JP4224783B2 - Fuel concentration measuring device and fuel concentration measuring method - Google Patents

Fuel concentration measuring device and fuel concentration measuring method Download PDF

Info

Publication number
JP4224783B2
JP4224783B2 JP2003271565A JP2003271565A JP4224783B2 JP 4224783 B2 JP4224783 B2 JP 4224783B2 JP 2003271565 A JP2003271565 A JP 2003271565A JP 2003271565 A JP2003271565 A JP 2003271565A JP 4224783 B2 JP4224783 B2 JP 4224783B2
Authority
JP
Japan
Prior art keywords
fuel
sound
measuring
concentration
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271565A
Other languages
Japanese (ja)
Other versions
JP2005030949A (en
Inventor
尊英 佐々木
業 須藤
雅彦 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003271565A priority Critical patent/JP4224783B2/en
Publication of JP2005030949A publication Critical patent/JP2005030949A/en
Application granted granted Critical
Publication of JP4224783B2 publication Critical patent/JP4224783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02863Electric or magnetic parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Fuel Cell (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、燃料濃度測定装置および燃料濃度測定方法に関し、特に発電の燃料にメタノールを用いるダイレクトメタノール型の燃料電池に供給される燃料濃度測定装置および燃料濃度測定方法に関するものである。   The present invention relates to a fuel concentration measuring device and a fuel concentration measuring method, and more particularly to a fuel concentration measuring device and a fuel concentration measuring method supplied to a direct methanol type fuel cell using methanol as a fuel for power generation.

燃料電池は、燃料と酸素(酸化剤ガス)を電気化学的に反応させることにより発電を行う発電素子である。燃料電池は、発電により生成される生成物が主として水であることから環境を汚染することがない発電素子として近年注目されており、例えば自動車を駆動するための駆動電源や家庭用コジェネレーションシステムとして使用する試みが行われている。   A fuel cell is a power generation element that generates power by electrochemically reacting fuel and oxygen (oxidant gas). In recent years, fuel cells have attracted attention as power generation elements that do not pollute the environment because the product generated by power generation is mainly water. For example, fuel cells are used as drive power sources for driving automobiles and household cogeneration systems. Attempts to use have been made.

さらに、上述の自動車駆動用の駆動電源等に止まらず、例えばノート型パソコン、携帯電話及びPDA(Personal Digital Assistant)などの携帯型電子機器の駆動電源としての燃料電池の開発も活発に行われている。このような燃料電池においては、所要の電力を安定して出力できるとともに、携帯可能なサイズ及び重量とされることが重要となり、このような要求に対応するべく各種技術開発が盛んに行われている。   Furthermore, the development of fuel cells as drive power sources for portable electronic devices such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) has been actively conducted, not limited to the above-described drive power sources for driving automobiles. Yes. In such a fuel cell, it is important that the required power can be stably output and the size and weight are portable, and various technologies have been actively developed to meet such demands. Yes.

燃料電池は、電解質の違いや燃料の供給方法等によって様々なタイプのものに分類されるが、メタノールを水素に改質せずに燃料として直接用いるダイレクトメタノール型の燃料電池(Direct Methanol Fuel Cell:DMFC)も提案されている。ダイレクトメタノール型の燃料電池では、アノード側で主としてCHOH+HO→CO+6H+6eの如き反応がおき、カソード側で主として3/2O+6H+6e→3HOの如き反応がおきている。アノード側で発生したプロトン(H)が電解質によってカソード側に伝達され、全体としてCHOH+3/2O→CO+2HOの反応が起きて発電とともに水と二酸化炭素が生成される。 The fuel cell is classified into various types depending on the difference in electrolyte, the fuel supply method, and the like. A direct methanol fuel cell that directly uses methanol as fuel without reforming methanol into hydrogen (Direct Methanol Fuel Cell) DMFC) has also been proposed. In a direct methanol type fuel cell, a reaction such as CH 3 OH + H 2 O → CO 2 + 6H + + 6e occurs on the anode side, and a reaction such as 3 / 2O 2 + 6H + + 6e → 3H 2 O occurs mainly on the cathode side. It is happening. Protons (H + ) generated on the anode side are transferred to the cathode side by the electrolyte, and a reaction of CH 3 OH + 3 / 2O 2 → CO 2 + 2H 2 O occurs as a whole, and water and carbon dioxide are generated along with power generation.

ダイレクトメタノール型の燃料電池では、燃料として純粋なメタノールを供給するだけではアノードでの発電反応が進行しないため、水とメタノールとを混合した燃料をアノードに供給する必要がある。このときの燃料供給方法として、予めメタノールと水を適切な組成で混合しておく方法が提案されている。また、燃料を循環させる燃料流路を設置し、純粋なメタノールを補充することで発電反応によって消費され不足したメタノール成分を補給し、発電反応によってカソードで生成された水を回収して燃料に混合する方法が提案されている。   In a direct methanol type fuel cell, a power generation reaction at the anode does not proceed only by supplying pure methanol as a fuel. Therefore, it is necessary to supply a fuel in which water and methanol are mixed to the anode. As a fuel supply method at this time, a method of previously mixing methanol and water with an appropriate composition has been proposed. In addition, a fuel flow path that circulates fuel is installed, and pure methanol is replenished to replenish the methanol component that has been consumed and shortaged by the power generation reaction, and water generated at the cathode by the power generation reaction is recovered and mixed with the fuel. A method has been proposed.

燃料として予めメタノールと水とを混合しておく場合には、燃料電池システムにメタノールと水の混合を行う機構を設けなくてもよいため、燃料電池システムの構造を簡素化することができる。しかし、供給されるメタノールが予め水分と混合されているために、供給される燃料自体のエネルギー密度が低下してしまう。燃料のエネルギー密度を上げるためにメタノール濃度が高い燃料を用いると、プロトンを伝導するイオン交換膜をメタノールがクロスオーバーし、燃料電池の発電効率を低下させるだけではなく、発電体であるMEA(Membrane and Electrode Assembly)が劣化しやすくなり、燃料電池の寿命が短くなってしまう。   In the case where methanol and water are mixed in advance as fuel, the fuel cell system need not be provided with a mechanism for mixing methanol and water, so that the structure of the fuel cell system can be simplified. However, since the supplied methanol is previously mixed with moisture, the energy density of the supplied fuel itself is lowered. When a fuel with a high methanol concentration is used to increase the energy density of the fuel, the methanol crosses over the ion exchange membrane that conducts protons, not only lowering the power generation efficiency of the fuel cell, but also the MEA (Membrane) that is the power generator. and Electrode Assembly) are likely to deteriorate, and the life of the fuel cell is shortened.

また、燃料は燃料電池に供給する前の製造過程で純粋なメタノールと水とを混合しておく必要があり、メタノールと水を混合した状態で保存する場合には、メタノール濃度を長期にわたって安定させるための問題が発生する可能性がある。これに対し、発電によって生成された水を回収して燃料の混合に再利用する場合には、燃料中のメタノール濃度を一定に保つためにメタノールの濃度を測定するセンサーを設置する必要がある。メタノール濃度の測定を行う燃料濃度測定装置としては、超音波発信機と超音波受信機で燃料中での超音波の速度を測定することで燃料の濃度を測定するものが提案されている(特許文献1参照)。   In addition, it is necessary to mix pure methanol and water in the production process before supplying the fuel cell to the fuel. When storing the fuel in a mixed state, the methanol concentration is stabilized over a long period of time. May cause problems. On the other hand, when water generated by power generation is recovered and reused for fuel mixing, it is necessary to install a sensor for measuring the methanol concentration in order to keep the methanol concentration in the fuel constant. As a fuel concentration measuring apparatus for measuring the concentration of methanol, an apparatus that measures the concentration of fuel by measuring the velocity of ultrasonic waves in the fuel with an ultrasonic transmitter and an ultrasonic receiver has been proposed (patent) Reference 1).

特開平11−23541JP-A-11-23541

超音波による燃料濃度の測定では精密な濃度測定を行うことができるが、燃料濃度と音速の関係は図6のグラフに示すように、燃料濃度を横軸にとり音速を縦軸にとると上に凸の曲線を描く。したがって超音波の音速を測定したとしても、測定した音速vに対応する燃料濃度がdとdの二値考えられ、二値のどちらの濃度が正確な燃料濃度であるかを判断することが困難であった。 The measurement of the fuel concentration using ultrasonic waves enables precise concentration measurement. As shown in the graph of FIG. 6, the relationship between the fuel concentration and the sound speed is shown above when the fuel concentration is plotted on the horizontal axis and the sound speed is plotted on the vertical axis. Draw a convex curve. Therefore, even if the sound velocity of the ultrasonic wave is measured, the fuel concentration corresponding to the measured sound velocity v can be considered as binary values of d 1 and d 2 , and it is judged which of the binary values is the correct fuel concentration. It was difficult.

したがって本発明は、正確かつ迅速に燃料中のアルコール濃度の測定を行うことが可能な燃料濃度測定装置および燃料濃度測定方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a fuel concentration measuring apparatus and a fuel concentration measuring method capable of accurately and quickly measuring the alcohol concentration in the fuel.

上記課題を解決するために本願発明の燃料濃度測定装置は、燃料中のアルコール濃度を測定する燃料濃度測定装置であって、前記燃料を伝播する音波の音速を測定する音速測定部と、前記燃料の誘電率を測定する誘電率測定部と、前記音速測定部で測定された音速と、前記誘電率測定部で測定された前記誘電率に基づいて燃料中のアルコール濃度を算出する情報処理部とを備え、前記音速測定部より音波の音速を測定し、測定した音速と、音速およびアルコール濃度の関係を示す曲線とからアルコール濃度d1 、d2 を算出し、算出されたd1 、d2 のうち前記誘電率測定部により測定した誘電率に対応する燃料中のアルコール濃度に近いほうを燃料中の正確なアルコール濃度とすることを特徴とする。 Fuel concentration measuring apparatus of the present invention to solve the aforementioned problems is a fuel concentration measuring device for measuring the alcohol concentration in the fuel, and the sound speed measuring unit for measuring the sound velocity of a sound wave propagating said fuel, wherein A dielectric constant measurement unit that measures the dielectric constant of fuel, an information processing unit that calculates the alcohol concentration in the fuel based on the sound velocity measured by the sound velocity measurement unit, and the dielectric constant measured by the dielectric constant measurement unit The sound velocity measurement unit measures the sound velocity of the sound wave, calculates alcohol concentrations d 1 and d 2 from the measured sound velocity and a curve indicating the relationship between the sound velocity and the alcohol concentration, and calculates the calculated d 1 and d Of the two, the one close to the alcohol concentration in the fuel corresponding to the dielectric constant measured by the dielectric constant measuring unit is set as the accurate alcohol concentration in the fuel .

燃料中を伝播する音波の音速と燃料の誘電率を測定することで、音速とアルコール濃度との関係から求めることが可能な精密ではあるが二値の算出結果がありえる燃料中のアルコール濃度と、誘電率と燃料濃度との関係から求められる単一な算出結果の燃料中のアルコール濃度とを比較して、精密かつ単一なアルコール濃度を算出結果として得ることが可能となる。したがって、正確かつ迅速な燃料中のアルコール濃度の測定を行うことが可能となる。 By measuring the sound velocity of the sound wave propagating in the fuel and the dielectric constant of the fuel , the alcohol concentration in the fuel that can have a precise but binary calculation result that can be obtained from the relationship between the sound velocity and the alcohol concentration, By comparing the alcohol concentration in the fuel of a single calculation result obtained from the relationship between the dielectric constant and the fuel concentration, it is possible to obtain a precise and single alcohol concentration as the calculation result. Therefore, the alcohol concentration in the fuel can be measured accurately and quickly.

音速測定部は、所定の周波数の超音波を発信する発信部と、超音波を受信する受信部とを備え、発信部が発した超音波を燃料中を伝播させて超音波を受信部が受信することで、燃料中の音速を測定するとしてもよい。超音波の受発信により燃料中を伝播する音波の音速を測定することで、精密な音波の測定を行うことができる。また、誘電率測定部は、二つの電極を対向させた電極対を有し、電極対の電極間に燃料を挟み込んで電気容量を測定することにより燃料の誘電率を測定するとしてもよい。電極対に燃料を挟み込んで電気容量を測定することは簡便であるため、燃料の誘電率を測定することが容易となる。   The sound velocity measurement unit includes a transmission unit that transmits ultrasonic waves of a predetermined frequency and a reception unit that receives ultrasonic waves. The ultrasonic wave emitted by the transmission unit is propagated through the fuel, and the reception unit receives the ultrasonic waves. By doing so, the speed of sound in the fuel may be measured. By measuring the speed of sound waves propagating in the fuel by receiving and transmitting ultrasonic waves, it is possible to accurately measure sound waves. The dielectric constant measuring unit may have an electrode pair in which two electrodes are opposed to each other, and measure the electric capacity by inserting fuel between the electrodes of the electrode pair to measure the dielectric constant of the fuel. It is easy to measure the electric capacity by sandwiching the fuel between the electrode pair, so that it is easy to measure the dielectric constant of the fuel.

また、燃料が充満して通過する燃料流路と、燃料流路から分岐した脱ガス流路とを備え、燃料流路の脱ガス流路が分岐する位置よりも燃料の流れに対して下流位置に、音速測定部を配置してもよい。燃料中には二酸化炭素などの気体が混入している可能性があり、燃料中を伝播する音波の音速を測定する際に、燃料中に気体が滞在していると正確な音速の測定を行うことが困難となる。脱ガス流路を燃料流路から分岐させて、脱ガス流路との分岐位置よりも下流側で音速の測定を行うことで、気体の影響による測定精度の低下を除去して正確な音速の測定を行うことが可能となる。正確な音速が測定できると、情報処理部では正確な燃料中のアルコール濃度を算出することが可能となる。 In addition, a fuel flow path that is filled with fuel and a degassing flow path branched from the fuel flow path are provided, and a position downstream of the fuel flow from the position where the degassing flow path of the fuel flow path branches. In addition, a sound speed measuring unit may be arranged. There is a possibility that gas such as carbon dioxide is mixed in the fuel, and when measuring the sound velocity of sound waves propagating in the fuel, if the gas stays in the fuel, the accurate sound velocity is measured. It becomes difficult. By branching the degassing channel from the fuel channel and measuring the sonic velocity downstream of the branching position with the degassing channel, the decrease in measurement accuracy due to the influence of gas is eliminated and the accurate sonic velocity is reduced. Measurement can be performed. If an accurate sound speed can be measured, the information processing unit can calculate an accurate alcohol concentration in the fuel.

また、上記課題を解決するために本願発明の燃料濃度測定方法は、燃料中のアルコール濃度を測定する燃料濃度測定方法であって、前記燃料を伝播する音波の音速と、前記燃料の誘電率を測定する工程と、前記測定した音速と、音速およびアルコール濃度の関係を示す曲線とからアルコール濃度d1 、d2 を算出する工程と、前記算出されたアルコール濃度d1 、d2 のうち前記測定した誘電率に対応する燃料中のアルコール濃度に近いほうを燃料中の正確なアルコール濃度とする工程とを有することを特徴とする。 In order to solve the above problems, a fuel concentration measuring method of the present invention is a fuel concentration measuring method for measuring an alcohol concentration in a fuel, wherein a sound velocity of a sound wave propagating through the fuel and a dielectric constant of the fuel are calculated. A step of measuring, a step of calculating alcohol concentrations d 1 and d 2 from the measured sound speed and a curve indicating a relationship between the sound speed and the alcohol concentration, and the measurement of the calculated alcohol concentrations d 1 and d 2 And the step of making the alcohol concentration in the fuel closer to the alcohol concentration in the fuel corresponding to the measured dielectric constant.

燃料中を伝播する音波の音速と燃料の誘電率を測定することで、音速とアルコール濃度との関係から求めることが可能な精密ではあるが二値の算出結果がありえる燃料中のアルコール濃度と、誘電率と燃料濃度との関係から求められる単一な算出結果のアルコール濃度とを比較して、精密かつ単一な燃料中のアルコール濃度を算出結果として得ることが可能となる。したがって、正確かつ迅速な燃料中のアルコール濃度の測定を行うことが可能となる。 By measuring the sound velocity of the sound wave propagating in the fuel and the dielectric constant of the fuel , the alcohol concentration in the fuel that can have a precise but binary calculation result that can be obtained from the relationship between the sound velocity and the alcohol concentration, By comparing the alcohol concentration of a single calculation result obtained from the relationship between the dielectric constant and the fuel concentration, it is possible to obtain an accurate alcohol concentration in the single fuel as the calculation result. Therefore, the alcohol concentration in the fuel can be measured accurately and quickly.

燃料を伝播する超音波の伝播時間を測定することで音速を測定し、超音波の受発信により燃料中を伝播する音波の音速を測定することで、精密な音波の測定を行うことができる。また、二つの電極を対向させた電極対で燃料を挟み込み、電極間の電気容量を測定することで誘電率を測定することで、燃料の誘電率を測定することが容易となる。   By measuring the propagation speed of the ultrasonic wave propagating through the fuel, the sound velocity is measured, and by measuring the sound velocity of the sound wave propagating through the fuel by receiving and transmitting the ultrasonic wave, it is possible to accurately measure the sound wave. In addition, it is easy to measure the dielectric constant of the fuel by sandwiching the fuel between the electrode pair in which the two electrodes are opposed and measuring the dielectric constant by measuring the electric capacity between the electrodes.

燃料中には二酸化炭素などの気体が混入している可能性があり、燃料中を伝播する音波の音速を測定する際に、燃料中に気体が滞在していると正確な音速の測定を行うことが困難となる。燃料中に混入している気体を燃料から分離し、気体を分離した後で音速を測定することで、気体の影響による測定精度の低下を除去して正確な音速の測定を行うことが可能となる。正確な音速が測定できると、情報処理部では正確な燃料中のアルコール濃度を算出することが可能となる。 There is a possibility that gas such as carbon dioxide is mixed in the fuel, and when measuring the sound velocity of sound waves propagating in the fuel, if the gas stays in the fuel, the accurate sound velocity is measured. It becomes difficult. By separating the gas mixed in the fuel from the fuel and measuring the sound velocity after separating the gas, it is possible to eliminate the decrease in measurement accuracy due to the influence of the gas and perform accurate sound velocity measurement Become. If an accurate sound speed can be measured, the information processing unit can calculate an accurate alcohol concentration in the fuel.

燃料中を伝播する音波の音速と燃料の誘電率を測定することで、音速とアルコール濃度との関係から求めることが可能な精密ではあるが二値の算出結果がありえる燃料中のアルコール濃度と、誘電率と燃料濃度との関係から求められる単一な算出結果の燃料中のアルコール濃度とを比較して、精密かつ単一なアルコール濃度を算出結果として得ることが可能となる。したがって、正確かつ迅速な燃料中のアルコール濃度の測定を行うことが可能となる。 By measuring the sound velocity of the sound wave propagating in the fuel and the dielectric constant of the fuel , the alcohol concentration in the fuel that can have a precise but binary calculation result that can be obtained from the relationship between the sound velocity and the alcohol concentration, By comparing the alcohol concentration in the fuel of a single calculation result obtained from the relationship between the dielectric constant and the fuel concentration, it is possible to obtain a precise and single alcohol concentration as the calculation result. Therefore, the alcohol concentration in the fuel can be measured accurately and quickly.

以下、本願発明を適用した燃料濃度測定装置および燃料濃度測定方法について、図面を参照しながら詳細に説明する。なお本願発明は、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。なお、本実施の形態では燃料としてメタノールと水を混合した水溶液を用いた例を示すが、他の燃料と水を混合した水溶液を用いても良い。   Hereinafter, a fuel concentration measuring apparatus and a fuel concentration measuring method to which the present invention is applied will be described in detail with reference to the drawings. The present invention is not limited to the following description, and can be appropriately changed without departing from the gist of the present invention. Note that although an example in which an aqueous solution in which methanol and water are mixed is used as the fuel in this embodiment, an aqueous solution in which other fuel and water are mixed may be used.

図1は本発明の燃料濃度測定装置の構成例を示す外観斜視図であり、図2は図1中の矢印Aで示した面方向での燃料濃度測定装置の断面を示す断面斜視図であり、図3は図1中の矢印Aで示した面方向での燃料濃度測定装置の断面を示す断面図である。燃料濃度測定装置は、装置全体の外形を形成している筐体1と、所定の波長の超音波の受発信を行う超音波ユニット2と、超音波の反射を行う面である音波反射部3と、情報の処理と伝達を行う情報処理部4と、燃料の温度を測定する温度センサ5と、燃料の誘電率を測定する誘電率測定部6とを有している。筐体1の一面には開口部7が形成されており、燃料であるメタノールと水を混合したメタノール水溶液が筐体1内部を通過するようになっている。図1では示していないが、開口部7が開口された筐体1の面に対向する面にも開口部7が同様に開口されているとする。   FIG. 1 is an external perspective view showing a configuration example of a fuel concentration measuring device of the present invention, and FIG. 2 is a cross-sectional perspective view showing a cross section of the fuel concentration measuring device in a plane direction indicated by an arrow A in FIG. 3 is a cross-sectional view showing a cross section of the fuel concentration measuring device in the plane direction indicated by arrow A in FIG. The fuel concentration measuring device includes a casing 1 that forms the outer shape of the entire device, an ultrasonic unit 2 that transmits and receives ultrasonic waves of a predetermined wavelength, and a sound wave reflecting unit 3 that is a surface that reflects ultrasonic waves. And an information processing unit 4 that processes and transmits information, a temperature sensor 5 that measures the temperature of the fuel, and a dielectric constant measurement unit 6 that measures the dielectric constant of the fuel. An opening 7 is formed on one surface of the housing 1 so that a methanol aqueous solution obtained by mixing methanol and water as fuel passes through the inside of the housing 1. Although not shown in FIG. 1, it is assumed that the opening 7 is similarly opened on the surface facing the surface of the housing 1 where the opening 7 is opened.

また、筐体1の内部には燃料が通過する燃料流路8が形成されており、一方の開口部7から筐体1内部に流入してきた燃料が燃料流路8を通過して他方の開口部7から流出していく構成となっている。超音波ユニット2、音波反射部3、温度センサ5、誘電率測定部6はそれぞれ燃料流路8に露出して配置されており、燃料流路8を通過する燃料に各部が接触する構造となっている。   In addition, a fuel flow path 8 through which fuel passes is formed inside the casing 1, and the fuel that has flowed into the casing 1 from one opening 7 passes through the fuel flow path 8 and the other opening. It is configured to flow out from the part 7. The ultrasonic unit 2, the sound wave reflection unit 3, the temperature sensor 5, and the dielectric constant measurement unit 6 are arranged so as to be exposed to the fuel flow path 8, and each part comes into contact with the fuel passing through the fuel flow path 8. ing.

超音波ユニット2は、図2に示すように所定の超音波を発信する発信部2aと超音波を受信する受信部2bとに分かれており、発信部2aと受信部2bとが燃料流路8の同一側面に並列に配置されている。また、音波反射部3は発信部2aから発信された超音波を壁面に受けて、受信部2b側に対して超音波を反射する部材である。発信部2aと受信部2bとはそれぞれ燃料流路8に対して傾斜を持つように壁面が形成されており、図3に示すように発信部2a壁面に垂直に発信された超音波が、音波反射部3で反射して受信部2b壁面に垂直に入射する。超音波ユニット2では、発信部2aが発信した超音波が燃料流路8を通過する燃料を伝播して音波反射部3に到達し、音波反射部3で反射された超音波が燃料を伝播して受信部2bに到達するまでの時間を測定することで燃料中での超音波の音速を測定する。したがって、超音波が伝播する経路の長さを正確に設定しておく必要がある。   As shown in FIG. 2, the ultrasonic unit 2 is divided into a transmission unit 2 a that transmits predetermined ultrasonic waves and a reception unit 2 b that receives ultrasonic waves. The transmission unit 2 a and the reception unit 2 b include the fuel flow path 8. Are arranged in parallel on the same side. The sound wave reflecting unit 3 is a member that receives the ultrasonic wave transmitted from the transmitting unit 2a on the wall surface and reflects the ultrasonic wave toward the receiving unit 2b side. The transmitting portion 2a and the receiving portion 2b are each formed with a wall surface so as to be inclined with respect to the fuel flow path 8, and as shown in FIG. 3, the ultrasonic waves transmitted perpendicularly to the transmitting portion 2a wall surface are sound waves. The light is reflected by the reflector 3 and enters the wall surface of the receiver 2b perpendicularly. In the ultrasonic unit 2, the ultrasonic wave transmitted from the transmitting unit 2 a propagates the fuel passing through the fuel flow path 8 and reaches the sound wave reflecting unit 3, and the ultrasonic wave reflected by the sound wave reflecting unit 3 propagates the fuel. Then, the speed of the ultrasonic wave in the fuel is measured by measuring the time until it reaches the receiver 2b. Therefore, it is necessary to accurately set the length of the path through which the ultrasonic wave propagates.

図2では音波反射部3が、発信部2aおよび受信部2bの配置された燃料流路8側面とは対向する側面に配置されている例を示している。しかし、発信部2aが発信した超音波が燃料流路8を通過する燃料を伝播して音波反射部3に到達し、音波反射部3で反射された超音波が燃料を伝播して受信部2bに到達する構成であれば発信部2a,受信部2bおよび音波反射部3の相対的な位置関係はどのようなものであってもよい。また、音波反射部3を設けずに、発信部2aと受信部2bとを燃料流路8を挟むように配置し、発信部2aから発信された超音波が燃料流路8を通過する燃料を伝播して受信部2bに直接到達する構成としても良い。   FIG. 2 shows an example in which the sound wave reflection unit 3 is disposed on the side surface opposite to the side surface of the fuel flow path 8 in which the transmission unit 2a and the reception unit 2b are disposed. However, the ultrasonic wave transmitted from the transmitting unit 2a propagates through the fuel passing through the fuel flow path 8 and reaches the sound wave reflecting unit 3, and the ultrasonic wave reflected by the sound wave reflecting unit 3 propagates through the fuel and receives the receiving unit 2b. The relative positional relationship between the transmitting unit 2a, the receiving unit 2b, and the sound wave reflecting unit 3 may be any as long as the configuration reaches. In addition, the transmitter 2a and the receiver 2b are arranged so as to sandwich the fuel flow path 8 without providing the sound wave reflection section 3, and the ultrasonic wave transmitted from the transmitter 2a passes through the fuel flow path 8 to the fuel. It is good also as a structure which propagates and reaches | attains the receiving part 2b directly.

情報処理部4は、超音波ユニット2と音波反射部3、温度センサ5および誘電率測定部6と情報伝達可能に接続された演算装置である。情報処理部4では、超音波ユニット2が測定した燃料中を伝播する超音波の音速と、温度センサ5が測定した燃料の温度と、誘電率測定部6が測定した燃料の誘電率とに基づいて燃料中のアルコールの濃度を算出する演算を実行する。燃料中のアルコール濃度の算出方法については後述して説明する。 The information processing unit 4 is an arithmetic device connected to the ultrasonic unit 2, the sound wave reflection unit 3, the temperature sensor 5, and the dielectric constant measurement unit 6 so as to be able to transmit information. The information processing unit 4 is based on the sound velocity of the ultrasonic wave propagating through the fuel measured by the ultrasonic unit 2, the temperature of the fuel measured by the temperature sensor 5, and the dielectric constant of the fuel measured by the dielectric constant measuring unit 6. To calculate the concentration of alcohol in the fuel. A method for calculating the alcohol concentration in the fuel will be described later.

温度センサ5は、燃料流路8を流れている燃料の温度を測定する温度計であり、熱電対などの既存の温度計を用いることができる。燃料電池に用いる燃料は、アルコールと水の混合溶液であるため、温度センサ5はアルコールと水の両方が液体状態にある温度領域の温度を精密に測定できる必要がある。   The temperature sensor 5 is a thermometer that measures the temperature of the fuel flowing through the fuel flow path 8, and an existing thermometer such as a thermocouple can be used. Since the fuel used in the fuel cell is a mixed solution of alcohol and water, the temperature sensor 5 needs to be able to accurately measure the temperature in the temperature region where both alcohol and water are in a liquid state.

誘電率測定部6は例えば、同面積の平板状の電極を二枚対向して燃料中に配置し、電極間を流れる燃料と電極とで平行板コンデンサを構成している。図2に示すように、燃料流路8の対向する側面に電極対を形成するとしてもよい。平行板コンデンサの電気容量は電極間距離と電極面積と電極間に存在する物質の誘電率に依存するので、電極間距離と電極面積を予め測定しておき、電極間に電圧を加えて平行板コンデンサの電気容量を測定することで電極間に存在する燃料の誘電率を測定することができる。   The dielectric constant measuring unit 6 includes, for example, two flat electrodes having the same area facing each other in the fuel, and the fuel flowing between the electrodes and the electrodes constitute a parallel plate capacitor. As shown in FIG. 2, electrode pairs may be formed on opposite side surfaces of the fuel flow path 8. The electric capacity of the parallel plate capacitor depends on the distance between the electrodes, the electrode area, and the dielectric constant of the substance existing between the electrodes. Therefore, the distance between the electrodes and the electrode area are measured in advance, and a voltage is applied between the electrodes. By measuring the electric capacity of the capacitor, the dielectric constant of the fuel existing between the electrodes can be measured.

次に、情報処理部4での燃料中のアルコール濃度の算出方法について図4を用いて説明する。図4は燃料中のアルコール濃度と燃料中を伝わる超音波の音速との関係、および、燃料中のアルコール濃度と燃料の誘電率との関係を示すグラフである。横軸は燃料中のアルコール濃度を示し、左側縦軸は燃料中を伝わる超音波の音速を示し、右側縦軸は燃料の誘電率を示している。また、グラフ中の上に凸に描かれた曲線が燃料中のアルコール濃度と音速の関係を示すグラフであり、グラフ中に描かれた直線が燃料中のアルコール濃度と誘電率の関係を示すグラフである。 Next, a method for calculating the alcohol concentration in the fuel in the information processing unit 4 will be described with reference to FIG. Figure 4 is the relationship between the ultrasonic speed of sound propagating through the alcohol concentration in the fuel in the fuel, and is a graph showing the relationship between alcohol concentration and the fuel dielectric constant in the fuel. The horizontal axis indicates the alcohol concentration in the fuel, the left vertical axis indicates the speed of sound of ultrasonic waves transmitted through the fuel, and the right vertical axis indicates the dielectric constant of the fuel. In addition, the upwardly convex curve in the graph is a graph showing the relationship between the alcohol concentration in the fuel and the speed of sound, and the straight line drawn in the graph is a graph showing the relationship between the alcohol concentration in the fuel and the dielectric constant. It is.

本発明の濃度測定装置および濃度測定方法では、超音波ユニット2と音波反射部3で燃料流路8を通過する燃料中での超音波の音速v1を測定し、温度センサ5で燃料流路8を通過する燃料の温度T1を測定し、誘電率測定部6で燃料流路8を通過する燃料の誘電率k1を測定し、各部で測定された音速v1と温度T1と誘電率k1の情報が情報処理部4に伝達される。情報処理部4には、図4に示した燃料中のアルコール濃度と音速、および燃料中のアルコール濃度と誘電率の関係が予め記憶装置に記録されており、各測定部で測定された音速v1と温度T1と誘電率k1に基づいて燃料中のアルコール濃度が算出される。燃料中のアルコール濃度と音速、および燃料中のアルコール濃度と誘電率の関係が温度T1に依存する場合には、温度T1に基づいて燃料中のアルコール濃度の補正を行うとしてもよい。 In the concentration measuring apparatus and concentration measuring method of the present invention, the ultrasonic velocity 2 of the ultrasonic wave in the fuel passing through the fuel flow path 8 is measured by the ultrasonic unit 2 and the sound wave reflecting portion 3, and the fuel flow path 8 is measured by the temperature sensor 5. The temperature T1 of the fuel passing through the fuel is measured, the dielectric constant k1 of the fuel passing through the fuel flow path 8 is measured by the dielectric constant measuring unit 6, and information on the sound velocity v1, the temperature T1, and the dielectric constant k1 measured in each part is obtained. The information is transmitted to the information processing unit 4. The information processing unit 4, are recorded in advance in the storage device alcohol concentration and sonic, and relationships of the alcohol concentration and the dielectric constant in the fuel in the fuel as shown in FIG. 4, the sound velocity measured at each measurement unit v1 Based on the temperature T1 and the dielectric constant k1, the alcohol concentration in the fuel is calculated. When the relationship between the alcohol concentration and the sound speed in the fuel and the relationship between the alcohol concentration in the fuel and the dielectric constant depends on the temperature T1, the alcohol concentration in the fuel may be corrected based on the temperature T1.

測定結果である誘電率がk1である場合には、誘電率と燃料中のアルコール濃度の関係を示す直線から燃料中のアルコール濃度がd4に近い値であることがわかる。しかし、誘電率と燃料中のアルコール濃度との関係は図4に示しているように、緩やかな傾斜の直線であり、誘電率の測定誤差範囲によって燃料中のアルコール濃度の算出範囲が広がってしまう。また、誘電率を検出する場合には電極が導電体で形成されているため、被測定物にイオン性不純物が存在すると測定不能となり、この電極に絶縁皮膜を形成するとこの絶縁皮膜の誘電率が支配的になり、静電容量の濃度による変化の割合が低下して精密な濃度検知が難しくなる。したがって、誘電率k1を測定によって求め、誘電率k1の値からのみ燃料中のアルコール濃度を算出したとしても、算出された燃料中のアルコール濃度の信頼性が低くなってしまう。 When the measurement results dielectric constant of k1 is found to be the alcohol concentration in the fuel from the straight line indicating the relationship between the alcohol concentration of the dielectric constant and the fuel it is close to d4. However, as shown in FIG. 4, the relationship between the dielectric constant and the alcohol concentration in the fuel is a straight line with a gentle slope, and the calculation range of the alcohol concentration in the fuel is expanded depending on the measurement error range of the dielectric constant. . In addition, when detecting the dielectric constant, the electrode is formed of a conductor, so measurement is impossible if an ionic impurity is present in the object to be measured, and when an insulating film is formed on this electrode, the dielectric constant of the insulating film is reduced. It becomes dominant, and the rate of change due to the concentration of capacitance decreases, making it difficult to accurately detect the concentration. Therefore, even if the dielectric constant k1 is obtained by measurement and the alcohol concentration in the fuel is calculated only from the value of the dielectric constant k1, the reliability of the calculated alcohol concentration in the fuel is lowered.

また、測定結果である音速がv1である場合には、音速と燃料中のアルコール濃度の関係を示す曲線からは燃料中のアルコール濃度がd3またはd4であることがわかる。しかし、測定した音速v1に対応する燃料中のアルコール濃度がd3とd4の二値考えられ、二値のどちらの濃度が正確な燃料中のアルコール濃度であるかを判断することが困難であった。 The measurement if the result is a sound velocity is v1 is from curves showing the relationship between the alcohol concentration of the sound velocity and the fuel it can be seen that the alcohol concentration in the fuel is d3 or d4. However, the alcohol concentration in the fuel corresponding to the measured sound velocity v1 is considered to be binary of d3 and d4, and it is difficult to determine which of the binary concentrations is the accurate alcohol concentration in the fuel. .

したがって、音速v1と誘電率k1とを両方測定し、図4に示した音速および誘電率と燃料中のアルコール濃度との関係で音速v1と誘電率k1に対応する燃料中のアルコール濃度を算出することにより、濃度がd3またはd4であり、d4に近い値であることがわかるため、最終的に燃料中のアルコール濃度はd4であることが判明する。燃料中のアルコール濃度と音速の関係からは精密な燃料中のアルコール濃度の算出を行うことができ、燃料中のアルコール濃度と誘電率の関係からは迅速に燃料中のアルコール濃度の算出を行うことができるため、音速と誘電率の両方を測定することで精密かつ迅速に燃料中のアルコール濃度の算出を行うことが可能となる。 Therefore, both measured acoustic velocity v1 and the dielectric constant k1, to calculate the alcohol concentration in the fuel corresponding to the speed of sound v1 and dielectric constant k1 in relation to the alcohol concentration of the sound velocity and the dielectric constant and the fuel as shown in FIG. 4 Thus, since the concentration is d3 or d4 and is close to d4, it is finally found that the alcohol concentration in the fuel is d4. From the alcohol concentration and the sound speed of the relationship between the fuel it can be to calculate the alcohol concentration precise fuel rapidly to perform the calculation of the concentration of alcohol in the fuel from the relationship between the alcohol concentration and the dielectric constant of the fuel Therefore, it is possible to accurately and quickly calculate the alcohol concentration in the fuel by measuring both the speed of sound and the dielectric constant.

図5は、図1中の矢印Bで示した面方向での燃料濃度測定装置の断面図を示す断面斜視図であり、図中での上下方向が重力方向に該当する。筐体1の内部には、図2に示したように燃料流路8の周囲に音波反射部3、誘電率測定部6が配置され情報処理部4が筐体1の下方に配置されている。筐体1の内部上方には、燃料流路8と並行して脱ガス流路9が形成されており、燃料流路8と脱ガス流路9とは隔壁10で隔てられている。また、筐体1に形成された開口部7と燃料流路8との接続部分近傍では、燃料流路8と脱ガス流路9とが連絡流路11によって連結されている。脱ガス流路9の上部には筐体1を貫通する孔である通気孔12が形成されており、燃料濃度測定装置外部と脱ガス流路9との間で気体の流出入が可能となっている。これにより、開口部7と燃料流路8と脱ガス流路9と連絡流路11とは連通し、流体の通過が可能とされている。   FIG. 5 is a cross-sectional perspective view showing a cross-sectional view of the fuel concentration measuring device in the plane direction indicated by arrow B in FIG. 1, and the vertical direction in the figure corresponds to the direction of gravity. Inside the housing 1, as shown in FIG. 2, the sound wave reflection unit 3 and the dielectric constant measurement unit 6 are disposed around the fuel flow path 8, and the information processing unit 4 is disposed below the housing 1. . A degassing channel 9 is formed in the upper part of the housing 1 in parallel with the fuel channel 8, and the fuel channel 8 and the degassing channel 9 are separated by a partition wall 10. Further, in the vicinity of the connection portion between the opening 7 formed in the housing 1 and the fuel flow path 8, the fuel flow path 8 and the degassing flow path 9 are connected by a communication flow path 11. A vent hole 12, which is a hole penetrating the housing 1, is formed in the upper part of the degassing flow path 9, and gas can flow in and out between the outside of the fuel concentration measuring device and the degassing flow path 9. ing. Thereby, the opening 7, the fuel flow path 8, the degassing flow path 9, and the communication flow path 11 communicate with each other and fluid can pass therethrough.

本発明の燃料濃度測定装置に燃料が流入してくると、一方の開口部7から流入した燃料は燃料流路8を通過して他方の開口部7から流出していく。このとき、燃料流路8を通過する燃料は、連絡流路11の中間位置あたりまで満たされており、脱ガス流路9内部は完全には燃料が充満されないように燃料の流量を調整する。したがって、燃料流路8内部には燃料が充満して通過していくが、脱ガス流路9内部には気体が存在することになる。   When the fuel flows into the fuel concentration measuring device of the present invention, the fuel that flows in from one opening 7 passes through the fuel flow path 8 and flows out from the other opening 7. At this time, the fuel passing through the fuel flow path 8 is filled up to the middle position of the communication flow path 11, and the flow rate of the fuel is adjusted so that the inside of the degassing flow path 9 is not completely filled with fuel. Therefore, fuel fills and passes through the fuel flow path 8, but gas exists in the degassing flow path 9.

燃料濃度測定装置でアルコール濃度の測定を行う測定対象である燃料は、燃料電池での発電によって発生した二酸化炭素や一酸化炭素などの気体が混入している可能性がある。燃料中に気体が混入していると、超音波による測定では被測定箇所に滞在する気泡によって超音波の反射が減少して正確な濃度検知が難しくなる。しかし、上述した様に燃料が燃料流路8には充満しているが、脱ガス流路9には燃料が充満していない状態とすることで、燃料流路8を通過する燃料中に混入している気体は連絡流路11を通って脱ガス流路9内に分離されることになる。燃料濃度測定装置の外部と脱ガス流路9とは通気孔12を介して気体の流出入が可能となっているため、脱ガス流路9内に分離された気体は燃料濃度測定装置の外部へと放出されることになる。   There is a possibility that the fuel that is the measurement target for measuring the alcohol concentration by the fuel concentration measuring device is mixed with gas such as carbon dioxide and carbon monoxide generated by power generation in the fuel cell. When gas is mixed in the fuel, in ultrasonic measurement, the reflection of the ultrasonic wave is reduced by bubbles staying at the measurement site, and accurate concentration detection becomes difficult. However, as described above, the fuel is filled in the fuel flow path 8, but the degassing flow path 9 is not filled with fuel, so that it is mixed in the fuel passing through the fuel flow path 8. The gas that is flowing is separated into the degassing flow path 9 through the communication flow path 11. Since the outside of the fuel concentration measuring device and the degassing channel 9 can flow in and out of the gas via the vent hole 12, the gas separated in the degassing channel 9 is outside the fuel concentration measuring device. Will be released.

したがって、燃料流路8から分岐して外部へと繋がる流体の流通経路を燃料濃度測定装置の内部に形成することで、燃料中に混入している気体を効率的に分離して外部に放出し、燃料の流れに対して連結流路11よりも下流側の燃料流路8内では燃料に混入した気体量を減少させることができ、燃料中での超音波の音速や燃料の誘電率を正確に測定することが可能となる。   Therefore, by forming a fluid flow path branched from the fuel flow path 8 and connected to the outside inside the fuel concentration measuring device, the gas mixed in the fuel is efficiently separated and released to the outside. In the fuel flow path 8 on the downstream side of the connection flow path 11 with respect to the fuel flow, the amount of gas mixed in the fuel can be reduced, and the ultrasonic sound velocity and the fuel dielectric constant in the fuel can be accurately determined. It becomes possible to measure.

燃料中を伝播する音波の音速と燃料の誘電率を測定することで、音速と燃料中のアルコール濃度との関係から求めることが可能な精密ではあるが二値の算出結果がありえる燃料中のアルコール濃度と、誘電率と燃料中のアルコール濃度との関係から求められる単一な算出結果の燃料中のアルコール濃度とを比較して、精密かつ単一なアルコール濃度を算出結果として得ることが可能となる。したがって、正確かつ迅速な燃料中のアルコール濃度の測定を行うことが可能となる。 By measuring the dielectric constant of the wave sound velocity and fuel propagating in fuel, alcohol fuel that likely but are calculation results of the two values with a precision that can be obtained from the relationship between the alcohol concentration of the sound velocity and the fuel It is possible to obtain a precise and single alcohol concentration as the calculation result by comparing the concentration and the alcohol concentration in the fuel of the single calculation result obtained from the relationship between the dielectric constant and the alcohol concentration in the fuel. Become. Therefore, the alcohol concentration in the fuel can be measured accurately and quickly.

音速測定部は、所定の周波数の超音波を発信する発信部と、超音波を受信する受信部とを備え、発信部が発した超音波を燃料中を伝播させて受信部が受信することで、燃料中の音速を測定するとしてもよい。超音波の受発信により燃料中を伝播する音波の音速を測定することで、精密な音波の測定を行うことができる。また、誘電率測定部は、二つの電極を対向させた電極対を有し、電極対の電極間に燃料を挟み込んで電気容量を測定することにより燃料の誘電率を測定するとしてもよい。電極対に燃料を挟み込んで電気容量を測定することは簡便であるため、燃料の誘電率を測定することが容易となる。   The sound velocity measurement unit includes a transmission unit that transmits ultrasonic waves of a predetermined frequency and a reception unit that receives ultrasonic waves. The ultrasonic wave emitted by the transmission unit is propagated through the fuel and received by the reception unit. The speed of sound in the fuel may be measured. By measuring the speed of sound waves propagating in the fuel by receiving and transmitting ultrasonic waves, it is possible to accurately measure sound waves. The dielectric constant measuring unit may have an electrode pair in which two electrodes are opposed to each other, and measure the electric capacity by inserting fuel between the electrodes of the electrode pair to measure the dielectric constant of the fuel. It is easy to measure the electric capacity by sandwiching the fuel between the electrode pair, so that it is easy to measure the dielectric constant of the fuel.

また、燃料が充満して通過する燃料流路と、燃料流路から分岐した脱ガス流路とを備え、燃料流路の脱ガス流路が分岐する位置よりも燃料の流れに対して下流位置に、音速測定部を配置してもよい。燃料中には二酸化炭素などの気体が混入している可能性があり、燃料中を伝播する音波の音速を測定する際に、燃料中に気体が滞在していると正確な音速の測定を行うことが困難となる。脱ガス流路を燃料流路から分岐させて、脱ガス流路との分岐位置よりも下流側で音速の測定を行うことで、気体の影響による測定精度の低下を除去して正確な音速の測定を行うことが可能となる。正確な音速が測定できると、情報処理部では正確なアルコール濃度を算出することが可能となる。 In addition, a fuel flow path that is filled with fuel and a degassing flow path branched from the fuel flow path are provided, and a position downstream of the fuel flow from the position where the degassing flow path of the fuel flow path branches. In addition, a sound speed measuring unit may be arranged. There is a possibility that gas such as carbon dioxide is mixed in the fuel, and when measuring the sound velocity of sound waves propagating in the fuel, if the gas stays in the fuel, the accurate sound velocity is measured. It becomes difficult. By branching the degassing channel from the fuel channel and measuring the sonic velocity downstream of the branching position with the degassing channel, the decrease in measurement accuracy due to the influence of gas is eliminated and the accurate sonic velocity is reduced. Measurement can be performed. If an accurate sound speed can be measured, the information processing unit can calculate an accurate alcohol concentration.

本発明の燃料濃度測定装置の構成例を示す外観斜視図である。It is an external appearance perspective view which shows the structural example of the fuel concentration measuring apparatus of this invention. 図1に示した本発明の燃料濃度測定装置を矢印Aの面方向に切断した内部の構成を示す断面斜視図である。FIG. 2 is a cross-sectional perspective view showing an internal configuration of the fuel concentration measuring apparatus of the present invention shown in FIG. 図1に示した本発明の燃料濃度測定装置矢印Aの面方向に切断した内部の構成を示す断面図である。It is sectional drawing which shows the internal structure cut | disconnected in the surface direction of the fuel concentration measuring apparatus arrow A of this invention shown in FIG. 燃料中での超音波の音速と燃料中のアルコール濃度との関係、および燃料の誘電率と燃料中のアルコール濃度との関係を示すグラフである。It is a graph which shows the relationship between the sound speed of the ultrasonic wave in a fuel , and the alcohol concentration in a fuel, and the relationship between the dielectric constant of a fuel , and the alcohol concentration in a fuel. 図1に示した本発明の燃料濃度測定装置を矢印Bの面方向に切断した内部の構成を示す断面斜視図である。FIG. 2 is a cross-sectional perspective view showing an internal configuration of the fuel concentration measuring device of the present invention shown in FIG. 従来の超音波方式で燃料中のアルコール濃度を測定する場合の燃料中のアルコー 濃度と音速との関係を示すグラフである。Conventional is a graph showing the relationship between alcohol concentration and the sound velocity in the fuel in the case of measuring the alcohol concentration in the fuel in an ultrasonic system.

符号の説明Explanation of symbols

1 筐体
2 超音波ユニット
2a 発信部
2b 受信部
3 音波反射部
4 情報処理部
5 温度センサ
6 誘電率測定部
7 開口部
8 燃料流路
8 開口部
9 脱ガス流路
10 隔壁
11 連絡流路
12 通気孔
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Ultrasonic unit 2a Transmitting part 2b Receiving part 3 Sound wave reflection part 4 Information processing part 5 Temperature sensor 6 Permittivity measurement part 7 Opening part 8 Fuel flow path 8 Opening part 9 Degassing flow path 10 Bulkhead 11 Communication flow path 12 Vent

Claims (8)

燃料中のアルコール濃度を測定する燃料濃度測定装置であって、
前記燃料中を伝播する音波の音速を測定する音速測定部と、
前記燃料の誘電率を測定する誘電率測定部と、
前記音速測定部で測定された音速と、前記誘電率測定部で測定された前記誘電率に基づいて燃料中のアルコール濃度を算出する情報処理部とを備え、
前記音速測定部より前記音波の音速を測定し、測定した音速と、前記音速および前記アルコール濃度の関係を示す曲線とからアルコール濃度d1 、d2 を算出し、
前記算出されたd 1 、d2 のうち前記誘電率測定部により測定した誘電率に対応する燃料中のアルコール濃度に近いほうを燃料中の正確なアルコール濃度とする
ことを特徴とする燃料濃度測定装置。
A fuel concentration measuring device for measuring alcohol concentration in fuel,
A sound speed measuring unit for measuring the speed of sound waves propagating in the fuel;
A dielectric constant measuring unit for measuring a dielectric constant of the fuel;
An information processing unit that calculates the alcohol concentration in the fuel based on the sound velocity measured by the sound velocity measuring unit and the dielectric constant measured by the dielectric constant measuring unit;
The sound speed measurement unit from measuring the sound velocity of the sound waves to calculate the speed of sound was measured, the speed of sound and the alcohol concentration d 1 and a curve showing the relationship between the alcohol concentration, d 2,
Of the calculated d 1 and d 2 , the fuel concentration measurement is characterized in that the alcohol concentration in the fuel that is closer to the alcohol concentration corresponding to the dielectric constant measured by the dielectric constant measurement unit is the accurate alcohol concentration in the fuel. apparatus.
前記音速測定部は、所定の周波数の超音波を発信する発信部と、超音波を受信する受信部とを備え、
前記発信部が発した超音波を前記燃料中を伝播させて前記超音波を前記受信部が受信することで、前記燃料中の音速を測定することを特徴とする請求項1記載の燃料濃度測定装置。
The sound velocity measurement unit includes a transmission unit that transmits ultrasonic waves of a predetermined frequency, and a reception unit that receives ultrasonic waves,
2. The fuel concentration measurement according to claim 1, wherein the ultrasonic wave emitted from the transmitter is propagated through the fuel and the ultrasonic wave is received by the receiver so that the speed of sound in the fuel is measured. apparatus.
前記誘電率測定部は、二つの電極を対向させた電極対を有し、前記電極対の電極間に前記燃料を挟み込んで電気容量を測定することにより前記燃料の誘電率を測定することを特徴とする請求項1記載の燃料濃度測定装置。   The dielectric constant measuring unit has an electrode pair in which two electrodes are opposed to each other, and measures the electric permittivity by sandwiching the fuel between the electrodes of the electrode pair to measure the dielectric constant of the fuel. The fuel concentration measuring device according to claim 1. 前記燃料が充満して通過する燃料流路と、前記燃料流路から分岐した脱ガス流路とを備え、
前記燃料流路の前記脱ガス流路が分岐する位置よりも燃料の流れに対して下流位置に、前記音速測定部を配置したことを特徴とする請求項1記載の燃料濃度測定装置。
A fuel passage filled with the fuel and a degassing passage branched from the fuel passage;
2. The fuel concentration measuring device according to claim 1, wherein the sonic speed measuring unit is disposed at a position downstream of the fuel flow path from the position where the degassing flow path branches.
燃料中のアルコール濃度を測定する燃料濃度測定方法であって、
前記燃料を伝播する音波の音速と、前記燃料の誘電率を測定する工程と、
前記測定した音速と、前記音速および前記アルコール濃度の関係を示す曲線とからアルコール濃度d1 、d2 を算出する工程と、
前記算出されたd 1 、d2 のうち前記測定した誘電率に対応する燃料中のアルコール濃度に近いほうを燃料中の正確なアルコール濃度とする工程とを有することを特徴とする燃料濃度測定方法。
A fuel concentration measurement method for measuring alcohol concentration in fuel,
A step of measuring the sound waves of sound propagating through the fuel, the dielectric constant of the fuel,
Calculating alcohol concentrations d 1 and d 2 from the measured sound speed and a curve indicating the relationship between the sound speed and the alcohol concentration;
A fuel concentration measuring method comprising the step of setting an accurate alcohol concentration in the fuel that is closer to the alcohol concentration in the fuel corresponding to the measured dielectric constant among the calculated d 1 and d 2 .
前記燃料を伝播する超音波の伝播時間を測定することで前記音速を測定することを特徴とする請求項5記載の燃料濃度測定方法。   6. The fuel concentration measuring method according to claim 5, wherein the speed of sound is measured by measuring a propagation time of an ultrasonic wave propagating through the fuel. 二つの電極を対向させた電極対で前記燃料を挟み込み、前記電極間の電気容量を測定することで前記誘電率を測定することを特徴とする請求項5記載の燃料濃度測定方法。   6. The fuel concentration measuring method according to claim 5, wherein the fuel is sandwiched between an electrode pair in which two electrodes are opposed to each other, and the dielectric constant is measured by measuring an electric capacity between the electrodes. 前記燃料中に混入している気体を前記燃料から分離し、
気体を分離した後で前記音速を測定することを特徴とする請求項5記載の燃料濃度測定方法。
Separating the gas mixed in the fuel from the fuel;
6. The fuel concentration measuring method according to claim 5, wherein the speed of sound is measured after separating the gas.
JP2003271565A 2003-07-07 2003-07-07 Fuel concentration measuring device and fuel concentration measuring method Expired - Fee Related JP4224783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271565A JP4224783B2 (en) 2003-07-07 2003-07-07 Fuel concentration measuring device and fuel concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271565A JP4224783B2 (en) 2003-07-07 2003-07-07 Fuel concentration measuring device and fuel concentration measuring method

Publications (2)

Publication Number Publication Date
JP2005030949A JP2005030949A (en) 2005-02-03
JP4224783B2 true JP4224783B2 (en) 2009-02-18

Family

ID=34209399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271565A Expired - Fee Related JP4224783B2 (en) 2003-07-07 2003-07-07 Fuel concentration measuring device and fuel concentration measuring method

Country Status (1)

Country Link
JP (1) JP4224783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322631A (en) * 2004-04-07 2005-11-17 Yamaha Motor Co Ltd Fuel cell system and means of transportation using the same
DE102011083909A1 (en) * 2011-09-30 2013-04-04 Deere & Company Regeneration method for an exhaust gas flow-through soot particle filter
CN117368275B (en) * 2023-12-07 2024-03-08 江苏食品药品职业技术学院 Alcohol concentration full-range measurement method, system and device

Also Published As

Publication number Publication date
JP2005030949A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US20060177711A1 (en) Fuell cell control and data reporting
JP2003086221A (en) Hydrogen sensor for fuel processor of fuel cell
JP2006114487A (en) Direct methanol fuel cell, fuel liquid level detection method and methanol concentration detection method
JP2007214132A (en) Liquid storage container used for fuel cell system and liquid level detector
JP4224783B2 (en) Fuel concentration measuring device and fuel concentration measuring method
WO2003058235A1 (en) Ultrasound sensing of concentration of methanol's aqueous solution
KR100866743B1 (en) Mixing ratio detection device and fuel cell system mounting the same
WO2004097379A1 (en) Concentration measuring optical member and concentraton measuring unit equipped with this optical member and fuel cell
CN100544085C (en) Liner that can measuring voltage and have the fuel cell system of this liner
JP4945509B2 (en) Fuel cell system
US7563530B2 (en) Fuel amount control system for fuel cell
JP5075414B2 (en) Fuel cell
JP2007128758A (en) Fuel cell system and gas constituent state detection method in fuel cell
JP4867345B2 (en) Fuel cartridge for fuel cell and fuel cell having the same
US20110053024A1 (en) Fuel cell using organic fuel
US20230369619A1 (en) Performance prediction method and system for fuel cell in anode recirculation mode
US7353696B2 (en) Apparatus for measuring methanol concentration
JPWO2007010815A1 (en) Fuel cell
JP2005030948A (en) Concentration measuring apparatus, and concentration measuring method
JP2013062191A (en) Mounting structure of methanol density sensor
EP1890354B1 (en) Density sensing device and fuel cell system with it
US7404323B2 (en) Concentration detector and fuel supplier with said detector
JP2013152858A (en) Fuel cell system
KR101040838B1 (en) FUEL CELL SYSTEM and FLUID-SENSING DEVICE therefor
KR100749909B1 (en) Direct formic acid fuel cell carrying out real time evaluation and control of formic acid using ph value

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees