical principles of electron microscopy
JP7182281B2 (en) Charged particle beam device
JP6043476B2 (en) Ion source and ion beam apparatus using the same
JP2009193963A (en) Tem with aberration corrector and phase plate
JP2014082130A (en) X-ray generator
JP2007172862A (en) Cleaning device for charged particle beam source, and charged particle beam device using same
JP2001185066A (en) Electron beam device
JP5102968B2 (en) Conductive needle and method of manufacturing the same
Mulvey Electron-optical design of an X-ray micro-analyser
CN110431649B (en) Charged particle beam device
JP4029209B2 (en) High resolution X-ray microscope
US11664186B1 (en) Apparatus of electron beam comprising pinnacle limiting plate and method of reducing electron-electron interaction
JP2008234981A (en) X-ray tube
JP6370085B2 (en) Ion beam equipment
JP6095338B2 (en) Electron gun and charged particle beam device
JP3999399B2 (en) X-ray tube
Goldstein et al. Electron optics
JP2006049293A (en) Field-emission electron gun and electron beam application apparatus using the same
JP2004319149A (en) Electron source and electron beam device using it
JP2009076447A (en) Scanning electron microscope
JP2000090866A (en) Electron gun, electron beam generating method by electron gun, and exposing device using electron gun
Latham et al. The development of a high-definition cathode-ray tube using a carbon-fibre field-emission electron source

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees