JP4226176B2 - Gas sensor and gas detection method - Google Patents

Gas sensor and gas detection method Download PDF

Info

Publication number
JP4226176B2
JP4226176B2 JP35686999A JP35686999A JP4226176B2 JP 4226176 B2 JP4226176 B2 JP 4226176B2 JP 35686999 A JP35686999 A JP 35686999A JP 35686999 A JP35686999 A JP 35686999A JP 4226176 B2 JP4226176 B2 JP 4226176B2
Authority
JP
Japan
Prior art keywords
cathode
anode
film
contact area
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35686999A
Other languages
Japanese (ja)
Other versions
JP2001174427A (en
Inventor
邦之 井澤
利浩 宇高
啓城 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP35686999A priority Critical patent/JP4226176B2/en
Publication of JP2001174427A publication Critical patent/JP2001174427A/en
Application granted granted Critical
Publication of JP4226176B2 publication Critical patent/JP4226176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の利用分野】
この発明は、SnO2膜の抵抗値の変化を用いたガスの検出に関する。
【0002】
【従来技術】
発明者らは、SnO2膜を用いたガスセンサでは、Naイオン等の不純物の侵入によりセンサ特性が変化し、非オーミックな電圧/電流特性が表れることを見出した。発明者はSnO2膜に対する陽極と陰極とのパターンを検討し、非オーミックな特性が表れにくいパターンを見出した。
【0003】
【発明の課題】
この発明の課題は、不純物等により汚染された場合でも、非オーミックな特性が生じにくいSnO2系のガスセンサを提供することにある(請求項1〜4)。
【0004】
【発明の構成】
請求項1の発明は、絶縁基板上にSnO2膜と陰極と陽極とを設けたガスセンサにおいて、陰極とSnO2膜との接触面積S1と陽極とSnO2膜との接触面積S2との比S1/S2を3.5以上、好ましくは4以上、より好ましくは5以上とし、この比は例えば100以下、好ましくは30以下とする。またSnO2膜から陰極への電流経路に沿った陰極端部の沿面長L1と、陽極からSnO2膜への電流経路に沿った陽極端部の沿面長L2との比L1/L2を1.5以上とし、この比は例えば20以下、好ましくは10以下とする。
【0005】
好ましくは、陰極と陽極とを共にL字状に構成して、陽極のL字の外側の一辺と陰極のL字の内側の一辺とを対向させ、かつ前記陰極のL字の外側の2辺をSnO2膜から露出させる。特に好ましくは、陰極のL字の内側の頂点にR部を設けて、頂点付近での電流密度を均一に近づける。
【0006】
この発明はまた、絶縁基板上にSnO2膜と陰極と陽極とを設け、陽極から陰極へ流れる電流からガスを検出するガス検出方法において、
陰極とSnO2膜との接触面積S1と陽極とSnO2膜との接触面積S2との比S1/S2を3.5以上とし、SnO2膜から陰極への電流経路に沿った陰極端部の沿面長L1と、陽極からSnO2膜への電流経路に沿った陽極端部の沿面長L2との比L1/L2を1.5以上とすることにより、電流密度を陽極側で高く陰極側で低くすることにより、陽極/陰極間の電圧に対する前記電流の非オーミック特性の発生を抑制することを特徴とする。
【0007】
【発明の作用と効果】
この発明では、接触面積の比S1/S2を3.5以上とすることにより、SnO2膜から陰極への接触面積を、陽極からSnO2膜への接触面積よりも充分に大きくする。また沿面長の比L1/L2を1.5以上とすることにより、SnO2膜から陰極への電流密度を、陽極からSnO2膜への電流密度よりも小さくする。これらの結果、電流密度は陽極側で高く陰極側で低くなり、非オーミックな特性の発生を抑制することができる。
【0008】
このため、ガスセンサが不純物で汚染された場合などでも、非オーミックな特性が表れるのを遅らせることができ、またガスセンサに加える電圧を大きくして扱いやすくすることができる。
【0009】
ここで陰極/陽極共にL字状の形状として、陽極のL字の外側の一辺と陰極の内側の一辺とを対向させ、陰極のL字の外側の2辺をSnO2膜から露出させると、前記の接触面積S1を大きくし、かつ陰極や陽極とSnO2膜とのパターンがずれた場合でも、特性への影響を最小にできる。
【0010】
【実施例】
図1,図2に実施例1のガスセンサ2の構造を示し、図1の上部はガスセンサ2の表面の電極パターンを、図1の下部は裏面のヒータパターンを示す。4はアルミナ等の基板で、6はSnO2膜で、アルミナ等を混合しても良く、Pd等の貴金属触媒をSnO2に添加したものとする。SnO2膜6は、膜厚をここでは40μmとしたが、薄膜でも良く、膜厚は例えば0.1μm〜500μm程度とする。
【0011】
8は陰極、10は陽極で、基板4の表面に例えばAuペーストの印刷で形成し、膜厚は陰極8,陽極10ともに4μmとしたが、薄膜でも良い。陰極8や陽極10の材料はAuに限らず、Pt,Rh,Ir,Pd等の貴金属や貴金属合金等が好ましい。12はスルーホールで、基板4の表面の陰極8,陽極10を裏面の電極パッド20,20に接続する。ガスセンサ2の裏面にRuO2等のヒータ膜14を設けて、ヒータ電極16を介して電極パッド18に接続し、電極パッド18,20にリード20を接続する。ヒータ膜14でSnO2膜6を加熱し、陽極10から陰極8へ電圧を加えて、可燃性ガスやCO等を検知する。なおガスセンサ2の加熱温度や加熱パターンは任意である。
【0012】
第2図に、SnO2膜6と陰極や陽極の接触面積S1,S2(斜線で表示)、沿面長L1,L2(太線で表示)を示し、接触面積S1は陰極8とSnO2膜6との接触面積で、接触面積S2は陽極10とSnO2膜6との接触面積で、この比S1/S2を3.5以上とし、好ましくは4以上とし、最も好ましくは5以上とする。比S1/S2はパターンの作り易さの点から、例えば100以下、好ましくは30以下とする。沿面長L1,L2は、陰極8や陽極10の端部がSnO2膜6との間の電流経路を横切る長さを意味し、陰極8や陽極10の端部でSnO2膜6に覆われた部分でも、電流経路から外れているものは含めず、また相手側の電極の端部と対向する範囲からはみ出した部分も含めない。陰極8の沿面長L1と陽極10の沿面長L2との比L1/L2は1.5以上とし、パターンの作り易さの点から例えば20以下、好ましくは10以下とする。
【0013】
陰極8側の接触面積S1が広く、沿面長L1が長いことは、陰極8とSnO2膜6との接触面積が広く、かつ端部での電流密度が小さいことを意味し、陰極/SnO2膜の界面での非オーミックな特性の発生を防止する条件である。陽極10側の接触面積S2が狭く、沿面長L2が短いことは、陽極10とSnO2膜6との接触面積が狭く、陽極側の端部での電流密度が大きく、陽極10の付近での電圧降下が大きいことを意味する。そして接触面積の比S1/S2が大きく、沿面長の比L1/L2が大きいことは、陽極10とSnO2膜6との境界付近での電流密度が大きく、陰極8の付近での電流密度が小さく、従って陰極8の付近で分極が生じにくく、非オーミックな特性が生じにくいことを意味する。
【0014】
陰極8は、沿面長に沿った部分でエッジがないことが好ましく、例えばL字状の陰極8の内側にR部9を設けてエッジを解消する。陰極8の面積を大きくし、かつSnO2膜6と陰極8とのパターンがずれた場合でも影響を小さくするため、陰極8の形状をL字状とするとともに、SnO2膜6の外側に陰極の露出部8a,8bをL字の外側の2辺に設けることが好ましい。陽極10とSnO2膜6とのパターンがずれた場合でも特性への影響が小さいように、好ましくは陽極10のパターンもL字状とする。また陽極10のL字の外側の1辺を、陰極8のL字の内側の1辺に対向させる。
【0015】
図3に、陰極8と陽極10との間の電位分布を模式的に示す。後述のように、非オーミックな特性はSnO2膜と陰極8との界面部分で生じ、SnO2膜6の内部では電位は直線的に変化し、陽極10とSnO2膜6の界面は非オーミックに接触している可能性があるものの、その程度は小さいと考えられる。陰極8とSnO2膜6との界面に非オーミックな特性があり、この界面を通過する電流密度が高いと、非オーミック特性を示すものと考えられる。陰極8とSnO2膜の界面の非オーミック特性の原因として考えられるものは、SnO2膜6等に含まれる不純物陽イオンが陰極8の界面に集中することで、使用中の不純物での汚染、SnO2膜自体の不純物、触媒の添加や焼結用のバインダーの添加、表面コート用のフィルター等を介して侵入した不純物などが原因と考えられる。
【0016】
【試験例1】
実施例1のガスセンサ2と、第4図のガスセンサ32(比較例1)、及び第5図のガスセンサ42(比較例2)を製造した。アルミナ基板の裏面にヒータ膜16、電極パッド18,20等を形成し、基板の表面にAuペーストを印刷して焼成し、厚さ4μmのAuの陰極8,陽極10とした。次いでSnO2(SnO2には1wt%のPdを添加)を印刷して700℃で焼成し、厚さ40μmのSnO2膜6とした。この後、基板を分割して1辺1.5mmの正方形状とした。実施例1のセンサでは、接触面積S1は0.432mm2、接触面積S2は0.0825mm2、沿面長L1は1.07mm、沿面長L2は約0.6mm、陰極8と陽極10の間隔は0.3mmである。
【0017】
比較例1のガスセンサ32を図4に示すと、38が陰極で図1での露出部8a,8bがないため、陰極8とSnO2膜6との接触面積S1が狭い。比較例2のガスセンサ42を図5に示すと、陰極48にはエッジ45があり、陽極50とSnO2膜との接触面積S2は実施例1や比較例1のセンサ2,32よりも大きい。比較例2での陰極48の沿面長L1は、実施例1や比較例1のセンサ2,32よりも大きいが、陽極50の沿面長L2は実施例1や比較例1のセンサ2,32よりもさらに大きい。なお比較例1や比較例2のセンサ32,42も、電極パターンを除いて、製造条件は実施例1と同様である。
【0018】
表1に、実施例1、比較例1、比較例2等に関する、沿面長の比L1/L2、及び接触面積の比S1/S2等を示す。
【0019】
【表1】

Figure 0004226176
【0020】
実施例1のガスセンサ2と、比較例1,2のガスセンサ32,42に対して、陽イオンでの汚染時の特性を評価した。ガスセンサ2,32,42のSnO2膜6に、NaCl水溶液を滴下して、SnO2に対してNaを1mol%濃度で添加した。乾燥後に、回路電圧VCを5V、負荷抵抗RLを1kΩ、ヒータ膜14での消費電力PHを280mWとして3日間通電後、450℃で、メタン5000ppm中にて、陽極/陰極間の電圧を0vから7Vまで0.5V/minで増加させ、センサ電流を測定した。なお一般に、非オーミック性はセンサ電流を増すと発現し、空気中などでSnO2膜6が高抵抗の場合、検出電圧を大きくしても、非オーミック性は余り表れなかった。
【0021】
結果を図6〜図11に示す。図6,図7は比較例2(図5のパターン)での結果で、図8,図9は比較例1(図4のパターン)での結果で、図10、図11は実施例1でのガスセンサの結果である。図6〜図11において、Rsはセンサ抵抗で、Roはセンサ電圧Vsが1Vの時のセンサ抵抗を表し、Isはセンサ電流である。
【0022】
図6〜図11から明らかなように、非オーミック性は比較例2>比較例1>実施例1の順に減少し、これは接触面積比S1/S2が大きく、沿面長比L1/L2が大きいほど、非オーミックな特性が生じにくいことを示している。そして接触面積比S1/S2を大きく、沿面長比L1/L2を大きくすることは、陰極とSnO2膜との接触を改善することで、非オーミック性の原因が陰極とSnO2膜の界面にあることを示している。図6〜図11の特性は不純物の添加により得られた特性で、実施例1のセンサ2では、人為的に加えたNaイオンによる汚染への耐久性が高く、これと同様に、SnO2膜6の製造時や、電極8,10からの金属イオン、あるいは触媒やバインダーなどからの金属イオン等への耐久性も高い。
【0023】
【実施例2】
実施例2のガスセンサ62を図12に示す。陰極68を大きなコの字形にして、内側を半円状にし、小さく突き出した陽極70を取り巻くようにした。このとき沿面長の比L1/L2は2.35、接触面積の比S1/S2は6.35で、陰極68とSnO2膜6との接触を改善している。ただし図12のパターンでは、陽極70をL字状にしなかったため、SnO2膜6とのパターンずれで特性が変化する。
【0024】
実施例では特定の陰極や陽極のパターンを示したが、これらに限るものではない。この発明では、陰極とSnO2膜との接触面積S1と陽極とSnO2膜との接触面積S2との比を選び、陰極側と陽極側との沿面長の比を選ぶことにより、陰極側での非オーミックな特性の発生を抑制できる。このため、不純物に対する耐久性が高いガスセンサが得られる。また陰極と陽極の双方をL字状のパターンとして対向させることにより、SnO2膜と電極とのパターンがずれても、特性への影響を最小にすることができる。
【図面の簡単な説明】
【図1】 実施例1のガスセンサの表面と背面とを示す図
【図2】 実施例1での沿面長L1,L2,接触面積S1,S2を示す図
【図3】 実施例1のガスセンサの電位分布を模式的に示す図
【図4】 従来例1のガスセンサの電極パターンを示す平面図
【図5】 従来例2のガスセンサの電極パターンを示す平面図
【図6】 従来例2のガスセンサでの電圧/電流特性を示す特性図で、VSはセンサに加えた電圧を、Isはセンサ電流を示す
【図7】 従来例2のガスセンサでの電圧/抵抗特性を示す特性図
VSはセンサに加えた電圧を、Rsはセンサ電圧が1vでの抵抗値を基準とするとセンサ抵抗を示す
【図8】 従来例1のガスセンサでの電圧/電流特性を示す特性図
【図9】 従来例1のガスセンサでの電圧/抵抗特性を示す特性図
【図10】 実施例1のガスセンサでの電圧/電流特性を示す特性図
【図11】 実施例1のガスセンサでの電圧/抵抗特性を示す特性図
【図12】 実施例2のガスセンサでの電極パターンを示す平面図
【符号の説明】
2,62 ガスセンサ
4 基板
6 SnO2膜
8,68 陰極
8a,8b 露出部
9 R部
10,70 陽極
12 スルーホール
14 ヒータ膜
16 ヒータ電極
18,20 電極パッド
22 リード
38,48 陰極
50 陽極
45 エッジ
L1 陰極沿面長
L2 陽極沿面長
S1 陰極接触面積
S2 陽極接触面積[0001]
[Field of the Invention]
The present invention relates to gas detection using a change in the resistance value of a SnO 2 film.
[0002]
[Prior art]
The inventors have found that in a gas sensor using a SnO 2 film, the sensor characteristics change due to the intrusion of impurities such as Na ions, and non-ohmic voltage / current characteristics appear. The inventor examined the pattern of the anode and the cathode with respect to the SnO 2 film, and found a pattern in which non-ohmic characteristics are difficult to appear.
[0003]
[Problems of the Invention]
An object of the present invention is to provide a SnO2-based gas sensor that hardly causes non-ohmic characteristics even when it is contaminated by impurities or the like (claims 1 to 4).
[0004]
[Structure of the invention]
In the gas sensor in which the SnO2 film, the cathode and the anode are provided on the insulating substrate, the ratio S1 / S2 between the contact area S1 between the cathode and the SnO2 film and the contact area S2 between the anode and the SnO2 film is obtained. 3.5 or more, preferably 4 or more, more preferably 5 or more, and this ratio is, for example, 100 or less, preferably 30 or less. The ratio L1 / L2 between the creeping length L1 of the cathode end along the current path from the SnO2 film to the cathode and the creeping length L2 of the anode end along the current path from the anode to the SnO2 film is 1.5 or more. The ratio is, for example, 20 or less, preferably 10 or less.
[0005]
Preferably, the cathode and the anode are both formed in an L-shape, one side outside the L-shape of the anode is opposed to one side inside the L-shape of the cathode, and two sides outside the L-shape of the cathode Is exposed from the SnO 2 film. Particularly preferably, an R portion is provided at the apex inside the L-shape of the cathode so that the current density in the vicinity of the apex is made uniform.
[0006]
The present invention also provides a gas detection method in which an SnO2 film, a cathode, and an anode are provided on an insulating substrate, and gas is detected from a current flowing from the anode to the cathode.
The ratio S1 / S2 between the contact area S1 between the cathode and the SnO2 film and the contact area S2 between the anode and the SnO2 film is 3.5 or more, and the creeping length L1 of the cathode end along the current path from the SnO2 film to the cathode And the ratio L1 / L2 of the creeping length L2 at the end of the anode along the current path from the anode to the SnO2 film is 1.5 or more, so that the current density is increased on the anode side and lowered on the cathode side. The generation of the non-ohmic characteristic of the current with respect to the voltage between the anode and the cathode is suppressed.
[0007]
[Operation and effect of the invention]
In the present invention, the contact area ratio S1 / S2 is set to 3.5 or more so that the contact area from the SnO 2 film to the cathode is sufficiently larger than the contact area from the anode to the SnO 2 film. Further, by setting the creepage length ratio L1 / L2 to 1.5 or more, the current density from the SnO 2 film to the cathode is made smaller than the current density from the anode to the SnO 2 film. As a result, the current density is high on the anode side and low on the cathode side, and generation of non-ohmic characteristics can be suppressed.
[0008]
For this reason, even when the gas sensor is contaminated with impurities, the appearance of non-ohmic characteristics can be delayed, and the voltage applied to the gas sensor can be increased to facilitate handling.
[0009]
Here, when both the cathode / anode are L-shaped, the outer side of the anode L-shape is opposed to the inner side of the cathode, and the two outer sides of the cathode L-shape are exposed from the SnO 2 film. Even when the contact area S1 is increased and the pattern of the cathode or anode and the SnO 2 film is shifted, the influence on the characteristics can be minimized.
[0010]
【Example】
1 and 2 show the structure of the gas sensor 2 of the first embodiment. The upper part of FIG. 1 shows the electrode pattern on the front surface of the gas sensor 2, and the lower part of FIG. 4 is a substrate of alumina or the like, 6 is a SnO2 film, alumina or the like may be mixed, and a noble metal catalyst such as Pd is added to SnO2. The SnO2 film 6 has a thickness of 40 [mu] m here, but may be a thin film, for example, about 0.1 [mu] m to 500 [mu] m.
[0011]
8 is a cathode, 10 is an anode, and is formed on the surface of the substrate 4 by, for example, Au paste printing. The film thickness is 4 μm for both the cathode 8 and the anode 10, but a thin film may be used. The material of the cathode 8 and the anode 10 is not limited to Au, and a noble metal such as Pt, Rh, Ir, Pd or a noble metal alloy is preferable. A through hole 12 connects the cathode 8 and the anode 10 on the front surface of the substrate 4 to the electrode pads 20 and 20 on the back surface. A heater film 14 such as RuO 2 is provided on the back surface of the gas sensor 2 and connected to the electrode pad 18 through the heater electrode 16, and the lead 20 is connected to the electrode pads 18 and 20. The SnO 2 film 6 is heated by the heater film 14 and a voltage is applied from the anode 10 to the cathode 8 to detect combustible gas, CO, and the like. In addition, the heating temperature and heating pattern of the gas sensor 2 are arbitrary.
[0012]
FIG. 2 shows the contact areas S1 and S2 (indicated by hatching) and the creepage lengths L1 and L2 (indicated by bold lines) between the SnO2 film 6 and the cathode or anode, and the contact area S1 is the contact between the cathode 8 and the SnO2 film 6. In terms of area, the contact area S2 is the contact area between the anode 10 and the SnO2 film 6, and the ratio S1 / S2 is set to 3.5 or more, preferably 4 or more, and most preferably 5 or more. The ratio S1 / S2 is, for example, 100 or less, preferably 30 or less, from the viewpoint of ease of pattern formation. The creeping lengths L1 and L2 mean lengths at which the ends of the cathode 8 and the anode 10 cross the current path between the cathode 8 and the anode 10, and are portions covered with the SnO2 film 6 at the ends of the cathode 8 and the anode 10. However, it does not include those that deviate from the current path, nor does it include a portion that protrudes from the range facing the end of the counterpart electrode. The ratio L1 / L2 between the creeping length L1 of the cathode 8 and the creeping length L2 of the anode 10 is 1.5 or more, and is, for example, 20 or less, preferably 10 or less from the viewpoint of ease of pattern formation.
[0013]
The large contact area S1 on the cathode 8 side and the long creepage length L1 mean that the contact area between the cathode 8 and the SnO 2 film 6 is large and the current density at the end is small, and the cathode / SnO 2 film This is a condition for preventing the occurrence of non-ohmic characteristics at the interface. When the contact area S2 on the anode 10 side is narrow and the creeping length L2 is short, the contact area between the anode 10 and the SnO2 film 6 is narrow, the current density at the end on the anode side is large, and the voltage near the anode 10 is large. It means that the descent is large. The large contact area ratio S1 / S2 and the large creepage length ratio L1 / L2 mean that the current density near the boundary between the anode 10 and the SnO2 film 6 is large and the current density near the cathode 8 is small. Therefore, it means that polarization is hardly generated in the vicinity of the cathode 8 and non-ohmic characteristics are hardly generated.
[0014]
The cathode 8 preferably has no edge at the portion along the creepage length. For example, the R portion 9 is provided inside the L-shaped cathode 8 to eliminate the edge. In order to reduce the influence even when the area of the cathode 8 is increased and the pattern of the SnO 2 film 6 and the cathode 8 is shifted, the shape of the cathode 8 is made L-shaped and the cathode is exposed outside the SnO 2 film 6. It is preferable to provide the portions 8a and 8b on the two outer sides of the L-shape. Preferably, the pattern of the anode 10 is also L-shaped so that the influence on the characteristics is small even when the pattern of the anode 10 and the SnO 2 film 6 is shifted. In addition, the outer side of the L-shape of the anode 10 is opposed to the inner side of the L-shape of the cathode 8.
[0015]
FIG. 3 schematically shows the potential distribution between the cathode 8 and the anode 10. As will be described later, non-ohmic characteristics occur at the interface between the SnO 2 film and the cathode 8, the potential changes linearly inside the SnO 2 film 6, and the interface between the anode 10 and the SnO 2 film 6 contacts non-ohmically. Although there is a possibility, it is thought that the degree is small. It is considered that the interface between the cathode 8 and the SnO 2 film 6 has non-ohmic characteristics, and when the current density passing through this interface is high, non-ohmic characteristics are exhibited. Possible causes of the non-ohmic characteristics at the interface between the cathode 8 and the SnO 2 film are that impurities cations contained in the SnO 2 film 6 and the like are concentrated on the interface of the cathode 8 to cause contamination with impurities in use, the SnO 2 film It may be caused by impurities of itself, impurities such as addition of a catalyst or binder for sintering, or impurities entering through a filter for surface coating.
[0016]
[Test Example 1]
The gas sensor 2 of Example 1, the gas sensor 32 of FIG. 4 (Comparative Example 1), and the gas sensor 42 of FIG. 5 (Comparative Example 2) were manufactured. The heater film 16, electrode pads 18, 20 and the like were formed on the back surface of the alumina substrate, and Au paste was printed on the surface of the substrate and baked to form Au cathodes 8 and anodes 10 having a thickness of 4 μm. Next, SnO 2 (1 wt% Pd added to SnO 2) was printed and baked at 700 ° C. to form a SnO 2 film 6 having a thickness of 40 μm. Thereafter, the substrate was divided into a square shape with a side of 1.5 mm. In the sensor of Example 1, the contact area S1 is 0.432 mm2, the contact area S2 is 0.0825 mm2, the creepage length L1 is 1.07 mm, the creepage length L2 is about 0.6 mm, and the distance between the cathode 8 and the anode 10 is 0.5. 3 mm.
[0017]
When the gas sensor 32 of Comparative Example 1 is shown in FIG. 4, since 38 is a cathode and there is no exposed portion 8a, 8b in FIG. 1, the contact area S1 between the cathode 8 and the SnO 2 film 6 is narrow. When the gas sensor 42 of Comparative Example 2 is shown in FIG. 5, the cathode 48 has an edge 45, and the contact area S <b> 2 between the anode 50 and the SnO 2 film is larger than the sensors 2 and 32 of Example 1 and Comparative Example 1. The creeping length L1 of the cathode 48 in Comparative Example 2 is larger than the sensors 2 and 32 of Example 1 and Comparative Example 1, but the creeping length L2 of the anode 50 is larger than the sensors 2 and 32 of Example 1 and Comparative Example 1. Is even bigger. The manufacturing conditions of the sensors 32 and 42 of Comparative Example 1 and Comparative Example 2 are the same as those of Example 1 except for the electrode pattern.
[0018]
Table 1 shows the creepage length ratio L1 / L2 and the contact area ratio S1 / S2 for Example 1, Comparative Example 1, Comparative Example 2, and the like.
[0019]
[Table 1]
Figure 0004226176
[0020]
The characteristics at the time of contamination with positive ions were evaluated for the gas sensor 2 of Example 1 and the gas sensors 32 and 42 of Comparative Examples 1 and 2. A NaCl aqueous solution was dropped on the SnO2 film 6 of the gas sensors 2, 32, and 42, and Na was added at a concentration of 1 mol% with respect to SnO2. After drying, the circuit voltage VC is 5 V, the load resistance RL is 1 kΩ, the power consumption PH in the heater film 14 is 280 mW, the current is applied for 3 days, and the voltage between the anode and the cathode is changed from 0 v in 5000 ppm of methane at 450 ° C. The sensor current was measured by increasing the voltage to 7 V at 0.5 V / min. In general, the non-ohmic property appears when the sensor current is increased. When the SnO 2 film 6 has a high resistance in air or the like, the non-ohmic property does not appear much even if the detection voltage is increased.
[0021]
The results are shown in FIGS. 6 and 7 show the results of Comparative Example 2 (pattern of FIG. 5), FIGS. 8 and 9 show the results of Comparative Example 1 (pattern of FIG. 4), and FIGS. 10 and 11 show the results of Example 1. It is a result of the gas sensor. 6 to 11, Rs is a sensor resistance, Ro is a sensor resistance when the sensor voltage Vs is 1 V, and Is is a sensor current.
[0022]
As apparent from FIGS. 6 to 11, the non-ohmic property decreases in the order of Comparative Example 2> Comparative Example 1> Example 1, which has a large contact area ratio S1 / S2 and a large creepage length ratio L1 / L2. It shows that non-ohmic characteristics are less likely to occur. Increasing the contact area ratio S1 / S2 and increasing the creepage length ratio L1 / L2 improves the contact between the cathode and the SnO2 film, and causes non-ohmicity at the interface between the cathode and the SnO2 film. Is shown. The characteristics shown in FIGS. 6 to 11 are obtained by the addition of impurities, and the sensor 2 of Example 1 has high durability against contamination caused by artificially added Na ions. Similarly, the SnO 2 film 6 has the characteristics shown in FIGS. In addition, durability against metal ions from the electrodes 8, 10 or metal ions from a catalyst or a binder is also high.
[0023]
[Example 2]
The gas sensor 62 of Example 2 is shown in FIG. The cathode 68 was made into a large U shape, the inside was semicircular, and the anode 70 that protruded small was surrounded. At this time, the creepage length ratio L1 / L2 is 2.35, and the contact area ratio S1 / S2 is 6.35, which improves the contact between the cathode 68 and the SnO 2 film 6. However, in the pattern of FIG. 12, since the anode 70 is not L-shaped, the characteristics change due to the pattern deviation from the SnO 2 film 6.
[0024]
Although the specific cathode and anode patterns are shown in the embodiments, the present invention is not limited to these. In the present invention, the ratio of the contact area S1 between the cathode and the SnO 2 film and the contact area S2 between the anode and the SnO 2 film is selected, and the ratio of the creeping length between the cathode side and the anode side is selected, so that Generation of ohmic characteristics can be suppressed. For this reason, a gas sensor having high durability against impurities can be obtained. Further, by making both the cathode and the anode face each other as an L-shaped pattern, even if the SnO 2 film and the electrode are misaligned, the influence on the characteristics can be minimized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a front surface and a back surface of a gas sensor according to a first embodiment. FIG. 2 is a diagram showing creepage lengths L1 and L2 and contact areas S1 and S2 in the first embodiment. FIG. 4 is a plan view showing an electrode pattern of a gas sensor of Conventional Example 1. FIG. 5 is a plan view showing an electrode pattern of a gas sensor of Conventional Example 2. FIG. FIG. 7 is a characteristic diagram showing the voltage / current characteristics of the gas sensor, VS is the voltage applied to the sensor, Is is the sensor current. FIG. 8 is a characteristic diagram showing voltage / current characteristics of the gas sensor of Conventional Example 1. FIG. 9 is a gas sensor of Conventional Example 1. Characteristic diagram showing the voltage / resistance characteristics in FIG. 10 [Example] FIG. 11 is a characteristic diagram showing voltage / current characteristics of the gas sensor of Example 1. FIG. 12 is a plan view showing electrode patterns of the gas sensor of Example 2. Explanation of]
2,62 Gas sensor 4 Substrate 6 SnO2 film 8, 68 Cathode 8a, 8b Exposed part 9 R part 10, 70 Anode 12 Through hole 14 Heater film 16 Heater electrode 18, 20 Electrode pad 22 Lead 38, 48 Cathode 50 Anode 45 Edge L1 Cathode creepage length L2 Anode creepage length S1 Cathode contact area S2 Anode contact area

Claims (4)

絶縁基板上にSnO2膜と陰極と陽極とを設けたガスセンサにおいて、陰極とSnO2膜との接触面積S1と陽極とSnO2膜との接触面積S2との比S1/S2を3.5以上とし、SnO2膜から陰極への電流経路に沿った陰極端部の沿面長L1と、陽極からSnO2膜への電流経路に沿った陽極端部の沿面長L2との比L1/L2を1.5以上としたことを特徴とするガスセンサ。In the gas sensor in which the SnO2 film, the cathode and the anode are provided on the insulating substrate, the ratio S1 / S2 between the contact area S1 between the cathode and the SnO2 film and the contact area S2 between the anode and the SnO2 film is set to 3.5 or more, and SnO2 The ratio L1 / L2 between the creeping length L1 of the cathode end along the current path from the film to the cathode and the creeping length L2 of the anode end along the current path from the anode to the SnO2 film is 1.5 or more. A gas sensor characterized by that. 前記接触面積の比S1/S2を4以上としたことを特徴とする、請求項1のガスセンサ。The gas sensor according to claim 1, wherein the ratio S1 / S2 of the contact area is 4 or more. 前記陰極と前記陽極とを共にL字状に構成して、陽極のL字の外側の一辺と陰極のL字の内側の一辺とを対向させ、かつ前記陰極のL字の外側の2辺をSnO2膜から露出させたことを特徴とする、請求項1のガスセンサ。The cathode and the anode are both formed in an L shape, one side outside the L shape of the anode is opposed to one side inside the L shape of the cathode, and two sides outside the L shape of the cathode are 2. The gas sensor according to claim 1, wherein the gas sensor is exposed from the SnO2 film. 絶縁基板上にSnO2膜と陰極と陽極とを設け、陽極から陰極へ流れる電流からガスを検出するガス検出方法において、
陰極とSnO2膜との接触面積S1と陽極とSnO2膜との接触面積S2との比S1/S2を3.5以上とし、SnO2膜から陰極への電流経路に沿った陰極端部の沿面長L1と、陽極からSnO2膜への電流経路に沿った陽極端部の沿面長L2との比L1/L2を1.5以上とすることにより、電流密度を陽極側で高く陰極側で低くすることにより、陽極/陰極間の電圧に対する前記電流の非オーミック特性の発生を抑制することを特徴とする、ガス検出方法。
In a gas detection method in which an SnO 2 film, a cathode and an anode are provided on an insulating substrate, and gas is detected from a current flowing from the anode to the cathode,
The ratio S1 / S2 between the contact area S1 between the cathode and the SnO2 film and the contact area S2 between the anode and the SnO2 film is 3.5 or more, and the creeping length L1 of the cathode end along the current path from the SnO2 film to the cathode And the ratio L1 / L2 of the creeping length L2 at the end of the anode along the current path from the anode to the SnO2 film is 1.5 or more, so that the current density is increased on the anode side and lowered on the cathode side. A gas detection method characterized by suppressing generation of a non-ohmic characteristic of the current with respect to a voltage between an anode and a cathode.
JP35686999A 1999-12-16 1999-12-16 Gas sensor and gas detection method Expired - Fee Related JP4226176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35686999A JP4226176B2 (en) 1999-12-16 1999-12-16 Gas sensor and gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35686999A JP4226176B2 (en) 1999-12-16 1999-12-16 Gas sensor and gas detection method

Publications (2)

Publication Number Publication Date
JP2001174427A JP2001174427A (en) 2001-06-29
JP4226176B2 true JP4226176B2 (en) 2009-02-18

Family

ID=18451174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35686999A Expired - Fee Related JP4226176B2 (en) 1999-12-16 1999-12-16 Gas sensor and gas detection method

Country Status (1)

Country Link
JP (1) JP4226176B2 (en)

Also Published As

Publication number Publication date
JP2001174427A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
KR20020060694A (en) Gas sensor and fabrication method thereof
EP0371774B1 (en) A humidity measurement device by use of an electrochemical cell
JP6425309B2 (en) CO sensor and method of manufacturing CO sensor
US9404885B2 (en) Amperometric gas sensor
JP5590695B2 (en) Manufacturing method of sliding liquid level sensor
JP4226176B2 (en) Gas sensor and gas detection method
JP3831320B2 (en) Limit current type oxygen sensor
JP2545050B2 (en) Oxygen sensor element
US20040050692A1 (en) Cermet electrodes containing platinum for the electrochemical reduction of oxygen
Baciu et al. Electrochemical impedance spectroscopy in nitrate solutions containing monosodium glutamate using screen-printed electrodes
JPH0423212B2 (en)
JP2582135B2 (en) Method of manufacturing thick film type gas sensing element
JP2003172720A (en) Gas sensor and manufacturing method therefor
KR100325344B1 (en) Detecting material of semiconductor gas sensor
WO2023149575A1 (en) Conductivity sensor and conductivity measurement method
JPH07294483A (en) Electrochemical element and manufacture thereof
JPH11304744A (en) Gas sensor
JP3516033B2 (en) Carbon dioxide sensor material
JPH11162705A (en) Low-resistance chip resistor
JP3074901B2 (en) Humidity sensor
JPH0547445Y2 (en)
JP4310852B2 (en) Electronic components
JPH0754312B2 (en) Gas detector
JPH0552795A (en) Humidity sensitive element
JPS6124649B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees