JP4223134B2 - Sealed battery container sealing structure - Google Patents

Sealed battery container sealing structure Download PDF

Info

Publication number
JP4223134B2
JP4223134B2 JP11211499A JP11211499A JP4223134B2 JP 4223134 B2 JP4223134 B2 JP 4223134B2 JP 11211499 A JP11211499 A JP 11211499A JP 11211499 A JP11211499 A JP 11211499A JP 4223134 B2 JP4223134 B2 JP 4223134B2
Authority
JP
Japan
Prior art keywords
container
gasket
compressive
opening edge
sealing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11211499A
Other languages
Japanese (ja)
Other versions
JP2000306557A (en
Inventor
嶋 隆 行 永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanoh Industrial Co Ltd
Original Assignee
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanoh Industrial Co Ltd filed Critical Sanoh Industrial Co Ltd
Priority to JP11211499A priority Critical patent/JP4223134B2/en
Publication of JP2000306557A publication Critical patent/JP2000306557A/en
Application granted granted Critical
Publication of JP4223134B2 publication Critical patent/JP4223134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば密閉型ニッケルカドミウム電池等の密閉型電池における容器封口構造に係り、基本的に、略有底円筒状容器の開口縁部を内方へ絞り込むことによって、ガスケットを介して封口蓋をかしめた容器封口構造に関する。
【0002】
【従来の技術】
図3には、本発明が適用される一般的な密閉型電池の例が示されている。図3において、密閉型電池は、略有底円筒状の鋼製容器(溝付き缶)1と、この容器1の上部開口10を封口するための略円盤状の金属製封口蓋2と、この封口蓋2の外周部分20と容器1との間に介設される合成樹脂製ガスケット3とを備えている。
【0003】
上記容器1は、その上部開口10側の内周に環状突出部14が形成されると共に、内部に正極材、負極材、セパレータおよび電解液等の電池内容物(図示せず)を収納するようになっている。なお、上記封口蓋2の中央部には、正極端子22が設けられている。
【0004】
次に図4には、上記のような密閉型電池における容器封口構造の従来例が示されている。図4において、容器1の開口縁部12を内方へ絞り込むことにより、封口蓋2の外周部分20が、ガスケット3を介して、容器1の開口縁部12と環状突出部14との間で押圧固定され(かしめられ)ている。
【0005】
図4に示すように、容器1の開口縁部12は、その先端側がほぼ水平となるように絞り込まれている。この場合、容器1の開口縁部12と環状突出部14との間でのガスケット3の圧縮変形量は、例えば、当該圧縮変形による初期圧縮応力が圧縮降伏応力の30〜40%の大きさとなる程度である。
【0006】
【発明が解決しようとする課題】
上述したような従来の密閉型電池の容器封口構造には、以下のような問題点がある。すなわち、容器内が急激に高圧になったような場合に、容器1の開口縁部12が上方へ押し広げられ、容器1の上部開口10(容器1および封口蓋2とガスケット3との間)から電解液が漏れ出す恐れがある。
【0007】
また、容器内圧が急速に高圧から低圧へ移行する際、極低圧(例えば0〜0.5kg/cm2)において、容器1および封口蓋2の微動(微小な変形や変位)が生ずるが、そのような場合にも容器1の上部開口10からの電解液の漏れが発生する恐れがある。
【0008】
本発明は、このような点を考慮してなされたものであり、容器内圧の変動等による容器の上部開口からの電解液の漏れを効果的に防止できるような密閉型電池の容器封口構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上部開口側の内周に環状突出部が形成された略有底円筒状の鋼製容器と、前記容器の上部開口を封口するための略円盤状の金属製封口蓋と、前記封口蓋の外周部分と、前記容器との間に介設される合成樹脂製ガスケットとを備えた密閉型電池の容器封口構造であって、前記容器の開口縁部を内方へ絞り込むことにより、前記封口蓋の外周部分が、前記ガスケットを介して、前記容器の開口縁部と環状突出部との間で押圧固定されており、前記容器の開口縁部は、その先端側が水平に対して5〜30°下方を向く状態に絞り込まれていることを特徴とする密閉型電池の容器封口構造である。
【0010】
この発明によれば、容器の開口縁部はその先端側が水平に対して5〜30°下方を向く状態に絞り込まれているので、当該先端側がほぼ水平となるように絞り込まれている場合に比べ、容器の開口縁部と環状突出部との間で、特に封口蓋の外周部分の上下面が、ガスケットを介してより強力に押圧固定される。
【0011】
本発明において、容器の開口縁部と環状突出部との間でのガスケットの圧縮変形量は、当該圧縮変形による初期圧縮応力が圧縮降伏応力の30〜80%の大きさとなるように設定することが好ましい。
【0012】
そのように、ガスケットの圧縮変形量を、当該圧縮変形による初期圧縮応力が圧縮降伏応力より小さくなるように設定することで、ガスケットにおける上記圧縮変形による初期圧縮応力と容器内圧の上昇による圧縮応力との合応力を、圧縮降伏応力以内に抑えることが可能となる。また、容器内圧が急速に高圧から低圧へ移行する際、容器および封口蓋の微動(微小な変形や変位)が生ずるが、ガスケットにそのような微動に追従して変形する余地が残されているので、そのような場合の容器の上部開口からの電解液の漏れを防止することができる。
【0013】
また、ガスケットは合成樹脂製であるため、その圧縮変形量を、上記のように当該圧縮変形による初期圧縮応力が圧縮降伏応力の80%以内となるように設定することで、応力緩和現象による当該圧縮応力の過剰な低下を抑制することができる。このため、容器の上部開口からの電解液の漏れの防止を、長期間に亘って確保することができる。
【0014】
【発明の実施の形態】
次に、図面を参照して本発明の一実施形態について説明する。図1及び図2は本発明による密閉型電池の容器封口構造の実施の形態を示す図である。なお、図1及び図2に示す本発明の実施の形態において、図3に示す一般的な密閉型電池および図4に示す従来の容器封口構造と同一の構成部分には同一符号を付すと共に、適宜図3も参照して説明する。
【0015】
まず、図3において、本発明が適用される一般的な密閉型電池(例えば密閉型ニッケルカドミウム電池)は、略有底円筒状の容器(溝付き缶)1と、この容器1の上部開口10を封口するための略円盤状の封口蓋2と、この封口蓋2の外周部分20と容器1との間に介設されるガスケット3とを備えている。
【0016】
ここで、上記容器1は、例えばニッケルメッキ鋼材等の鋼製であり、封口蓋2は、一般に金属製である。また、上記ガスケット3は、例えばポリサルフォン等の合成樹脂製である。
【0017】
上記容器1は、その上部開口10側において外周に環状溝部16が形成され、これに対応して内周に環状突出部14が形成されている。また、容器1は、内部に正極材、負極材、セパレータおよび電解液等の電池内容物(図示せず)を収納するようになっている。なお、上記封口蓋2の中央部には、正極端子22が設けられている。
【0018】
次に図1には、上記のような密閉型電池に適用される、本実施形態の容器封口構造が示されている。図1において、容器1の開口縁部12を内方へ絞り込むことにより、封口蓋2の外周部分20が、ガスケット3を介して、容器1の開口縁部12と環状突出部14との間で押圧固定され(かしめられ)ている。
【0019】
図1に示すように、本実施形態の密閉型電池の容器封口構造においては、容器1の開口縁部12は、その先端側が水平に対して5〜30°下方を向く状態まで絞り込まれている。なお、この状態においてガスケット3は、封口蓋2の上面側および下面側にそれぞれ対応した上面部30および下面部32と、封口蓋2の外周端面に対応した外周部34とを有している。
【0020】
ここで、上記のような容器封口構造の製造工程が、図2(a)、(b)および図1に順次示されている。まず、図2(a)に示す最初の段階では、容器1の開口縁部12が未だ絞り込まれておらず、真っ直ぐ上方へ延びている。そして、容器1の環状突出部14上に、ガスケット3が載置されている。この段階では、ガスケット3の上面部30も上方を向いている。そして、このガスケット3の下面部32上に封口蓋2が載置されている。
【0021】
次に、図2(b)に示す中間段階では、図示しない第1のプレス型によって、容器1の開口縁部12が、水平に対して例えば45°程度上方を向く状態まで絞り込まれる。そして、図2(b)に示す段階から、図示しない第2のプレス型によって、容器1の開口縁部12が、水平に対して5〜30°下方を向く状態まで絞り込まれ、図1に示したような容器封口構造が完成する。
【0022】
次に、このような構成よりなる本実施形態の作用効果について説明する。本実施形態によれば、容器1の開口縁部12はその先端側が水平に対して5〜30°下方を向く状態に絞り込まれているため、当該先端側がほぼ水平となるように絞り込まれている場合に比べ、容器1の開口縁部12と環状突出部14との間で、特に封口蓋1の外周部分20の上下面が、ガスケット3を介してより強力に押圧固定される。このため、容器内圧の変動等による容器1の上部開口10(容器1および封口蓋2とガスケット3との間)からの電解液の漏れを効果的に防止することができる。
【0023】
また、特に容器内圧の上昇による容器1の開口縁部12の浮き上がりを抑制する効果が高くなるため、容器内圧が急激に高圧(例えば最大50kg/cm2)になったような場合の電解液の漏れの可能性を極めて少なくすることができる。
【0024】
なお、本実施形態の容器封口構造において、上記のような容器1の絞り込みによる、開口縁部12と環状突出部14との間でのガスケット3の圧縮変形量は、当該圧縮変形による初期圧縮応力が圧縮降伏応力の30〜80%の大きさとなるように設定することが好ましい。
【0025】
ここで、図2(a)に示すガスケット3の上面部30と下面部32の初期厚さ寸法H1,H2と、図1に示すガスケット3の上面部30と下面部32の加工後の最小厚さ寸法H1’,H2’との差ΔH1(=H1―H1’),ΔH2(=H2―H2’)が、それぞれガスケット3の上面部30と下面部32の圧縮変形量である。
【0026】
そして、ガスケット3の圧縮変形量ΔH1,ΔH2を、上記のように、当該圧縮変形による初期圧縮応力が圧縮降伏応力より小さくなるように設定することで、ガスケット3における上記圧縮変形による初期圧縮応力と容器内圧の上昇による圧縮応力との合応力を、圧縮降伏応力以内に抑えることが可能となる。
【0027】
また、容器内圧が急速に高圧から低圧へ移行する際、極低圧(例えば0〜0.5kg/cm2)において、容器1および封口蓋2の微動(微小な変形や変位)が生ずるが、ガスケット3にそのような微動に追従して変形する余地が残されているので、そのような場合の容器1の上部開口10からの電解液の漏れを防止することができる。
【0028】
ここで、ガスケット3は合成樹脂製であるため、上記圧縮変形による応力は、応力緩和現象によって初期圧縮応力から徐々に低下して行く。この場合、初期圧縮応力が大きいほど応力緩和の度合いも大きくなる。
【0029】
そこで、ガスケット3の圧縮変形量ΔH1,ΔH2を、上記のように、当該圧縮変形による初期圧縮応力が圧縮降伏応力の80%以内となるように設定することで、応力緩和現象による当該圧縮応力の過剰な低下を抑制することができる。このため、容器1の上部開口10からの電解液の漏れの防止を、長期間に亘って確保することができる。
【0030】
以上のような構成の密閉型電池の容器封口構造によって、例えば環境温度―20℃〜60℃、使用期間10年の電解液漏れ保証を達成することができる。
【0031】
【発明の効果】
本発明によれば、従来の密閉型電池の容器封口構造に比べ、容器の開口縁部と環状突出部との間で、特に封口蓋の外周部分の上下面が、ガスケットを介してより強力に押圧固定される。このため、容器内圧の変動等による容器の上部開口からの電解液の漏れを効果的に防止することができる。また、特に容器内圧の上昇による容器の開口縁部の浮き上がりを抑制する効果が高くなるため、容器内圧の急上昇時の電解液の漏れの可能性を極めて少なくすることができる。
また、ガスケットの圧縮変形量を、当該圧縮変形による初期圧縮応力が圧縮降伏応力より小さくなるように設定することで、ガスケットにおける上記圧縮変形による初期圧縮応力と容器内圧の上昇による圧縮応力との合応力を、圧縮降伏応力以内に抑えることが可能となる。また、容器内圧が急速に高圧から低圧へ移行する際、容器および封口蓋の微動(微小な変形や変位)が生ずるが、ガスケットにそのような微動に追従して変形する余地が残されているので、そのような場合の容器の上部開口からの電解液の漏れを防止することができる。
また、ガスケットは合成樹脂製であるため、その圧縮変形量を、上記のように当該圧縮変形による初期圧縮応力が圧縮降伏応力の80%以内となるように設定することで、応力緩和現象による当該圧縮応力の過剰な低下を抑制することができる。このため、容器の上部開口からの電解液の漏れの防止を、長期間に亘って確保することができる。
【図面の簡単な説明】
【図1】本発明による密閉型電池の容器封口構造の一実施形態を示す部分縦断面図。
【図2】図1に示す容器封口構造の製造工程を示した、図1と同様の図であって、(a)は最初の段階を示す図、(b)は中間段階を示す図。
【図3】本発明が適用される一般的な密閉型電池を示す縦断面図。
【図4】従来の密閉型電池の容器封口構造を示す部分縦断面図。
【符号の説明】
1 容器(溝付き缶)
10 上部開口
12 開口縁部
14 環状突出部
2 封口蓋
20 外周部
3 ガスケット
30 上面部
32 下面部
34 外周部
36 下方突出部
H1 上面部の初期厚さ寸法
H2 下面部の初期厚さ寸法
H1’ 上面部の加工後の厚さ寸法
H2’ 下面部の加工後の厚さ寸法
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a container sealing structure in a sealed battery such as a sealed nickel cadmium battery. Basically, the opening lid of a substantially bottomed cylindrical container is narrowed inward to close a sealing lid via a gasket. It is related with the container sealing structure which crimped.
[0002]
[Prior art]
FIG. 3 shows an example of a general sealed battery to which the present invention is applied. In FIG. 3, the sealed battery includes a substantially bottomed cylindrical steel container (grooved can) 1, a substantially disk-shaped metal sealing lid 2 for sealing the upper opening 10 of the container 1, A synthetic resin gasket 3 interposed between the outer peripheral portion 20 of the sealing lid 2 and the container 1 is provided.
[0003]
The container 1 has an annular protrusion 14 formed on the inner periphery on the upper opening 10 side, and accommodates battery contents (not shown) such as a positive electrode material, a negative electrode material, a separator, and an electrolyte solution therein. It has become. A positive terminal 22 is provided at the center of the sealing lid 2.
[0004]
Next, FIG. 4 shows a conventional example of a container sealing structure in a sealed battery as described above. In FIG. 4, by narrowing the opening edge 12 of the container 1 inward, the outer peripheral portion 20 of the sealing lid 2 is interposed between the opening edge 12 of the container 1 and the annular protrusion 14 via the gasket 3. It is pressed and fixed (caulked).
[0005]
As shown in FIG. 4, the opening edge portion 12 of the container 1 is narrowed down so that the tip end side thereof is substantially horizontal. In this case, the amount of compressive deformation of the gasket 3 between the opening edge 12 of the container 1 and the annular protrusion 14 is, for example, the initial compressive stress due to the compressive deformation is 30 to 40% of the compressive yield stress. Degree.
[0006]
[Problems to be solved by the invention]
The above-described conventional container sealing structure of a sealed battery has the following problems. That is, when the inside of the container suddenly becomes a high pressure, the opening edge 12 of the container 1 is pushed upward and the upper opening 10 of the container 1 (between the container 1 and the sealing lid 2 and the gasket 3). There is a risk that the electrolyte will leak out.
[0007]
Further, when the internal pressure of the container rapidly changes from high pressure to low pressure, the container 1 and the sealing lid 2 are finely moved (small deformation or displacement) at extremely low pressure (for example, 0 to 0.5 kg / cm 2 ). Even in such a case, the electrolyte solution may leak from the upper opening 10 of the container 1.
[0008]
The present invention has been made in consideration of such points, and has a container sealing structure for a sealed battery that can effectively prevent leakage of electrolyte from the upper opening of the container due to fluctuations in container internal pressure or the like. The purpose is to provide.
[0009]
[Means for Solving the Problems]
The present invention comprises a substantially bottomed cylindrical steel container having an annular protrusion formed on the inner periphery on the upper opening side, a substantially disk-shaped metal sealing lid for sealing the upper opening of the container, Sealing battery container sealing structure provided with an outer peripheral portion of the sealing lid and a synthetic resin gasket interposed between the container, by narrowing the opening edge of the container inward, An outer peripheral portion of the sealing lid is pressed and fixed between the opening edge portion of the container and the annular projecting portion via the gasket, and the opening edge portion of the container has a tip side of 5 with respect to the horizontal. It is the container sealing structure of the sealed battery characterized by being narrowed down to a state facing downward by -30 °.
[0010]
According to the present invention, the opening edge of the container is narrowed down so that the tip side thereof is directed downward by 5 to 30 ° with respect to the horizontal, so compared to the case where the tip side is narrowed so as to be substantially horizontal. The upper and lower surfaces of the outer peripheral portion of the sealing lid, in particular, are more strongly pressed and fixed via the gasket between the opening edge of the container and the annular protrusion.
[0011]
In the present invention, the amount of compressive deformation of the gasket between the opening edge of the container and the annular protrusion is set so that the initial compressive stress due to the compressive deformation is 30 to 80% of the compressive yield stress. Is preferred.
[0012]
Thus, by setting the amount of compressive deformation of the gasket so that the initial compressive stress due to the compressive deformation is smaller than the compressive yield stress, the initial compressive stress due to the compressive deformation in the gasket and the compressive stress due to the increase in the internal pressure of the container It is possible to suppress the resultant stress within the compressive yield stress. Further, when the internal pressure of the container rapidly changes from high pressure to low pressure, the container and the sealing lid are finely moved (small deformation or displacement), but there is still room for the gasket to deform following such fine movement. Therefore, it is possible to prevent leakage of the electrolytic solution from the upper opening of the container in such a case.
[0013]
In addition, since the gasket is made of synthetic resin, the amount of compressive deformation is set so that the initial compressive stress due to the compressive deformation is within 80% of the compressive yield stress as described above. An excessive decrease in compressive stress can be suppressed. For this reason, prevention of the leakage of the electrolyte solution from the upper opening of the container can be ensured over a long period of time.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 are views showing an embodiment of a container sealing structure for a sealed battery according to the present invention. In the embodiment of the present invention shown in FIGS. 1 and 2, the same components as those of the general sealed battery shown in FIG. 3 and the conventional container sealing structure shown in FIG. This will be described with reference to FIG.
[0015]
First, in FIG. 3, a general sealed battery (for example, a sealed nickel cadmium battery) to which the present invention is applied includes a substantially bottomed cylindrical container (grooved can) 1 and an upper opening 10 of the container 1. And a gasket 3 interposed between the outer peripheral portion 20 of the sealing lid 2 and the container 1.
[0016]
Here, the container 1 is made of steel such as nickel-plated steel, and the sealing lid 2 is generally made of metal. The gasket 3 is made of a synthetic resin such as polysulfone.
[0017]
The container 1 has an annular groove 16 formed on the outer periphery thereof on the upper opening 10 side, and an annular protrusion 14 is formed on the inner periphery corresponding thereto. Moreover, the container 1 accommodates battery contents (not shown) such as a positive electrode material, a negative electrode material, a separator, and an electrolytic solution therein. A positive terminal 22 is provided at the center of the sealing lid 2.
[0018]
Next, FIG. 1 shows a container sealing structure according to the present embodiment, which is applied to the sealed battery as described above. In FIG. 1, by narrowing the opening edge 12 of the container 1 inward, the outer peripheral portion 20 of the sealing lid 2 is interposed between the opening edge 12 of the container 1 and the annular protrusion 14 via the gasket 3. It is pressed and fixed (caulked).
[0019]
As shown in FIG. 1, in the container sealing structure of the sealed battery according to this embodiment, the opening edge portion 12 of the container 1 is narrowed down to a state in which the front end side faces downward from 5 to 30 ° with respect to the horizontal. . In this state, the gasket 3 has an upper surface portion 30 and a lower surface portion 32 corresponding to the upper surface side and the lower surface side of the sealing lid 2, respectively, and an outer peripheral portion 34 corresponding to the outer peripheral end surface of the sealing lid 2.
[0020]
Here, the manufacturing process of the container sealing structure as described above is sequentially shown in FIGS. 2 (a), 2 (b) and FIG. First, in the first stage shown in FIG. 2 (a), the opening edge 12 of the container 1 is not yet squeezed and extends straight upward. The gasket 3 is placed on the annular projecting portion 14 of the container 1. At this stage, the upper surface portion 30 of the gasket 3 also faces upward. The sealing lid 2 is placed on the lower surface portion 32 of the gasket 3.
[0021]
Next, in the intermediate stage shown in FIG. 2B, the opening edge 12 of the container 1 is narrowed down to a state in which the opening edge 12 of the container 1 is directed upward, for example, about 45 ° with respect to the horizontal by a first press die (not shown). Then, from the stage shown in FIG. 2 (b), the opening edge 12 of the container 1 is narrowed down by 5 to 30 ° with respect to the horizontal by a second press die (not shown), and is shown in FIG. A container sealing structure like this is completed.
[0022]
Next, the effect of this embodiment which consists of such a structure is demonstrated. According to the present embodiment, the opening edge portion 12 of the container 1 is narrowed down so that the tip side thereof is directed downward by 5 to 30 ° with respect to the horizontal, so that the tip side is substantially horizontal. Compared to the case, the upper and lower surfaces of the outer peripheral portion 20 of the sealing lid 1 are pressed and fixed more strongly through the gasket 3 between the opening edge 12 of the container 1 and the annular protrusion 14. For this reason, it is possible to effectively prevent leakage of the electrolyte solution from the upper opening 10 (between the container 1 and the sealing lid 2 and the gasket 3) due to fluctuations in the container internal pressure or the like.
[0023]
In addition, since the effect of suppressing the lifting of the opening edge 12 of the container 1 due to the increase in the container internal pressure is enhanced, the electrolyte solution in the case where the container internal pressure suddenly becomes a high pressure (for example, a maximum of 50 kg / cm 2 ). The possibility of leakage can be greatly reduced.
[0024]
In the container sealing structure of the present embodiment, the amount of compressive deformation of the gasket 3 between the opening edge 12 and the annular protrusion 14 due to the narrowing of the container 1 as described above is the initial compressive stress due to the compressive deformation. Is preferably set to be 30 to 80% of the compressive yield stress.
[0025]
Here, the initial thickness dimensions H1 and H2 of the upper surface portion 30 and the lower surface portion 32 of the gasket 3 shown in FIG. 2A, and the minimum thickness after processing of the upper surface portion 30 and the lower surface portion 32 of the gasket 3 shown in FIG. Differences ΔH1 (= H1−H1 ′) and ΔH2 (= H2−H2 ′) from the dimensions H1 ′ and H2 ′ are compression deformation amounts of the upper surface portion 30 and the lower surface portion 32 of the gasket 3, respectively.
[0026]
Then, by setting the amount of compressive deformation ΔH 1 and ΔH 2 of the gasket 3 as described above so that the initial compressive stress due to the compressive deformation becomes smaller than the compressive yield stress, the initial compressive stress due to the compressive deformation in the gasket 3 and It is possible to suppress the combined stress with the compressive stress due to the increase in the container internal pressure within the compressive yield stress.
[0027]
Further, when the internal pressure of the container rapidly changes from high pressure to low pressure, the container 1 and the sealing lid 2 are slightly moved (small deformation or displacement) at extremely low pressure (for example, 0 to 0.5 kg / cm 2 ). 3 leaves room for deformation following such fine movement, so that leakage of the electrolyte from the upper opening 10 of the container 1 in such a case can be prevented.
[0028]
Here, since the gasket 3 is made of a synthetic resin, the stress due to the compressive deformation gradually decreases from the initial compressive stress due to the stress relaxation phenomenon. In this case, the greater the initial compressive stress, the greater the degree of stress relaxation.
[0029]
Therefore, by setting the amount of compressive deformation ΔH1, ΔH2 of the gasket 3 so that the initial compressive stress due to the compressive deformation is within 80% of the compressive yield stress as described above, the compressive stress due to the stress relaxation phenomenon is reduced. An excessive decrease can be suppressed. For this reason, prevention of the leakage of the electrolyte solution from the upper opening 10 of the container 1 can be ensured over a long period of time.
[0030]
With the container sealing structure of the sealed battery configured as described above, it is possible to achieve, for example, an electrolyte leakage guarantee of an environmental temperature of −20 ° C. to 60 ° C. and a usage period of 10 years.
[0031]
【The invention's effect】
According to the present invention, the upper and lower surfaces of the outer peripheral portion of the sealing lid are more strongly interposed between the opening edge of the container and the annular protruding portion than the conventional sealed container sealing structure of the sealed battery via the gasket. Pressed and fixed. For this reason, it is possible to effectively prevent leakage of the electrolytic solution from the upper opening of the container due to fluctuations in the internal pressure of the container. Further, since the effect of suppressing the lifting of the opening edge of the container due to the increase in the container internal pressure is enhanced, the possibility of leakage of the electrolyte when the container internal pressure rapidly increases can be extremely reduced.
In addition, by setting the amount of compressive deformation of the gasket so that the initial compressive stress due to the compressive deformation is smaller than the compressive yield stress, the initial compressive stress due to the compressive deformation of the gasket and the compressive stress due to the increase in the container internal pressure are combined. The stress can be suppressed within the compressive yield stress. Further, when the internal pressure of the container rapidly changes from high pressure to low pressure, the container and the sealing lid are finely moved (small deformation or displacement), but there is still room for the gasket to deform following such fine movement. Therefore, it is possible to prevent leakage of the electrolytic solution from the upper opening of the container in such a case.
In addition, since the gasket is made of synthetic resin, the amount of compressive deformation is set so that the initial compressive stress due to the compressive deformation is within 80% of the compressive yield stress as described above. An excessive decrease in compressive stress can be suppressed. For this reason, prevention of the leakage of the electrolyte solution from the upper opening of the container can be ensured over a long period of time.
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view showing an embodiment of a sealed container battery sealing structure according to the present invention.
FIG. 2 is a view similar to FIG. 1 showing a manufacturing process of the container sealing structure shown in FIG. 1, wherein (a) shows a first stage and (b) shows an intermediate stage.
FIG. 3 is a longitudinal sectional view showing a general sealed battery to which the present invention is applied.
FIG. 4 is a partial longitudinal sectional view showing a container sealing structure of a conventional sealed battery.
[Explanation of symbols]
1 Container (can with groove)
10 upper opening 12 opening edge 14 annular protrusion 2 sealing lid 20 outer periphery 3 gasket 30 upper surface 32 lower surface 34 outer periphery 36 lower protrusion H1 initial thickness H2 of upper surface H2 initial thickness H1 'of lower surface Thickness dimension after processing of upper surface part H2 'Thickness dimension after processing of lower surface part

Claims (1)

上部開口側の内周に環状突出部が形成された略有底円筒状の鋼製容器と、
前記容器の上部開口を封口するための略円盤状の金属製封口蓋と、
前記封口蓋の外周部分と、前記容器との間に介設される合成樹脂製ガスケットと
を備えた密閉型電池の容器封口構造であって、
前記容器の開口縁部を内方へ絞り込むことにより、前記封口蓋の外周部分が、前記ガスケットを介して、前記容器の開口縁部と環状突出部との間で押圧固定されており、
前記容器の開口縁部は、その先端側が水平に対して5〜30°下方を向く状態に絞り込まれており、
前記容器の開口縁部と環状突出部との間での前記ガスケットの圧縮変形量を、当該圧縮変形による初期圧縮応力が圧縮降伏応力の30〜80%の大きさとなるように設定したことを特徴とする密閉型電池の容器封口構造。
A substantially bottomed cylindrical steel container in which an annular protrusion is formed on the inner periphery on the upper opening side;
A substantially disc-shaped metal sealing lid for sealing the upper opening of the container;
A sealed container container sealing structure comprising a synthetic resin gasket interposed between an outer peripheral portion of the sealing lid and the container,
By narrowing the opening edge of the container inward, the outer peripheral portion of the sealing lid is pressed and fixed between the opening edge of the container and the annular protrusion through the gasket,
The opening edge of the container is squeezed so that its tip side faces 5-30 ° downward relative to the horizontal ,
The amount of compressive deformation of the gasket between the opening edge of the container and the annular protrusion is set so that the initial compressive stress due to the compressive deformation is 30 to 80% of the compressive yield stress. A sealed container container sealing structure.
JP11211499A 1999-04-20 1999-04-20 Sealed battery container sealing structure Expired - Fee Related JP4223134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211499A JP4223134B2 (en) 1999-04-20 1999-04-20 Sealed battery container sealing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211499A JP4223134B2 (en) 1999-04-20 1999-04-20 Sealed battery container sealing structure

Publications (2)

Publication Number Publication Date
JP2000306557A JP2000306557A (en) 2000-11-02
JP4223134B2 true JP4223134B2 (en) 2009-02-12

Family

ID=14578530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211499A Expired - Fee Related JP4223134B2 (en) 1999-04-20 1999-04-20 Sealed battery container sealing structure

Country Status (1)

Country Link
JP (1) JP4223134B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714430B2 (en) * 2004-06-08 2011-06-29 ヤマトプロテック株式会社 Accumulated fire extinguisher
JP5070697B2 (en) 2005-12-19 2012-11-14 日産自動車株式会社 Battery module
KR100912789B1 (en) * 2006-09-11 2009-08-18 주식회사 엘지화학 Cylindrical Secondary Battery of Improved Safety
KR100948001B1 (en) 2006-12-11 2010-03-18 주식회사 엘지화학 Lithium Ion Battery of Crimping Shape of Increased Safety
JP5040698B2 (en) * 2007-02-14 2012-10-03 パナソニック株式会社 Capacitors
KR100915796B1 (en) 2008-06-04 2009-09-08 (주)에스티아이 Apparatus and method for forming alignment film of liquid crystal display device
JP5368345B2 (en) * 2010-03-09 2013-12-18 日立ビークルエナジー株式会社 Non-aqueous electrolyte cylindrical battery
US10147967B2 (en) 2014-07-24 2018-12-04 Panasonic Intellectual Property Management Co., Ltd. Cylindrical battery
JP6698279B2 (en) * 2015-03-31 2020-05-27 Fdk株式会社 Cylindrical battery
CN105424888B (en) * 2015-12-10 2017-08-25 陆辰钊 It is a kind of to be used for the test device of gas sensor calibration
EP3979352A4 (en) * 2019-05-31 2022-11-09 SANYO Electric Co., Ltd. Cylindrical battery
WO2024071239A1 (en) * 2022-09-30 2024-04-04 パナソニックIpマネジメント株式会社 Power storage device

Also Published As

Publication number Publication date
JP2000306557A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP4223134B2 (en) Sealed battery container sealing structure
JP2006221988A (en) Gasket for cylindrical sealed battery, the battery, and manufacturing method therefor
US2951891A (en) Battery case construction
US3754997A (en) Electric battery cell with a plastic top having a spring pressure seal
JPH10255733A (en) Small-sized battery
JP4288758B2 (en) Electrolytic capacitor
JPH04144054A (en) Manufacture of cylindrical battery
JP3540459B2 (en) Battery and manufacturing method thereof
US6137053A (en) Electric double-layer capacitor housing
JPH08106910A (en) Coin battery
JPH03283257A (en) Manufacture of cylindrical sealed battery
JP2950543B2 (en) Cylindrical battery
WO2006058467A1 (en) A Button-Shaped Alkaline Battery
US20160093841A1 (en) Energy storage device and manufacturing method of the same
JP4958425B2 (en) Cylindrical battery
US3907602A (en) Self-tightening sealing arrangement for an enclosure such as a casing for an electrochemical cell
JPH0729572Y2 (en) Cylindrical battery
JPH01292744A (en) Rectangular closed cell
JPH09190806A (en) Manufacture of battery
JP3253159B2 (en) Manufacturing method of prismatic sealed battery
JPH03283258A (en) Sealed battery
JPS6136070Y2 (en)
JPS627660B2 (en)
JP4966518B2 (en) Alkaline battery
JPS6142375B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees