JP4223140B2 - Method for producing ferritic stainless steel welded tube with good workability - Google Patents

Method for producing ferritic stainless steel welded tube with good workability Download PDF

Info

Publication number
JP4223140B2
JP4223140B2 JP13977899A JP13977899A JP4223140B2 JP 4223140 B2 JP4223140 B2 JP 4223140B2 JP 13977899 A JP13977899 A JP 13977899A JP 13977899 A JP13977899 A JP 13977899A JP 4223140 B2 JP4223140 B2 JP 4223140B2
Authority
JP
Japan
Prior art keywords
welded
pipe
stainless steel
hardness
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13977899A
Other languages
Japanese (ja)
Other versions
JP2000326079A (en
Inventor
博 朝田
武文 仲子
康弘 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP13977899A priority Critical patent/JP4223140B2/en
Publication of JP2000326079A publication Critical patent/JP2000326079A/en
Application granted granted Critical
Publication of JP4223140B2 publication Critical patent/JP4223140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、拡管,曲げ等の加工時に溶接部に割れが発生しない加工性に優れたフェライト系ステンレス鋼溶接管を製造する方法に関する。
【0002】
【従来の技術】
フェライト系ステンレス鋼溶接管は、ステンレス鋼帯を幅方向に曲げ加工してオープンパイプを成形し、幅方向両端部を溶接することにより製造されている。幅方向の曲げ加工には、成形ロールを多段配置した従来のロールフォーミング法や本発明者等が開発したロールレスフォーミング法が採用されている。
たとえば、ロールレスフォーミング法に従った造管ラインでは、図1に示すように鋼帯Sに曲げ・曲げ戻しロール1で予歪みを与え、サイドロール2で案内しながら鋼帯Sを幅方向にカールさせてオープンパイプに成形する。シームガイドロール3を経てオープンパイプをスクイズロール4に送り込み、レーザヘッド5に設けた溶接機で幅方向両端部をレーザ溶接する。なお、高温に加熱された溶接部の酸化や窒化を防止するため、スクイズロール4を適宜シールドボックス6に収容する。幅方向両端部の溶接で得られた溶接管Pは、溶接部に形成されているビードを研磨砥石7等で切削して平滑面にした後、サイジングロール8,曲取りロール9等の矯正ロールスタンドを経て送り出され、製品管に定寸切断される。
【0003】
ロールレスフォーミング法とレーザ溶接法とを組み合わせた溶接管の製造に関し、本発明者等は、溶接部及び母材部の硬さをバランスさせるとき溶接管の加工性が改善されることを特開平7−265941号公報で紹介した。具体的には、荷重300gで測定した溶接部のビッカース硬さHVW と母材部のビッカース硬さHVB との硬度差ΔHV(HVW −HVB )が10〜80の範囲に維持されるように、レーザ出力及び造管速度を制御している。製造された溶接管に拡管等の加工を施すと、溶接部における割れの発生が抑制され、良好な形状をもつ製品が得られる。
【0004】
【発明が解決しようとする課題】
厳密な真円度が要求されない極薄肉溶接管を対象とする場合、溶接部と母材部との間で硬さバランスを図るだけで溶接管の加工性が改善される。しかし、寸法精度が要求される溶接管の製造では、溶接管の真円度及び真直度を出すために溶接工程に引き続いて矯正ロールを用いた加工が施されている。
ところで、レーザ溶接法で製造された溶接管は、入熱量が小さいものの溶接時に加熱域が極めて狭い範囲に限られるため、溶接直後においては溶接部と母材部との間の温度差が大きくなる。大きな温度差は、温度上昇に伴って素材の耐力が低下することから、母材部に比較してレーザ溶接部の強度が低いことを意味する。母材部と溶接部との間に強度差がある溶接直後の高温状態のまま、真円度及び真直度を出すために矯正ロールを通過させると、矯正ロールで溶接管に加えられる周方向の歪みが耐力の低い溶接部に集中する。その結果、母材部に比較して溶接部の加工度が大きくなり、溶接部の加工硬化が促進される。
【0005】
なかでも、Ti,Nb等の安定化元素を添加したフェライト系ステンレス鋼にあっては、素材段階ではC,N等の元素を安定化元素で固定することにより固溶量を低減しているが、急熱・急冷の熱サイクルを受けるレーザ溶接部では安定化元素による固定化作用が十分に発揮されない。そのため、C,N等の元素が固溶状態のまま維持される傾向にある。多量の固溶元素を含む溶接部を高温状態でロール加工すると、固溶元素及び加工歪みによって歪み時効現象が促進される。これによっても、レーザ溶接部の硬さが著しく上昇する。
【0006】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、溶接工程から矯正工程に送られる溶接管の温度を適正に管理することにより、レーザ溶接部の加工硬化や歪み時効を抑制し、レーザ溶接部と母材部との間の硬さバランスを改善し、加工性に優れたフェライト系ステンレス鋼溶接管を製造することを目的とする。
本発明の製造方法は、その目的を達成するため、Ti、Nbを単独又は複合で0重量%より多くかつ1重量%以下含有するフェライト系ステンレス鋼帯をオープンパイプに成形し、突合せ部をレーザ溶接した後、溶接部のビッカース硬さHVと母材部のビッカース硬さHVとの硬度差ΔHV(=HV−HV)が70以下の範囲になるように、150℃以下で且つ素材の耐力が常温耐力の80%以上となる温度域で溶接後の矯正ロールスタンドを通過させることを特徴とする。
【0007】
【実施の形態】
溶接部の硬質化は、大別すると、溶接後の矯正工程で母材部に比較して耐力が低い溶接部に歪みが集中すること、矯正加工で導入された加工歪み及び固溶元素の相互作用により歪み時効が溶接部で優先的に進行することに原因がある。
各原因が溶接部の硬さに及ぼす影響を調査した結果、使用する素材の耐力が常温耐力の80%以上となる温度域では顕著な歪み集中による硬化が生じないことを見出した。なお、素材としては、C,N等を固定するためにTi,Nbの1種又は2種以上を1重量%以下含むフェライト系ステンレス鋼が使用される。
具体的には、使用素材である鋼帯Sを温間引張試験して各試験温度における引張強さ及び0.2%耐力を求め、溶接ビードが各試験温度となる位置に矯正スタンドのサイジングロール8を配置し、溶接管Pを矯正加工した。矯正加工後に溶接部の硬さを測定し、サイジングロール8が配置された位置における溶接管Pの温度との関係を調査した。鋼帯Sとして表1の鋼種Aを用いた図2の調査結果にみられるように、鋼帯Sの耐力が常温耐力の80%以上となる温度域で矯正加工するとき、顕著な歪み集中がなく溶接部が硬化しないことが判った。
【0008】
歪み時効に関しては、レーザ溶接した引張試験試験片を種々の試験温度で15%の引張歪みを与え、冷却後に溶接部の硬さを調査した。試験片としては、表1の鋼種Aを用い、引張方向と平行にレーザ照射してビードオンプレート溶接した試験片を用意した。溶接部の硬さと引張り歪み付与時の温度との関係を示す図3にみられるように、200℃以上の温度で溶接部を加工したときには硬さが顕著に上昇するが、150℃以下に加工温度を下げると歪み時効が進行しないことが判った。
【0009】
以上の結果から、スクイズロール4からサイジングロール8に溶接管Pを送る間に、サイジングロール8の位置における溶接ビードの温度が溶接管Pの耐力が常温耐力の80%以上で且つ150℃以下の温度域に入るように溶接管Pを冷却するとき、溶接部の硬質化が抑制され、製品溶接管の加工性が改善されることが予測される。しかし、当該温度域で矯正加工しても、加工を受けた溶接ビードは若干硬化する。この点では、矯正加工で上昇する硬化分を考慮し、溶接条件を調整して矯正加工前の溶接ビードの硬さを低くすることが好ましい。たとえば、溶接速度V(m/分)に対するレーザパワーP(kw)の比として表わされるレーザ溶接時の入熱P/Vは図4(鋼種:A)に示すように溶接部の硬さに影響を及ぼすことが判っているので、溶接ビードの硬さが低くなるように入熱P/Vを制御する。
【0010】
【実施例】
溶接管用素材としては、表1に示した組成をもち、板厚0.6mm、板幅117.6mmのフェライト系ステンレス鋼帯を使用した。
【0011】

Figure 0004223140
【0012】
ロールレスフォーミングによる造管ライン(図1)で鋼帯Sを外径38.1mmのオープンパイプに成形し、鋼帯幅方向両端部をレーザ溶接した。レーザ溶接に際しては、溶接部と母材部との硬度差ΔHVを変化させるため種々の溶接条件を採用した。また、スクイズロール4から出た溶接管Pがサイジングロール8を通過するときの温度T(℃)が異なるように、スクイズロール4からサイジングロール8までの間における溶接管Pに対する冷却条件を種々変更した。
製造された溶接管Pから試験用鋼管を切り出し、拡管試験に供した。拡管試験では、6分割の拡管工具を油圧シリンダで拡管するサイザー拡管機を用い、溶接部を工具の隙間に位置させた状態で拡管する条件を採用し、割れが発生しない限界拡管率,発生した割れの個所及び形態によって加工性を評価した。
【0013】
調査結果を、サイジングロール8を溶接管Pが通過するときの温度T(℃)及び溶接部と母材部との硬度差ΔHVとの関係で表2に示す。
表2から明らかなように、通過温度T及び硬度差ΔHVが本発明で規定した範囲にある試験番号1,5の溶接管は、限界拡管率が25%を超え、割れも母材部の延性破断であることから、加工性に優れていることが判る。これに対し、通過温度T及び硬度差ΔHVが本発明で規定した範囲より高い試験番号2,硬度差ΔHVが本発明で規定した範囲より高い試験番号3,通過温度Tが本発明で規定した範囲より高い試験番号4,Ti,Nb無添加のステンレス鋼Dを使用した試験番号6は、何れも14%以下の低い限界拡管率を示し、割れも溶接部の脆性破断であった。
【0014】
Figure 0004223140
【0015】
以上の実施例においては、ロールレスフォーミング法による造管を説明したが、通常のロールフォーミングで成形したオープンパイプをレーザ溶接して造管する場合にも、同様に通過温度T及び硬度差ΔHVを制御することにより加工性に優れた溶接管が製造される。
【0016】
【発明の効果】
以上に説明したように、本発明では、Ti,Nbを添加したフェライト系ステンレス鋼管をレーザ溶接にて製造する際に、レーザ溶接された溶接管が矯正ロールを通過するときの温度及び溶接部と母材部との硬度差を適正に管理している。これにより、過酷な拡管,曲げ等の加工を受けた場合でも割れの発生が抑えられ、加工性に優れた溶接管が得られる。
【図面の簡単な説明】
【図1】 ロールレスフォーミング法を組み込んだ造管ライン
【図2】 引張強さ,0.2%耐力及び矯正加工を受けた溶接部の硬さが試験温度に応じて変わることを示したグラフ
【図3】 レーザ溶接後に引張歪み15%を与えた試験片の溶接部の硬さが試験温度に応じて変わることを示したグラフ
【図4】 溶接速度に対するレーザパワーの比として表わされるレーザ溶接時の入熱が溶接部の硬さに及ぼす影響を表わしたグラフ
【符号の説明】
1:曲げ・曲げ戻しロール 2:サイドロール 3:シームガイドロール
4:スクイズロール 5:レーザヘッド 6:シールドボックス 7:研磨砥石 8:サイジングロール 9:曲取りロール[0001]
[Industrial application fields]
The present invention relates to a method for producing a ferritic stainless steel welded pipe excellent in workability in which cracks do not occur in a welded part during working such as pipe expansion and bending.
[0002]
[Prior art]
Ferritic stainless steel welded pipes are manufactured by bending a stainless steel strip in the width direction to form an open pipe and welding both ends in the width direction. For bending in the width direction, a conventional roll forming method in which forming rolls are arranged in multiple stages or a rollless forming method developed by the present inventors are employed.
For example, in a pipe making line in accordance with the rollless forming method, as shown in FIG. 1, the steel strip S is pre-strained by a bending / returning roll 1, and the steel strip S is guided in the width direction while being guided by a side roll 2. Curled and formed into an open pipe. The open pipe is fed into the squeeze roll 4 through the seam guide roll 3, and both ends in the width direction are laser welded by a welding machine provided on the laser head 5. Note that the squeeze roll 4 is appropriately accommodated in the shield box 6 in order to prevent oxidation and nitridation of the welded portion heated to a high temperature. The welded pipe P obtained by welding at both ends in the width direction is cut into smooth surfaces by cutting a bead formed in the welded portion with a polishing grindstone 7 or the like, and then a straightening roll such as a sizing roll 8 or a bending roll 9 It is sent out through a stand and cut into a product tube.
[0003]
Regarding the manufacture of a welded pipe combining a rollless forming method and a laser welding method, the present inventors have disclosed that the workability of a welded pipe is improved when the hardness of the welded part and the base metal part is balanced. It was introduced in Japanese Patent Publication No. 7-265941. Specifically, the hardness difference ΔHV (HV W −HV B ) between the Vickers hardness HV W of the welded portion measured at a load of 300 g and the Vickers hardness HV B of the base metal portion is maintained in the range of 10-80. As described above, the laser output and the pipe making speed are controlled. When the manufactured welded pipe is subjected to processing such as pipe expansion, the occurrence of cracks in the welded portion is suppressed, and a product having a good shape is obtained.
[0004]
[Problems to be solved by the invention]
When an extremely thin welded pipe that does not require strict roundness is targeted, the workability of the welded pipe is improved only by achieving a hardness balance between the welded part and the base material part. However, in the manufacture of a welded pipe that requires dimensional accuracy, processing using a correction roll is performed following the welding process in order to obtain the roundness and straightness of the welded pipe.
By the way, the welding pipe manufactured by the laser welding method has a small heat input, but the heating area is limited to a very narrow range at the time of welding, so that the temperature difference between the welded part and the base metal part becomes large immediately after welding. . A large temperature difference means that the strength of the laser welded portion is lower than that of the base material portion because the proof stress of the material decreases with increasing temperature. If the straightening roll is passed through in order to produce roundness and straightness in the high-temperature state immediately after welding, where there is a difference in strength between the base metal part and the welded part, the circumferential direction applied to the welded pipe by the straightening roll Distortion concentrates on welds with low yield strength. As a result, the workability of the welded portion is increased as compared with the base material portion, and work hardening of the welded portion is promoted.
[0005]
In particular, in ferritic stainless steel to which stabilizing elements such as Ti and Nb are added, the amount of solid solution is reduced by fixing elements such as C and N with stabilizing elements at the material stage. In a laser welded portion that is subjected to a rapid heating / quenching thermal cycle, the fixing action by the stabilizing element is not sufficiently exhibited. For this reason, elements such as C and N tend to be maintained in a solid solution state. When a weld containing a large amount of a solid solution element is rolled at a high temperature, a strain aging phenomenon is promoted by the solid solution element and processing strain. This also remarkably increases the hardness of the laser weld.
[0006]
[Means for Solving the Problems]
The present invention has been devised to solve such problems, and by appropriately managing the temperature of the welded pipe sent from the welding process to the correction process, work hardening and strain aging of the laser welded part can be achieved. An object of the present invention is to produce a ferritic stainless steel welded tube that suppresses and improves the hardness balance between the laser welded part and the base metal part and is excellent in workability.
In order to achieve the object of the manufacturing method of the present invention, a ferritic stainless steel strip containing Ti and Nb, alone or in combination, containing more than 0 wt% and 1 wt% or less is formed into an open pipe, and the butt portion is laser After welding, 150 ° C. or less so that the hardness difference ΔHV (= HV W −HV B ) between the Vickers hardness HV W of the welded portion and the Vickers hardness HV B of the base metal portion is 70 or less. The material is characterized in that it passes through a straightening roll stand after welding in a temperature range in which the proof stress of the material is 80% or more of the normal temperature proof stress.
[0007]
Embodiment
Hardening of welded parts can be broadly classified by the fact that strain concentrates on welded parts with lower yield strength than the base metal part in the straightening process after welding. This is due to the fact that strain aging preferentially proceeds at the weld due to the action.
As a result of investigating the influence of each cause on the hardness of the welded portion, it was found that hardening due to significant strain concentration does not occur in a temperature range where the proof stress of the material used is 80% or more of the normal temperature proof stress. As a material, ferritic stainless steel containing 1% by weight or less of one or more of Ti and Nb for fixing C, N, etc. is used.
Specifically, the steel strip S, which is the material used, is subjected to a warm tensile test to determine the tensile strength and 0.2% proof stress at each test temperature, and the sizing roll of the straightening stand at the position where the weld bead is at each test temperature. 8 was arranged and the welded pipe P was straightened. The hardness of the welded portion was measured after the straightening process, and the relationship with the temperature of the welded pipe P at the position where the sizing roll 8 was disposed was investigated. As can be seen in the results of the investigation in FIG. 2 using steel type A in Table 1 as the steel strip S, when the steel strip S is straightened in a temperature range where the proof stress is 80% or more of the normal temperature proof strength, there is a significant strain concentration. It was found that the weld was not cured.
[0008]
With respect to strain aging, laser welded tensile test specimens were subjected to 15% tensile strain at various test temperatures, and the hardness of the weld was investigated after cooling. As a test piece, a steel piece A shown in Table 1 was used, and a test piece was prepared by performing bead-on-plate welding by laser irradiation in parallel with the tensile direction. As can be seen in FIG. 3 showing the relationship between the hardness of the weld and the temperature at the time of applying tensile strain, the hardness increases remarkably when the weld is processed at a temperature of 200 ° C. or higher, but is processed to 150 ° C. or lower. It was found that strain aging does not progress when the temperature is lowered.
[0009]
From the above results, while the weld pipe P is sent from the squeeze roll 4 to the sizing roll 8, the temperature of the weld bead at the position of the sizing roll 8 is 80% or more of the normal temperature proof stress and 150 ° C. or less. When the welded pipe P is cooled so as to be in the temperature range, it is predicted that hardening of the welded portion is suppressed and workability of the product welded pipe is improved. However, even if correction processing is performed in the temperature range, the processed weld bead is slightly cured. In this respect, it is preferable to reduce the hardness of the weld bead before straightening by adjusting the welding conditions in consideration of the amount of hardening that rises during straightening. For example, the heat input P / V at the time of laser welding expressed as a ratio of the laser power P (kw) to the welding speed V (m / min) affects the hardness of the weld as shown in FIG. 4 (steel type: A). Therefore, the heat input P / V is controlled so that the hardness of the weld bead is lowered.
[0010]
【Example】
As a welded pipe material, a ferritic stainless steel strip having the composition shown in Table 1 and having a plate thickness of 0.6 mm and a plate width of 117.6 mm was used.
[0011]
Figure 0004223140
[0012]
The steel strip S was formed into an open pipe having an outer diameter of 38.1 mm with a pipe making line by rollless forming (FIG. 1), and both ends of the steel strip in the width direction were laser welded. In laser welding, various welding conditions were employed in order to change the hardness difference ΔHV between the welded part and the base material part. In addition, various cooling conditions for the welded pipe P between the squeeze roll 4 and the sizing roll 8 are changed so that the temperature T (° C.) when the welded pipe P coming out of the squeeze roll 4 passes through the sizing roll 8 is different. did.
A test steel pipe was cut out from the manufactured welded pipe P and subjected to a pipe expansion test. In the pipe expansion test, a sizer pipe expansion machine that expands a 6-division pipe expansion tool with a hydraulic cylinder was used, and the condition of expanding the pipe with the welded part positioned in the gap of the tool was adopted. The workability was evaluated by the location and form of the crack.
[0013]
The investigation results are shown in Table 2 in relation to the temperature T (° C.) when the welded pipe P passes through the sizing roll 8 and the hardness difference ΔHV between the welded portion and the base metal portion.
As is apparent from Table 2, the welded pipes with test numbers 1 and 5 in which the passing temperature T and the hardness difference ΔHV are within the ranges specified in the present invention have a critical expansion ratio exceeding 25%, and cracks are ductile in the base metal part. Since it is a fracture | rupture, it turns out that it is excellent in workability. On the other hand, test number 2 in which the passing temperature T and the hardness difference ΔHV are higher than the range specified in the present invention, test number 3 in which the hardness difference ΔHV is higher than the range specified in the present invention, and the range in which the passing temperature T is specified in the present invention. The higher test number 4 and the test number 6 using the Ti and Nb-free stainless steel D all showed a low limit tube expansion rate of 14% or less, and the crack was a brittle fracture of the weld.
[0014]
Figure 0004223140
[0015]
In the above embodiment, pipe forming by the rollless forming method has been described. However, even when an open pipe formed by normal roll forming is welded by laser welding, the passage temperature T and the hardness difference ΔHV are similarly set. By controlling, a welded pipe excellent in workability is produced.
[0016]
【The invention's effect】
As described above, in the present invention, when a ferritic stainless steel pipe added with Ti and Nb is manufactured by laser welding, the temperature and welded portion when the laser welded pipe passes through the straightening roll, The hardness difference from the base metal part is properly managed. Thereby, even when subjected to processing such as severe pipe expansion and bending, generation of cracks is suppressed, and a welded pipe excellent in workability can be obtained.
[Brief description of the drawings]
[Fig. 1] Pipe making line incorporating rollless forming method [Fig. 2] Graph showing that tensile strength, 0.2% proof stress, and hardness of welded parts subjected to straightening change according to test temperature FIG. 3 is a graph showing that the hardness of a welded portion of a specimen subjected to a tensile strain of 15% after laser welding varies depending on the test temperature. FIG. 4 shows laser welding expressed as a ratio of laser power to welding speed. Of the effect of heat input during welding on the hardness of welds [Explanation of symbols]
1: Bending and bending back roll 2: Side roll 3: Seam guide roll 4: Squeeze roll 5: Laser head 6: Shield box 7: Grinding wheel 8: Sizing roll 9: Bending roll

Claims (1)

Ti、Nbを単独又は複合で0重量%より多くかつ1重量%以下含有するフェライト系ステンレス鋼帯をオープンパイプに成形し、突合せ部をレーザ溶接した後、溶接部のビッカース硬さHVと母材部のビッカース硬さHVとの硬度差ΔHV(=HV−HV)が70以下の範囲になるように、150℃以下で且つ素材の耐力が常温耐力の80%以上となる温度域で溶接後の矯正ロールスタンドを通過させることを特徴とする加工性の良好なフェライト系ステンレス鋼溶接管の製造方法。A ferritic stainless steel strip containing Ti and Nb, alone or in combination, containing more than 0% by weight and 1% by weight or less is formed into an open pipe, the butt portion is laser welded, and then the Vickers hardness HV W and the mother Temperature range where the material strength is 80% or more of the normal temperature proof stress at 150 ° C. or less so that the hardness difference ΔHV (= HV W −HV B ) of the material part with the Vickers hardness HV B is 70 or less. A method for producing a ferritic stainless steel welded tube having good workability, wherein the straightened roll stand after welding is passed.
JP13977899A 1999-05-20 1999-05-20 Method for producing ferritic stainless steel welded tube with good workability Expired - Lifetime JP4223140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13977899A JP4223140B2 (en) 1999-05-20 1999-05-20 Method for producing ferritic stainless steel welded tube with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13977899A JP4223140B2 (en) 1999-05-20 1999-05-20 Method for producing ferritic stainless steel welded tube with good workability

Publications (2)

Publication Number Publication Date
JP2000326079A JP2000326079A (en) 2000-11-28
JP4223140B2 true JP4223140B2 (en) 2009-02-12

Family

ID=15253211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13977899A Expired - Lifetime JP4223140B2 (en) 1999-05-20 1999-05-20 Method for producing ferritic stainless steel welded tube with good workability

Country Status (1)

Country Link
JP (1) JP4223140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112605A (en) * 2014-12-17 2016-06-23 株式会社山森製作所 Ball chain, ball chain manufacturing apparatus and ball chain manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865413B1 (en) * 2004-12-22 2008-10-24 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel welded pipe excellent in pipe expanding workability
JP4907079B2 (en) * 2004-12-22 2012-03-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel welded pipe with excellent pipe workability and ferritic stainless steel sheet for welded pipe
JP5610660B2 (en) * 2005-10-26 2014-10-22 新日鐵住金ステンレス株式会社 Ferritic stainless steel container excellent in low temperature strength of weld zone and welding method thereof
JP5000472B2 (en) * 2007-12-11 2012-08-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel welded pipe excellent in pipe expansion workability and manufacturing method thereof
JP6874609B2 (en) * 2017-09-05 2021-05-19 日本製鉄株式会社 Ferritic stainless steel welded member
CN113083945B (en) * 2021-03-19 2024-05-28 福建省闽发铝业股份有限公司 Preparation method of new energy automobile battery box end plate aluminum profile
CN113083944B (en) * 2021-03-19 2024-05-28 福建省闽发铝业股份有限公司 Preparation method of side plate aluminum profile of battery box of new energy automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112605A (en) * 2014-12-17 2016-06-23 株式会社山森製作所 Ball chain, ball chain manufacturing apparatus and ball chain manufacturing method

Also Published As

Publication number Publication date
JP2000326079A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
RU2709321C1 (en) Method of making cold-rolled welded steel sheets and sheets produced in such a way
JP4223140B2 (en) Method for producing ferritic stainless steel welded tube with good workability
JP2008255369A (en) High-strength, high-workability hot rolled steel sheet having excellent workability in friction stir welding process, and its manufacturing method
JP5031644B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP6658385B2 (en) Manufacturing method of steel pipe
JPS60141823A (en) Production of nonmagnetic steel working member
JP3872698B2 (en) Steel plate with excellent laser cutting ability and its manufacturing method
JPH07265941A (en) Manufacture of welded tube excellent in workability by rolless tube manufacturing method
JP3473589B2 (en) ERW steel pipe and manufacturing method thereof
JP3806173B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP2004217992A (en) Electric resistance welded tube and production method therefor
JP7435909B1 (en) ERW pipe and its manufacturing method
JP3806172B2 (en) Manufacturing method of hot-rolled steel sheet with good surface properties and pickling properties by continuous hot-rolling process
KR101104998B1 (en) Weld metal and laser welding method for austenitic stainless steel
JPS6149365B2 (en)
KR102709519B1 (en) Square steel pipe and its manufacturing method and building structures
JP5233902B2 (en) Fracture suppression method for steel strip weld seam in the manufacture of ERW welded steel pipe
KR102705240B1 (en) Square steel pipe and its manufacturing method and building structures
JPS60200913A (en) Manufacture of high tensile invert superior in weldability
JP5320750B2 (en) Heat treatment method for ERW steel pipe
JP2018047506A (en) Electroseamed steel pipe and manufacturing method thereof
JP3806176B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP3806174B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP3146918B2 (en) Manufacturing method of austenitic stainless steel welded pipe
JP2783170B2 (en) Method for producing clad plate of aluminum and stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term