JP4225888B2 - Analysis chip and preparation method thereof. - Google Patents

Analysis chip and preparation method thereof. Download PDF

Info

Publication number
JP4225888B2
JP4225888B2 JP2003421522A JP2003421522A JP4225888B2 JP 4225888 B2 JP4225888 B2 JP 4225888B2 JP 2003421522 A JP2003421522 A JP 2003421522A JP 2003421522 A JP2003421522 A JP 2003421522A JP 4225888 B2 JP4225888 B2 JP 4225888B2
Authority
JP
Japan
Prior art keywords
substrate
chip
thin film
film member
chip substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003421522A
Other languages
Japanese (ja)
Other versions
JP2005181079A (en
Inventor
康夫 井福
靖代 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003421522A priority Critical patent/JP4225888B2/en
Publication of JP2005181079A publication Critical patent/JP2005181079A/en
Application granted granted Critical
Publication of JP4225888B2 publication Critical patent/JP4225888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、微量の試料を用いて所定の反応を行なわせ、その反応を定性的ないしは定量的に検出するための分析用チップおよびその調製方法に関する。   The present invention relates to an analysis chip for causing a predetermined reaction to be performed using a small amount of sample and detecting the reaction qualitatively or quantitatively, and a method for preparing the same.

微量の生体試料を分析用チップ上で分析することが広く行われるようになってきている。このような分析用チップとして、例えば、ハイブリダイゼーション法を利用してDNA(デオキシリボヌクレオチド)の塩基配列を解析するのに用いられるDNAチップ、抗原−抗体反応や酵素反応を利用した診断チップなどがある。
従来、このような析用チップは、チップ基板の上に、多数の試料すなわち検体や検出用試薬などの機能性分子をスポット状に固定することにより作製されているが、分析作業の効率化のために、単位面積当たりのスポットの数を増加させることが求められている。
Analyzing a very small amount of biological sample on an analysis chip has been widely performed. Examples of such an analysis chip include a DNA chip used for analyzing the base sequence of DNA (deoxyribonucleotide) using a hybridization method, a diagnostic chip using an antigen-antibody reaction or an enzyme reaction, and the like. .
Conventionally, such an analysis chip is produced by fixing a large number of samples, that is, functional molecules such as specimens and detection reagents in a spot shape on a chip substrate. Therefore, it is required to increase the number of spots per unit area.

このため、特許文献1では、チップ基板の表面に感光性樹脂で枠体を形成し、枠中に機能性分子を供給して固定化する方法が提案されている。しかしながら、感光性樹脂では、枠体の高さが1〜20μmと低いので1スポット当たりの機能性分子の量が少ないため分析感度が悪く、また、枠体を形成するのに、パターニング、エッチング、洗浄などの複数の工程が必要であり、手間がかかるという問題がある。
そこで、特許文献2では、チップ基板に多数の微細な貫通孔を有する薄膜部材を積層して、チップ基板の表面に高さ3〜500μmの枠体を形成する方法が提案されている。
特開平11−187900号公報 特開2002−27984号公報
For this reason, Patent Document 1 proposes a method in which a frame body is formed of a photosensitive resin on the surface of a chip substrate, and functional molecules are supplied into the frame for immobilization. However, in the photosensitive resin, since the height of the frame is as low as 1 to 20 μm, the amount of functional molecules per spot is small, so the analysis sensitivity is poor. In addition, patterning, etching, There is a problem that a plurality of steps such as cleaning are necessary and time-consuming.
Therefore, Patent Document 2 proposes a method of forming a frame having a height of 3 to 500 μm on the surface of the chip substrate by laminating a thin film member having a large number of fine through holes on the chip substrate.
JP 11-187900 A JP 2002-27984 A

この方法は、枠体の形成が簡単であり、かつ枠体の高さも任意に設定できるので、優れた方法である。
しかしながら、背の高い枠体で囲まれていると、枠体の底部までは不活性処理液や洗浄液が届き難いため、機能性分子を固定化した後の不活性化処理や洗浄が十分に行えず、非特異的な反応が起きて分析精度が低下するという問題がある。また、この分析用チップを用いて分析するに際し、固定化された機能性分子の底部にまで検体や試料に到達し難いので、底部では反応が十分に行われず、1スポットあたりの機能性分子の量が多くなったにもかかわらず、分析感度はそれほど高まらないという問題もある。
本発明は、機能性分子の固定化に際しては枠体のもたらす利点を享受し、しかも分析に際しては枠体のもたらす弊害を回避する方法を提供しようとするものである。
This method is an excellent method because the formation of the frame is simple and the height of the frame can be arbitrarily set.
However, if it is surrounded by a tall frame, it is difficult to reach the bottom of the frame with the inert treatment solution or cleaning solution, so the deactivation treatment and cleaning after immobilizing functional molecules can be performed sufficiently. However, there is a problem that non-specific reaction occurs and analysis accuracy is lowered. In addition, when analyzing using this analysis chip, it is difficult to reach the specimen or sample to the bottom of the immobilized functional molecule, so that the reaction does not occur sufficiently at the bottom, and the functional molecules per spot There is also a problem that the analytical sensitivity does not increase so much despite the increase in volume.
The present invention seeks to provide a method of enjoying the advantages of a frame when immobilizing functional molecules, and avoiding the adverse effects of the frame when analyzing.

本発明者らは、機能性分子を基板上に固定する際には枠体を用い、分析を行う際には枠体を外すことにより、上記課題を解決できることを見出し本発明に到達した。
すなわち、本発明の要旨は、チップ基板と、この上に剥離可能に積層されていて且つ貫通孔を有する薄膜部材であって、圧着により基板に容易に積層、密着でき、かつ基板から容易に除去できる樹脂からなる部材とを有しており、該貫通孔とチップ基板表面とが協働して蛋白質、ペプチド、低分子化合物、核酸、糖、糖鎖、あるいは脂質である試料を収容するための凹部を形成している積層体の該凹部に、試料を含有する溶液を供給して試料をチップ基板表面に固定化したのち、該薄膜部材を除去することを特徴とする分析用チップの調製方法に存する。
The present inventors have found that the above problem can be solved by using a frame when fixing functional molecules on a substrate and removing the frame when performing analysis, and have reached the present invention.
That is, the gist of the present invention is a thin film member having a through hole and a chip substrate that is detachably stacked on the chip substrate , and can be easily stacked and adhered to the substrate by pressure bonding and easily removed from the substrate. A member made of a resin , and the through-hole and the chip substrate surface cooperate to accommodate a sample that is a protein, peptide, low molecular weight compound, nucleic acid, sugar, sugar chain, or lipid . A method for preparing an analytical chip, comprising: supplying a solution containing a sample to the concave portion of the laminate forming the concave portion to fix the sample on the surface of the chip substrate; and removing the thin film member Exist.

本発明によれば、特開2002−27984号公報に記載の方法と同じく、貫通孔を有する薄膜部材を基板に積層するだけの簡素な手段により、貫通孔とチップ基板を協働させて試料を収容する凹部を高密度で形成できるので、分析効率を向上させられるという利点がある。また、薄膜部材は剥離可能であるため、機能性分子を固定化した後は、薄膜部材を剥離することなどで除去することにより、洗浄をより正確に行うことができる。更に分析に際しては固定化された機能性分子の底部まで試薬が到達するので、分析感度も向上するという利点がある。   According to the present invention, similar to the method described in Japanese Patent Application Laid-Open No. 2002-27984, the sample is prepared by cooperating the through hole and the chip substrate by a simple means of simply laminating the thin film member having the through hole on the substrate. Since the concave portions to be accommodated can be formed at a high density, there is an advantage that analysis efficiency can be improved. In addition, since the thin film member can be peeled off, after the functional molecules are immobilized, the thin film member can be removed by peeling or the like, whereby cleaning can be performed more accurately. Further, in the analysis, since the reagent reaches the bottom of the immobilized functional molecule, there is an advantage that the analysis sensitivity is improved.

チップ基板としては、材質、形状とも従来のものと同様のものを用いることができる。例えば基板の素材としては、ポリオレフィン、ポリスチレン、ポリカーボネート、ポリアミド、アクリル酸系樹脂等の樹脂材料、ガラス、アルミナ、炭素、金属等の無機材料などが挙げられる。限られた空間に高密度で三次元に機能性分子を固定できるので、平均孔径が100nm〜100μm、空孔率が30〜80%程度の多孔質のチップ基板が好ましい。
チップ基板の形状は、特に限定されないが、平板状が好ましく、その厚さは、通常0.5〜5mm程度である。
As the chip substrate, the same material and shape as the conventional one can be used. For example, examples of the material for the substrate include resin materials such as polyolefin, polystyrene, polycarbonate, polyamide, and acrylic resin, and inorganic materials such as glass, alumina, carbon, and metal. A porous chip substrate having an average pore diameter of 100 nm to 100 μm and a porosity of about 30 to 80% is preferable because functional molecules can be fixed in a limited space at a high density and three-dimensionally.
The shape of the chip substrate is not particularly limited, but a flat plate shape is preferable, and the thickness is usually about 0.5 to 5 mm.

チップ基板は、本発明にかかる分析用チップを表面プラズモン共鳴法に用いる場合には、基板の表面部にエバネッセント波を生じさせるための回折格子が形成されているのが好ましい。かつ、表面プラズモン波を誘起するために回折格子の表面は金属で被覆されているのが好ましい。
回折格子としては、深さ10〜100nm程度の複数の溝が、溝と溝の間隔200〜2000nm程度で並列して刻まれたものが挙げられる。
金属としては、表面プラズモン波を誘起しうるものであればよく、金、銀、銅、アルミニウムおよびこれらを含む合金などが挙げられる。なかでも、感度や安価な点では銀が好ましく、安定性の面では金が好ましい。金属層は、蒸着、スパッタリング、メッキ、その他のコーティングなどによって形成され、その厚さは通常20〜300nm、好ましくは30〜160nm程度である。
When the analysis chip according to the present invention is used for the surface plasmon resonance method, the chip substrate is preferably provided with a diffraction grating for generating an evanescent wave on the surface portion of the substrate. In order to induce surface plasmon waves, the surface of the diffraction grating is preferably coated with metal.
Examples of the diffraction grating include a plurality of grooves each having a depth of about 10 to 100 nm that are engraved in parallel with a distance between the grooves of about 200 to 2000 nm.
The metal is not particularly limited as long as it can induce surface plasmon waves, and examples thereof include gold, silver, copper, aluminum, and alloys containing these. Of these, silver is preferable in terms of sensitivity and inexpensiveness, and gold is preferable in terms of stability. A metal layer is formed by vapor deposition, sputtering, plating, other coatings, etc., and the thickness is 20-300 nm normally, Preferably it is about 30-160 nm.

チップ基板の表面は、基板に固定化する機能性分子と結合し得る官能基を有する有機高分子物質で被覆されていることが好ましい。このような官能基としては、カルボキシル基、アミノ基、ヒドロキシル基、アルデヒド基、カルボニル基、エポキシ基、ビニル基、チオール基、マレイミド基、スクシニル基、リン酸基、イミダゾール基などが挙げられる。これらの官能基を有する有機高分子物質のなかでも、ポリアクリル酸、ポリエチレングリコール、ポリビニルアルコール、ポリアクリルアミド、デキストラン、カルボキシメチルデキストラン、アガロース、カラギーナン、アルギン酸、澱粉、セルロースなどの水溶性有機高分子物質は、水への溶解度が高く、機能性分子の固定密度を向上させることができるので好ましく用いられる。なかでも三次元構造を有する被覆層を与えるポリアクリル酸やカルボキシメチルデキストランなどが好ましい。   The surface of the chip substrate is preferably coated with an organic polymer substance having a functional group capable of binding to a functional molecule immobilized on the substrate. Examples of such a functional group include a carboxyl group, amino group, hydroxyl group, aldehyde group, carbonyl group, epoxy group, vinyl group, thiol group, maleimide group, succinyl group, phosphate group, and imidazole group. Among these organic polymer materials having these functional groups, water-soluble organic polymer materials such as polyacrylic acid, polyethylene glycol, polyvinyl alcohol, polyacrylamide, dextran, carboxymethyl dextran, agarose, carrageenan, alginic acid, starch, and cellulose. Is preferably used because it has high solubility in water and can improve the fixing density of functional molecules. Of these, polyacrylic acid, carboxymethyldextran, and the like that provide a coating layer having a three-dimensional structure are preferable.

このような官能基を有する有機高分子物質の被覆層は、直接有機高分子物質を被覆することにより形成することができる。または例えば、カルボキシル基を有する(メタ)アクリル酸およびその塩、ヒドロキシル基を有する2−ヒドロキシエチル(メタ)アクリレート、アルデヒド基を有するアクロレイン、エポキシ基を有するグリジシル(メタ)アクリレート、スクシニル基を有するN−ヒドロキシスクシイミド(メタ)アクリレート、リン酸基を有するホスマー、イミダゾール基を有するビニルイミダゾールなどのモノマーを含む溶液をチップ基板上に塗布した後、活性エネルギー線を照射するか、または加熱等して重合させることにより形成することができる。   The organic polymer substance coating layer having such a functional group can be formed by directly coating the organic polymer substance. Or, for example, (meth) acrylic acid having a carboxyl group and a salt thereof, 2-hydroxyethyl (meth) acrylate having a hydroxyl group, acrolein having an aldehyde group, glycidyl (meth) acrylate having an epoxy group, N having a succinyl group -After applying a solution containing a monomer such as hydroxy succinimide (meth) acrylate, phosmer having a phosphate group, vinyl imidazole having an imidazole group on the chip substrate, it is irradiated with active energy rays or heated. Can be formed by polymerization.

有機高分子物質が有する官能基がカルボキシル基の場合、基板上にカルボキシル基と共有結合する官能基を予め導入しておき、縮合剤の存在下、酸性条件でカルボキシル基を有するモノマーを共有結合させる方法で有機高分子物質の被覆層を作成するのが好ましい。   When the functional group possessed by the organic polymer substance is a carboxyl group, a functional group covalently bonded to the carboxyl group is introduced in advance on the substrate, and the monomer having the carboxyl group is covalently bonded under acidic conditions in the presence of a condensing agent. It is preferable to form a coating layer of an organic polymer substance by the method.

基板上に予め導入しておく官能基としては、アミノ基、水酸基、チオール基などが挙げられ、官能基の導入が容易で有機化合物の固定化反応の制御が容易であることからアミノ基が好ましい。官能基の導入方法としては、金属表面にアミノ基を導入する場合は、システアミン塩酸塩などのアミノ基を有するチオール化合物を金属表面に作用させることにより、ガラス表面にアミノ基を導入する場合は、アミノプロピルトリエトキシシランなどのアミノ基を有するシランカップリング剤をガラス表面に作用させることにより簡単に導入することができる。   Examples of the functional group to be introduced in advance onto the substrate include an amino group, a hydroxyl group, and a thiol group, and an amino group is preferable because the introduction of the functional group is easy and the control of the immobilization reaction of the organic compound is easy. . As a method for introducing a functional group, when an amino group is introduced on a metal surface, a thiol compound having an amino group such as cysteamine hydrochloride is allowed to act on the metal surface to introduce an amino group on the glass surface. A silane coupling agent having an amino group such as aminopropyltriethoxysilane can be easily introduced by acting on the glass surface.

縮合剤としては、カルボジイミドなどが挙げられる。カルボキシル基はアルカリ性溶液中では脱プロトン化、酸性溶液ではプロトン化している。このため、カルボキシル基を有する有機高分子物質は、アルカリ性溶液中では鎖が広がっており、酸性溶液中では比較的コンパクトな構造をとる傾向にあると考えられる。カルボキシル基を有する高分子鎖をコンパクトな構造で基板表面に固定化することにより、カルボキシル基を高密度で有する表面を得ることができる。このため、反応は、酸性条件、pH5以下、特にpH4以下で行うのが好ましく、特に好ましいのはpH3以下である。   Examples of the condensing agent include carbodiimide. The carboxyl group is deprotonated in an alkaline solution and protonated in an acidic solution. For this reason, it is considered that the organic polymer substance having a carboxyl group has a chain extending in the alkaline solution and tends to have a relatively compact structure in the acidic solution. By immobilizing the polymer chain having carboxyl groups on the substrate surface with a compact structure, a surface having high density of carboxyl groups can be obtained. For this reason, the reaction is preferably carried out under acidic conditions, pH 5 or less, particularly pH 4 or less, particularly preferably pH 3 or less.

被覆層を形成している有機高分子物質と機能性分子との結合に際しては、有機高分子物質の官能基を公知の方法により活性化させるのが好ましい。カルボキシル基を有する有機高分子物質の場合は、有機高分子物質の被覆膜の表面をカルボジイミドおよびその塩などの活性化剤を含有する水溶液に接触させることにより活性化することができる。   When the organic polymer substance forming the coating layer is bonded to the functional molecule, the functional group of the organic polymer substance is preferably activated by a known method. In the case of an organic polymer substance having a carboxyl group, it can be activated by bringing the surface of the coating film of the organic polymer substance into contact with an aqueous solution containing an activating agent such as carbodiimide and a salt thereof.

薄膜部材としては、圧着により基板に容易に積層、特に密着でき、かつ基板から容易に除去できるものが好ましい。例えば表面に接着力の弱い接着剤層を有する薄膜層を用いれば、圧着により基板に接着させ、かつ剥離により基板から除去することができる。好ましくは自己吸着力のある樹脂、具体的には、(1)反応液、試料液等を用いる際に、気体、液体などが漏れないように吸着対象物(基板)に密着することができ、かつ(2)剥離する際に、薄膜部材あるいは吸着対象物(基板)を破損させることなく簡単に剥離することができる樹脂、例えばシリコンゴムなどで作成した薄膜部材を用いる。この薄膜部材は接着剤を用いずとも圧着するだけで基板に積層することができ、かつ簡単に基板から剥離することができる。なお、基板からの薄膜部材の除去は剥離によるのが最も簡単であるが、基板上に固定されている機能性分子が損なわれない場合には有機溶媒で除去することもできる。   The thin film member is preferably a thin film member that can be easily laminated, particularly in close contact with the substrate, and can be easily removed from the substrate. For example, if a thin film layer having an adhesive layer having a weak adhesive force is used on the surface, it can be adhered to the substrate by pressure bonding and removed from the substrate by peeling. Preferably, a resin having a self-adsorption force, specifically, (1) when using a reaction solution, a sample solution, etc., it can be in close contact with an object to be adsorbed (substrate) so that gas, liquid, etc. do not leak, (2) When peeling, a thin film member made of a resin that can be easily peeled without damaging the thin film member or the adsorption object (substrate), for example, silicon rubber is used. The thin film member can be laminated on the substrate simply by pressure bonding without using an adhesive, and can be easily peeled off from the substrate. The thin film member can be easily removed from the substrate by peeling. However, if the functional molecule fixed on the substrate is not impaired, it can be removed with an organic solvent.

薄膜部材には、チップ基板への積層状態においてチップ基板と協働して機能性分子を収容する凹部を構成するための貫通孔が設けられている。その一例を図1に示す。薄膜部材の厚さは1μm以上、好ましくは100μm以上、より好ましくは300μm以上であり、通常2000μm以下、好ましくは1000μm以下である。薄膜部材が薄すぎると、凹部に収容できる機能性分子の量が少なくなり、厚すぎると薄膜部材の加工が難しくなる。薄膜部材の貫通孔の断面形状は任意であるが、通常円形ないしはこれに類似した形状である。凹部の底面積および貫通孔の開孔面積は0.5×10-10〜7mm2であることが望ましい。 The thin film member is provided with a through-hole for forming a recess that accommodates a functional molecule in cooperation with the chip substrate in a stacked state on the chip substrate. An example is shown in FIG. The thickness of the thin film member is 1 μm or more, preferably 100 μm or more, more preferably 300 μm or more, and usually 2000 μm or less, preferably 1000 μm or less. If the thin film member is too thin, the amount of functional molecules that can be accommodated in the recesses is reduced, and if it is too thick, it becomes difficult to process the thin film member. The cross-sectional shape of the through hole of the thin film member is arbitrary, but is usually circular or a shape similar thereto. The bottom area of the recess and the opening area of the through hole are preferably 0.5 × 10 −10 to 7 mm 2 .

薄膜部材は、樹脂のシートにレーザー加工や打ち抜き加工により貫通孔を形成することにより作製することができる。また、多数の凸部を備えた金型に溶融樹脂を注入した後、脱型して成形してもよい。後者は大量生産に向き、製造コストも低減できる。   The thin film member can be produced by forming a through hole in a resin sheet by laser processing or punching. Moreover, after inject | pouring molten resin into the metal mold | die provided with many convex parts, you may demold and shape | mold. The latter is suitable for mass production and can reduce the manufacturing cost.

次いで、チップ基板上に上記の薄膜部材を積層して形成した、薄膜部材の貫通孔と基板との協働による多数の凹部を有する積層体の該凹部へ機能性分子を供給して基板に機能性分子を固定化する作業は、前述の公開公報に記載の方法など、公知の方法で行えばよい。例えば、凹部に機能性分子を含む溶液をインクジェット法などの方法により供給した後、一定時間放置して基板上に機能性分子を固定する。   Next, functional molecules are supplied to the concave portion of the laminate formed by laminating the thin film member on the chip substrate and having a large number of concave portions in cooperation with the through-holes of the thin film member and the substrate. The work of immobilizing the sex molecule may be performed by a known method such as the method described in the above-mentioned publication. For example, after a solution containing functional molecules in the recesses is supplied by a method such as an ink jet method, the functional molecules are fixed on the substrate by being left for a certain period of time.

機能性分子としては、酵素、抗体、抗原、レクチンなどの蛋白質、ペプチド、ホルモン、薬物などの低分子化合物、核酸、糖、オリゴ糖、多糖などの糖鎖、脂質、ウイルス若しくは細胞を構成する分子、アレルゲンなどの特異的な反応をしうるものが挙げられる。なかでも、蛋白質、DNAが好ましく用いられる。
機能性分子は、金、などの金属、ポリスチレンなどの高分子ポリマーなどからなる粒径1nm〜100μm程度の粒子に担持されていてもよい。
Functional molecules include proteins such as enzymes, antibodies, antigens, lectins, low molecular compounds such as peptides, hormones, drugs, sugar chains such as nucleic acids, sugars, oligosaccharides, and polysaccharides, molecules that constitute lipids, viruses, or cells. And those capable of specific reaction such as allergens. Of these, proteins and DNA are preferably used.
The functional molecule may be supported on particles having a particle diameter of about 1 nm to 100 μm made of a metal such as gold or a polymer such as polystyrene.

機能性分子が基板に固定化された後、薄膜部材をチップ基板から剥離すると、チップ基板上に機能性分子が固定された分析用チップが得られる。
薄膜部材を剥離した後は、常法により洗浄して夾雑物を除去したり、有機高分子物質の層で非特異的な反応が起こるのを防ぐため、有機高分子物質の層に存在する官能基を不活性化したりする。不活性化は官能基がカルボキシル基の場合には、エタノールアミンなどのブロッキング剤を1モル/リットル程度の割合で含有する水溶液に15分間程度浸漬させることにより行うことができる。本発明では固定化された機能性分子の洗浄や有機高分子物質の官能基の不活性化の際には、機能性分子間に隔壁が存在しないので、洗浄や不活性化が妨げられることがない。
After the functional molecule is immobilized on the substrate, the thin film member is peeled off from the chip substrate to obtain an analysis chip in which the functional molecule is immobilized on the chip substrate.
After the thin film member is peeled off, it can be washed by a conventional method to remove contaminants, or to prevent non-specific reactions from occurring in the organic polymer material layer. Inactivate the group. When the functional group is a carboxyl group, the inactivation can be performed by immersing in an aqueous solution containing a blocking agent such as ethanolamine at a ratio of about 1 mol / liter for about 15 minutes. In the present invention, when the immobilized functional molecule is washed or the functional group of the organic polymer substance is deactivated, there is no partition wall between the functional molecules, which may prevent washing and deactivation. Absent.

本発明にかかる分析用チップの表面に、常法により検体を含む溶液を接触させ、固定化されている機能性分子と検体との相互作用を測定することにより検体の分析が行われる。   The sample is analyzed by bringing a solution containing the sample into contact with the surface of the analysis chip according to the present invention by a conventional method and measuring the interaction between the immobilized functional molecule and the sample.

機能性分子と検体の相互作用としては、通常、標的分子と検体間の共有結合、疎水結合、ファンデルワールス結合、静電力による結合などの結合のうち少なくとも1つから生じる分子間に働く力による作用が用いられる。相互作用の具体例としては、抗原と抗体間の結合及び解離、蛋白質レセプターとリガンド間の結合及び解離、接着分子と相手方分子の間の結合及び解離、酵素と基質の間の結合及び解離、アポ酵素と補酵素の間の結合及び解離、核酸とそれに結合する蛋白質の間の結合及び解離、情報伝達系における蛋白質同士の間の結合及び解離、糖蛋白質と蛋白質との間の結合及び解離、糖鎖と蛋白質の間の結合及び解離などが挙げられる。   The interaction between the functional molecule and the analyte is usually due to the force acting between the molecules resulting from at least one of the covalent bond, the hydrophobic bond, the van der Waals bond, the electrostatic force bond, etc. between the target molecule and the analyte. The action is used. Specific examples of interactions include binding and dissociation between antigen and antibody, binding and dissociation between protein receptor and ligand, binding and dissociation between adhesion molecule and partner molecule, binding and dissociation between enzyme and substrate, Binding and dissociation between enzyme and coenzyme, binding and dissociation between nucleic acid and protein binding to it, binding and dissociation between proteins in information transmission system, binding and dissociation between glycoprotein and protein, sugar Examples include binding and dissociation between chains and proteins.

相互作用の測定方法としては、例えば、蛍光法、化学発光法、RI法、表面プラズモン共鳴法、質量分析法、水晶発振子法、電気化学的方法による検出法が挙げられる。この中で、蛍光法、化学発光法、RI法などにおいては、通常検体に結合させた標識物質のシグナルを測定することにより、相互作用の測定が行われているが、必要に応じて機能性分子に標識物質を結合させたものを使用してシグナルを測定してもよい。また、表面プラズモン共鳴法による検出は、検体を無標識で分析できるので好適に用いられる。   Examples of the measurement method of the interaction include a fluorescence method, a chemiluminescence method, an RI method, a surface plasmon resonance method, a mass spectrometry method, a crystal oscillator method, and a detection method using an electrochemical method. Among them, in the fluorescence method, chemiluminescence method, RI method, etc., the interaction is usually measured by measuring the signal of the labeling substance bound to the specimen. You may measure a signal using what couple | bonded the labeling substance with the molecule | numerator. Detection by the surface plasmon resonance method is preferably used because the sample can be analyzed without labeling.

本発明にかかる分析用チップを表面プラズモン共鳴法に用いた場合、シグナルが強く、均一になる。その理由は定かではないが、従来の枠体を用いずに機能性分子をスポットした分析チップでは、機能性分子の固定量が少ないためシグナルが弱くなり、また、枠体内に機能性分子を収容して形成された分析チップでは、活性化、洗浄などの溶液で基板を処理する時や、分析を行う際に検体を含む溶液と機能性分子とが反応する時などに、溶液の進入が枠体に妨げられ反応が十分に行えないためシグナルが弱くなる。しかし、本発明の方法により得られた分析チップでは、枠体があるため十分な固定量が得られ、また、各種処理や反応が十分にできるのでシグナルが強くなるものと推察される。   When the analysis chip according to the present invention is used for the surface plasmon resonance method, the signal is strong and uniform. The reason for this is not clear, but in the analysis chip where functional molecules are spotted without using a conventional frame, the signal is weak because the amount of functional molecules immobilized is small, and the functional molecules are contained in the frame. In the analysis chip formed in this way, when the substrate is treated with a solution such as activation or cleaning, or when the solution containing the sample reacts with the functional molecule during analysis, the entry of the solution is limited. The signal is weakened because the body is obstructed and the reaction cannot be performed sufficiently. However, in the analysis chip obtained by the method of the present invention, it is presumed that a sufficient amount of fixation is obtained due to the presence of the frame, and that the signal becomes strong because various treatments and reactions can be sufficiently performed.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these Examples.

<実施例1および比較例1>
(1)表面にアミノ基を有する基板の作製
60mlの水に、システアミン塩酸塩34mgを溶かした溶液に、大きさが2.5cm×2.5cmの金被覆グレーティングチップ(平板状のポリカーボネート製の基体の表面に、溝ピッチ約870nm、溝深さ約40nmの凸凹形状を形成し、この凸凹形状の表面に金を厚さ約80nmとなるように蒸着したセンサチップ)を浸漬し、室温で20分間保持したのち、センサチップを蒸留水で洗浄した。この処理は、金被覆された基板表面に、金−硫黄結合を介してアミノ基を導入するものである。
<Example 1 and Comparative Example 1>
(1) Production of a substrate having an amino group on the surface A gold-coated grating chip having a size of 2.5 cm × 2.5 cm (a flat polycarbonate substrate) in a solution obtained by dissolving 34 mg of cysteamine hydrochloride in 60 ml of water On the surface, a concave / convex shape having a groove pitch of about 870 nm and a groove depth of about 40 nm is formed, and a gold-deposited sensor chip having a thickness of about 80 nm is immersed on the surface of the concave / convex shape for 20 minutes at room temperature After holding, the sensor chip was washed with distilled water. In this treatment, an amino group is introduced into a gold-coated substrate surface via a gold-sulfur bond.

(2)ポリアクリル酸の基板表面への固定化
25mlの水に、1.25gのポリアクリル酸(分子量50,000)(ポリサイエンス社製)と24mgの1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド塩酸塩(EDC)を溶解させた。溶液のpHを2.2に調整した後、この溶液2.5mlに、上記(1)で得たアミノ化された基板を浸漬し、1時間反応させた。反応終了後、チップを蒸留水で洗浄した。この処理は、金表面上のアミノ基とポリアクリル酸のカルボキシル基をEDCにより縮合させて、アミド結合を形成させるものである。
(2) Immobilization of polyacrylic acid on substrate surface In 25 ml of water, 1.25 g of polyacrylic acid (molecular weight 50,000) (manufactured by Polyscience) and 24 mg of 1-ethyl-3- (3-dimethyl) Aminopropyl) -carbodiimide hydrochloride (EDC) was dissolved. After adjusting the pH of the solution to 2.2, the aminated substrate obtained in (1) above was immersed in 2.5 ml of this solution and reacted for 1 hour. After completion of the reaction, the chip was washed with distilled water. In this treatment, an amino group on the gold surface and a carboxyl group of polyacrylic acid are condensed by EDC to form an amide bond.

(3)機能性分子の固定化
上記(2)で得たポリアクリル酸で覆われた基板を、N−ヒドロキシスクシイミド(NHS)を0.1M及びEDCを0.4Mの濃度で含有する溶液に室温で10分間浸漬した後、蒸留水で洗浄し、カルボキシル基を活性化させた。
大きさ2.5cm×2.5cm、厚さ0.5mmのシリコンラバーに直径0.5mmの貫通孔を100個あけ、薄膜部材を作製した。基板表面の半分に、この薄膜部材を積層し、残りの半分には薄膜部材を積層せずそのままにした。
マウスIgG(ランパイアバイオロジカルラボラトリー社製)を100μg/mlとなるように酢酸緩衝液(10mM、pH5.0)に溶解させた溶液を、スポッタ(Packard社製「BioChip ArrayerTM」)を用いて、薄膜部材を積層した基板表面上では、貫通孔に注入した。貫通孔1箇所当たりの溶液量は70nlであった。(実施例1)
また、薄膜部材を積層していない基板表面上では、直径0.5mmとなるようにスポッタで基板に直接スポットした。1スポットあたりの溶液量は17.5nlであった。(比較例1)
15分間反応させた後、薄膜部材を剥離し、基板全体を1モル/リットルのエタノールアミン水溶液に浸漬した後、乾燥し、リガンド(マウスIgG)の固定化された分析用チップを製造した。得られた分析用チップをSPR測定装置(HTS Biosystems Inc.社製「FLEX CHIPSTM Kinetic Analysis System」)に装着し、リガンド(マウスIgG)の固定化に伴う共鳴角の変化量を測定した。なお、リガンド(マウスIgG)を注入した部分と注入しない部分の測定を行い、その差を固定化に伴う変化量とした。結果を表−1に示す。
(3) Immobilization of functional molecule The substrate covered with polyacrylic acid obtained in (2) above contains N-hydroxysuccinimide (NHS) at a concentration of 0.1M and EDC at a concentration of 0.4M. After immersing in the solution at room temperature for 10 minutes, the solution was washed with distilled water to activate carboxyl groups.
100 through-holes having a diameter of 0.5 mm were formed in a silicon rubber having a size of 2.5 cm × 2.5 cm and a thickness of 0.5 mm to produce a thin film member. The thin film member was laminated on the half of the substrate surface, and the thin film member was not laminated on the other half.
A solution in which mouse IgG (manufactured by Lumpia Biological Laboratory) was dissolved in an acetate buffer (10 mM, pH 5.0) so as to be 100 μg / ml was used with a spotter (“BioChip Array ” manufactured by Packard). On the surface of the substrate on which the thin film member was laminated, it was injected into the through hole. The amount of solution per through hole was 70 nl. Example 1
Further, on the surface of the substrate on which the thin film member was not laminated, the spot was directly spotted on the substrate so as to have a diameter of 0.5 mm. The amount of solution per spot was 17.5 nl. (Comparative Example 1)
After reacting for 15 minutes, the thin film member was peeled off, the entire substrate was immersed in a 1 mol / liter ethanolamine aqueous solution, and then dried to produce an analytical chip on which a ligand (mouse IgG) was immobilized. The obtained analysis chip was attached to an SPR measurement device (“FLEX CHIPS Kinetic Analysis System” manufactured by HTS Biosystems Inc.), and the amount of change in the resonance angle accompanying the immobilization of the ligand (mouse IgG) was measured. In addition, the part which injected the ligand (mouse IgG) and the part which is not injected were measured, and the difference was made into the variation | change_quantity accompanying fixation. The results are shown in Table-1.

(4)アナライト反応時の表面プラズモン共鳴(SPR)測定
SPR測定装置に装着された分析用チップに、アンチ−マウスIgG(イムノプローブ社製)を切断して得たアンチ−マウスFab.を10μg/ml、HEPESを10mM、NaClを10mM及びEDTA−2Naを3mMで含有する溶液を、流速500μl/minで8分間流し、37℃で反応させた。
この溶液の注入後に、角度スキャングを行いながら反射光の強度を測定し、リガンドを固定させた基板表面の共鳴角に対する共鳴角の差から、蛋白質固定化に伴う共鳴角変化の値を算出した。結果を表−1に示す。
(4) Surface plasmon resonance (SPR) measurement during analyte reaction 10 μg of anti-mouse Fab. Obtained by cleaving anti-mouse IgG (manufactured by Immunoprobe) on an analysis chip attached to an SPR measurement device / ml, a solution containing 10 mM HEPES, 10 mM NaCl, and 3 mM EDTA-2Na was allowed to flow at a flow rate of 500 μl / min for 8 minutes and reacted at 37 ° C.
After the injection of this solution, the intensity of the reflected light was measured while performing angle scanning, and the value of the change in resonance angle accompanying protein immobilization was calculated from the difference in resonance angle with respect to the resonance angle of the substrate surface on which the ligand was immobilized. The results are shown in Table-1.

Figure 0004225888
Figure 0004225888

<参考例>
試料を収容するための凹部を有する積層体において、チップ基板表面の洗浄、官能基の活性化反応あるいは不活性化反応、機能性分子と検体との相互作用反応などの凹部底面を構成するチップ基板での反応への枠体の影響を検討するためのモデル実験として、基板表面の活性化処理を、枠体を積層する前(参考例1)又は後(参考例2)に行い、リガンドの付着量から活性化処理が枠体によってどのくらい妨害されるかを比較した。
<Reference example>
A chip substrate that forms the bottom surface of a recess, such as cleaning of the surface of the chip substrate, activation reaction or deactivation reaction of a functional group, and interaction reaction between a functional molecule and a specimen, in a laminate having a recess for containing a sample As a model experiment for examining the influence of the frame on the reaction in the substrate, the substrate surface activation treatment was performed before the frame was laminated (Reference Example 1) or after (Reference Example 2) to attach the ligand. We compared how much the activation treatment was hindered by the frame from the amount.

<参考例1>
大きさが2.5cm×2.5cmの金被覆グレーティングチップ(平板状のポリカーボネート製の基体の表面に、溝ピッチ約870nm、溝深さ約40nmの凸凹形状を形成し、この凸凹形状の表面に金を厚さ約80nmとなるように蒸着したセンサチップ)を、16−メルカプトヘキサデカノイックアシッドを5mMとなるようにエタノールに溶解した溶液に浸漬し、2時間程度反応させた後、蒸留水で洗浄することにより、C16膜が基板上に形成され分析用チップを作製した。
次に、実施例1の(3)と同様にして、カルボキシル基を活性化させた後、実施例1と同様に、薄膜部材を積層した後、貫通孔にマウスIgGを注入した。
得られた分析チップ用をSPR装置に装着し、リガンド(マウスIgG)の固定化に伴う共鳴角の変化量を測定した。また、標準偏差を平均値で割った値(CV)を求めた。結果を表−2に示す。
<Reference Example 1>
Gold-coated grating chip having a size of 2.5 cm × 2.5 cm (an uneven shape having a groove pitch of about 870 nm and a groove depth of about 40 nm is formed on the surface of a flat polycarbonate substrate, and the surface of the uneven surface is formed. A sensor chip on which gold is deposited to a thickness of about 80 nm is dipped in a solution of 16-mercaptohexadecanoic acid dissolved in ethanol to a concentration of 5 mM, reacted for about 2 hours, and then distilled water. By washing with C, a C16 film was formed on the substrate to produce an analysis chip.
Next, after activating the carboxyl group in the same manner as in Example 1 (3), a thin film member was laminated in the same manner as in Example 1, and then mouse IgG was injected into the through hole.
The obtained analysis chip was attached to an SPR device, and the amount of change in the resonance angle accompanying the immobilization of the ligand (mouse IgG) was measured. Further, a value (CV) obtained by dividing the standard deviation by the average value was obtained. The results are shown in Table-2.

<参考例2>
参考例1で作製したC16膜が基板上に形成された分析用チップに、実施例1と同様に、薄膜部材を積層した後、実施例1の(3)と同様にして、カルボキシル基を活性化させ、貫通孔にマウスIgGを注入した。
得られた分析用チップをSPR装置に装着し、リガンド(マウスIgG)の固定化に伴う共鳴角の変化量を測定した。また、標準偏差を平均値で割った値(CV)を求めた。結果を表−2に示す。
<Reference Example 2>
After the thin film member was laminated on the analytical chip having the C16 film formed on the substrate formed in Reference Example 1 on the substrate, the carboxyl group was activated in the same manner as in (3) of Example 1. And mouse IgG was injected into the through-hole.
The obtained analysis chip was attached to an SPR device, and the amount of change in the resonance angle accompanying the immobilization of the ligand (mouse IgG) was measured. Further, a value (CV) obtained by dividing the standard deviation by the average value was obtained. The results are shown in Table-2.

Figure 0004225888
Figure 0004225888

表−2より、参考例2は参考例1に比べ共鳴角変化量が小さいことがわかる。これは、枠体の内部に活性化液が入り難く、基板表面の活性化が不十分となるため、リガンドの固定量が減少したものと考えられる。
また、CVは、数値が大きいほど、リガンドの付着量にばらつきがあることを示す。参考例2は、枠体の内部に入る活性化液の量が、貫通孔ごとに異なるため、結果として参考例1に比べてリガンドの付着量にばらつきが生じたものと考えられる。
これより、枠体は各種の処理を妨げとなることが推察される。
From Table 2, it can be seen that Reference Example 2 has a smaller amount of resonance angle change than Reference Example 1. This is presumably because the amount of ligand immobilized was reduced because the activation liquid was difficult to enter the frame and the activation of the substrate surface was insufficient.
Further, CV indicates that the larger the numerical value, the more the amount of attached ligand varies. In Reference Example 2, since the amount of the activation liquid entering the inside of the frame differs for each through-hole, it is considered that as a result, the amount of attached ligand was more varied than that in Reference Example 1.
From this, it is inferred that the frame obstructs various processes.

本発明に用いる薄膜部材の平面図Plan view of thin film member used in the present invention 本発明の分析用チップの調製方法を説明するための断面図Sectional drawing for demonstrating the preparation method of the chip | tip for analysis of this invention

符号の説明Explanation of symbols

1 チップ基板
2 薄膜部材
3 貫通孔
3a 凹部
4 有機高分子物質の被覆層

DESCRIPTION OF SYMBOLS 1 Chip substrate 2 Thin film member 3 Through-hole 3a Recessed part 4 Coating layer of organic polymer substance

Claims (17)

チップ基板と、この上に剥離可能に積層されていて且つ貫通孔を有する薄膜部材であって、圧着により基板に容易に積層、密着でき、かつ基板から容易に除去できる樹脂からなる部材とを有しており、該貫通孔とチップ基板表面とが協働して蛋白質、ペプチド、低分子化合物、核酸、糖、糖鎖、あるいは脂質である試料を収容するための凹部を形成している積層体の該凹部に、試料を含有する溶液を供給して試料をチップ基板表面に固定化したのち、該薄膜部材を除去することを特徴とする分析用チップの調製方法。 A chip substrate and a thin film member that is detachably laminated on the substrate and has a through-hole, and a member made of a resin that can be easily laminated and adhered to the substrate by pressure bonding and can be easily removed from the substrate. A laminate in which the through hole and the chip substrate surface cooperate to form a recess for accommodating a sample of protein, peptide, low molecular weight compound, nucleic acid, sugar, sugar chain, or lipid. A method for preparing an analytical chip, comprising: supplying a solution containing a sample to the concave portion of the substrate and immobilizing the sample on the surface of the chip substrate, and then removing the thin film member. 薄膜部材の除去を積層体から薄膜部材を剥離することにより行うことを特徴とする請求項1に記載の分析用チップの調製方法。 The method for preparing an analytical chip according to claim 1, wherein the thin film member is removed by peeling the thin film member from the laminate. 薄膜部材がシリコンラバーからなることを特徴とする請求項1又は2に記載の分析用チップの調整方法。 3. The analytical chip adjustment method according to claim 1, wherein the thin film member is made of silicon rubber . チップ基板が多孔性基板であることを特徴とする請求項1ないしのいずれかに記載の分析用チップの調製方法。 Process for the preparation of the analysis chip according to any one of claims 1 to 3, wherein the chip substrate is a porous substrate. チップ基板の表面部が金属で被覆された回折格子に形成されていることを特徴とする請求項1ないしのいずれかに記載の分析用チップの調製方法。 Process for the preparation of the analysis chip according to any one of claims 1 to 4 the surface of the chip substrate is characterized in that it is formed on the diffraction grating coated with a metal. チップ基板の表面が試料と結合してこれを固定化し得る官能基を有する有機高分子物質で被覆されていることを特徴とする請求項1ないしのいずれかに記載の分析用チップの調製方法。 Process for the preparation of the analysis chip according to any one of claims 1 to 5, characterized in that the surface of the chip substrate is coated with an organic polymer material having a functional group capable of immobilizing them in combination with the sample . 薄膜部材の厚さが1〜2000μmであることを特徴とする請求項1ないし6のいずれかに記載の分析用チップの調製方法。 7. The method for preparing an analytical chip according to claim 1, wherein the thin film member has a thickness of 1 to 2000 [mu] m. 積層体が複数の凹部を有しており、かつ1個の凹部の底面積が0.5×10-10〜7mm2であることを特徴とする請求項1ないしのいずれかに記載の分析用チップの調製方法。 The analysis according to any one of claims 1 to 7 , wherein the laminate has a plurality of recesses, and the bottom area of one recess is 0.5 x 10 -10 to 7 mm 2. Method of preparing chips. 請求項1ないしのいずれかに記載の方法により調整された分析用チップ。 It claims 1 to analysis chip which is adjusted by the method according to any one of 8. チップ基板と、この上に剥離可能に積層されていて且つ貫通孔を有する薄膜部材であって、圧着により基板に容易に積層、密着でき、かつ基板から容易に除去できる樹脂からなる部材とを有しており、該貫通孔とチップ基板表面とが協働して蛋白質、ペプチド、低分子化合物、核酸、糖、糖鎖、あるいは脂質である試料を収容するための凹部を形成している積層体からなることを特徴とする分析用チップ基板。 A chip substrate and a thin film member that is detachably laminated on the substrate and has a through-hole, and a member made of a resin that can be easily laminated and adhered to the substrate by pressure bonding and can be easily removed from the substrate. A laminate in which the through hole and the chip substrate surface cooperate to form a recess for accommodating a sample of protein, peptide, low molecular weight compound, nucleic acid, sugar, sugar chain, or lipid. An analysis chip substrate comprising: 薄膜部材がシリコンラバーからなることを特徴とする請求項10に記載の分析用チップ基板。 The analysis chip substrate according to claim 10 , wherein the thin film member is made of silicon rubber. 薄膜部材の厚さが1〜2000μmであることを特徴とする請求項10又は11に記載の分析用チップ基板。 The analytical chip substrate according to claim 10 or 11 , wherein the thin film member has a thickness of 1 to 2000 µm. 薄膜部材が複数の貫通孔を有しており、かつ1個の貫通孔の開孔部面積が0.5×10-10〜7mm2であることを特徴とする請求項10ないし12のいずれかに記載の分析用チップ基板。 The thin film member has a plurality of through holes, and the opening area of one through hole is 0.5 × 10 −10 to 7 mm 2 . The chip substrate for analysis described in 1. チップ基板が多孔性基板であることを特徴とする請求項10ないし13のいずれかに記載の分析用チップ基板。 Analysis chip substrate according to any one of claims 10 to 13, wherein the chip substrate is a porous substrate. チップ基板の表面部が金属で被覆された回折格子に形成されていることを特徴とする請求項10ないし14のいずれかに記載の分析用チップ基板。 Analysis chip substrate according to any one of claims 10 to 14 surface portion of the chip substrate is characterized in that it is formed on the diffraction grating coated with a metal. チップ基板の表面が試料と結合してこれを固定化し得る官能基を有する有機高分子物質で被覆されていることを特徴とする請求項10ないし15のいずれかに記載の分析用チップ基板。 16. The analytical chip substrate according to claim 10 , wherein the surface of the chip substrate is coated with an organic polymer substance having a functional group capable of binding and immobilizing the sample. 請求項10ないし16のいずれかに記載の分析用チップ基板に用いる剥離可能な薄膜部材。 A peelable thin film member used for the analysis chip substrate according to any one of claims 10 to 16 .
JP2003421522A 2003-12-18 2003-12-18 Analysis chip and preparation method thereof. Expired - Fee Related JP4225888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421522A JP4225888B2 (en) 2003-12-18 2003-12-18 Analysis chip and preparation method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421522A JP4225888B2 (en) 2003-12-18 2003-12-18 Analysis chip and preparation method thereof.

Publications (2)

Publication Number Publication Date
JP2005181079A JP2005181079A (en) 2005-07-07
JP4225888B2 true JP4225888B2 (en) 2009-02-18

Family

ID=34782720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421522A Expired - Fee Related JP4225888B2 (en) 2003-12-18 2003-12-18 Analysis chip and preparation method thereof.

Country Status (1)

Country Link
JP (1) JP4225888B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132669A (en) * 2005-11-08 2007-05-31 Fujifilm Corp Biosensor
JP2007132670A (en) * 2005-11-08 2007-05-31 Fujifilm Corp Biosensor
JP4890926B2 (en) * 2006-04-28 2012-03-07 キヤノン株式会社 Detection method and kit

Also Published As

Publication number Publication date
JP2005181079A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US7501289B2 (en) Biosensor
US8183057B2 (en) Biomaterial construct, its producing method, biomaterial support, target material purifying method, affinity chromatography container, separation chip, analyzing method and analyzing separator for target material, biomaterial complex, and its support, sensor chip, solid support with biomaterial fixed thereon
JP5588430B2 (en) Surface and method for label independent detection
US20060223113A1 (en) Immobilization of binding agents
JP2009522547A (en) Support for analyte assay and method for producing and using the same
GB2324866A (en) Device for multianalyte assays.
US20080293592A1 (en) Method For Covalently Immobilising Biomolecules on Organic Surfaces
JP2006201091A (en) Micro particle for capture beads, capture beads using same, and biochip
US20100234240A1 (en) Surface modification
EP1739427A1 (en) Measurement method using biosensor
EP1923703B1 (en) A method for producing a biosensor having a covalently bound thin polymeric coat
US20070048796A1 (en) Biosensor
US20060257933A1 (en) Biosensor
JP4225888B2 (en) Analysis chip and preparation method thereof.
JP4197279B2 (en) Biologically-derived substance detection substrate and manufacturing method thereof
US7964414B2 (en) Biosensor with suppressed non-specific adsorption
JP4853971B2 (en) Method for producing sensing chip for target molecule
KR20070031759A (en) Method for Fabricating a Biochip Using Polymer?gel
EP1826564B1 (en) A method for producing a biosensor
EP1953554B1 (en) A method for production of a surface plasmon resonance device.
US8187829B2 (en) Method for fabricating pattern on a biosensor substrate and biosensor using the same
JP2006266742A (en) Biosensor
JP2004125462A (en) Biochip
JP2004198260A (en) Solid phase carrier and its utilization
JP4037428B2 (en) Sensor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees