JP4222962B2 - Burner device and gas turbine engine - Google Patents

Burner device and gas turbine engine Download PDF

Info

Publication number
JP4222962B2
JP4222962B2 JP2004099816A JP2004099816A JP4222962B2 JP 4222962 B2 JP4222962 B2 JP 4222962B2 JP 2004099816 A JP2004099816 A JP 2004099816A JP 2004099816 A JP2004099816 A JP 2004099816A JP 4222962 B2 JP4222962 B2 JP 4222962B2
Authority
JP
Japan
Prior art keywords
combustion
distribution mechanism
flow path
channel
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004099816A
Other languages
Japanese (ja)
Other versions
JP2005283000A (en
Inventor
努 若林
浩二 守家
泰英 岡崎
正範 大曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004099816A priority Critical patent/JP4222962B2/en
Publication of JP2005283000A publication Critical patent/JP2005283000A/en
Application granted granted Critical
Publication of JP4222962B2 publication Critical patent/JP4222962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)

Description

本発明は、内部に流通する酸素含有ガスに燃料ガスが供給されて形成された混合気を燃焼部に供給して燃焼させる第1燃焼用流路及び第2燃焼用流路を備え、
前記第1燃焼用流路と前記第2燃焼用流路とに燃料ガスを分配供給する分配機構を複数備え、
前記分配機構が、前記第1燃焼用流路に開口し前記第1燃焼用流路での酸素含有ガスの流通方向に交差する方向に燃料ガスを噴出させる第1供給口と、前記第1燃焼用流路に前記第1供給口の前記燃料ガスの噴出方向に対向して開口する受入口を一端側に形成し前記第2燃焼用流路に開口する第2供給口を他端側に形成した供給路とからなり、前記総供給量が所定の受入開始供給量以上となったときに前記第1供給口から噴出された燃料ガスの一部が前記受入口に受け入れられるように構成され、
前記複数の分配機構が、前記第2供給口が前記第1燃焼用流路から近い側に配置されている近側分配機構と、前記第2供給口が前記近側分配機構よりも前記第1燃焼用流路から遠い側に配置されている遠側分配機構とからなるバーナ装置、及び、そのバーナ装置を備えたガスタービンエンジンに関する。
The present invention includes a first combustion flow path and a second combustion flow path for supplying an air-fuel mixture formed by supplying a fuel gas to an oxygen-containing gas flowing therein to the combustion section and burning it.
A plurality of distribution mechanisms for distributing and supplying fuel gas to the first combustion channel and the second combustion channel;
The distribution mechanism has a first supply port that opens into the first combustion channel and ejects fuel gas in a direction that intersects the flow direction of the oxygen-containing gas in the first combustion channel; and the first combustion A receiving port that opens in the flow path facing the fuel gas ejection direction of the first supply port is formed on one end side, and a second supply port that opens in the second combustion flow path is formed on the other end side A part of the fuel gas ejected from the first supply port when the total supply amount is equal to or greater than a predetermined reception start supply amount, and is configured to be received by the reception port.
The plurality of distribution mechanisms include a near-side distribution mechanism in which the second supply port is disposed closer to the first combustion flow path, and the second supply port than the near-side distribution mechanism. The present invention relates to a burner device including a far-side distribution mechanism disposed on a side far from a combustion channel, and a gas turbine engine including the burner device.

上記のようなバーナ装置は、コジェネレーションシステム等に利用されるガスタービンエンジン用のバーナ装置として利用されるほか、焼却炉のバーナ装置などに利用される。また、このように構成されたバーナ装置は、夫々の燃焼用流路から燃焼部に供給される夫々の混合気の当量比を適正に保って良好な燃焼を維持するために、燃焼部における燃焼負荷の増減に応じて、上記第1燃焼用流路として構成されるパイロット燃焼用流路及び上記第2燃焼用流路として構成されるメイン燃焼用流路への燃料ガスの供給量を調整するのみならず、夫々の燃焼用流路に供給する空気(酸素含有ガスの一例)の流量を調整する必要がある。   The burner apparatus as described above is used not only as a burner apparatus for a gas turbine engine used in a cogeneration system or the like, but also as an incinerator burner apparatus. In addition, the burner device configured in this manner is configured so that the combustion in the combustion section is maintained in order to maintain the proper equivalence ratio of the respective air-fuel mixtures supplied from the respective combustion flow paths to the combustion section. The amount of fuel gas supplied to the pilot combustion channel configured as the first combustion channel and the main combustion channel configured as the second combustion channel is adjusted in accordance with the increase or decrease of the load. In addition, it is necessary to adjust the flow rate of air (an example of an oxygen-containing gas) supplied to each combustion channel.

燃焼負荷等に基づくパイロット燃焼用流路及びメイン燃焼用流路への燃料ガスの分配供給及びその分配比率の調整を容易に行え、しかも、バーナ装置への燃料ガスの総供給量の減少に伴い、パイロット燃焼流路への供給量の分配比率を大きくできるバーナ装置が提案されている(例えば、特許文献1及び2参照。)。   The fuel gas distribution and supply to the pilot combustion channel and the main combustion channel based on the combustion load, etc., and the adjustment of the distribution ratio can be easily performed, and with the decrease in the total fuel gas supply to the burner unit A burner device that can increase the distribution ratio of the supply amount to the pilot combustion channel has been proposed (see, for example, Patent Documents 1 and 2).

上記特許文献1及び2に記載のバーナ装置は、定格燃焼負荷に対する燃焼負荷の減少に伴って、燃料ガスの総供給量を減少させるのであるが、その総供給量の減少に伴って、総供給量に対するパイロット燃焼用流路への供給量の割合を増やすことができるように、燃料ガスをパイロット燃焼用流路及びメイン燃焼用流路に分配供給する分配機構を備え、安定したパイロット燃焼を維持することができる。   The burner devices described in Patent Documents 1 and 2 reduce the total supply amount of the fuel gas as the combustion load decreases with respect to the rated combustion load, but the total supply amount decreases as the total supply amount decreases. A distribution mechanism that distributes and supplies fuel gas to the pilot combustion channel and main combustion channel to maintain a stable pilot combustion so that the ratio of the supply amount to the pilot combustion channel can be increased. can do.

即ち、このバーナ装置は、図9に示すように、燃焼部145においてパイロット燃焼を行うためのパイロット燃焼用流路141と、その周囲を円筒状に囲んで燃焼部145において予混合希薄燃焼であるメイン燃焼を行うためのメイン燃焼用流路142とを備え、更に、パイロット燃焼用流路141とメイン燃焼用流路142とに、燃料流路143に供給された燃料ガスGを分配供給するための分配機構100を備える。   That is, as shown in FIG. 9, this burner device is a pilot combustion flow path 141 for performing pilot combustion in the combustion section 145, and premixed lean combustion in the combustion section 145 surrounding the periphery in a cylindrical shape. A main combustion channel 142 for performing main combustion, and further for distributing and supplying the fuel gas G supplied to the fuel channel 143 to the pilot combustion channel 141 and the main combustion channel 142 The distribution mechanism 100 is provided.

この分配機構100は、パイロット燃焼用流路142での空気Aの流通方向に交差する方向に燃料ガスGを供給する第1供給口101と、パイロット燃焼用流路142に第1供給口101の燃料ガスGの噴出方向に対向して開口する受入口102を一端側に形成しメイン燃焼用流路142に開口する第2供給口103を他端側に形成した供給路104とで構成されている。
即ち、上記分配機構100においては、第1供給口101と受入口102との間に、パイロット燃焼用流路141に開放されるスリット状の開放部106が形成され、供給路104は、第1供給口への燃料ガスGの総供給量が所定の受入開始供給量以上に増加したときに、第1供給口101から上記開放部106に噴出された燃料ガスGの一部を受入口102に受け入れて、その受け入れた燃料ガスを第2供給口103からメイン燃焼用流路142に供給することができる。
The distribution mechanism 100 includes a first supply port 101 that supplies the fuel gas G in a direction that intersects the flow direction of the air A in the pilot combustion flow channel 142, and the first supply port 101 to the pilot combustion flow channel 142. The inlet 102 that opens in the direction opposite to the jet direction of the fuel gas G is formed on one end side, and the second supply port 103 that opens on the main combustion channel 142 is formed on the other end side. Yes.
That is, in the distribution mechanism 100, a slit-shaped opening 106 that is opened to the pilot combustion flow path 141 is formed between the first supply port 101 and the receiving port 102, and the supply path 104 is defined as the first supply path 104. When the total supply amount of the fuel gas G to the supply port increases to a predetermined reception start supply amount or more, a part of the fuel gas G ejected from the first supply port 101 to the opening 106 is supplied to the reception port 102. The received fuel gas can be supplied to the main combustion channel 142 from the second supply port 103.

よって、このバーナ装置は、上記分配機構100により、燃料ガスGの総供給量を調整して燃焼負荷を広範囲に調整可能としながら、燃焼負荷範囲全域において良好な燃焼状態を実現することができる。   Therefore, this burner device can realize a good combustion state in the entire combustion load range while adjusting the total supply amount of the fuel gas G and adjusting the combustion load in a wide range by the distribution mechanism 100.

即ち、パイロット燃焼のみを行う低燃焼負荷運転を行うには、第1供給口101から噴出された燃料ガスGが受入口102に受け入れられずに、パイロット燃焼用流路141のみに燃料ガスGが供給されるように、燃料ガスGの総供給量が分配機構における受入開始供給量未満に低下される。そして、このような低燃焼負荷運転においては、メイン燃焼用流路142に過剰希薄混合気が形成されないので、未燃成分の発生を抑制することができる。   That is, in order to perform a low combustion load operation in which only pilot combustion is performed, the fuel gas G ejected from the first supply port 101 is not received by the receiving port 102, and the fuel gas G is only fed to the pilot combustion channel 141. In order to be supplied, the total supply amount of the fuel gas G is reduced to less than the reception start supply amount in the distribution mechanism. In such a low combustion load operation, since no excessive lean air-fuel mixture is formed in the main combustion flow path 142, generation of unburned components can be suppressed.

一方、メイン燃焼及びパイロット燃焼の両方を行う高燃焼負荷運転を行うには、第1供給口101から噴出された燃料ガスGが受入口102に受け入れられて、メイン燃焼用流路142にも燃料ガスGが供給されるように、燃料ガスGの総供給量が分配機構における受入開始供給量以上に増加される。そして、このような高燃焼負荷運転においては、燃料ガスGの総供給量が大きいほど、メイン燃焼用流路142への燃料ガスGの供給量の上記総供給量に対する分配比率が大きくなり、逆に、燃料ガスGの総供給量が小さいほど、メイン燃焼用流路142への燃料ガスGの分配比率が小さくなる。即ち、高燃焼負荷運転において比較的燃焼負荷が低いときは、パイロット燃焼用流路141への燃料ガスGの分配比率を比較的大きくして、パイロット燃焼を安定したものとしながらも、高燃焼負荷運転において比較的燃焼負荷が高いときは、燃料ガスGを各燃焼用流路141,142全体において均質に供給して、希薄予混合気による低NOx燃焼を実現できる。   On the other hand, in order to perform a high combustion load operation in which both main combustion and pilot combustion are performed, the fuel gas G ejected from the first supply port 101 is received by the receiving port 102, and the main combustion channel 142 is also fueled. In order to supply the gas G, the total supply amount of the fuel gas G is increased more than the reception start supply amount in the distribution mechanism. In such a high combustion load operation, the larger the total supply amount of the fuel gas G, the larger the distribution ratio of the supply amount of the fuel gas G to the main combustion flow path 142 with respect to the total supply amount. In addition, the smaller the total supply amount of the fuel gas G, the smaller the distribution ratio of the fuel gas G to the main combustion channel 142. That is, when the combustion load is relatively low in the high combustion load operation, the distribution ratio of the fuel gas G to the pilot combustion flow path 141 is relatively increased to stabilize the pilot combustion, but the high combustion load When the combustion load is relatively high during operation, the fuel gas G can be supplied uniformly throughout the combustion channels 141 and 142 to achieve low NOx combustion using a lean premixed gas.

また、上記バーナ装置は、複数の分配機構100が設けられ、複数の分配機構100における夫々の第2供給口103が、パイロット燃焼用流路141に近い側から遠い側に渡って、言い換えれば、メイン燃焼用流路142の円筒状の径方向において、分配配置されている。そして、このようにメイン燃焼用流路102において第2供給口103を分散配置することで、メイン燃焼用流路142に対して均質に燃料ガスGを供給することができる。   Further, the burner device is provided with a plurality of distribution mechanisms 100, and each of the second supply ports 103 in the plurality of distribution mechanisms 100 extends from the side closer to the pilot combustion flow path 141 to the side farther away, in other words, The main combustion channel 142 is distributed in the cylindrical radial direction. The fuel gas G can be uniformly supplied to the main combustion flow path 142 by distributing the second supply ports 103 in the main combustion flow path 102 in this manner.

国際公開番号WO 01/44720 A1International Publication Number WO 01/44720 A1 国際公開番号WO 02/073091 A1International Publication Number WO 02/073091 A1

しかし、上記のように、複数の分配機構を備え、複数の第2供給口が第2燃焼用流路(メイン燃焼用流路)において第1燃焼用流路(パイロット燃焼用流路)に近い側から遠い側に渡って分配配置されているバーナ装置において、全ての分配機構における受入開始供給量は同等に設定されているので、燃料ガスの総供給量を全ての分配機構における受入開始供給量以上に増加させて高燃焼負荷運転を行うときには、比較的燃焼負荷が低い場合でも、メイン燃焼用流路に対して均質に燃料ガスが供給されることになり、メイン燃焼用流路に形成される混合気の当量比が小さくなりすぎて、安定した燃焼状態を確保できなくなるという問題がある。特に、メイン燃焼用流路において、比較的パイロット燃焼用流路から遠い第2供給口から供給された燃料ガスは、パイロット燃焼により着火され難いので、燃焼せずに未燃成分として排出されてしまうことがあり、排ガス性状の悪化及び効率低下の原因となる。   However, as described above, a plurality of distribution mechanisms are provided, and the plurality of second supply ports are close to the first combustion channel (pilot combustion channel) in the second combustion channel (main combustion channel). In the burner device distributed and arranged from the side far from the side, the acceptance start supply amount in all the distribution mechanisms is set equal, so the total supply amount of fuel gas is the acceptance start supply amount in all the distribution mechanisms When the high combustion load operation is performed by increasing the above, even when the combustion load is relatively low, the fuel gas is uniformly supplied to the main combustion flow path and formed in the main combustion flow path. There is a problem that the equivalent ratio of the air-fuel mixture becomes too small to ensure a stable combustion state. In particular, in the main combustion channel, the fuel gas supplied from the second supply port that is relatively far from the pilot combustion channel is difficult to be ignited by pilot combustion, and thus is discharged without being burned as an unburned component. In some cases, the exhaust gas properties deteriorate and the efficiency decreases.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、パイロット燃焼用流路としての第1燃焼用流路に燃料ガスを供給して安定したパイロット燃焼を行いながら、メイン燃焼用流路としての第2燃焼用流路に燃料ガスを供給してメイン燃焼を行う場合において、第2燃焼用流路における未燃成分の発生を抑制し、良好な排ガス性状且つ高効率化を実現するバーナ装置を提供する点にある。   The present invention has been made in view of the above-described problems, and its object is to perform main combustion while supplying fuel gas to a first combustion channel as a pilot combustion channel and performing stable pilot combustion. In the case where main combustion is performed by supplying fuel gas to the second combustion flow channel as the flow channel, the generation of unburned components in the second combustion flow channel is suppressed, and good exhaust gas properties and high efficiency are achieved. It is in providing a burner device to be realized.

上記目的を達成するための本発明に係るバーナ装置は、内部に流通する酸素含有ガスに燃料ガスが供給されて形成された混合気を燃焼部に供給して燃焼させる第1燃焼用流路及び第2燃焼用流路を備え、
前記第1燃焼用流路と前記第2燃焼用流路とに燃料ガスを分配供給する分配機構を複数備え、
前記分配機構が、前記第1燃焼用流路に開口し前記第1燃焼用流路での酸素含有ガスの流通方向に交差する方向に燃料ガスを噴出させる第1供給口と、前記第1燃焼用流路に前記第1供給口の前記燃料ガスの噴出方向に対向して開口する受入口を一端側に形成し前記第2燃焼用流路に開口する第2供給口を他端側に形成した供給路とからなり、前記総供給量が所定の受入開始供給量以上となったときに前記第1供給口から噴出された燃料ガスの一部が前記受入口に受け入れられるように構成され、
前記複数の分配機構が、前記第2供給口が前記第1燃焼用流路から近い側に配置されている近側分配機構と、前記第2供給口が前記近側分配機構よりも前記第1燃焼用流路から遠い側に配置されている遠側分配機構とからなるバーナ装置であって、
前記各分配機構の前記第1供給口が、前記酸素含有ガスの流通方向において異なる位置に設けられ、
前記夫々の分配機構における前記第1供給口と前記受入口との配置状態が、前記遠側分配機構における前記受入開始供給量を前記近側分配機構における前記受入開始供給量よりも大きく設定する供給量設定構造を有し、
前記供給量設定構造が、前記遠側分配機構における前記第1供給口と前記受入口との離間距離を前記近側分配機構における前記離間距離よりも大きく設定した構造である点にある。
In order to achieve the above object, a burner device according to the present invention includes a first combustion channel for supplying an air-fuel mixture formed by supplying a fuel gas to an oxygen-containing gas flowing therein and burning the mixture. A second combustion channel,
A plurality of distribution mechanisms for distributing and supplying fuel gas to the first combustion channel and the second combustion channel;
The distribution mechanism has a first supply port that opens into the first combustion channel and ejects fuel gas in a direction that intersects the flow direction of the oxygen-containing gas in the first combustion channel; and the first combustion A receiving port that opens in the flow path facing the fuel gas ejection direction of the first supply port is formed on one end side, and a second supply port that opens in the second combustion flow path is formed on the other end side A part of the fuel gas ejected from the first supply port when the total supply amount is equal to or greater than a predetermined reception start supply amount, and is configured to be received by the reception port.
The plurality of distribution mechanisms include a near-side distribution mechanism in which the second supply port is disposed closer to the first combustion flow path, and the second supply port than the near-side distribution mechanism. A burner device comprising a far side distribution mechanism disposed on the far side from the combustion flow path,
The first supply port of each distribution mechanism is provided at a different position in the flow direction of the oxygen-containing gas;
Supply in which the arrangement state of the first supply port and the receiving port in each of the distribution mechanisms sets the reception start supply amount in the far side distribution mechanism to be larger than the reception start supply amount in the near side distribution mechanism have a quantity set structure,
The supply amount setting structure is a structure in which a separation distance between the first supply port and the receiving port in the far side distribution mechanism is set larger than the separation distance in the near side distribution mechanism .

上記第1特徴構成によれば、複数の分配機構を備え、複数の第2供給口が第2燃焼用流路において第1燃焼用流路から近い側から遠い側に渡って分配配置されているバーナ装置において、夫々の分配機構における第1供給口と受入口との配置状態が上記供給量設定構造を有することで、燃料ガスの総供給量を近側分配機構の受入開始供給量以上且つ遠側分配機構の受入開始供給量未満に設定する中燃焼負荷運転において、第2燃焼用流路に対して、安定した燃焼を確保する第1燃焼用流路から近い側の近側分配機構の第2供給口からのみ燃料ガスを供給して、その第2燃焼用流路に供給された燃料ガスを良好に第1燃焼用流路における燃焼により着火し燃焼させることができる。   According to the first characteristic configuration, the plurality of distribution mechanisms are provided, and the plurality of second supply ports are distributed and arranged in the second combustion channel from the side closer to the first combustion channel to the side farther from the first combustion channel. In the burner device, the arrangement state of the first supply port and the reception port in each distribution mechanism has the above-described supply amount setting structure, so that the total supply amount of the fuel gas is greater than the reception start supply amount of the near-side distribution mechanism and far away. In the middle combustion load operation that is set to be less than the reception start supply amount of the side distribution mechanism, the second distribution mechanism on the side closer to the second combustion channel from the first combustion channel that secures stable combustion is used. The fuel gas can be supplied only from the two supply ports, and the fuel gas supplied to the second combustion channel can be favorably ignited and burned by the combustion in the first combustion channel.

即ち、夫々の分配機構における受入開始供給量が、第2供給口が第1燃焼用流路から遠い分配機構ほど大きくなるように、夫々の分配機構における第1供給口と受入口との対向方向や離間距離等の配置状態が設定されているので、中燃焼負荷運転においては、近側分配機構の受入口には燃料ガスが受け入れられるものの、遠側分配機構の受入口には燃料ガスが受け入れられなくなる。よって、第2燃焼用流路に対して、近側分配機構の第2供給口のみから第1燃焼用流路から近い側に集中して燃料ガスを供給することができる。   That is, the direction in which the first supply port and the receiving port in each distribution mechanism face each other so that the receiving start supply amount in each distribution mechanism increases as the second supply port becomes farther from the first combustion flow path. In the middle combustion load operation, the fuel gas is received at the receiving port of the near side distribution mechanism, but the fuel gas is received at the receiving port of the far side distribution mechanism. It becomes impossible. Therefore, the fuel gas can be concentrated on the second combustion channel from only the second supply port of the near side distribution mechanism to the side closer to the first combustion channel.

一方、燃料ガスの総供給量を遠側分配機構の受入開始供給量以上に設定する高燃焼負荷運転においては、第2燃焼用流路に対して、近側分配機構の第2供給口に加えて遠側分配機構の第2供給口からも燃料ガスを供給して、燃料ガスGを第2燃焼用流路全体において均質に供給して、希薄予混合気による低NOx燃焼を実現できる。
さらに、第1燃焼用流路においては、酸素含有ガスの流れが、第1供給口から受入口に向かう燃料ガスの流れに対して、それを第1燃焼用流路の下流側に導こうとする力を与える。そして、夫々の分配機構における第1供給口と受入口との離間距離を、第2供給口が第1燃焼用流路から遠いほど大きく設定することで、遠側分配機構における上記酸素含有ガスの流れによる燃料ガスの流れに対する力を、近側分配機構よりも大きくして、遠側分配機構において第1供給口から噴出された燃料ガスが受入口に受け入れられ難くすることで、上記供給量設定構造を実現し、遠側分配機構の受入開始供給量を、近側分配機構の受入開始供給量よりも大きくすることができる。
On the other hand, in the high combustion load operation in which the total supply amount of the fuel gas is set to be greater than or equal to the reception start supply amount of the far side distribution mechanism, in addition to the second supply port of the near side distribution mechanism, the second combustion channel is added. Further, the fuel gas is also supplied from the second supply port of the far side distribution mechanism, and the fuel gas G is supplied uniformly throughout the second combustion flow path, so that the low NOx combustion by the lean premixed gas can be realized.
Further, in the first combustion channel, the flow of the oxygen-containing gas is directed to the downstream side of the first combustion channel with respect to the flow of the fuel gas from the first supply port toward the receiving port. To give you the power to Then, the separation distance between the first supply port and the receiving port in each distribution mechanism is set to be larger as the second supply port is farther from the first combustion flow path, so that the oxygen-containing gas in the far-side distribution mechanism is increased. By setting the force of the flow to the flow of the fuel gas larger than that of the near side distribution mechanism, the fuel gas ejected from the first supply port in the far side distribution mechanism is difficult to be received by the reception port, thereby setting the supply amount. The structure can be realized, and the reception start supply amount of the far side distribution mechanism can be made larger than the reception start supply amount of the near side distribution mechanism.

従って、上記第1特徴構成により、第2燃焼用流路における未燃成分の発生を抑制し、良好な排ガス性状且つ高効率化を実現するバーナ装置を実現することができる。   Therefore, the burner apparatus which suppresses generation | occurrence | production of the unburned component in the 2nd combustion flow path, and implement | achieves favorable exhaust gas property and high efficiency by the said 1st characteristic structure is realizable.

本発明に係るバーナ装置の第特徴構成は、上記第1特徴構成に加えて、前記第2燃焼用流路の前記第1燃焼用流路から近い側の壁部に沿って前記燃焼部に流出した混合気を、前記第1燃焼用流路側に誘導する第1誘導壁を備えた点にある。 The second characteristic feature of the burner apparatus of the present invention, in addition to the first feature configuration along said wall portion of the second close to the combustion flow path of the first combustion flow path side combustion portion In this respect, a first induction wall is provided for guiding the air-fuel mixture flowing out to the first combustion flow path side.

上記第特徴構成によれば、上記第1誘導壁を設けることにより、中燃焼負荷運転おいて、第2燃焼用流路に対して、安定した燃焼を確保する第1燃焼用流路から近い側の近側分配機構の第2供給口からのみ燃料ガスを供給する場合において、その第2燃焼用流路に供給された燃料ガスにより形成された混合気は、前記第1燃焼用流路から近い側の壁部に沿って燃焼部に流出するのであるが、その混合気を第1誘導壁により比較的安定した燃焼が行われている第1燃焼用流路側に誘導して確実に燃焼させることができるので、一層未燃成分の生成を抑制することができる。 According to the second characteristic configuration, by providing the first guide wall, in the middle combustion load operation, the second combustion channel is closer to the first combustion channel that ensures stable combustion. When the fuel gas is supplied only from the second supply port of the near-side distribution mechanism on the side, the air-fuel mixture formed by the fuel gas supplied to the second combustion channel is supplied from the first combustion channel. Although it flows out to the combustion part along the wall part on the near side, the air-fuel mixture is guided to the first combustion channel side where relatively stable combustion is performed by the first induction wall and reliably burned. Therefore, the generation of unburned components can be further suppressed.

本発明に係るバーナ装置の第特徴構成は、上記第1特徴構成に加えて、前記第2燃焼用流路に、前記複数の第2供給口の下流側を、前記第1燃焼用流路から近い側の近側流路と前記第1燃焼用流路から遠い側の遠側流路とに区画する区画壁を備えた点にある。 The third characteristic feature of the burner apparatus of the present invention, in addition to the first feature structure, the the second combustion flow path, the downstream side of the plurality of second supply ports, the first combustion stream It is in the point provided with the partition wall which divides | segments into the near side flow path near the path and the far side flow path far from the first combustion flow path.

上記第特徴構成によれば、上記区画壁を設けることにより、中燃焼負荷運転おいて、第2燃焼用流路に対して、安定した燃焼を確保する第1燃焼用流路から近い側の近側分配機構の第2供給口からのみ燃料ガスを供給する場合において、その近側分配機構の第2供給口から上記近側流路に供給された燃料ガスが、前記第1燃焼用流路から遠い側即ち上記遠側流路側に拡散することを抑制することができ、第1燃焼用流路側の比較的安定した燃焼により、その燃料ガスを確実に燃焼させることができるので、一層未燃成分の生成を抑制することができる。 According to the third characteristic configuration, by providing the partition wall, in the middle combustion load operation, the second combustion channel is closer to the first combustion channel that ensures stable combustion than the second combustion channel. In the case where fuel gas is supplied only from the second supply port of the near side distribution mechanism, the fuel gas supplied from the second supply port of the near side distribution mechanism to the near side flow channel is the first combustion flow channel. Diffusion to the far side, that is, the far side flow path side, and the relatively stable combustion on the first combustion flow path side allows the fuel gas to be reliably burned. Generation of components can be suppressed.

本発明に係るバーナ装置の第特徴構成は、上記第特徴構成に加えて、前記遠側流路において前記区画壁に沿って前記区画壁の下流側に流出した混合気を、前記第1燃焼用流路側に誘導する第2誘導壁を備えた点にある。 According to a fourth characteristic configuration of the burner device of the present invention, in addition to the third characteristic configuration described above, an air-fuel mixture that has flowed out downstream of the partition wall along the partition wall in the far-side flow path, The second guide wall is provided with a second guide wall that guides the combustion channel.

上記第特徴構成によれば、上記第2誘導壁を設けることにより、燃料ガスの総供給量を増加させ、第2燃焼用流路において遠側流路にも燃料ガスが供給され始めて高燃焼負荷運転を開始した時点において、遠側流路に供給された燃料ガスにより形成された混合気が、区画壁に沿って燃焼部に流出するのであるが、その混合気を第2誘導壁により第1燃焼用流路側に誘導し、第1燃焼用流路における比較的安定した燃焼により確実に燃焼させることができるので、燃料ガスの総供給量を増加させた場合でも一層未燃成分の生成を抑制することができる。 According to the fourth feature configuration, by providing the second guide wall, the total supply amount of the fuel gas is increased, and in the second combustion channel, the fuel gas starts to be supplied to the far-side channel and the high combustion is performed. At the time when the load operation is started, the air-fuel mixture formed by the fuel gas supplied to the far-side flow channel flows out to the combustion section along the partition wall. Since it can be surely burned by relatively stable combustion in the first combustion flow path side, even when the total supply amount of fuel gas is increased, more unburned components can be generated. Can be suppressed.

本発明に係るバーナ装置の第特徴構成は、上記第1から第の何れかの特徴構成に加えて、前記夫々の分配機構における前記第1供給口が、前記第1燃焼用流路での酸素含有ガスの流通方向視で、互いに重かさなることなく配置されている点にある。 According to a fifth characteristic configuration of the burner device of the present invention, in addition to any one of the first to fourth characteristic configurations, the first supply port in each of the distribution mechanisms is the first combustion channel. The oxygen-containing gas is arranged so as not to be heavy when viewed in the flow direction of the oxygen-containing gas.

上記第特徴構成によれば、夫々の分配機構における第1供給口を、第1燃焼用流路での酸素含有ガスの流通方向視で、互いに重なることなく配置することで、第1燃焼用流路において、夫々の分配機構の第1供給口と受入口との間に形成された開放部には、他の分配機構の開放部が邪魔することなく安定して酸素含有ガスが通過することになる。よって、夫々の分配機構において、第1供給口から噴出された燃料ガスの一部が受入口に受け入れられるときの総供給量である受入開始供給量が安定し、前述の供給量設定構造において、安定した状態で、遠側分配機構における受入開始供給量を近側分配機構における受入開始供給量よりも大きく設定することができ、良好な排ガス性状且つ高効率化を安定して実現可能となる。 According to the fifth characterizing feature, the first supply port in each of the distribution mechanism, that in the flow direction when viewed in the oxygen-containing gas in the first combustion flow path, arranged without overlap with Rukoto each other, the first In the combustion channel, the oxygen-containing gas stably passes through the open portion formed between the first supply port and the receiving port of each distribution mechanism without obstructing the open portions of the other distribution mechanisms. Will do. Therefore, in each distribution mechanism, the reception start supply amount that is the total supply amount when a part of the fuel gas ejected from the first supply port is received by the reception port is stabilized, and in the above-described supply amount setting structure, In a stable state, the reception start supply amount in the far side distribution mechanism can be set larger than the reception start supply amount in the near side distribution mechanism, and good exhaust gas properties and high efficiency can be stably realized.

上記目的を達成するための本発明に係るガスタービンエンジンの特徴構成は、上記第1から第の何れかの特徴構成のバーナ装置を備え、前記バーナ装置の燃焼部から排出される燃焼排ガスの運動エネルギによりタービンを回転させる点にある。 In order to achieve the above object, the gas turbine engine according to the present invention is characterized by comprising the burner device having any one of the first to fifth characteristic configurations, and the combustion exhaust gas discharged from the combustion section of the burner device. The point is that the turbine is rotated by kinetic energy.

上記特徴構成のガスタービンエンジンによれば、これまで説明してきたバーナ装置を備えているので、良好な排ガス性状且つ高効率化を実現しながら、広い運転負荷範囲で運転することができる。   According to the gas turbine engine having the above-described characteristic configuration, since the burner device described so far is provided, it is possible to operate in a wide operating load range while realizing good exhaust gas properties and high efficiency.

本発明の第1実施形態について以下に説明する。
図1に示すガスタービンエンジンは、バーナ装置60の燃焼部45から排出される燃焼排ガスの運動エネルギによりタービン62を回転させるように構成され、更に、タービン62の回転動力の一部を利用してバーナ装置60に空気A(酸素含有ガスの一例)を押し込む圧縮器61を備える。
A first embodiment of the present invention will be described below.
The gas turbine engine shown in FIG. 1 is configured to rotate the turbine 62 by the kinetic energy of the combustion exhaust gas discharged from the combustion unit 45 of the burner device 60, and further uses a part of the rotational power of the turbine 62. A compressor 61 for pushing air A (an example of an oxygen-containing gas) into the burner device 60 is provided.

バーナ装置60は、図2も参照して、燃料流路43を規定する燃料筒1と、この燃料筒1を外囲するパイロット燃焼用流路41(第1燃焼用流路の一例)を規定する内筒2と、この内筒2を外囲するメイン燃焼用流路42(第2燃焼用流路の一例)を規定する外筒3とを同軸状に備えて構成されている。
そして、パイロット燃焼用流路41及びメイン燃焼用流路42には、前記圧縮機61により供給された空気Aが流通すると共に、後述の分配機構50a,50bにより燃料ガスGが分配供給され、パイロット燃焼用流路41及びメイン燃焼用流路42において形成された混合気が、燃焼部45に流出して燃焼される。
The burner device 60 also defines the fuel cylinder 1 that defines the fuel flow path 43 and the pilot combustion flow path 41 (an example of the first combustion flow path) that surrounds the fuel cylinder 1 with reference to FIG. The inner cylinder 2 and the outer cylinder 3 that defines a main combustion flow path 42 (an example of a second combustion flow path) that surrounds the inner cylinder 2 are provided coaxially.
The pilot combustion channel 41 and the main combustion channel 42 are supplied with the air A supplied by the compressor 61, and the fuel gas G is distributed and supplied by distribution mechanisms 50a and 50b, which will be described later. The air-fuel mixture formed in the combustion channel 41 and the main combustion channel 42 flows out to the combustion unit 45 and is combusted.

パイロット燃焼用流路41及びメイン燃焼用流路42とは、燃焼部45において隣接するように、同心状に並設されている。尚、パイロット燃焼用流路41及びメイン燃焼用流路42は、少なくとも燃焼部45において隣接するものであれば、別に同心状に並設する必要はない。   The pilot combustion channel 41 and the main combustion channel 42 are arranged concentrically so as to be adjacent to each other in the combustion unit 45. The pilot combustion channel 41 and the main combustion channel 42 do not need to be arranged concentrically in parallel as long as they are adjacent at least in the combustion part 45.

燃料流路43には、燃料ガスGを蓄えた図示しないガス供給源から図示しない導管を介して燃料ガスGが供給される。
そして、燃料流路43内の燃料ガスGをパイロット燃焼用流路41及びメイン燃焼用流路42に分配供給する分配機構50a,50bが複数設けられている。
The fuel flow path 43 is supplied with fuel gas G from a gas supply source (not shown) that stores the fuel gas G via a conduit (not shown).
A plurality of distribution mechanisms 50 a and 50 b that distribute and supply the fuel gas G in the fuel flow path 43 to the pilot combustion flow path 41 and the main combustion flow path 42 are provided.

分配機構50a,50bは、図3も参照して、パイロット燃焼用流路41に配置されパイロット燃焼用流路41での空気Aの流通方向に交差する方向に燃料ガスを供給する第1供給口31a,31bと、第1供給口31a,31bに対して離間して対向するように配置された受入口32a,32bを一端側に形成しメイン燃焼用流路42に配置された第2供給口34a,34bを他端側に形成した供給路33a,33bとを有して構成されている。また、第1供給口31a,31bと受入口32a,32bとの間には、パイロット燃焼用流路41に開放されるスリット状の開放部7が形成されることになる。   Distribution mechanism 50a, 50b is also a 1st supply port which is arrange | positioned at the pilot combustion flow path 41 and supplies fuel gas in the direction which cross | intersects the distribution direction of the air A in the pilot combustion flow path 41 with reference also to FIG. 31a, 31b and a second supply port disposed in the main combustion flow path 42 with receiving ports 32a, 32b disposed on one end side so as to face and separate from the first supply ports 31a, 31b Supply paths 33a and 33b having 34a and 34b formed on the other end side are configured. In addition, a slit-like opening 7 that opens to the pilot combustion channel 41 is formed between the first supply ports 31a and 31b and the receiving ports 32a and 32b.

そして、供給路33a,33bは、第1供給口31a,31bへの燃料ガスGの総供給量が、夫々の分配機構50a,50bについて設定された所定の受入開始供給量以上に増加したときに、第1供給口31a,31bから上記開放部7に噴出された燃料ガスGの一部を受入口32a,32bに受け入れて、その受け入れた燃料ガスを第2供給口34a,34bからメイン燃焼用流路42に供給することができる。   The supply paths 33a and 33b are used when the total supply amount of the fuel gas G to the first supply ports 31a and 31b increases beyond a predetermined reception start supply amount set for each of the distribution mechanisms 50a and 50b. Part of the fuel gas G ejected from the first supply ports 31a and 31b to the opening 7 is received by the reception ports 32a and 32b, and the received fuel gas is used for main combustion from the second supply ports 34a and 34b. The flow path 42 can be supplied.

上記第1供給口31a,31bは、上記燃料筒1の外周からパイロット燃焼用流路41側に突出した第1供給部材4内に形成され、上記供給路33a,33bは、上記内筒2からメイン燃焼用流路42側に突出した第2供給部材5内に形成されている。
また、上記第1供給部材4及び第2供給部材5は、図2にも示すように、燃料筒1及び内筒2の周方向においては薄く、空気Aの流れ方向に沿って延びる翼形状に形成されており、このような上記第1供給部材4及び第2供給部材5は、上記周方向の8箇所に等間隔で配置されている。
The first supply ports 31 a and 31 b are formed in the first supply member 4 protruding from the outer periphery of the fuel cylinder 1 toward the pilot combustion flow path 41, and the supply paths 33 a and 33 b are connected to the inner cylinder 2. It is formed in the second supply member 5 protruding to the main combustion flow path 42 side.
Further, as shown in FIG. 2, the first supply member 4 and the second supply member 5 are thin in the circumferential direction of the fuel cylinder 1 and the inner cylinder 2 and have wing shapes extending along the flow direction of the air A. The first supply member 4 and the second supply member 5 are arranged at eight equal intervals in the circumferential direction.

上記複数の分配機構50a,50bは、第2供給口34aがパイロット燃焼用流路41から近い側に配置されている近側分配機構50aと、第2供給口34bが近側分配機構50aよりもパイロット燃焼用流路41から遠い側に配置されている遠側分配機構50bとからなる。即ち、複数の分配機構50a,50bの第2供給口34a,34bの夫々が、パイロット燃焼用流路41に近い側から遠い側に渡って、言い換えれば、メイン燃焼用流路42の円筒状の径方向において、分配配置されている。   The plurality of distribution mechanisms 50a and 50b include a near-side distribution mechanism 50a in which the second supply port 34a is disposed closer to the pilot combustion channel 41, and a second supply port 34b than the near-side distribution mechanism 50a. And a far-side distribution mechanism 50b disposed on the far side from the pilot combustion channel 41. That is, each of the second supply ports 34a and 34b of the plurality of distribution mechanisms 50a and 50b extends from the side closer to the pilot combustion channel 41 to the side far from the pilot combustion channel 41, in other words, the cylindrical shape of the main combustion channel 42. In the radial direction, they are distributed.

そして、上記のように構成されたバーナ装置60において、夫々の分配機構50a,50bにおける第1供給口31a,31bと受入口32a,32bとの配置状態が、遠側分配機構50bにおける前述の受入開始供給量Yを近側分配機構50aにおける受入開始供給量Xよりも大きく設定する供給量設定構造を有するように構成されている。   In the burner device 60 configured as described above, the arrangement state of the first supply ports 31a and 31b and the receiving ports 32a and 32b in the respective distribution mechanisms 50a and 50b is the above-described reception in the far-side distribution mechanism 50b. It is configured to have a supply amount setting structure in which the start supply amount Y is set larger than the reception start supply amount X in the near side distribution mechanism 50a.

詳しくは、上記供給量設定構造は、遠側分配機構50bにおける第1供給口31bと受入口32bとの離間距離が、近側分配機構50aにおける第1供給口31aと受入口32aとの離間距離よりも大きく設定した構造とされている。
即ち、遠側分配機構50bにおいて第1供給口31bから噴出された燃料ガスGが受入口32bに受け入れられ難くなるので、前述のような供給量設定構造が実現され、遠側分配機構50bの受入開始供給量Yが、近側分配機構50aの受入開始供給量Xよりも大きくなる。
Specifically, in the supply amount setting structure, the separation distance between the first supply port 31b and the receiving port 32b in the far side distribution mechanism 50b is the separation distance between the first supply port 31a and the receiving port 32a in the near side distribution mechanism 50a. The structure is set larger than that.
That is, since the fuel gas G ejected from the first supply port 31b in the far side distribution mechanism 50b is difficult to be received by the receiving port 32b, the supply amount setting structure as described above is realized and the far side distribution mechanism 50b receives the fuel gas G. The start supply amount Y becomes larger than the reception start supply amount X of the near side distribution mechanism 50a.

そして、このような供給量設定構造によって、パイロット燃焼用流路41にのみ燃料ガスGを供給して燃焼部45においてパイロット燃焼用流路41の下流側部分のみでパイロット燃焼を行う低燃焼負荷運転から、燃焼部45において上記パイロット燃焼に加えてメイン燃焼用流路42の下流側部分でもメイン燃焼を行う中燃焼負荷運転及び高燃焼負荷運転に渡る広い燃焼負荷域において、良好な燃焼状態を実現することができる。   With such a supply amount setting structure, the low combustion load operation in which the fuel gas G is supplied only to the pilot combustion channel 41 and the pilot combustion is performed only in the downstream portion of the pilot combustion channel 41 in the combustion unit 45. From the above, in the combustion section 45, in addition to the pilot combustion, a good combustion state is realized in a wide combustion load range over the middle combustion load operation and the high combustion load operation in which the main combustion is performed also in the downstream portion of the main combustion passage 42 can do.

即ち、図4を参照して、低燃焼負荷運転においては、燃料ガスGの総供給量が、近側分配機構50aの受入開始供給量X未満の範囲内に設定され、第1供給口31a,31bら噴出された燃料ガスGが、受入口32a,32bに受け入れられずに、パイロット燃焼用流路41のみに燃料ガスGが供給される。
そして、このような低燃焼負荷運転においては、メイン燃焼用流路42に過剰希薄混合気が形成されないので、未燃成分の発生を抑制することができる。
That is, referring to FIG. 4, in the low combustion load operation, the total supply amount of the fuel gas G is set within a range less than the reception start supply amount X of the near side distribution mechanism 50a, and the first supply ports 31a, 31a, The fuel gas G ejected from 31b is not received by the receiving ports 32a and 32b, and the fuel gas G is supplied only to the pilot combustion channel 41.
In such a low combustion load operation, since an excessively lean air-fuel mixture is not formed in the main combustion channel 42, generation of unburned components can be suppressed.

また、中燃焼負荷運転においては、燃料ガスGの総供給量が、近側分配機構50aの受入開始供給量X以上且つ遠側分配機構50bの受入開始供給量Y未満の範囲内に設定され、近側分配機構50aの第1供給口31aから噴出された燃料ガスGの一部のみが、それに対向する受入口32aに受け入れられ、その受け入れられた燃料ガスGが、近側分配機構50aの第2供給口34aからメイン燃焼用流路42におけるパイロット燃焼用流路41から近い側に供給される。
そして、このような中燃焼負荷運転においては、メイン燃焼用流路42に対しては、安定した燃焼を確保するパイロット燃焼用流路41から近い側の近側分配機構50aの第2供給口34aからのみ燃料ガスGを供給して、そのメイン燃焼用流路42に供給された燃料ガスを、パイロット燃焼から良好に火移りさせて着火して燃焼させることができる。
Further, in the middle combustion load operation, the total supply amount of the fuel gas G is set within a range that is not less than the reception start supply amount X of the near side distribution mechanism 50a and less than the reception start supply amount Y of the far side distribution mechanism 50b. Only a part of the fuel gas G ejected from the first supply port 31a of the near side distribution mechanism 50a is received by the receiving port 32a opposite to the fuel gas G, and the received fuel gas G is supplied to the first side of the near side distribution mechanism 50a. 2 from the supply port 34a to the side close to the pilot combustion channel 41 in the main combustion channel 42.
In such a medium combustion load operation, the second supply port 34a of the near side distribution mechanism 50a on the side closer to the pilot combustion channel 41 that ensures stable combustion is secured to the main combustion channel 42. The fuel gas G can be supplied only from the combustion gas, and the fuel gas supplied to the main combustion flow path 42 can be well transferred from the pilot combustion to be ignited and burned.

また、高燃焼負荷運転においては、燃料ガスGの総供給量が、遠側分配機構50bの受入開始供給量Y以上の範囲内に設定され、夫々の第1供給口31a,31bから噴出された燃料ガスGの一部が、それに対向する夫々の受入口32a,32bに受け入れられ、その受け入れられた燃料ガスGが、夫々の第2供給口34a,34bからメイン燃焼用流路42全体に供給され、希薄予混合気による低NOx燃焼を実現できる。
る。
Further, in the high combustion load operation, the total supply amount of the fuel gas G is set within a range equal to or larger than the reception start supply amount Y of the far side distribution mechanism 50b, and is ejected from the first supply ports 31a and 31b. A part of the fuel gas G is received by the respective receiving ports 32a and 32b facing each other, and the received fuel gas G is supplied to the entire main combustion channel 42 from the respective second supply ports 34a and 34b. In addition, low NOx combustion using a lean premixed gas can be realized.
The

内筒2の下流側端部近くには、空気Aの流れ方向に沿って縮径する筒状の第1エアステージリング13(第1誘導壁の一例)が設けられている。
そして、この第1エアステージリング13を設けることにより、メイン燃焼用流路41のパイロット燃焼用流路42から近い側の壁部2a、即ち、内筒の外側の壁部2aに沿って燃焼部45に流出した混合気を、パイロット燃焼用流路41側に誘導して、パイロット燃焼により確実に燃焼させることができる。
Near the downstream end of the inner cylinder 2, a cylindrical first air stage ring 13 (an example of a first guide wall) that is reduced in diameter along the flow direction of the air A is provided.
And by providing this 1st air stage ring 13, a combustion part is along the wall part 2a near the pilot combustion flow path 42 of the main combustion flow path 41, that is, the wall part 2a outside the inner cylinder. The air-fuel mixture flowing out to 45 can be guided to the pilot combustion channel 41 side and reliably burned by pilot combustion.

メイン燃焼用流路42には、第2供給部材5の下流側を、パイロット燃焼用流路41から近い側の近側流路42aとパイロット燃焼用流路41から遠い側の遠側流路42bとに区画する区画筒14(区画壁の一例)が設けられている。
そして、この区画筒14を設けることにより、近側分配機構50aの第2供給口34aからメイン燃焼用流路42に供給された燃料ガスGがパイロット燃焼用流路41から遠ざかって遠側流路42b側に拡散することを抑制することができ、パイロット燃焼用流路41側の比較的安定した燃焼により、その燃料ガスGを確実に燃焼させることができる。
In the main combustion channel 42, the downstream side of the second supply member 5 includes a near channel 42 a near the pilot combustion channel 41 and a far channel 42 b far from the pilot combustion channel 41. A partition cylinder 14 (an example of a partition wall) is provided.
By providing the partition cylinder 14, the fuel gas G supplied from the second supply port 34a of the near side distribution mechanism 50a to the main combustion flow path 42 moves away from the pilot combustion flow path 41, and the far side flow path. The diffusion to the side of 42b can be suppressed, and the fuel gas G can be reliably burned by the relatively stable combustion on the pilot combustion channel 41 side.

更に、この区画筒14の下流側端部近くには、空気Aの流れ方向に沿って縮径する筒状の第2エアステージリング15(第2誘導壁の一例)が設けられている。
そして、この第2エアステージリング15を設けることにより、区画筒14の外側の壁部14aに沿って燃焼部45に流出した混合気を、パイロット燃焼用流路45側に誘導してパイロット燃焼により確実に燃焼させることができる。
Further, a cylindrical second air stage ring 15 (an example of a second guide wall) having a diameter reduced along the flow direction of the air A is provided near the downstream end of the partition tube 14.
By providing the second air stage ring 15, the air-fuel mixture that has flowed out to the combustion section 45 along the outer wall portion 14 a of the partition tube 14 is guided to the pilot combustion flow path 45 side to perform pilot combustion. It can be reliably burned.

外筒3と内筒2との間には、外筒3に内筒2を支持させるストラット12が周方向に分散配置されており、更に、その1つのストラット12の内部には、パイロット燃焼用流路41から流出した混合気を点火するための点火装置が内蔵されている。   Between the outer cylinder 3 and the inner cylinder 2, struts 12 for supporting the inner cylinder 2 on the outer cylinder 3 are distributed in the circumferential direction. An ignition device for igniting the air-fuel mixture flowing out from the flow path 41 is incorporated.

また、第2供給部材5に形成された夫々の第2供給口34a,34bの外側には、夫々の第2供給口34a,34bの外側を覆うように形成された筒状の混合促進筒21,22が設けられている。
そして、この混合促進筒21,22を設けることにより、第2供給口34a,34bからメイン燃焼用流路42に供給された燃料ガスGを内筒2から離間する方向(即ち径方向)に衝突させ、衝突した燃料ガスGをメイン燃焼用流路42において周方向に拡散させることができる。
In addition, a cylindrical mixing promotion cylinder 21 is formed outside the second supply ports 34a and 34b formed in the second supply member 5 so as to cover the outer sides of the second supply ports 34a and 34b. , 22 are provided.
By providing the mixing promotion cylinders 21 and 22, the fuel gas G supplied from the second supply ports 34a and 34b to the main combustion flow path 42 collides in a direction away from the inner cylinder 2 (that is, in the radial direction). Thus, the colliding fuel gas G can be diffused in the circumferential direction in the main combustion flow path 42.

パイロット燃焼用流路41の第1供給部材4の下流側には、パイロット燃焼用流路41内に流れてきた空気Aと燃料ガスGとの混合気に旋回力を付与する第1スワラー16が配置されており、更に、メイン燃焼用流路42の第2供給部材5の下流側には、空気Aと燃料ガスGとの混合気に、旋回力を付与する第2スワラー11が配置されている。
そして、これら第1スワラー16及び第2スワラー11により、パイロット燃焼用流路41及びメイン燃焼用流路42における空気A若しくは混合気に旋回力が付与されて、火炎の保炎性を向上させることができる。
On the downstream side of the first supply member 4 of the pilot combustion channel 41, there is a first swirler 16 that imparts a turning force to the mixture of the air A and the fuel gas G flowing into the pilot combustion channel 41. Furthermore, a second swirler 11 is disposed on the downstream side of the second supply member 5 of the main combustion flow path 42 to apply a turning force to the air-fuel mixture of the air A and the fuel gas G. Yes.
Then, by the first swirler 16 and the second swirler 11, a turning force is applied to the air A or the air-fuel mixture in the pilot combustion channel 41 and the main combustion channel 42, thereby improving the flame holding property. Can do.

〔別実施形態〕
(1)上記実施形態では、近側分配機構50aの第1供給口31a及び供給路33aと、遠側分配機構50bの第1供給口31b及び供給路33bとを、共通の第1供給部材4及び第2供給部材5内に形成したが、別に、図5及び図6に示すように、近側分配機構50aの第1供給口31a及び供給路33aを第1供給部材4a及び第2供給部材5a内に形成し、図5及び図7に示すように、遠側分配機構50bの第1供給口31b及び供給路33bを、上記第1供給部材4a及び第2供給部材5aとは別体の第1供給部材4b及び第2供給部材5b内に形成しても構わない。
[Another embodiment]
(1) In the above-described embodiment, the first supply port 31a and the supply path 33a of the near-side distribution mechanism 50a and the first supply port 31b and the supply path 33b of the far-side distribution mechanism 50b are connected to the common first supply member 4. As shown in FIGS. 5 and 6, the first supply port 31a and the supply path 33a of the near-side distribution mechanism 50a are separately provided in the first supply member 4a and the second supply member. As shown in FIGS. 5 and 7, the first supply port 31b and the supply path 33b of the far side distribution mechanism 50b are separated from the first supply member 4a and the second supply member 5a. You may form in the 1st supply member 4b and the 2nd supply member 5b.

また、このように近側分配機構50a及び遠側分配機構50bを別体で構成する場合には、図5に示すように、近側分配機構50aの開放部7a及び遠側分配機構50bの開放部7bの夫々に空気Aが安定供給されるように、夫々の分配機構50a,50bにおける第1供給口31aが、パイロット燃焼用流路41での空気Aの流通方向視で、互いに重畳することなく、パイロット燃焼用流路41の円筒状の径方向において分配配置することができる。   Further, when the near side distribution mechanism 50a and the far side distribution mechanism 50b are configured separately as described above, as shown in FIG. 5, the opening portion 7a of the near side distribution mechanism 50a and the open side distribution mechanism 50b are opened. The first supply ports 31a of the distribution mechanisms 50a and 50b overlap each other when viewed in the flow direction of the air A in the pilot combustion channel 41 so that the air A is stably supplied to each of the portions 7b. Without being distributed in the cylindrical radial direction of the pilot combustion channel 41.

(2)上記実施の形態では、空気Aの流れに沿って、近側分配機構50aを遠側分配機構50bの上流側に配置したが、逆に、図8に示すように、近側分配機構50aを遠側分配機構50bの下流側に配置しても構わない。
また、この場合でも、夫々の近側分配機構50a及び遠側分配機構50bは一体又は別体で構成することができる。
(2) In the above embodiment, the near-side distribution mechanism 50a is arranged upstream of the far-side distribution mechanism 50b along the flow of the air A. Conversely, as shown in FIG. 50a may be arranged on the downstream side of the far side distribution mechanism 50b.
Even in this case, each of the near-side distribution mechanism 50a and the far-side distribution mechanism 50b can be formed integrally or separately.

(3)上記実施の形態において、一般的な例として、燃料ガスGの燃焼のための酸素含有ガスとして空気Aを利用したものを説明したが、空気以外の燃焼用酸素含有ガスとしては、例えば、酸素成分含有量が空気に対して高い酸素富化ガス等を利用することが可能である。 (3) In the above embodiment, as a general example, it has been described which utilizes the air A as the oxygen-containing gas for combustion of the fuel gas G, as combustion oxygen-containing gas outside the air Ki以 is For example, it is possible to use an oxygen-enriched gas whose oxygen component content is higher than air.

(4)上記実施の形態において、第1供給部材4及び第2供給部材5内に、供給量設定構造を実現するために近側分配機構50aと遠側分配機構50bとを一つずつ設けたが、供給量設定構造を実現する夫々の分配機構の組合せは適宜変更可能である。例えば、近側分配機構及び遠側分配機構のうち一方を他方よりも多く設けても構わない。
また、3つ以上の分配機構を設け、第2供給口の位置がパイロット燃焼用流路41に近いものから遠いものにかけて、受入開始供給量が順に大きくなるように、例えば、第1供給口と受入口との離間距離を順に大きくして、供給量設定構造を構成しても構わない。この場合、ある分配機構において、第2供給口の位置がその分配機構のものよりもパイロット燃焼用流路41側に近い位置である分配機構が近側分配機構50aであり、ある分配機構において、第2供給口の位置がその分配機構のものよりもパイロット燃焼用流路41から遠い位置である分配機構が遠側分配機構50bであるといえる。
(4) In the above embodiment, the near side distribution mechanism 50a and the far side distribution mechanism 50b are provided one by one in the first supply member 4 and the second supply member 5 in order to realize the supply amount setting structure. However, the combination of each distribution mechanism which implement | achieves a supply amount setting structure can be changed suitably. For example, one of the near-side distribution mechanism and the far-side distribution mechanism may be provided more than the other.
Also, three or more distribution mechanisms are provided, for example, the first supply port so that the reception start supply amount sequentially increases from the position close to the pilot combustion flow path 41 to the position far from the pilot combustion channel 41. The supply amount setting structure may be configured by sequentially increasing the separation distance from the receiving port. In this case, in a certain distribution mechanism, the distribution mechanism in which the position of the second supply port is closer to the pilot combustion channel 41 side than that of the distribution mechanism is the near-side distribution mechanism 50a. It can be said that the distribution mechanism in which the position of the second supply port is farther from the pilot combustion channel 41 than that of the distribution mechanism is the far-side distribution mechanism 50b.

(5)上記実施の形態において、本発明に係るバーナ装置をガスタービンエンジンに備えたバーナ装置60に適用した例について説明したが、本発明に係るバーナ装置は、単独で焼却炉用などのバーナ装置として利用することもできる。 (5) In the above embodiment, the example in which the burner device according to the present invention is applied to the burner device 60 provided in the gas turbine engine has been described. However, the burner device according to the present invention is a burner for an incinerator alone. It can also be used as a device.

ガスタービンエンジン用のバーナ装置の概略構成図Schematic configuration diagram of burner device for gas turbine engine 図1に示すバーナ装置の横断正面図Cross-sectional front view of the burner device shown in FIG. 分配機構の構成を説明するための拡大図Enlarged view for explaining the configuration of the distribution mechanism 燃料ガスの総供給流量と夫々の分配機構の受入開始供給量との関係を示すグラフ図The graph which shows the relationship between the total supply flow rate of fuel gas, and the reception start supply amount of each distribution mechanism 別実施形態のバーナ装置の横断正面図Cross-sectional front view of burner device of another embodiment 図5の近側分配機構の構成を説明するための拡大図The enlarged view for demonstrating the structure of the near side distribution mechanism of FIG. 図5の遠側分配機構の構成を説明するための拡大図The enlarged view for demonstrating the structure of the far side distribution mechanism of FIG. 別実施形態のバーナ装置の分配機構の構成を説明するための拡大図The enlarged view for demonstrating the structure of the distribution mechanism of the burner apparatus of another embodiment. 従来のバーナ装置の概略構成図Schematic configuration diagram of a conventional burner device

符号の説明Explanation of symbols

1:燃料筒
4,4a,4b:第1供給部材
5,5a,5b:第2供給部材
7,7a,7b:開放部
13:第1エアステージリング(第1誘導壁)
14:区画筒(区画壁)
15:第2エアステージリング(第2誘導壁)
21,22:混合促進筒
31a,31b:第1供給口
32a,32b:受入口
33a,33b:供給路
34a,34b:第2供給口
41:パイロット燃焼用流路(第1燃焼用流路)
42:メイン燃焼用流路(第2燃焼用流路)
43:燃料流路
45:燃焼部
50a:近側分配機構
50b:遠側分配機構
60:バーナ装置
A:空気
G:燃料ガス
X,Y:受入開始供給量
1: fuel cylinders 4, 4a, 4b: first supply members 5, 5a, 5b: second supply members 7, 7a, 7b: open part 13: first air stage ring (first guide wall)
14: Compartment cylinder (compartment wall)
15: Second air stage ring (second guide wall)
21, 22: Mixing promotion cylinders 31a, 31b: first supply ports 32a, 32b: receiving ports 33a, 33b: supply channels 34a, 34b: second supply ports 41: pilot combustion channel (first combustion channel)
42: Main combustion channel (second combustion channel)
43: Fuel flow path 45: Combustion part 50a: Near side distribution mechanism 50b: Far side distribution mechanism 60: Burner device A: Air G: Fuel gas X, Y: Acceptance start supply amount

Claims (6)

内部に流通する酸素含有ガスに燃料ガスが供給されて形成された混合気を燃焼部に供給して燃焼させる第1燃焼用流路及び第2燃焼用流路を備え、
前記第1燃焼用流路と前記第2燃焼用流路とに燃料ガスを分配供給する分配機構を複数備え、
前記分配機構が、前記第1燃焼用流路に開口し前記第1燃焼用流路での酸素含有ガスの流通方向に交差する方向に燃料ガスを噴出させる第1供給口と、前記第1燃焼用流路に前記第1供給口の前記燃料ガスの噴出方向に対向して開口する受入口を一端側に形成し前記第2燃焼用流路に開口する第2供給口を他端側に形成した供給路とからなり、前記総供給量が所定の受入開始供給量以上となったときに前記第1供給口から噴出された燃料ガスの一部が前記受入口に受け入れられるように構成され、
前記複数の分配機構が、前記第2供給口が前記第1燃焼用流路から近い側に配置されている近側分配機構と、前記第2供給口が前記近側分配機構よりも前記第1燃焼用流路から遠い側に配置されている遠側分配機構とからなるバーナ装置であって、
前記各分配機構の前記第1供給口が、前記酸素含有ガスの流通方向において異なる位置に設けられ、
前記夫々の分配機構における前記第1供給口と前記受入口との配置状態が、前記遠側分配機構における前記受入開始供給量を前記近側分配機構における前記受入開始供給量よりも大きく設定する供給量設定構造を有し、
前記供給量設定構造が、前記遠側分配機構における前記第1供給口と前記受入口との離間距離を前記近側分配機構における前記離間距離よりも大きく設定した構造であるバーナ装置。
A first combustion flow path and a second combustion flow path for supplying an air-fuel mixture formed by supplying a fuel gas to an oxygen-containing gas flowing inside to the combustion section and burning it;
A plurality of distribution mechanisms for distributing and supplying fuel gas to the first combustion channel and the second combustion channel;
The distribution mechanism has a first supply port that opens into the first combustion channel and ejects fuel gas in a direction that intersects the flow direction of the oxygen-containing gas in the first combustion channel; and the first combustion A receiving port that opens in the flow path facing the fuel gas ejection direction of the first supply port is formed on one end side, and a second supply port that opens in the second combustion flow path is formed on the other end side A part of the fuel gas ejected from the first supply port when the total supply amount is equal to or greater than a predetermined reception start supply amount, and is configured to be received by the reception port.
The plurality of distribution mechanisms include a near-side distribution mechanism in which the second supply port is disposed closer to the first combustion flow path, and the second supply port than the near-side distribution mechanism. A burner device comprising a far side distribution mechanism disposed on the far side from the combustion flow path,
The first supply port of each distribution mechanism is provided at a different position in the flow direction of the oxygen-containing gas;
Supply in which the arrangement state of the first supply port and the receiving port in each of the distribution mechanisms sets the reception start supply amount in the far side distribution mechanism to be larger than the reception start supply amount in the near side distribution mechanism have a quantity set structure,
The burner device in which the supply amount setting structure is a structure in which a separation distance between the first supply port and the receiving port in the far side distribution mechanism is set larger than the separation distance in the near side distribution mechanism .
前記第2燃焼用流路の前記第1燃焼用流路から近い側の壁部に沿って前記燃焼部に流出した混合気を、前記第1燃焼用流路側に誘導する第1誘導壁を備えた請求項に記載のバーナ装置。 A first induction wall for guiding the air-fuel mixture that has flowed out to the combustion section along the wall portion of the second combustion flow path closer to the first combustion flow path toward the first combustion flow path; burner device according to claim 1. 前記第2燃焼用流路に、前記複数の第2供給口の下流側を、前記第1燃焼用流路から近い側の近側流路と前記第1燃焼用流路から遠い側の遠側流路とに区画する区画壁を備えた請求項1に記載のバーナ装置。 The downstream side of the plurality of second supply ports is connected to the second combustion channel, the near channel on the side near the first combustion channel and the far side on the side far from the first combustion channel. burner device according to claim 1, further comprising a partition wall for partitioning into the flow path. 前記遠側流路において前記区画壁に沿って前記区画壁の下流側に流出した混合気を、前記第1燃焼用流路側に誘導する第2誘導壁を備えた請求項に記載のバーナ装置。 4. The burner device according to claim 3 , further comprising a second guide wall that guides the air-fuel mixture that has flowed out downstream of the partition wall along the partition wall in the far-side flow channel toward the first combustion channel. . 前記夫々の分配機構における前記第1供給口が、前記第1燃焼用流路での酸素含有ガスの流通方向視で、互いに重畳することなく配置されている請求項1からの何れか1項に記載のバーナ装置。 Said first supply port in said respective dispensing mechanism, wherein in a first flow direction when viewed in the oxygen-containing gas at a combustion flow path, any one of 4 claims 1, which are arranged without overlapping each other The burner device described in 1. 請求項1から5の何れか1項に記載のバーナ装置を備え、前記バーナ装置の燃焼部から排出される燃焼排ガスの運動エネルギによりタービンを回転させるガスタービンエンジン。A gas turbine engine comprising the burner device according to any one of claims 1 to 5, wherein the turbine is rotated by kinetic energy of combustion exhaust gas discharged from a combustion portion of the burner device.
JP2004099816A 2004-03-30 2004-03-30 Burner device and gas turbine engine Expired - Fee Related JP4222962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099816A JP4222962B2 (en) 2004-03-30 2004-03-30 Burner device and gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099816A JP4222962B2 (en) 2004-03-30 2004-03-30 Burner device and gas turbine engine

Publications (2)

Publication Number Publication Date
JP2005283000A JP2005283000A (en) 2005-10-13
JP4222962B2 true JP4222962B2 (en) 2009-02-12

Family

ID=35181591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099816A Expired - Fee Related JP4222962B2 (en) 2004-03-30 2004-03-30 Burner device and gas turbine engine

Country Status (1)

Country Link
JP (1) JP4222962B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276622A1 (en) * 2007-05-07 2008-11-13 Thomas Edward Johnson Fuel nozzle and method of fabricating the same
KR100872841B1 (en) * 2007-09-28 2008-12-09 한국전력공사 A fuel nozzle of gas turbine combustor for dme and its design method
US20110023494A1 (en) 2009-07-28 2011-02-03 General Electric Company Gas turbine burner
CA2950558C (en) * 2014-05-30 2020-10-20 Kawasaki Jukogyo Kabushiki Kaisha Combustor for gas turbine engine

Also Published As

Publication number Publication date
JP2005283000A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
WO2001044720A1 (en) Fluid distributor, burner device, gas turbine engine, and cogeneration system
RU2459146C2 (en) Burner
JP3628747B2 (en) Nozzle for diffusion mode combustion and premixed mode combustion in a turbine combustor and method for operating a turbine combustor
EP0870989B1 (en) Fuel-injection arrangement for a gas turbine combustor
US6691515B2 (en) Dry low combustion system with means for eliminating combustion noise
US8579214B2 (en) Swirler vane
RU2726451C2 (en) Fuel injector and fuel system for internal combustion engine
KR101327570B1 (en) Solid fuel burner and solid fuel boiler
JP4191298B2 (en) Fuel / air mixing device for combustion devices
CN102454993A (en) Fuel nozzle for combustor
US6662565B2 (en) Fuel injectors
CN110100133B (en) Mixing device and burner head for a burner with reduced NOx emissions
EP2366952A2 (en) Combustor with pre-mixing primary fuel-nozzle assembly
JP2008096100A (en) Fuel injector for combustion chamber of gas turbine engine
JP4683787B2 (en) Burner device and gas turbine engine
JP4222962B2 (en) Burner device and gas turbine engine
CN102947650B (en) Turbine burner
CN116221780B (en) Blending mechanism and combustion device
JP2005283002A (en) Combustion device and gas turbine engine
US20230194093A1 (en) Gas turbine nozzle having an inner air swirler passage and plural exterior fuel passages
JP2005283003A (en) Combustion device and gas turbine engine
WO2021215023A1 (en) Burner assembly, gas turbine combustor, and gas turbine
JP3976464B2 (en) Fluid mixer and burner apparatus using the same
JP4480440B2 (en) Combustion device and gas turbine engine
JP6228818B2 (en) Gas fired burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees