JP4222427B2 - Vehicle and control method thereof - Google Patents

Vehicle and control method thereof Download PDF

Info

Publication number
JP4222427B2
JP4222427B2 JP2007085318A JP2007085318A JP4222427B2 JP 4222427 B2 JP4222427 B2 JP 4222427B2 JP 2007085318 A JP2007085318 A JP 2007085318A JP 2007085318 A JP2007085318 A JP 2007085318A JP 4222427 B2 JP4222427 B2 JP 4222427B2
Authority
JP
Japan
Prior art keywords
catalyst
internal combustion
combustion engine
power
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007085318A
Other languages
Japanese (ja)
Other versions
JP2008239078A (en
Inventor
聡 吉嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007085318A priority Critical patent/JP4222427B2/en
Priority to PCT/JP2008/054726 priority patent/WO2008120555A1/en
Publication of JP2008239078A publication Critical patent/JP2008239078A/en
Application granted granted Critical
Publication of JP4222427B2 publication Critical patent/JP4222427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/023Engine temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

When the temperature (Tw) of the cooling water of an engine is lower than a threshold value (Tref), it is estimated that the catalyst with a heater or the ternary catalyst of a purifying device is not relatively heated, and the catalyst with the heater is energized for a second predetermined time so that it is heated. The motoring of the engine is initiated (at S150), when a first predetermined time elapses after the heating of the catalyst with the heater was initiated. After the heating end of the catalyst with the heater was ended, a fuel injection to and the ignition of the engine are initiated to start the engine (at S180). As a result, it is possible to heat the catalyst with the heater more homogeneously and to start the engine after the catalyst with the heater or the ternary catalyst was quickly heated.

Description

本発明は、車両およびその制御方法に関し、詳しくは、内燃機関と電動機とを搭載し、少なくとも前記内燃機関の運転を停止した状態で走行可能な車両およびその制御方法に関する。   The present invention relates to a vehicle and a control method thereof, and more particularly, to a vehicle mounted with an internal combustion engine and an electric motor and capable of traveling with at least the operation of the internal combustion engine stopped, and a control method thereof.

従来、この種の車両としては、車両を駆動する電動機と、発電用の内燃機関と、内燃機関の排気系に電気的に加熱可能な電気加熱触媒とを備えるハイブリッド車が提案されている(例えば、特許文献1参照)。この車両では、内燃機関を始動するときに電気加熱触媒が低温のときには、電気加熱触媒に電力を供給して加熱した後に内燃機関を始動することにより、排ガスの浄化を促進している。
特開平8−338235号公報
Conventionally, as this type of vehicle, a hybrid vehicle including an electric motor that drives the vehicle, an internal combustion engine for power generation, and an electric heating catalyst that can be electrically heated in an exhaust system of the internal combustion engine has been proposed (for example, , See Patent Document 1). In this vehicle, when the electric heating catalyst is at a low temperature when starting the internal combustion engine, the exhaust gas purification is promoted by starting the internal combustion engine after supplying electric power to the electric heating catalyst and heating it.
JP-A-8-338235

しかしながら、上述の車両では、電気加熱触媒が均一に加熱しない場合には、触媒が十分に機能を発揮することができず、エミッションが悪化してしまう。また、電気加熱触媒と共に通常の触媒を備える排気浄化装置では、電気加熱触媒は加熱するものの通常の触媒は加熱しないため、触媒が十分に機能を発揮することができず、エミッションが悪化する場合が生じる。   However, in the above-described vehicle, when the electrically heated catalyst is not heated uniformly, the catalyst cannot sufficiently function, and the emission deteriorates. In addition, in an exhaust gas purification apparatus provided with a normal catalyst together with an electric heating catalyst, the electric heating catalyst is heated, but the normal catalyst is not heated, so that the catalyst cannot fully function, and the emission may deteriorate. Arise.

本発明の車両およびその制御方法は、内燃機関の排気を浄化する触媒が低温のときには触媒をより均一に加熱してから内燃機関を始動することを目的の一つとする。また、本発明の車両およびその制御方法は、エミッションの悪化を抑制することを目的の一つとする。   One object of the vehicle and its control method of the present invention is to start the internal combustion engine after heating the catalyst more uniformly when the catalyst for purifying the exhaust gas of the internal combustion engine is at a low temperature. Another object of the vehicle and its control method of the present invention is to suppress the deterioration of emissions.

本発明の車両およびその制御方法は、上述の目的の少なくとも一部を達成するために以下の手段を採った。   The vehicle and the control method thereof according to the present invention employ the following means in order to achieve at least a part of the above-described object.

本発明の車両は、
内燃機関と電動機とを搭載し、少なくとも前記内燃機関の運転を停止した状態で走行可能な車両であって、
前記電動機と電力のやりとりが可能な蓄電手段と、
前記蓄電手段の状態に基づいて該蓄電手段から放電してもよい許容最大電力である出力制限を設定する出力制限設定手段と、
前記内燃機関の排気系に取り付けられ、前記内燃機関からの排気を浄化するための触媒を担持すると共に電力の供給を受けて該触媒を加熱する触媒担持加熱部材を有する排気浄化手段と、
前記蓄電手段からの電力の前記触媒担持加熱部材への供給を司る電力供給手段と、
前記排気浄化手段における触媒が所定温度未満であるのを推定する触媒温度推定手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記内燃機関の運転を停止して前記設定された要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御している最中に前記内燃機関の始動が要求されたとき、前記触媒温度推定手段により触媒が所定温度未満であると推定されないときには前記内燃機関の始動を伴って前記設定された出力制限の範囲内で前記設定された要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御し、前記触媒温度推定手段により触媒が前記所定温度未満であると推定されたときには第1の所定時間に亘る前記触媒担持加熱部材への電力供給と該第1の所定時間内の少なくとも一部の時間に亘る前記内燃機関のモータリングと前記触媒担持加熱部材への電力供給の終了後の前記内燃機関の始動とを伴って前記設定された出力制限の範囲内で前記設定された要求駆動力によって走行するよう前記内燃機関と前記電動機と前記電力供給手段とを制御する制御手段と、
を備えることを要旨とする。
The vehicle of the present invention
A vehicle equipped with an internal combustion engine and an electric motor and capable of traveling with at least the operation of the internal combustion engine stopped,
Power storage means capable of exchanging electric power with the electric motor;
Output limit setting means for setting an output limit that is allowable maximum power that may be discharged from the power storage means based on the state of the power storage means;
An exhaust gas purification means, which is attached to an exhaust system of the internal combustion engine, carries a catalyst for purifying exhaust gas from the internal combustion engine, and has a catalyst-carrying heating member that receives power and heats the catalyst;
Power supply means for controlling supply of power from the power storage means to the catalyst-carrying heating member;
Catalyst temperature estimating means for estimating that the catalyst in the exhaust purification means is less than a predetermined temperature;
A required driving force setting means for setting a required driving force required for traveling;
When the start of the internal combustion engine is requested during the control of the internal combustion engine and the electric motor to stop the operation of the internal combustion engine and run with the set required driving force, the catalyst temperature estimation When it is not estimated by the means that the catalyst is lower than a predetermined temperature, the internal combustion engine and the electric motor are caused to travel with the set required driving force within the set output limit range with the start of the internal combustion engine. And when the catalyst temperature estimating means estimates that the catalyst is lower than the predetermined temperature, supplying power to the catalyst-carrying heating member for a first predetermined time and at least a part of the first predetermined time Within the set output limits with motoring of the internal combustion engine over a period of time and starting of the internal combustion engine after completion of power supply to the catalyst carrying heating member And control means for controlling said power supply means and the internal combustion engine and the electric motor to travel by driving force demand the set,
It is a summary to provide.

この本発明の車両では、内燃機関の運転を停止して走行に要求される要求駆動力によって走行するよう内燃機関と電動機とを制御している最中に内燃機関の始動が要求されたときに、排気浄化手段における触媒が所定温度未満でないと推定されるときには内燃機関の始動を伴って蓄電手段から放電してもよい許容最大電力である出力制限の範囲内で要求駆動力によって走行するよう内燃機関と電動機とを制御する。触媒が所定温度未満でないため内燃機関を直ちに始動してもエミッションの悪化を抑制することができる。また、内燃機関を直ちに始動するから、内燃機関の動力を迅速に用いることができる。一方、排気浄化手段における触媒が所定温度未満であると推定されたときには第1の所定時間に亘る触媒担持加熱部材への電力供給と第1の所定時間内の少なくとも一部の時間に亘る内燃機関のモータリングと触媒担持加熱部材への電力供給の終了後の内燃機関の始動とを伴って蓄電手段の出力制限の範囲内で要求駆動力によって走行するよう内燃機関と電動機と電力供給手段とを制御する。第1の所定時間に亘る触媒担持加熱部材への電力供給を行なって触媒担持加熱部材を加熱している最中に内燃機関のモータリングを行なうから、内燃機関のモータリングに伴って排気される空気の流れにより触媒担持加熱部材をより均一に加熱することができる。しかも、排気には未燃焼燃料も含まれるため、未燃焼燃料を触媒により浄化する際に生じる熱を触媒担持加熱部材の加熱に用いることができる。この結果、迅速に触媒担持加熱部材を加熱することができる。   In the vehicle of the present invention, when the internal combustion engine is requested to start while the internal combustion engine and the electric motor are controlled so as to travel with the required driving force required for traveling with the operation of the internal combustion engine stopped. When it is estimated that the catalyst in the exhaust purification means is not lower than the predetermined temperature, the internal combustion engine travels with the required driving force within the range of the output limit that is the allowable maximum power that may be discharged from the power storage means with the start of the internal combustion engine. Control the engine and the motor. Since the catalyst is not less than the predetermined temperature, the deterioration of the emission can be suppressed even if the internal combustion engine is started immediately. Moreover, since the internal combustion engine is started immediately, the power of the internal combustion engine can be used quickly. On the other hand, when it is estimated that the catalyst in the exhaust purification means is lower than the predetermined temperature, the internal combustion engine is supplied with electric power to the catalyst-carrying heating member for the first predetermined time and for at least a part of the first predetermined time. The internal combustion engine, the electric motor, and the power supply means so that the vehicle travels with the required driving force within the range of the output limit of the power storage means with the motoring of the engine and the start of the internal combustion engine after the power supply to the catalyst supporting heating member is completed. Control. Since the internal combustion engine is motored while the catalyst-carrying heating member is heated by supplying power to the catalyst-carrying heating member for the first predetermined time, the exhaust gas is exhausted along with the motoring of the internal combustion engine. The catalyst-carrying heating member can be heated more uniformly by the air flow. In addition, since unburned fuel is also included in the exhaust, heat generated when the unburned fuel is purified by the catalyst can be used for heating the catalyst-carrying heating member. As a result, the catalyst-carrying heating member can be quickly heated.

こうした本発明の車両において、前記制御手段は、前記触媒温度推定手段により触媒が所定温度未満であると推定されたときには、前記触媒担持加熱部材への電力供給を開始してから前記第1の所定時間より短い第2の所定時間が経過したときに前記内燃機関のモータリングを開始し、前記触媒担持加熱部材への電力供給を開始してから前記第1の所定時間が経過したときにモータリングしている前記内燃機関への燃料噴射と点火とを開始して該内燃機関を始動するよう前記内燃機関と前記電動機と前記電力供給手段とを制御する手段であるものとすることもできる。こうすれば、触媒担持加熱部材をある程度加熱してから内燃機関をモータリングするから、内燃機関のモータリングに伴って排気される空気の流れによりより効果的に触媒担持加熱部材をより均一に加熱することができると共により効果的に未燃焼燃料を浄化することができる。   In such a vehicle of the present invention, when the catalyst temperature estimating means estimates that the catalyst is lower than a predetermined temperature, the control means starts supplying power to the catalyst carrying heating member and then performs the first predetermined Motoring of the internal combustion engine starts when a second predetermined time shorter than the time elapses, and motoring when the first predetermined time elapses after the power supply to the catalyst-carrying heating member is started. The internal combustion engine, the electric motor, and the power supply means may be controlled to start the fuel injection and ignition to the internal combustion engine to start the internal combustion engine. In this way, since the internal combustion engine is motored after heating the catalyst-carrying heating member to some extent, the flow of air exhausted along with the motoring of the internal combustion engine more effectively heats the catalyst-carrying heating member more uniformly. In addition, the unburned fuel can be purified more effectively.

また、本発明の車両において、前記触媒温度推定手段は、前記内燃機関の冷却水の温度に基づいて触媒が所定温度未満であるのを推定する手段であるものとすることもできる。この場合、第1の所定時間は内燃機関の冷却水の温度に基づく時間とすること、例えば、内燃機関の冷却水の温度が高いほど短くなる傾向の第1の所定時間とすることもできる。   In the vehicle of the present invention, the catalyst temperature estimating means may be means for estimating that the catalyst is below a predetermined temperature based on the temperature of the cooling water of the internal combustion engine. In this case, the first predetermined time may be a time based on the temperature of the cooling water for the internal combustion engine, for example, the first predetermined time that tends to be shorter as the temperature of the cooling water for the internal combustion engine is higher.

さらに、本発明の車両において、前記触媒温度推定手段は、前記内燃機関を運転停止してからの経過時間に基づいて触媒が所定温度未満であるのを推定する手段であるものとすることもできる。この場合、第1の所定時間は内燃機関を運転停止してからの経過時間に基づく時間とすること、例えば、内燃機関を運転停止してからの経過時間が短いほど短くなる傾向の第1の所定時間とすることもできる。   Further, in the vehicle of the present invention, the catalyst temperature estimating means may be means for estimating that the catalyst is below a predetermined temperature based on an elapsed time since the operation of the internal combustion engine was stopped. . In this case, the first predetermined time is set to a time based on the elapsed time after the operation of the internal combustion engine is stopped. For example, the first predetermined time tends to be shorter as the elapsed time after the operation of the internal combustion engine is stopped is shorter. It can also be a predetermined time.

あるいは、本発明の車両において、前記排気浄化手段は、前記触媒担持加熱部材と前記内燃機関からの排気を浄化するための触媒を担持してなる触媒担持部材とを有し、排気の上流側から前記触媒担持加熱部材,前記触媒担持部材の順に配置されてなる手段であるものとすることもできる。こうすれば、排気浄化手段の触媒全体を加熱するものに比して加熱に必要な電力量を小さくすることができると共に迅速に加熱することができる。   Alternatively, in the vehicle of the present invention, the exhaust purification unit includes the catalyst-carrying heating member and a catalyst-carrying member carrying a catalyst for purifying the exhaust from the internal combustion engine, and from the upstream side of the exhaust The catalyst carrying heating member and the catalyst carrying member may be arranged in this order. By so doing, it is possible to reduce the amount of electric power required for heating as compared with the one that heats the entire catalyst of the exhaust gas purification means, and it is possible to heat quickly.

また、本発明の車両において、前記蓄電手段と電力のやりとりが可能で、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記出力軸と前記駆動軸とに動力を出力する電力動力入出力手段を備え、前記電動機は、前記駆動軸に動力を入出力可能に取り付けられてなる、ものとすることもできる。この場合、前記電力動力入出力手段は、動力を入出力可能な発電機と、前記駆動軸と前記出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える手段であるものとすることもできる。   Further, in the vehicle of the present invention, electric power can be exchanged with the power storage means, connected to a drive shaft connected to an axle, and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. , Comprising power power input / output means for outputting power to the output shaft and the drive shaft with power and power input / output, the electric motor is attached to the drive shaft so that power can be input / output; It can also be. In this case, the power power input / output means is connected to three axes of a generator capable of inputting / outputting power, the drive shaft, the output shaft, and the rotating shaft of the generator, and one of the three axes. It can also be a means provided with 3-axis type power input / output means for inputting / outputting power to / from the remaining shafts based on power input / output to / from the two axes.

本発明の車両の制御方法は、
内燃機関と、電動機と、前記電動機と電力のやりとりが可能な蓄電手段と、前記内燃機関の排気系に取り付けられ、前記内燃機関からの排気を浄化するための触媒を担持すると共に電力の供給を受けて該触媒を加熱する触媒担持加熱部材を有する排気浄化手段と、前記蓄電手段からの電力の前記触媒担持加熱部材への供給を司る電力供給手段と、を搭載し、少なくとも前記内燃機関の運転を停止した状態で走行可能な車両の制御方法であって、
前記内燃機関の運転を停止して走行に要求される要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御している最中に前記内燃機関の始動が要求されたとき、前記排気浄化手段における触媒が所定温度未満でないと推定されるときには前記内燃機関の始動を伴って前記蓄電手段から放電してもよい許容最大電力である出力制限の範囲内で前記要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御し、前記排気浄化手段における触媒が所定温度未満であると推定されるときには第1の所定時間に亘る前記触媒担持加熱部材への電力供給と該第1の所定時間内の少なくとも一部の時間に亘る前記内燃機関のモータリングと前記触媒担持加熱部材への電力供給の終了後の前記内燃機関の始動とを伴って前記出力制限の範囲内で前記要求駆動力によって走行するよう前記内燃機関と前記電動機と前記電力供給手段とを制御する、
ことを特徴とする。
The vehicle control method of the present invention includes:
An internal combustion engine, an electric motor, power storage means capable of exchanging electric power with the electric motor, an exhaust system of the internal combustion engine, and a catalyst for purifying exhaust gas from the internal combustion engine and carrying electric power An exhaust gas purification unit having a catalyst-carrying heating member that receives and heats the catalyst, and a power supply unit that controls supply of electric power from the power storage unit to the catalyst-carrying heating member, and at least the operation of the internal combustion engine Is a method of controlling a vehicle that can run with the vehicle stopped.
When the start of the internal combustion engine is requested while controlling the internal combustion engine and the electric motor so as to travel with the required driving force required for traveling with the operation of the internal combustion engine stopped, the exhaust gas purification is performed. When it is estimated that the catalyst in the means is not lower than a predetermined temperature, the vehicle is driven by the requested driving force within a range of an output limit that is an allowable maximum power that may be discharged from the power storage means when the internal combustion engine is started. When the internal combustion engine and the electric motor are controlled and it is estimated that the catalyst in the exhaust gas purifying means is lower than a predetermined temperature, the power supply to the catalyst-carrying heating member over the first predetermined time and the first predetermined time The output restriction with motoring of the internal combustion engine for at least a portion of the time and starting of the internal combustion engine after completion of power supply to the catalyst-carrying heating member. The control and power supply unit and the internal combustion engine so as to travel by the required driving force and the electric motor in 囲内,
It is characterized by that.

この本発明の車両の制御方法では、内燃機関の運転を停止して走行に要求される要求駆動力によって走行するよう内燃機関と電動機とを制御している最中に内燃機関の始動が要求されたときに、排気浄化手段における触媒が所定温度未満でないと推定されるときには内燃機関の始動を伴って蓄電手段から放電してもよい許容最大電力である出力制限の範囲内で要求駆動力によって走行するよう内燃機関と電動機とを制御する。触媒が所定温度未満でないため内燃機関を直ちに始動してもエミッションの悪化を抑制することができる。また、内燃機関を直ちに始動するから、内燃機関の動力を迅速に用いることができる。一方、排気浄化手段における触媒が所定温度未満であると推定されたときには第1の所定時間に亘る触媒担持加熱部材への電力供給と第1の所定時間内の少なくとも一部の時間に亘る内燃機関のモータリングと触媒担持加熱部材への電力供給の終了後の内燃機関の始動とを伴って蓄電手段の出力制限の範囲内で要求駆動力によって走行するよう内燃機関と電動機と電力供給手段とを制御する。第1の所定時間に亘る触媒担持加熱部材への電力供給を行なって触媒担持加熱部材を加熱している最中に内燃機関のモータリングを行なうから、内燃機関のモータリングに伴って排気される空気の流れにより触媒担持加熱部材をより均一に加熱することができる。しかも、排気には未燃焼燃料も含まれるため、未燃焼燃料を触媒により浄化する際に生じる熱を触媒担持加熱部材の加熱に用いることができる。この結果、迅速に触媒担持加熱部材を加熱することができる。   In the vehicle control method of the present invention, the internal combustion engine is required to start while the internal combustion engine and the electric motor are controlled so as to travel with the required driving force required for traveling with the operation of the internal combustion engine stopped. When it is estimated that the catalyst in the exhaust purification means is not lower than the predetermined temperature, the vehicle travels with the required driving force within the range of the output limit that is the allowable maximum power that may be discharged from the power storage means with the start of the internal combustion engine. And controlling the internal combustion engine and the electric motor. Since the catalyst is not less than the predetermined temperature, the deterioration of the emission can be suppressed even if the internal combustion engine is started immediately. Moreover, since the internal combustion engine is started immediately, the power of the internal combustion engine can be used quickly. On the other hand, when it is estimated that the catalyst in the exhaust purification means is lower than the predetermined temperature, the internal combustion engine is supplied with electric power to the catalyst-carrying heating member for the first predetermined time and for at least a part of the first predetermined time. The internal combustion engine, the electric motor, and the power supply means so that the vehicle travels with the required driving force within the range of the output limit of the power storage means with the motoring of the engine and the start of the internal combustion engine after the power supply to the catalyst supporting heating member is completed. Control. Since the internal combustion engine is motored while the catalyst-carrying heating member is heated by supplying power to the catalyst-carrying heating member for the first predetermined time, the exhaust gas is exhausted along with the motoring of the internal combustion engine. The catalyst-carrying heating member can be heated more uniformly by the air flow. In addition, since unburned fuel is also included in the exhaust, heat generated when the unburned fuel is purified by the catalyst can be used for heating the catalyst-carrying heating member. As a result, the catalyst-carrying heating member can be quickly heated.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、動力出力装置全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire power output apparatus.

エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力可能な内燃機関として構成されており、図2に示すように、エアクリーナ122により清浄された空気をスロットルバルブ124を介して吸入すると共に燃料噴射弁126からガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ128を介して燃料室に吸入し、点火プラグ130による電気火花によって爆発燃焼させて、そのエネルギにより押し下げられるピストン132の往復運動をクランクシャフト26の回転運動に変換する。エンジン22からの排気は、一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する浄化装置(三元触媒)134を介して外気へ排出される。浄化装置134には、通電すると通電抵抗により発熱する発熱部材(例えば、ステンレスなど)に一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する触媒を担持させた加熱ヒータ付き触媒134aと担体に一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する触媒を担持させた三元触媒134bとが排気の上流側からこの順に配置されて構成されている。加熱ヒータ付き触媒134aは、一端が導電ラインによりスイッチ134cを介してバッテリ50の正極端子に接続されており、他端が導電ラインにより接地されている。したがって、スイッチ134cをオンとすることにより加熱ヒータ付き触媒134aを加熱することができる。   The engine 22 is configured as an internal combustion engine capable of outputting power using a hydrocarbon-based fuel such as gasoline or light oil, and the air purified by an air cleaner 122 is passed through a throttle valve 124 as shown in FIG. Inhalation and gasoline are injected from the fuel injection valve 126 to mix the sucked air and gasoline. The mixture is sucked into the fuel chamber through the intake valve 128 and is explosively burned by an electric spark from the spark plug 130. Thus, the reciprocating motion of the piston 132 pushed down by the energy is converted into the rotational motion of the crankshaft 26. Exhaust gas from the engine 22 is discharged to the outside air through a purification device (three-way catalyst) 134 that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). The purifier 134 carries a catalyst that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) on a heat generating member (for example, stainless steel) that generates heat due to current resistance when energized. The heated heater-equipped catalyst 134a and the three-way catalyst 134b carrying a catalyst for purifying harmful components such as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) on the carrier are upstream of the exhaust. Are arranged in this order. One end of the catalyst 134a with a heater is connected to the positive terminal of the battery 50 through a switch 134c by a conductive line, and the other end is grounded by the conductive line. Therefore, the catalyst 134a with a heater can be heated by turning on the switch 134c.

エンジン22は、エンジン用電子制御ユニット(以下、エンジンECUという)24により制御されている。エンジンECU24は、CPU24aを中心とするマイクロプロセッサとして構成されており、CPU24aの他に処理プログラムを記憶するROM24bと、データを一時的に記憶するRAM24cと、図示しない入出力ポートおよび通信ポートとを備える。エンジンECU24には、エンジン22の状態を検出する種々のセンサからの信号、クランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランクポジションやエンジン22の冷却水の温度を検出する水温センサ142からの冷却水温,燃焼室内に取り付けられた圧力センサ143からの筒内圧力Pin,燃焼室へ吸排気を行なう吸気バルブ128や排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサ144からのカムポジション,スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットルポジション,吸気管に取り付けられたエアフローメータ148からのエアフローメータ信号AF,同じく吸気管に取り付けられた温度センサ149からの吸気温,空燃比センサ135aからの空燃比AF,酸素センサ135bからの酸素信号などが入力ポートを介して入力されている。また、エンジンECU24からは、エンジン22を駆動するための種々の制御信号、例えば、燃料噴射弁126への駆動信号や、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動信号、イグナイタと一体化されたイグニッションコイル138への制御信号、吸気バルブ128の開閉タイミングの変更可能な可変バルブタイミング機構150への制御信号、スイッチ134cへの駆動信号などが出力ポートを介して出力されている。なお、エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータを出力する。なお、エンジンECU24は、クランクポジションセンサ140からのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is controlled by an engine electronic control unit (hereinafter referred to as an engine ECU) 24. The engine ECU 24 is configured as a microprocessor centered on the CPU 24a, and includes a ROM 24b that stores a processing program, a RAM 24c that temporarily stores data, an input / output port and a communication port (not shown), in addition to the CPU 24a. . The engine ECU 24 includes signals from various sensors that detect the state of the engine 22, a crank position from the crank position sensor 140 that detects the rotational position of the crankshaft 26, and a water temperature sensor 142 that detects the temperature of cooling water in the engine 22. From the cooling water temperature from the combustion chamber, the in-cylinder pressure Pin from the pressure sensor 143 installed in the combustion chamber, the intake valve 128 that performs intake and exhaust to the combustion chamber, and the cam position sensor 144 that detects the rotational position of the camshaft that opens and closes the exhaust valve Cam position, throttle position from the throttle valve position sensor 146 for detecting the position of the throttle valve 124, an air flow meter signal AF from the air flow meter 148 attached to the intake pipe, and a temperature sensor also attached to the intake pipe Intake air temperature from 49, the air-fuel ratio AF from an air-fuel ratio sensor 135a, such as oxygen signal from an oxygen sensor 135b is input via the input port. The engine ECU 24 also integrates various control signals for driving the engine 22, such as a drive signal to the fuel injection valve 126, a drive signal to the throttle motor 136 that adjusts the position of the throttle valve 124, and an igniter. The control signal to the ignition coil 138, the control signal to the variable valve timing mechanism 150 capable of changing the opening / closing timing of the intake valve 128, the drive signal to the switch 134c, and the like are output via the output port. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and outputs data related to the operation state of the engine 22 as necessary. . The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22 based on the crank position from the crank position sensor 140.

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 arranged concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。   The motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that can be driven as generators and can be driven as motors, and exchange power with the battery 50 via inverters 41 and 42. The power line 54 connecting the inverters 41 and 42 and the battery 50 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42, and the electric power generated by one of the motors MG1 and MG2 It can be consumed by a motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 detects signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 to be applied is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 also calculates the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 based on signals from the rotational position detection sensors 43 and 44.

バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧,バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量(SOC)を演算したり、演算した残容量(SOC)と電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。図3に電池温度Tbと入出力制限Win,Woutとの関係の一例を示し、図4にバッテリ50の残容量(SOC)と入出力制限Win,Woutの補正係数との関係の一例を示す。   The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50, and a power line 54 connected to the output terminal of the battery 50. The charging / discharging current from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor 51 attached to the battery 50, and the like are input. Output to the control unit 70. Further, the battery ECU 52 calculates the remaining capacity (SOC) based on the integrated value of the charging / discharging current detected by the current sensor in order to manage the battery 50, and calculates the remaining capacity (SOC) and the battery temperature Tb. The input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, are calculated based on the above. The input / output limits Win and Wout of the battery 50 are set to the basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limiting correction coefficient and the input are set based on the remaining capacity (SOC) of the battery 50. It can be set by setting a correction coefficient for restriction and multiplying the basic value of the set input / output restrictions Win and Wout by the correction coefficient. FIG. 3 shows an example of the relationship between the battery temperature Tb and the input / output limits Win, Wout, and FIG. 4 shows an example of the relationship between the remaining capacity (SOC) of the battery 50 and the correction coefficients of the input / output limits Win, Wout.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72. In addition to the CPU 72, a ROM 74 that stores processing programs, a RAM 76 that temporarily stores data, an input / output port and communication (not shown), and the like. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. The accelerator opening Acc from the vehicle, the brake pedal position BP from the brake pedal position sensor 86 for detecting the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the like are input via the input port. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution and integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特にモータ運転モードによりモータ走行している最中にアクセルペダル83などが踏み込まれて大きなアクセル開度Accとなったり車速Vが大きくなり車両に要求されるパワーが大きくなることによりエンジン22が始動要求されたときの動作について説明する。図5はエンジン22が始動要求されたときにハイブリッド用電子制御ユニット70により実行されるエンジン始動制御ルーチンの一例を示すフローチャートであり、図6はこのエンジン始動制御ルーチンが実行されているときに並行してハイブリッド用電子制御ユニット70により繰り返し実行される始動時駆動制御ルーチンの一例を示すフローチャートである。図6の始動時駆動制御ルーチンは、所定時間毎(例えば、数msec毎)に繰り返し実行される。説明の都合上、図5のエンジン始動制御ルーチンと図6の始動時駆動制御ルーチンとを適宜組み合わせて説明する。   Next, the accelerator pedal 83 or the like is depressed during the operation of the hybrid vehicle 20 of the embodiment configured as described above, in particular, while the motor is running in the motor operation mode, resulting in a large accelerator opening Acc or a vehicle speed V increasing. An operation when the engine 22 is requested to start due to an increase in power required for the vehicle will be described. FIG. 5 is a flowchart showing an example of an engine start control routine executed by the hybrid electronic control unit 70 when the engine 22 is requested to start. FIG. 6 shows a parallel operation when the engine start control routine is executed. 7 is a flowchart showing an example of a start-up drive control routine that is repeatedly executed by the hybrid electronic control unit 70. The start-up drive control routine of FIG. 6 is repeatedly executed every predetermined time (for example, every several msec). For convenience of explanation, the engine start control routine of FIG. 5 and the start time drive control routine of FIG. 6 will be described in appropriate combination.

図5のエンジン始動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、エンジン22の冷却水の温度Twを入力し(ステップS100)、入力した冷却水温度Twを閾値Trefと比較する(ステップS110)。ここで、冷却水温度Twは、水温センサ142により検出されたものをエンジンECU24から通信により入力するものとした。また、閾値Trefは、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bが十分に機能することができる温度より随分低い温度であることを推定する程度のエンジン22の冷却水の温度として設定されるものであり、例えば、50℃や70℃などを用いることができる。   When the engine start control routine of FIG. 5 is executed, the CPU 72 of the hybrid electronic control unit 70 first inputs the cooling water temperature Tw of the engine 22 (step S100), and uses the input cooling water temperature Tw as a threshold Tref. (Step S110). Here, the coolant temperature Tw detected by the water temperature sensor 142 is input from the engine ECU 24 by communication. Further, the threshold value Tref is set as the cooling water temperature of the engine 22 to the extent that it is estimated that the temperature is sufficiently lower than the temperature at which the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 can sufficiently function. For example, 50 degreeC, 70 degreeC, etc. can be used.

冷却水温度Twが閾値Tref以上のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にあると判断し、モータリング開始フラグFMに値1を設定し(ステップS120)、エンジン22の始動を開始する制御信号をエンジンECU24に送信する(ステップS180)。エンジン22の始動を開始する制御信号を受信したエンジンECU24は、エンジン22の回転数Neが回転数Nrefに至ったときにエンジン22の燃料噴射制御や点火制御を開始してエンジン22を始動する。そして、エンジン22の始動が完了するのを待って(ステップS190)、モータリング開始フラグFMを値0にリセットして(ステップS200)、エンジン始動制御ルーチンを終了する。即ち、冷却水温度Twが閾値Tref以上のときには、直ちにエンジン22を始動するのである。このとき、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にあるから、すぐに加熱ヒータ付き触媒134aや三元触媒134bは加温されるため、エミッションは悪化しない。こうした冷却水温度Twが閾値Tref以上のときの駆動制御は以下のように行なわれる。   When the cooling water temperature Tw is equal to or higher than the threshold value Tref, it is determined that the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are relatively warm, and a value 1 is set to the motoring start flag FM. (Step S120), a control signal for starting the engine 22 is transmitted to the engine ECU 24 (Step S180). The engine ECU 24 that has received the control signal for starting the engine 22 starts the fuel injection control and ignition control of the engine 22 to start the engine 22 when the rotational speed Ne of the engine 22 reaches the rotational speed Nref. Then, after the start of the engine 22 is completed (step S190), the motoring start flag FM is reset to 0 (step S200), and the engine start control routine is ended. That is, when the coolant temperature Tw is equal to or higher than the threshold value Tref, the engine 22 is immediately started. At this time, since the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are in a relatively warm state, the heater-equipped catalyst 134a and the three-way catalyst 134b are immediately heated. Does not get worse. The drive control when the cooling water temperature Tw is equal to or higher than the threshold value Tref is performed as follows.

図6の始動時駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力し(ステップS300)、入力したアクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*を設定する(ステップS310)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。また、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいて設定されたものをバッテリECU52から通信により入力するものとした。要求トルクTr*は、実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図7に要求トルク設定用マップの一例を示す。   When the start-up drive control routine of FIG. 6 is executed, the CPU 72 of the hybrid electronic control unit 70 first starts with the accelerator opening Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, the motors MG1, MG2. , Nm1, Nm2, and input / output limits Win and Wout of the battery 50 are input (step S300). Based on the accelerator opening Acc and the vehicle speed V, the torque required for the vehicle is input. The required torque Tr * to be output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b is set (step S310). Here, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 are input from the motor ECU 40 by communication from those calculated based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. To do. Further, the input / output limits Win and Wout of the battery 50 are set based on the battery temperature Tb of the battery 50 and the remaining capacity (SOC) of the battery 50 and are input from the battery ECU 52 by communication. In the embodiment, the required torque Tr * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required torque Tr * in the ROM 74 as a required torque setting map, and the accelerator opening Acc, the vehicle speed V, , The corresponding required torque Tr * is derived and set from the stored map. FIG. 7 shows an example of the required torque setting map.

続いて、モータリング開始フラグFMの値を調べ(ステップS320)、モータリング開始フラグFMが値1のとき、即ち、エンジン22の冷却水の温度Twが閾値Tref以上であったときには、エンジン22の始動時のトルクマップとエンジン22の始動開始からの経過時間tとに基づいてモータMG1のトルク指令Tm1*を設定する。(ステップS340)。エンジン22の始動時にモータMG1のトルク指令Tm1*に設定するトルクマップの一例とエンジン22の回転数Neの変化の様子の一例とを図8に示す。実施例のトルクマップは、エンジン22の始動指示がなされた時間t11の直後からレート処理を用いて比較的大きなトルクをトルク指令Tm1*に設定してエンジン22の回転数Neを迅速に増加させる。エンジン22の回転数Neが共振回転数帯を通過したか共振回転数帯を通過するのに必要な時間以降の時間t12にエンジン22を安定して回転数Nref以上でモータリングすることができるトルクをトルク指令Tm1*に設定し、電力消費や駆動軸としてのリングギヤ軸32aにおける反力を小さくする。そして、エンジン22の始動を開始する制御信号をエンジンECU24に送信した以降でエンジン22の回転数Neが回転数Nref以上となった時間t13からレート処理を用いてトルク指令Tm1*を値0とし、エンジン22の完爆が判定された時間t15から発電用のトルクをトルク指令Tm1*に設定する。ここで、回転数Nrefは、エンジン22の燃料噴射制御や点火制御を開始する最低回転数である。エンジン22を始動しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を図9に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。なお、R軸上の2つの太線矢印は、モータMG1から出力されたトルクTm1がリングギヤ軸32aに作用するトルクと、モータMG2から出力されるトルクTm2が減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。   Subsequently, the value of the motoring start flag FM is checked (step S320). When the motoring start flag FM is 1, that is, when the cooling water temperature Tw of the engine 22 is equal to or higher than the threshold value Tref, the engine 22 A torque command Tm1 * of the motor MG1 is set based on the torque map at the start and the elapsed time t from the start of the engine 22. (Step S340). FIG. 8 shows an example of a torque map that is set in the torque command Tm1 * of the motor MG1 when the engine 22 is started, and an example of how the rotational speed Ne of the engine 22 changes. In the torque map of the embodiment, a relatively large torque is set in the torque command Tm1 * using rate processing immediately after the time t11 when the start instruction of the engine 22 is given, and the rotational speed Ne of the engine 22 is rapidly increased. Torque that allows the engine 22 to be stably motored at the rotation speed Nref or higher at a time t12 after the rotation speed Ne of the engine 22 has passed the resonance rotation speed band or after the time necessary for passing the resonance rotation speed band. Is set to the torque command Tm1 * to reduce the power consumption and the reaction force on the ring gear shaft 32a as the drive shaft. Then, after transmitting a control signal for starting the engine 22 to the engine ECU 24, the torque command Tm1 * is set to a value 0 using a rate process from time t13 when the rotational speed Ne of the engine 22 becomes equal to or higher than the rotational speed Nref. The torque for power generation is set to the torque command Tm1 * from the time t15 when the complete explosion of the engine 22 is determined. Here, the rotational speed Nref is the minimum rotational speed at which the fuel injection control and ignition control of the engine 22 are started. FIG. 9 shows an example of a collinear diagram showing the dynamic relationship between the rotational speed and torque in the rotary element of the power distribution and integration mechanism 30 when the engine 22 is started. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. The two thick arrows on the R axis indicate that the torque Tm1 output from the motor MG1 acts on the ring gear shaft 32a and the torque Tm2 output from the motor MG2 acts on the ring gear shaft 32a via the reduction gear 35. Torque.

モータMG1のトルク指令Tm1*を設定すると、要求トルクTr*に設定したトルク指令Tm1*を動力分配統合機構30のギヤ比ρで除したものを加えて更に減速ギヤ35のギヤ比Grで除してモータMG2から出力すべきトルクの仮の値である仮トルクTm2tmpを次式(1)により計算し(ステップS350)、バッテリ50の入出力制限Win,Woutと設定したトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tm2min,Tm2maxを次式(2)および式(3)により計算すると共に(ステップS360)、設定した仮トルクTm2tmpを式(4)によりトルク制限Tm2min,Tm2maxで制限してモータMG2のトルク指令Tm2*を設定する(ステップS370)。ここで、式(1)は、図9の共線図から容易に導くことができる。   When the torque command Tm1 * of the motor MG1 is set, the torque command Tm1 * set to the required torque Tr * is divided by the gear ratio ρ of the power distribution and integration mechanism 30 and further divided by the gear ratio Gr of the reduction gear 35. Then, a temporary torque Tm2tmp, which is a temporary value of the torque to be output from the motor MG2, is calculated by the following equation (1) (step S350), and the input / output limits Win and Wout of the battery 50 and the set torque command Tm1 * are Torque limit as the upper and lower limits of the torque that may be output from the motor MG2 by dividing the deviation from the power consumption (generated power) of the motor MG1 obtained by multiplying the rotation speed Nm1 of the motor MG1 by the rotation speed Nm2 of the motor MG2. Tm2min and Tm2max are calculated by the following equations (2) and (3) (step S360), and the set temporary torque Torque limit Tm2min the m2tmp by equation (4), and limited by Tm2max to set a torque command Tm2 * of the motor MG2 (step S370). Here, Formula (1) can be easily derived from the alignment chart of FIG.

Tm2tmp=(Tr*+Tm1*/ρ)/Gr (1)
Tm2min=(Win-Tm1*・Nm1)/Nm2 (2)
Tm2max=(Wout-Tm1*・Nm1)/Nm2 (3)
Tm2*=max(min(Tm2tmp,Tm2max),Tm2min) (4)
Tm2tmp = (Tr * + Tm1 * / ρ) / Gr (1)
Tm2min = (Win-Tm1 * ・ Nm1) / Nm2 (2)
Tm2max = (Wout-Tm1 * ・ Nm1) / Nm2 (3)
Tm2 * = max (min (Tm2tmp, Tm2max), Tm2min) (4)

こうしてモータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、設定したトルク指令Tm1*,Tm2*をモータECU40に送信して(ステップS380)、始動時駆動制御ルーチンを終了する。トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。   When the torque commands Tm1 * and Tm2 * for the motors MG1 and MG2 are thus set, the set torque commands Tm1 * and Tm2 * are transmitted to the motor ECU 40 (step S380), and the start time drive control routine is terminated. Receiving the torque commands Tm1 * and Tm2 *, the motor ECU 40 controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tm1 * and the motor MG2 is driven by the torque command Tm2 *. .

次に、図5のエンジン始動制御ルーチンのステップS110でエンジン22の冷却水の温度Twが閾値Tref未満のときについて説明する。このとき、図5のエンジン始動制御ルーチンでは、浄化装置134の加熱ヒータ付き触媒134aを加熱する必要があると判断し、触媒加熱を開始する制御信号をエンジンECU24に送信する(ステップS130)。触媒加熱を開始する制御信号を受信したエンジンECU24は、スイッチ134cをオンとすることによりバッテリ50の電圧を加熱ヒータ付き触媒134aに印加して加熱ヒータ付き触媒134aを加熱する。続いて、スイッチ134cをオンとしてから加熱ヒータ付き触媒134aが若干加熱するのに必要な時間として設定された第1所定時間(例えば、2秒や3秒,5秒など)だけ経過するのを待って(ステップS140)、モータリング開始フラグFMに値1を設定する(ステップS150)。そして、スイッチ134cをオンとしてから加熱ヒータ付き触媒134aが機能できる程度に加熱するのに必要な時間として設定された第2所定時間(例えば、8秒や10秒など)が経過するのを待って(ステップS160)、触媒加熱を停止する制御信号をエンジンECU24に送信し(ステップS170)、エンジン22の始動を開始する制御信号をエンジンECU24に送信し(ステップS180)、エンジン22の始動が完了するのを待って(ステップS190)、モータリング開始フラグFMを値0にリセットして(ステップS200)、エンジン始動制御ルーチンを終了する。触媒加熱を停止する制御信号を受信したエンジンECU24は、スイッチ134cをオフとすることにより加熱ヒータ付き触媒134aの加熱を停止する。このように、冷却水温度Twが閾値Tref未満のときには、第2所定時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱すると共に加熱ヒータ付き触媒134aの加熱を開始してから第1所定時間が経過したときにモータリング開始フラグFMに値1を設定してモータMG1によるエンジン22のモータリングを開始する。こうした冷却水温度Twが閾値Tref未満のときの駆動制御は以下のように行なわれる。   Next, the case where the temperature Tw of the cooling water of the engine 22 is lower than the threshold value Tref in step S110 of the engine start control routine of FIG. At this time, in the engine start control routine of FIG. 5, it is determined that it is necessary to heat the catalyst 134a with the heater of the purification device 134, and a control signal for starting catalyst heating is transmitted to the engine ECU 24 (step S130). The engine ECU 24 that has received the control signal for starting the catalyst heating turns on the switch 134c to apply the voltage of the battery 50 to the catalyst 134a with a heater to heat the catalyst 134a with a heater. Subsequently, after the switch 134c is turned on, it waits for the elapse of a first predetermined time (for example, 2 seconds, 3 seconds, 5 seconds, etc.) set as a time necessary for the catalyst 134a with a heater to slightly heat. (Step S140), a value 1 is set to the motoring start flag FM (step S150). Then, after the switch 134c is turned on, the second predetermined time (for example, 8 seconds or 10 seconds) set as the time necessary for heating to the extent that the catalyst 134a with the heater can function is waited. (Step S160), a control signal for stopping the catalyst heating is transmitted to the engine ECU 24 (Step S170), and a control signal for starting the engine 22 is transmitted to the engine ECU 24 (Step S180), and the start of the engine 22 is completed. (Step S190), the motoring start flag FM is reset to 0 (step S200), and the engine start control routine is terminated. Engine ECU24 which received the control signal which stops catalyst heating stops heating of catalyst 134a with a heater by turning off switch 134c. As described above, when the cooling water temperature Tw is lower than the threshold value Tref, the heater-equipped catalyst 134a is energized for the second predetermined time to heat the heater-equipped catalyst 134a and to start heating the heater-equipped catalyst 134a. When the first predetermined time has elapsed, a value 1 is set in the motoring start flag FM, and motoring of the engine 22 by the motor MG1 is started. The drive control when the cooling water temperature Tw is lower than the threshold value Tref is performed as follows.

図6の始動時駆動制御ルーチンでは、冷却水温度Twが閾値Tref以上のときと同様に、まず、アクセル開度Accや車速V,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力し(ステップS300)、入力したアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*を設定する(ステップS310)。そして、触媒加熱フラグF1の値を調べるが(ステップS320)、冷却水温度Twが閾値Tref未満であったために直ちにモータリング開始フラグFMに値1が設定されないから、ステップS320では否定的な判定がなされ、モータMG1のトルク指令Tm1*には値0が設定される(ステップS330)。そして、値0が設定されたトルク指令Tm1*と要求トルクTr*とを用いて上述の式(1)〜式(4)によりモータMG2のトルク指令Tm2*を設定し(ステップS350〜S370)、設定したトルク指令Tm1*,Tm2*をモータECU40に送信して(ステップS380)、始動時駆動制御ルーチンを終了する。このときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を図10に示す。   In the start-up drive control routine of FIG. 6, as in the case where the coolant temperature Tw is equal to or higher than the threshold value Tref, first, the accelerator opening Acc, the vehicle speed V, the rotational speeds Nm1, Nm2, and the input / output of the battery 50 Data required for control such as the limits Win and Wout are input (step S300), and the required torque Tr * to be output to the ring gear shaft 32a as the drive shaft is set based on the input accelerator opening Acc and the vehicle speed V (step S300). Step S310). Then, the value of the catalyst heating flag F1 is checked (step S320). Since the cooling water temperature Tw is less than the threshold value Tref, the value 1 is not immediately set in the motoring start flag FM, so a negative determination is made in step S320. The value 0 is set in the torque command Tm1 * of the motor MG1 (step S330). Then, the torque command Tm2 * of the motor MG2 is set by the above-described formulas (1) to (4) using the torque command Tm1 * and the required torque Tr * set to 0 (steps S350 to S370), The set torque commands Tm1 * and Tm2 * are transmitted to the motor ECU 40 (step S380), and the start time drive control routine is terminated. FIG. 10 shows an example of a collinear diagram showing the dynamic relationship between the rotational speed and torque in the rotating elements of the power distribution and integration mechanism 30 at this time.

スイッチ134cをオンとしてから第1所定時間が経過すると、図5のエンジン始動制御ルーチンのステップS150の処理でモータリング開始フラグFMに値1が設定されるから、図6の始動時駆動制御ルーチンのステップS320では肯定的な判定がなされ、エンジン22の始動時のトルクマップとエンジン22の始動開始からの経過時間tとに基づいてモータMG1のトルク指令Tm1*が設定され(ステップS340)、設定したトルク指令Tm1*と要求トルクTr*とを用いて上述の式(1)〜式(4)によりモータMG2のトルク指令Tm2*を設定し(ステップS350〜S370)、設定したトルク指令Tm1*,Tm2*をモータECU40に送信して(ステップS380)、始動時駆動制御ルーチンを終了する。   When the first predetermined time elapses after the switch 134c is turned on, the value 1 is set to the motoring start flag FM in the process of step S150 of the engine start control routine of FIG. 5, and therefore the start time drive control routine of FIG. In step S320, an affirmative determination is made, and the torque command Tm1 * of the motor MG1 is set based on the torque map at the start of the engine 22 and the elapsed time t from the start of the engine 22 (step S340). Using the torque command Tm1 * and the required torque Tr *, the torque command Tm2 * of the motor MG2 is set by the above-described equations (1) to (4) (steps S350 to S370), and the set torque commands Tm1 *, Tm2 * Is transmitted to the motor ECU 40 (step S380), and the start time drive control routine is terminated.

こうした制御により、エンジン22はモータリングされるが、加熱ヒータ付き触媒134aの加熱を開始してから第2所定時間が経過するまでは、エンジン22の始動を開始する制御信号はエンジンECU24に送信されないため、エンジン22はモータリングされるだけで始動されない。こうしたエンジン22のモータリングにより排気が浄化装置134に供給され、加熱ヒータ付き触媒134aがより均一に加熱されると共に加熱ヒータ付き触媒134aの熱が三元触媒134bに伝達される。また、排気には、未燃焼燃料が混在するため、未燃焼燃料が加熱ヒータ付き触媒134aや三元触媒134bで浄化される際に生じる熱により加熱ヒータ付き触媒134aや三元触媒134bの加熱を促進することができる。即ち、エンジン22をモータリングすることにより、加熱ヒータ付き触媒134aをより均一に加熱すると共に加熱ヒータ付き触媒134aや三元触媒134bを迅速に加熱することができるのである。加熱ヒータ付き触媒134aの加熱を開始してから第2所定時間が経過すると、エンジン22の始動を開始する制御信号がエンジンECU24に送信され、直ちに燃料噴射や点火が行なわれてエンジン22は始動する。このため、加熱ヒータ付き触媒134aの加熱が終了してからエンジン22をモータリングして始動するものに比して、迅速にエンジン22を始動することができる。   The engine 22 is motored by such control, but the control signal for starting the engine 22 is not transmitted to the engine ECU 24 until the second predetermined time has elapsed after the heating of the catalyst 134a with the heater is started. Therefore, the engine 22 is only motored and is not started. Exhaust gas is supplied to the purifier 134 by the motoring of the engine 22 so that the catalyst 134a with a heater is heated more uniformly and the heat of the catalyst 134a with a heater is transmitted to the three-way catalyst 134b. Further, since unburned fuel is mixed in the exhaust gas, the heat of the heater 134a and the three-way catalyst 134b is heated by the heat generated when the unburned fuel is purified by the catalyst 134a and the three-way catalyst 134b. Can be promoted. That is, by motoring the engine 22, the catalyst 134a with a heater can be heated more uniformly and the catalyst 134a with a heater and the three-way catalyst 134b can be quickly heated. When the second predetermined time has elapsed from the start of heating of the catalyst 134a with the heater, a control signal for starting the engine 22 is transmitted to the engine ECU 24, and fuel injection and ignition are immediately performed to start the engine 22. . Therefore, the engine 22 can be started more quickly than when the engine 22 is motored and started after the heating of the heater-equipped catalyst 134a.

以上説明した実施例のハイブリッド自動車20によれば、エンジン22の冷却水の温度Twが閾値Tref未満のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないと推定し、第2所定時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱し、加熱ヒータ付き触媒134aの加熱を開始してから第1所定時間が経過したときにエンジン22をモータリングすることにより、加熱ヒータ付き触媒134aをより均一に加熱することができると共に加熱ヒータ付き触媒134aや三元触媒134bを迅速に加熱することができる。しかも、加熱ヒータ付き触媒134aの加熱を開始してから第2所定時間が経過したときに直ちに燃料噴射と点火を行なってエンジン22を始動することができるから、加熱ヒータ付き触媒134aの加熱が終了してからエンジン22をモータリングして始動するものに比して、迅速にエンジン22を始動することができる。もとより、加熱ヒータ付き触媒134aの加熱終了後にエンジン22を始動するから、エンジン22を始動した直後のエミッションの悪化を抑制することができる。また、エンジン22の冷却水の温度Twが閾値Tref以上のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にあると推定し、直ちにエンジン22を始動するから、迅速にエンジン22を始動してエンジン22からの動力を用いることができる。このとき、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にあるから、エンジン22を始動した直後でもエミッションの悪化を抑制することができる。   According to the hybrid vehicle 20 of the embodiment described above, when the temperature Tw of the cooling water of the engine 22 is less than the threshold value Tref, the heater-equipped catalyst 134a and the three-way catalyst 134b of the purification device 134 are relatively heated. The first predetermined time has elapsed since the heating of the catalyst 134a with a heater was started by heating the catalyst 134a with a heater by energizing the catalyst 134a with a heater for a second predetermined time. Occasionally, motoring the engine 22 can heat the catalyst 134a with a heater more evenly and can quickly heat the catalyst 134a with a heater and the three-way catalyst 134b. Moreover, since the engine 22 can be started by performing fuel injection and ignition immediately after the second predetermined time has elapsed since the heating of the catalyst 134a with the heater is started, the heating of the catalyst 134a with the heater is completed. Then, the engine 22 can be started more quickly than when the engine 22 is started by motoring. Of course, since the engine 22 is started after the heating of the heater-equipped catalyst 134a, the deterioration of the emission immediately after the engine 22 is started can be suppressed. Further, when the temperature Tw of the cooling water of the engine 22 is equal to or higher than the threshold value Tref, it is estimated that the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are relatively warm, and the engine 22 is started immediately. Therefore, the engine 22 can be started quickly and the power from the engine 22 can be used. At this time, since the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are in a relatively warm state, it is possible to suppress the deterioration of emissions even immediately after the engine 22 is started.

また、実施例のハイブリッド自動車20によれば、浄化装置134の一部に加熱ヒータ付き触媒134aを用いたから、少ない電力により迅速に加熱ヒータ付き触媒134aを加熱することができる。更に、浄化装置134に排気の上流側から加熱ヒータ付き触媒134a,三元触媒134bの順に配置することにより、エンジン22をモータリングした際の排気により加熱ヒータ付き触媒134aの熱を三元触媒134bに伝えるから、三元触媒134bを迅速に加温することができる。これらの結果、浄化装置134をより迅速に機能させることができ、エミッションの悪化を抑制することができる。   Further, according to the hybrid vehicle 20 of the embodiment, the catalyst 134a with a heater is used for a part of the purification device 134, and therefore the catalyst 134a with a heater can be quickly heated with a small amount of electric power. Further, by arranging the catalyst 134a with a heater and the three-way catalyst 134b in this order from the upstream side of the exhaust gas in the purifier 134, the heat of the catalyst 134a with a heater is exhausted by the exhaust when the engine 22 is motored. Therefore, the three-way catalyst 134b can be quickly heated. As a result, the purification device 134 can be made to function more quickly, and the deterioration of emissions can be suppressed.

実施例のハイブリッド自動車20では、浄化装置134の一部に加熱ヒータ付き触媒134aを用いるものとしたが、浄化装置134の全てを加熱ヒータ付き触媒134aとするものとしても構わない。また、実施例のハイブリッド自動車20では、浄化装置134に排気の上流側から加熱ヒータ付き触媒134a,三元触媒134bの順に配置するものとしたが、浄化装置134に排気の上流側から三元触媒134b,加熱ヒータ付き触媒134aの順に配置するものとしたり、三元触媒134b,加熱ヒータ付き触媒134a,三元触媒134bの順に加熱ヒータ付き触媒134aを挟むように配置するものとするなど、如何なるように配置しても構わない。   In the hybrid vehicle 20 of the embodiment, the catalyst 134a with a heater is used as a part of the purifier 134, but the entire purifier 134 may be the catalyst 134a with a heater. Further, in the hybrid vehicle 20 of the embodiment, the catalyst 134a with a heater and the three-way catalyst 134b are arranged in the purifier 134 from the upstream side of the exhaust in this order, but the three-way catalyst is disposed on the purifier 134 from the upstream side of the exhaust. 134b and the catalyst 134a with a heater are arranged in this order, or the three-way catalyst 134b, the catalyst 134a with a heater and the three-way catalyst 134b are arranged so as to sandwich the catalyst 134a with a heater. You may arrange in.

実施例のハイブリッド自動車20では、自己の通電抵抗により発熱する発熱部材に触媒を担持させて加熱ヒータ付き触媒134aを構成するものとしたが、通電抵抗により発熱しない部材に触媒を担持させると共にこれらを加熱する部材を取り付けて加熱ヒータ付き触媒134aを構成するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the catalyst is supported on the heating member that generates heat due to its own energizing resistance to form the heater-equipped catalyst 134a. It is good also as what comprises the member 134 to heat and comprises the catalyst 134a with a heater.

実施例のハイブリッド自動車20では、エンジン22の冷却水の温度Twが閾値Tref未満のときには、第2所定時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱するものとしたが、エンジン22の冷却水の温度Twが閾値Tref未満のときには、エンジン22の冷却水の温度Twに基づく時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱するものとしてもよい。この場合、エンジン22の冷却水の温度Twが高いほど短くなる傾向の時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱するものとし、加熱ヒータ付き触媒134aを加熱する時間の1/2や1/3,2/3の時間が経過したときにエンジン22のモータリングを開始するものとしたりするなどしてもよい。   In the hybrid vehicle 20 of the embodiment, when the temperature Tw of the cooling water of the engine 22 is lower than the threshold value Tref, the heater-equipped catalyst 134a is energized for a second predetermined time to heat the heater-equipped catalyst 134a. However, when the temperature Tw of the cooling water for the engine 22 is less than the threshold value Tref, it is assumed that the catalyst 134a with a heater is heated by energizing the catalyst 134a with a heater for a time based on the temperature Tw of the cooling water for the engine 22. Also good. In this case, it is assumed that the heater-heated catalyst 134a is heated by energizing the catalyst 134a with a heater for a time that tends to be shorter as the temperature Tw of the cooling water of the engine 22 is higher, and the catalyst 134a with a heater is heated. For example, the motoring of the engine 22 may be started when the time 1/2, 1/3, or 2/3 has elapsed.

実施例のハイブリッド自動車20では、エンジン22の冷却水の温度Twが閾値Tref未満であるか否かにより、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないか比較的加温された状態にあるかを推定するものとしたが、エンジン22の運転を停止してからの経過時間に基づいて、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないか比較的加温された状態にあるかを推定するものとしてもよい。この場合、エンジン22の運転を停止してからの経過時間に基づく時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱するものとしてもよい。更にこの場合、エンジン22の運転を停止してからの経過時間が短いほど短くなる傾向の時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱するものとし、加熱ヒータ付き触媒134aを加熱する時間の1/2や1/3,2/3の時間が経過したときにエンジン22のモータリングを開始するものとしたりするなどしてもよい。   In the hybrid vehicle 20 of the embodiment, the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are relatively warmed depending on whether or not the temperature Tw of the cooling water of the engine 22 is lower than the threshold value Tref. It is assumed that there is no or a relatively warm state, but based on the elapsed time since the operation of the engine 22 was stopped, the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 It is good also as what estimates whether it is in the state which is not comparatively warmed or is comparatively warmed. In this case, it is good also as what heats the catalyst 134a with a heater by supplying with electricity to the catalyst 134a with a heater for the time based on the elapsed time after the driving | operation of the engine 22 was stopped. Furthermore, in this case, it is assumed that the catalyst 134a with a heater is heated by energizing the catalyst 134a with a heater for a time that tends to be shorter as the elapsed time after the operation of the engine 22 is stopped is shorter. The motoring of the engine 22 may be started when 1/2, 1/3, or 2/3 of the time for heating the catalyst 134a has elapsed.

実施例のハイブリッド自動車20では、エンジン22の冷却水の温度Twが閾値Tref未満のときには、第2所定時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱し、加熱ヒータ付き触媒134aの加熱を開始してから第1所定時間が経過したときにエンジン22のモータリングを開始するものとしたが、エンジン22のモータリングの開始は加熱ヒータ付き触媒134aの加熱と同時であっても構わない。   In the hybrid vehicle 20 of the embodiment, when the temperature Tw of the cooling water of the engine 22 is lower than the threshold value Tref, the heater-equipped catalyst 134a is energized for the second predetermined time to heat the heater-equipped catalyst 134a, and the heater The motoring of the engine 22 is started when the first predetermined time has elapsed since the heating of the attached catalyst 134a. However, the motoring of the engine 22 is started simultaneously with the heating of the heater-equipped catalyst 134a. It does not matter.

実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the motor MG2 is attached to the ring gear shaft 32a as the drive shaft via the reduction gear 35. However, the motor MG2 may be directly attached to the ring gear shaft 32a, or Instead, the motor MG2 may be attached to the ring gear shaft 32a via a transmission such as a 2-speed, 3-speed, or 4-speed.

実施例のハイブリッド自動車20では、エンジン22からの動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力すると共にモータMG2からの動力を減速ギヤ35を介してリングギヤ軸32aに出力するものとしたが、図11の変形例のハイブリッド自動車120に例示するように、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力すると共にモータMG2からの動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図11における車輪64a,64bに接続された車軸)に出力するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power from the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, and the power from the motor MG2 is reduced to the reduction gear. 11 is output to the ring gear shaft 32a, but the power of the engine 22 is connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30 as illustrated in the hybrid vehicle 120 of the modified example of FIG. 11 is output to the ring gear shaft 32a as the drive shaft and the power from the motor MG2 is different from the axle (the axle to which the drive wheels 63a and 63b are connected) to which the ring gear shaft 32a is connected (the wheels 64a in FIG. 11). It is good also as what is output to the axle connected to 64b.

実施例のハイブリッド自動車20では、エンジン22からの動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力すると共にモータMG2からの動力を減速ギヤ35を介してリングギヤ軸32aに出力するものとしたが、図12の変形例のハイブリッド自動車220に例示するように、エンジン22からの動力を、エンジン22のクランクシャフト26に接続されたインナーロータ232と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ234とを有しエンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を介して駆動輪63a,63bが接続された駆動軸に出力すると共にモータMG2からの動力を駆動軸に出力するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power from the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, and the power from the motor MG2 is reduced to the reduction gear. The power is output from the engine 22 to the crankshaft 26 of the engine 22 as illustrated in the hybrid vehicle 220 of the modified example of FIG. And an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b, and transmits a part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power 230. To the drive shaft to which the drive wheels 63a and 63b are connected, and the power from the motor MG2 May output to the drive shaft.

実施例のハイブリッド自動車20では、エンジン22からの動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力すると共にモータMG2からの動力を減速ギヤ35を介してリングギヤ軸32aに出力するものとしたが、図13の変形例のハイブリッド自動車320に例示するように、駆動輪63a,63bに接続された駆動軸に変速機330を介してモータMGを取り付け、モータMGの回転軸にクラッチ329を介してエンジン22を接続する構成とし、エンジン22からの動力をモータMGの回転軸と変速機330とを介して駆動軸に出力すると共にモータMGからの動力を変速機330を介して駆動軸に出力するものとしてもよい。あるいは、図14の変形例のハイブリッド自動車420に例示するように、エンジン22からの動力を変速機430を介して駆動輪63a,63bに接続された車軸に出力すると共にモータMGからの動力を駆動輪63a,63bが接続された車軸とは異なる車軸(図14における車輪64a,64bに接続された車軸)に出力するものとしてもよい。即ち、走行用の動力を出力するエンジンと走行用の動力を出力する電動機とを備えるものであれば如何なるタイプのハイブリッド自動車としてもよいのである。さらに、図15の変形例のハイブリッド自動車520に例示するように、エンジン22と、エンジン22からの動力により発電する発電機530と、発電機530やバッテリ50からの電力を用いて走行用の動力を出力するモータMGと、を備えるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the power from the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, and the power from the motor MG2 is reduced to the reduction gear. 35, the motor MG is connected to the drive shaft connected to the drive wheels 63a and 63b via the transmission 330, as exemplified in the hybrid vehicle 320 of the modified example of FIG. The engine 22 is connected to the rotation shaft of the motor MG via the clutch 329, and the power from the engine 22 is output to the drive shaft via the rotation shaft of the motor MG and the transmission 330, and from the motor MG. This power may be output to the drive shaft via the transmission 330. Alternatively, as illustrated in the hybrid vehicle 420 of the modified example of FIG. 14, the power from the engine 22 is output to the axle connected to the drive wheels 63a and 63b via the transmission 430 and the power from the motor MG is driven. It may be output to an axle different from the axle to which the wheels 63a and 63b are connected (the axle connected to the wheels 64a and 64b in FIG. 14). That is, any type of hybrid vehicle may be used as long as it includes an engine that outputs power for traveling and an electric motor that outputs power for traveling. Furthermore, as illustrated in the hybrid vehicle 520 of the modification of FIG. 15, the engine 22, the generator 530 that generates power by the power from the engine 22, and the power for traveling using the power from the generator 530 and the battery 50 The motor MG may be provided.

実施例では、本発明をハイブリッド自動車20の形態として説明したが、自動車以外の車両の形態としてもよいし、車両の制御方法の形態としてもよい。   In the embodiments, the present invention has been described as the form of the hybrid vehicle 20, but may be a form of a vehicle other than the automobile or a form of a vehicle control method.

ここで、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、モータMG2が「電動機」に相当し、バッテリ50が「蓄電手段」に相当し、電流センサにより検出された充放電電流の積算値に基づくバッテリ50の残容量(SOC)とバッテリ50の電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算するバッテリECU52が「出力制限設定手段」に相当し、加熱ヒータ付き触媒134aと三元触媒134bとを有する浄化装置134が「排気浄化手段」に相当し、スイッチ134cが「電力供給手段」に相当し、エンジン22の冷却水の温度Twを検出する水温センサ142とこの水温センサ142により検出された冷却水の温度Twが閾値Tref未満であるときに浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bが比較的加温された状態にないと推定する図5のエンジン始動制御ルーチンのステップS110を実行するハイブリッド用電子制御ユニット70とが「触媒温度推定手段」に相当し、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定する図6の始動時駆動制御ルーチンのステップS310の処理を実行するハイブリッド用電子制御ユニット70が「要求駆動力設定手段」に相当し、エンジン22の冷却水の温度Twが閾値Tref以上のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にあると推定し、直ちにモータMG1によってエンジン22をモータリングしてエンジン22を始動すると共にバッテリ50の入出力制限Win,Woutの範囲内でモータMG2から要求トルクTr*が駆動軸としてのリングギヤ軸32aに出力して走行するようエンジン22やモータMG1,モータMG2を制御し、エンジン22の冷却水の温度Twが閾値Tref未満のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないと推定し、第2所定時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱し、加熱ヒータ付き触媒134aの加熱を開始してから第1所定時間が経過したときにエンジン22のモータリングを開始し、加熱ヒータ付き触媒134aの加熱終了後にエンジン22への燃料噴射と点火とを開始して始動すると共にバッテリ50の入出力制限Win,Woutの範囲内でモータMG2から要求トルクTr*が駆動軸としてのリングギヤ軸32aに出力して走行するようエンジン22やモータMG1,モータMG2,スイッチ134cを制御するために図5のエンジン始動制御ルーチンや図6の始動時駆動制御ルーチンを実行するハイブリッド用電子制御ユニット70とエンジン22を始動する制御信号を受信して吸入空気量制御,燃料噴射制御,点火制御などを実行してエンジン22を始動するエンジンECU24とトルク指令Tm1*,Tm2*を受信してモータMG1,MG2を制御するモータECU40とが「制御手段」に相当する。また、動力分配統合機構30とモータMG1とが「電力動力入出力手段」に相当し、モータMG1が「発電機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当する。対ロータ電動機230も「電力動力入出力手段」に相当する。ここで、「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンとしてもよく、如何なるタイプの内燃機関としても構わない。「電動機」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、誘導電動機など、駆動軸に動力を入出力可能なものであれば如何なるタイプの電動機であっても構わない。「蓄電手段」としては、二次電池としてのバッテリ50に限定されるものではなく、キャパシタなど、電力動力入出力手段とや電動機と電力のやりとりが可能であれば如何なるものとしても構わない。「出力制限設定手段」としては、バッテリ50の残容量(SOC)とバッテリ50の電池温度Tbとに基づいて入出力制限Win,Woutを演算するものに限定されるものではなく、残容量(SOC)や電池温度Tbの他に例えばバッテリ50の内部抵抗などに基づいて演算するものなど、蓄電手段の状態に基づいて蓄電手段から放電してもよい許容最大電力である出力制限を設定するものであれば如何なるものとしても構わない。「排気浄化手段」としては、加熱ヒータ付き触媒134aと三元触媒134bとを有する浄化装置134に限定されるものではなく、実施例と同様の加熱ヒータ付き触媒134aだけを有する浄化装置としたり、通電抵抗により発熱しない部材に触媒を担持させると共にこれらを加熱する部材を取り付けてなる加熱ヒータ付き触媒を有するものとしたりするなど、内燃機関の排気系に取り付けられ、内燃機関からの排気を浄化するための触媒を担持すると共に電力の供給を受けて触媒を加熱する触媒担持加熱部材を有するものであれば如何なるものとしても構わない。「電力供給手段」としては、スイッチ134cに限定されるものではなく、リレーとするなど、蓄電手段からの電力の触媒担持加熱部材への供給を司るものであれば如何なるものとしても構わない。「触媒温度推定手段」としては、エンジン22の冷却水の温度Twが閾値Tref未満であるときに浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bが比較的加温された状態にないと推定するものに限定されるものではなく、エンジン22の運転を停止してからの経過時間に基づいて浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないと推定するものとしたり、浄化装置134に温度センサを取り付けて温度センサからの温度に基づいて浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないと推定するものとしたりするなど、排気浄化手段における触媒が所定温度未満であるのを推定するものであれば如何なるものとしても構わない。「要求駆動力設定手段」としては、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定するものに限定されるものではなく、アクセル開度Accだけに基づいて要求トルクを設定するものや走行経路が予め設定されているものにあっては走行経路における走行位置に基づいて要求トルクを設定するものなど、走行に要求される要求駆動力を設定するものであれば如何なるものとしても構わない。「制御手段」としては、ハイブリッド用電子制御ユニット70とエンジンECU24とモータECU40とからなる組み合わせに限定されるものではなく単一の電子制御ユニットにより構成されるなどとしてもよい。また、「制御手段」としては、エンジン22の冷却水の温度Twが閾値Tref以上のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にあると推定し、直ちにモータMG1によってエンジン22をモータリングしてエンジン22を始動すると共にバッテリ50の入出力制限Win,Woutの範囲内でモータMG2から要求トルクTr*が駆動軸としてのリングギヤ軸32aに出力して走行するようエンジン22やモータMG1,モータMG2を制御し、エンジン22の冷却水の温度Twが閾値Tref未満のときには、浄化装置134の加熱ヒータ付き触媒134aや三元触媒134bは比較的加温された状態にないと推定し、第2所定時間に亘って加熱ヒータ付き触媒134aに通電して加熱ヒータ付き触媒134aを加熱し、加熱ヒータ付き触媒134aの加熱を開始してから第1所定時間が経過したときにエンジン22のモータリングを開始し、加熱ヒータ付き触媒134aの加熱終了後にエンジン22への燃料噴射と点火とを開始して始動すると共にバッテリ50の入出力制限Win,Woutの範囲内でモータMG2から要求トルクTr*が駆動軸としてのリングギヤ軸32aに出力して走行するようエンジン22やモータMG1,モータMG2,スイッチ134cを制御するものに限定されるものではなく、内燃機関の運転を停止して要求駆動力によって走行するよう内燃機関と電動機とを制御している最中に内燃機関の始動が要求されたとき、触媒温度推定手段により触媒が所定温度未満であると推定されないときには内燃機関の始動を伴って蓄電手段の出力制限の範囲内で要求駆動力によって走行するよう内燃機関と電動機とを制御し、触媒温度推定手段により触媒が所定温度未満であると推定されたときには第1の所定時間に亘る触媒担持加熱部材への電力供給と第1の所定時間内の少なくとも一部の時間に亘る内燃機関のモータリングと触媒担持加熱部材への電力供給の終了後の内燃機関の始動とを伴って蓄電手段の出力制限の範囲内で要求駆動力によって走行するよう内燃機関と電動機と電力供給手段とを制御するものであれば如何なるものとしても構わない。即ち、内燃機関の運転を停止して要求駆動力によって走行するよう内燃機関と電動機とを制御している最中に内燃機関の始動が要求されないときに如何なる制御を行なうものとしてもよいのである。「電力動力入出力手段」としては、動力分配統合機構30とモータMG1とを組み合わせたものや対ロータ電動機230に限定されるされるものではなく、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力可能なものであれば如何なるものとしても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、誘導電動機など、動力を入出力可能なものであれば如何なるタイプの発電機としても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる作動作用を有するものなど、駆動軸と出力軸と発電機の回転軸との3軸に接続され3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Here, the correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22 corresponds to the “internal combustion engine”, the motor MG2 corresponds to the “electric motor”, the battery 50 corresponds to the “power storage unit”, and is based on the integrated value of the charge / discharge current detected by the current sensor. The battery ECU 52 that calculates the input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, based on the remaining capacity (SOC) of the battery 50 and the battery temperature Tb of the battery 50 is “output limit setting means”. ”, The purifier 134 having the heater-equipped catalyst 134a and the three-way catalyst 134b corresponds to“ exhaust gas purifying means ”, the switch 134c corresponds to“ electric power supply means ”, and the temperature of the cooling water of the engine 22 The water temperature sensor 142 for detecting Tw and the purification device 13 when the temperature Tw of the cooling water detected by the water temperature sensor 142 is lower than the threshold value Tref. The hybrid electronic control unit 70 that executes step S110 of the engine start control routine of FIG. 5 that estimates that the heater-equipped catalyst 134a and the three-way catalyst 134b are not in a relatively heated state is “catalyst temperature estimation means”. The hybrid electronic control unit 70 that executes the process of step S310 of the start time drive control routine of FIG. 6 that sets the required torque Tr * based on the accelerator opening Acc and the vehicle speed V is “required drive force”. When the temperature Tw of the cooling water of the engine 22 is equal to or higher than the threshold value Tref, it is estimated that the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are relatively warm, Immediately, the motor 22 is motored by the motor MG1 to start the engine 22 and the battery 50 enters and exits. The engine 22, the motor MG <b> 1, and the motor MG <b> 2 are controlled so that the required torque Tr * is output from the motor MG <b> 2 to the ring gear shaft 32 a as a drive shaft within the limits Win and Wout, and the coolant temperature Tw of the engine 22 is controlled. Is less than the threshold value Tref, it is presumed that the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are not relatively warm, and the heater-equipped catalyst 134a is energized for the second predetermined time. When the first predetermined time has elapsed after the heating of the catalyst 134a with a heater and the heating of the catalyst 134a with a heater has been started, the motoring of the engine 22 is started. The fuel injection and ignition to 22 are started and started, and the input / output limits Win and Wout of the battery 50 are set. In order to control the engine 22, the motor MG 1, the motor MG 2, and the switch 134 c so that the required torque Tr * is output from the motor MG 2 to the ring gear shaft 32 a as a drive shaft within the range, the engine start control routine of FIG. 6, the hybrid electronic control unit 70 that executes the start-up drive control routine, and the engine 22 that receives the control signal for starting the engine 22 and executes the intake air amount control, fuel injection control, ignition control, and the like to start the engine 22 The ECU 24 and the motor ECU 40 that receives the torque commands Tm1 * and Tm2 * and controls the motors MG1 and MG2 correspond to “control means”. Further, the power distribution integration mechanism 30 and the motor MG1 correspond to “electric power input / output means”, the motor MG1 corresponds to “generator”, and the power distribution integration mechanism 30 corresponds to “triaxial power input / output means”. Equivalent to. The anti-rotor motor 230 also corresponds to “power power input / output means”. Here, the “internal combustion engine” is not limited to an internal combustion engine that outputs power using a hydrocarbon fuel such as gasoline or light oil, but may be a hydrogen engine or any type of internal combustion engine. . The “motor” is not limited to the motor MG2 configured as a synchronous generator motor, and may be any type of motor as long as it can input and output power to the drive shaft, such as an induction motor. . The “power storage means” is not limited to the battery 50 as a secondary battery, and may be anything as long as it can exchange power with a power power input / output means such as a capacitor and an electric motor. The “output limit setting means” is not limited to the one that calculates the input / output limits Win and Wout based on the remaining capacity (SOC) of the battery 50 and the battery temperature Tb of the battery 50, but the remaining capacity (SOC ) And the battery temperature Tb, for example, based on the internal resistance of the battery 50, etc., and setting an output limit that is an allowable maximum power that may be discharged from the power storage means based on the state of the power storage means. It does not matter as long as there is any. The “exhaust purification means” is not limited to the purification device 134 having the heater-equipped catalyst 134a and the three-way catalyst 134b, but may be a purification device having only the heater-equipped catalyst 134a similar to the embodiment, It is attached to the exhaust system of the internal combustion engine to purify the exhaust from the internal combustion engine, such as having a catalyst with a heater attached to the member that does not generate heat due to the energization resistance and heating the member. As long as it has a catalyst-carrying heating member that carries the catalyst for heating and receives the supply of electric power to heat the catalyst, it does not matter. The “power supply means” is not limited to the switch 134c, and any power supply means may be used as long as it controls the supply of power from the power storage means to the catalyst-carrying heating member, such as a relay. As the “catalyst temperature estimation means”, when the temperature Tw of the cooling water of the engine 22 is less than the threshold value Tref, the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are not in a relatively heated state. It is not limited to what is estimated, and the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are not relatively warm based on the elapsed time since the operation of the engine 22 was stopped. Or a temperature sensor is attached to the purifier 134 and the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are not relatively warm based on the temperature from the temperature sensor. Anything can be used as long as it is possible to estimate that the catalyst in the exhaust gas purification means is lower than a predetermined temperature.The “required driving force setting means” is not limited to the one that sets the required torque Tr * based on the accelerator opening Acc and the vehicle speed V, but sets the required torque based only on the accelerator opening Acc. If the required driving force required for traveling is set, such as those for which the required torque is set based on the traveling position on the traveling route, such as those for which the driving route is set in advance I do not care. The “control means” is not limited to the combination of the hybrid electronic control unit 70, the engine ECU 24, and the motor ECU 40, and may be configured by a single electronic control unit. Further, as the “control means”, when the temperature Tw of the cooling water of the engine 22 is equal to or higher than the threshold value Tref, it is estimated that the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are relatively warm. Then, the motor 22 is immediately motored by the motor MG1 to start the engine 22, and the required torque Tr * is output from the motor MG2 to the ring gear shaft 32a as the drive shaft within the range of the input / output limits Win and Wout of the battery 50. When the engine 22 and the motor MG1 and the motor MG2 are controlled so as to travel and the cooling water temperature Tw of the engine 22 is lower than the threshold value Tref, the heater-equipped catalyst 134a and the three-way catalyst 134b of the purifier 134 are relatively heated. It is presumed that it is not in a state where it has been heated and passed through the catalyst 134a with heater for a second predetermined time. When the first predetermined time has elapsed since the heating of the catalyst 134a with a heater has been started, the motoring of the engine 22 is started, and after the heating of the catalyst 134a with a heater has been completed. The engine 22 is started by injecting and igniting fuel, and within the range of the input / output limits Win and Wout of the battery 50, the motor MG2 outputs the required torque Tr * to the ring gear shaft 32a as the drive shaft and travels. The engine 22 and the motor MG1, the motor MG2, and the switch 134c are not limited to those that control the internal combustion engine and the electric motor so as to stop the operation of the internal combustion engine and run with the required driving force. When the internal combustion engine is requested to start, the catalyst temperature estimation means does not estimate that the catalyst is below the predetermined temperature. Sometimes, when the internal combustion engine is started and the internal combustion engine and the electric motor are controlled to run with the required driving force within the range of the output limit of the power storage means, and the catalyst temperature estimation means estimates that the catalyst is lower than the predetermined temperature Internal combustion engine after completion of power supply to catalyst-carrying heating member over first predetermined time, motoring of internal combustion engine over at least part of time within first predetermined time, and power supply to catalyst-carrying heating member As long as the internal combustion engine, the electric motor, and the power supply means are controlled so as to travel with the required driving force within the range of the output restriction of the power storage means with the start of the power supply, any method may be used. That is, any control may be performed when the internal combustion engine is not required to start while the internal combustion engine and the electric motor are controlled so as to run with the required driving force after stopping the operation of the internal combustion engine. The “power power input / output means” is not limited to the combination of the power distribution and integration mechanism 30 and the motor MG1 or the counter-rotor motor 230, and is connected to the drive shaft connected to the axle. Any one is connected to the output shaft of the internal combustion engine so as to be able to rotate independently of the drive shaft, and can input and output power to and from the drive shaft and the output shaft with input and output of electric power and power. It does not matter. The “generator” is not limited to the motor MG1 configured as a synchronous generator motor, and may be any type of generator such as an induction motor that can input and output power. The “three-axis power input / output means” is not limited to the power distribution / integration mechanism 30 described above, but includes four or more shafts using a double pinion type planetary gear mechanism or a combination of a plurality of planetary gear mechanisms. Any one of the three axes connected to the three axes of the drive shaft, the output shaft, and the rotating shaft of the generator, such as those connected to the motor and those having a different operation action from the planetary gear such as a differential gear As long as the power is input / output to / from the remaining shafts based on the power input / output to / from the power source, any method may be used. The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems is the same as that of the embodiment described in the column of means for solving the problems. It is an example for specifically explaining the best mode for doing so, and does not limit the elements of the invention described in the column of means for solving the problems. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、車両の製造産業などに利用可能である。   The present invention can be used in the vehicle manufacturing industry.

本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 according to an embodiment of the present invention. エンジン22の構成の概略を示す構成図である。2 is a configuration diagram showing an outline of a configuration of an engine 22. FIG. バッテリ50における電池温度Tbと入出力制限Win,Woutとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the battery temperature Tb in the battery 50, and the input / output restrictions Win and Wout. バッテリ50の残容量(SOC)と入出力制限Win,Woutの補正係数との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the remaining capacity (SOC) of the battery 50, and the correction coefficient of input / output restrictions Win and Wout. 実施例のハイブリッド用電子制御ユニット70により実行されるエンジン始動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the engine starting control routine performed by the electronic control unit for hybrids 70 of an Example. 実施例のハイブリッド用電子制御ユニット70により実行される始動時駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine at the time of start performed by the hybrid electronic control unit 70 of an Example. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. エンジン22の始動時にモータMG1のトルク指令Tm1*に設定するトルクマップの一例とエンジン22の回転数Neの変化の様子の一例とを示す説明図である。It is explanatory drawing which shows an example of the torque map set to the torque command Tm1 * of motor MG1 at the time of engine 22 start, and an example of the mode of the rotation speed Ne of the engine 22. エンジン22をモータリングしている状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。It is explanatory drawing which shows an example of the collinear diagram which shows the dynamic relationship between the rotation speed and torque in the rotation element of the power distribution integration mechanism 30 when drive | working in the state which is motoring the engine 22. FIG. モータ走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。It is explanatory drawing which shows an example of the alignment chart which shows the dynamic relationship between the rotation speed and torque in the rotation element of the power distribution integration mechanism 30 at the time of motor running. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification. 変形例のハイブリッド自動車220の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example. 変形例のハイブリッド自動車320の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 320 of a modified example. 変形例のハイブリッド自動車420の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 420 according to a modification. 変形例のハイブリッド自動車520の構成の概略を示す構成図である。FIG. 12 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 520 of a modification example.

符号の説明Explanation of symbols

20,120,220,320,420,520 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、24a CPU、24b ROM、24c RAM、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、122 エアクリーナ、124 スロットルバルブ、126 燃料噴射弁、128 吸気バルブ、130 点火プラグ、132 ピストン、134 浄化装置、134a 加熱ヒータ付き触媒、134b 三元触媒、134c スイッチ、135a 空燃比センサ、135b 酸素センサ、136 スロットルモータ、138 イグニッションコイル、140 クランクポジションセンサ、142 水温センサ、143 圧力センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、329 クラッチ、330,430 変速機、530 発電機、MG,MG1,MG2 モータ。   20, 120, 220, 320, 420, 520 Hybrid vehicle, 22 engine, 24 engine electronic control unit (engine ECU), 24a CPU, 24b ROM, 24c RAM, 26 crankshaft, 28 damper, 30 power distribution integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear, 34 carrier, 35 reduction gear, 40 electronic control unit for motor (motor ECU), 41, 42 inverter, 43, 44 rotational position detection sensor, 50 battery, 51 temperature sensor , 52 battery electronic control unit (battery ECU), 54 electric power line, 60 gear mechanism, 62 differential gear, 63a, 63b driving wheel, 64a, 64b wheel, 70 hybrid electronic control unit 72 CPU, 74 ROM, 76 RAM, 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 88 vehicle speed sensor, 122 air cleaner, 124 throttle valve, 126 fuel injection valve, 128 intake valve, 130 spark plug, 132 piston, 134 purification device, 134a catalyst with heater, 134b three-way catalyst, 134c switch, 135a air-fuel ratio sensor, 135b oxygen sensor, 136 throttle motor 138 Ignition coil, 140 Crank position sensor, 142 Water temperature sensor, 143 Pressure sensor, 144 Cam position sensor, 6 Throttle valve position sensor, 148 Air flow meter, 149 Temperature sensor, 150 Variable valve timing mechanism, 230 Counter rotor motor, 232 Inner rotor, 234 Outer rotor, 329 Clutch, 330, 430 Transmission, 530 Generator, MG, MG1, MG2 motor.

Claims (7)

内燃機関と電動機とを搭載し、少なくとも前記内燃機関の運転を停止した状態で走行可能な車両であって、
前記電動機と電力のやりとりが可能な蓄電手段と、
前記蓄電手段の状態に基づいて該蓄電手段から放電してもよい許容最大電力である出力制限を設定する出力制限設定手段と、
前記内燃機関の排気系に取り付けられ、前記内燃機関からの排気を浄化するための触媒を担持すると共に電力の供給を受けて該触媒を加熱する触媒担持加熱部材を有する排気浄化手段と、
前記蓄電手段からの電力の前記触媒担持加熱部材への供給を司る電力供給手段と、
前記排気浄化手段における触媒が所定温度未満であるのを推定する触媒温度推定手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記内燃機関の運転を停止して前記設定された要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御している最中に前記内燃機関の始動が要求されたとき、前記触媒温度推定手段により触媒が所定温度未満であると推定されないときには前記内燃機関の始動を伴って前記設定された出力制限の範囲内で前記設定された要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御し、前記触媒温度推定手段により触媒が前記所定温度未満であると推定されたときには前記触媒担持加熱部材の触媒が機能できる程度に加熱されるのに必要な第1の所定時間に亘る前記触媒担持加熱部材への電力供給と前記触媒担持加熱部材への電力供給を開始してから前記触媒担持加熱部材の触媒が若干加熱するのに必要な前記第1の所定時間より短い第2の所定時間が経過したときからの前記内燃機関のモータリングと前記触媒担持加熱部材への電力供給の終了後のモータリングしている前記内燃機関への燃料噴射および点火の開始による前記内燃機関の始動とを伴って前記設定された出力制限の範囲内で前記設定された要求駆動力によって走行するよう前記内燃機関と前記電動機と前記電力供給手段とを制御する制御手段と、
を備える車両。
A vehicle equipped with an internal combustion engine and an electric motor and capable of traveling with at least the operation of the internal combustion engine stopped,
Power storage means capable of exchanging electric power with the electric motor;
Output limit setting means for setting an output limit that is allowable maximum power that may be discharged from the power storage means based on the state of the power storage means;
An exhaust gas purification means, which is attached to an exhaust system of the internal combustion engine, carries a catalyst for purifying exhaust gas from the internal combustion engine, and has a catalyst-carrying heating member that receives power and heats the catalyst;
Power supply means for controlling supply of power from the power storage means to the catalyst-carrying heating member;
Catalyst temperature estimating means for estimating that the catalyst in the exhaust purification means is lower than a predetermined temperature;
A required driving force setting means for setting a required driving force required for traveling;
When the start of the internal combustion engine is requested during the control of the internal combustion engine and the electric motor to stop the operation of the internal combustion engine and run with the set required driving force, the catalyst temperature estimation When it is not estimated by the means that the catalyst is lower than a predetermined temperature, the internal combustion engine and the electric motor are caused to travel with the set required driving force within the set output limit range with the start of the internal combustion engine. And controlling the catalyst for a first predetermined time required to heat the catalyst of the catalyst-carrying heating member to a functionable level when the catalyst temperature estimating means estimates that the catalyst is lower than the predetermined temperature. the required catalyst of the catalyst-carrying heating member is heated slightly from the start to the power supply the power supply to the catalyst carrying the heating element to the carrier heating member a first predetermined Initiation of fuel injection and ignition to the internal combustion engine in which the second predetermined time shorter than between is the motoring after the end of the power supply of the motoring of the internal combustion engine to the catalyst carrying the heating member from the time has elapsed Control means for controlling the internal combustion engine, the electric motor, and the power supply means so as to travel with the set required driving force within the set output restriction range with the start of the internal combustion engine by
A vehicle comprising:
前記触媒温度推定手段は、前記内燃機関の冷却水の温度に基づいて触媒が所定温度未満であるのを推定する手段である請求項記載の車両。 The catalyst temperature estimating means of the vehicle according to claim 1, wherein the catalyst based on the temperature of the cooling water of the internal combustion engine is a means for estimating that the temperature is lower than the predetermined temperature. 前記触媒温度推定手段は、前記内燃機関を運転停止してからの経過時間に基づいて触媒が所定温度未満であるのを推定する手段である請求項記載の車両。 The catalyst temperature estimating means of the vehicle according to claim 1, wherein the catalyst based on the elapsed time from the operation stop of the internal combustion engine is a means for estimating that the temperature is lower than the predetermined temperature. 前記排気浄化手段は、前記触媒担持加熱部材と前記内燃機関からの排気を浄化するための触媒を担持してなる触媒担持部材とを有し、排気の上流側から前記触媒担持加熱部材,前記触媒担持部材の順に配置されてなる手段である請求項1ないしいずれか記載の車両。 The exhaust purification means has the catalyst-carrying heating member and a catalyst-carrying member carrying a catalyst for purifying exhaust from the internal combustion engine, and the catalyst-carrying heating member, the catalyst from the upstream side of exhaust gas The vehicle according to any one of claims 1 to 3, which is means arranged in the order of the supporting members. 請求項1ないしいずれか記載の車両であって、
前記蓄電手段と電力のやりとりが可能で、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記出力軸と前記駆動軸とに動力を出力する電力動力入出力手段を備え、
前記電動機は、前記駆動軸に動力を入出力可能に取り付けられてなる、
車両。
The vehicle according to any one of claims 1 to 4 ,
Power can be exchanged with the power storage means, connected to a drive shaft connected to an axle, and connected to the output shaft of the internal combustion engine so as to be able to rotate independently of the drive shaft. A power power input / output means for outputting power to the output shaft and the drive shaft is provided.
The electric motor is attached to the drive shaft so that power can be input and output.
vehicle.
前記電力動力入出力手段は、動力を入出力可能な発電機と、前記駆動軸と前記出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える手段である請求項記載の車両。 The power power input / output means is connected to three axes of a generator capable of inputting / outputting power, the drive shaft, the output shaft, and a rotating shaft of the generator, and any two of the three shafts are connected. 6. The vehicle according to claim 5 , further comprising: a three-axis power input / output means for inputting / outputting power to / from the remaining shaft based on the input / output power. 内燃機関と、電動機と、前記電動機と電力のやりとりが可能な蓄電手段と、前記内燃機関の排気系に取り付けられ、前記内燃機関からの排気を浄化するための触媒を担持すると共に電力の供給を受けて該触媒を加熱する触媒担持加熱部材を有する排気浄化手段と、前記蓄電手段からの電力の前記触媒担持加熱部材への供給を司る電力供給手段と、を搭載し、少なくとも前記内燃機関の運転を停止した状態で走行可能な車両の制御方法であって、
前記内燃機関の運転を停止して走行に要求される要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御している最中に前記内燃機関の始動が要求されたとき、前記排気浄化手段における触媒が所定温度未満でないと推定されるときには前記内燃機関の始動を伴って前記蓄電手段から放電してもよい許容最大電力である出力制限の範囲内で前記要求駆動力によって走行するよう前記内燃機関と前記電動機とを制御し、前記排気浄化手段における触媒が前記所定温度未満であると推定されるときには前記触媒担持加熱部材の触媒が機能できる程度に加熱されるのに必要な第1の所定時間に亘る前記触媒担持加熱部材への電力供給と前記触媒担持加熱部材への電力供給を開始してから前記触媒担持加熱部材の触媒が若干加熱するのに必要な前記第1の所定時間より短い第2の所定時間が経過したときからの前記内燃機関のモータリングと前記触媒担持加熱部材への電力供給の終了後のモータリングしている前記内燃機関への燃料噴射および点火の開始による前記内燃機関の始動とを伴って前記出力制限の範囲内で前記要求駆動力によって走行するよう前記内燃機関と前記電動機と前記電力供給手段とを制御する、
ことを特徴とする車両の制御方法。
An internal combustion engine, an electric motor, power storage means capable of exchanging electric power with the electric motor, an exhaust system of the internal combustion engine, and a catalyst for purifying exhaust gas from the internal combustion engine and carrying electric power An exhaust gas purification unit having a catalyst-carrying heating member that receives and heats the catalyst, and a power supply unit that controls supply of electric power from the power storage unit to the catalyst-carrying heating member, and at least the operation of the internal combustion engine Is a method of controlling a vehicle that can run with the vehicle stopped.
When the start of the internal combustion engine is requested while controlling the internal combustion engine and the electric motor so as to travel with the required driving force required for traveling with the operation of the internal combustion engine stopped, the exhaust gas purification is performed. When it is estimated that the catalyst in the means is not lower than a predetermined temperature, the vehicle is driven by the requested driving force within a range of an output limit that is an allowable maximum power that may be discharged from the power storage means when the internal combustion engine is started. When the internal combustion engine and the electric motor are controlled and it is estimated that the catalyst in the exhaust gas purifying means is lower than the predetermined temperature, the first required for heating the catalyst of the catalyst-carrying heating member to a functionable level . although the catalyst of the catalyst-carrying heating member from the start of power supply of the electric power supply to the catalyst carrying the heating element to the catalyst carrying the heating member is heated slightly over a predetermined time To main a first of said internal combustion engine that is motoring after the end of the power supply of less than the predetermined time the second and motoring of the internal combustion engine from the time the predetermined time has passed to the catalyst carrying the heating element Controlling the internal combustion engine, the electric motor, and the power supply means so as to travel with the required driving force within the range of the output restriction with the start of the internal combustion engine by the start of fuel injection and ignition of
A method for controlling a vehicle.
JP2007085318A 2007-03-28 2007-03-28 Vehicle and control method thereof Expired - Fee Related JP4222427B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007085318A JP4222427B2 (en) 2007-03-28 2007-03-28 Vehicle and control method thereof
PCT/JP2008/054726 WO2008120555A1 (en) 2007-03-28 2008-03-14 Vehicle, and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085318A JP4222427B2 (en) 2007-03-28 2007-03-28 Vehicle and control method thereof

Publications (2)

Publication Number Publication Date
JP2008239078A JP2008239078A (en) 2008-10-09
JP4222427B2 true JP4222427B2 (en) 2009-02-12

Family

ID=39808138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085318A Expired - Fee Related JP4222427B2 (en) 2007-03-28 2007-03-28 Vehicle and control method thereof

Country Status (2)

Country Link
JP (1) JP4222427B2 (en)
WO (1) WO2008120555A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141893A (en) * 2012-01-11 2013-07-22 Toyota Motor Corp Vehicle and method of controlling vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008063449A1 (en) * 2008-12-17 2010-07-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating a hybrid drive
JP5212276B2 (en) * 2009-07-02 2013-06-19 三菱自動車工業株式会社 Hybrid car
CN102791979B (en) * 2010-03-10 2015-01-07 丰田自动车株式会社 Vehicle and method for electrifying catalyst device
JP5252120B2 (en) * 2010-03-15 2013-07-31 トヨタ自動車株式会社 vehicle
JP5093293B2 (en) 2010-04-27 2012-12-12 トヨタ自動車株式会社 Vehicle control device
JP5884709B2 (en) * 2012-10-25 2016-03-15 株式会社デンソー Control device for hybrid vehicle
JP6064824B2 (en) * 2013-07-26 2017-01-25 マツダ株式会社 Control device for hybrid vehicle
JP6248997B2 (en) * 2015-09-09 2017-12-20 トヨタ自動車株式会社 Hybrid car
CN108590818A (en) * 2018-04-18 2018-09-28 成都雅骏新能源汽车科技股份有限公司 A kind of control method reducing cold start emission based on hybrid vehicle
GB2581774B (en) * 2019-02-19 2021-09-08 Jaguar Land Rover Ltd Catalyst preheat control apparatus and method
GB2581775B (en) * 2019-02-19 2021-09-08 Jaguar Land Rover Ltd Catalyst preheat control apparatus and method
JP7273572B2 (en) * 2019-03-19 2023-05-15 株式会社Subaru warming device
JP7215404B2 (en) * 2019-12-06 2023-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP7342816B2 (en) * 2020-08-03 2023-09-12 株式会社豊田自動織機 Series hybrid vehicle exhaust treatment system
US11346265B2 (en) * 2020-10-30 2022-05-31 Ford Global Technologies, Llc Methods and systems for an engine
FR3126951B1 (en) * 2021-09-14 2024-02-02 Vitesco Technologies Catalyst heating system power management control unit for motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2861628B2 (en) * 1992-05-14 1999-02-24 トヨタ自動車株式会社 Exhaust gas purification device
JPH08338235A (en) * 1995-06-15 1996-12-24 Hitachi Ltd Exhaust gas reducing device and method for hybrid vehicle
JP2002295347A (en) * 2001-03-30 2002-10-09 Nissan Motor Co Ltd Starting control device for diesel engine which uses low boiling point fuel
JP2006125245A (en) * 2004-10-27 2006-05-18 Toyota Motor Corp Power output device and automobile mounting this device, method for controlling the power output device, and drive device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141893A (en) * 2012-01-11 2013-07-22 Toyota Motor Corp Vehicle and method of controlling vehicle

Also Published As

Publication number Publication date
WO2008120555A1 (en) 2008-10-09
JP2008239078A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4222427B2 (en) Vehicle and control method thereof
JP4293266B2 (en) Hybrid car
JP4183013B1 (en) Vehicle and control method thereof
JP4325700B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4552921B2 (en) Hybrid vehicle and control method thereof
JP4850801B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING INTERNAL COMBUSTION ENGINE DEVICE
JP2010179780A (en) Hybrid vehicle and control method for the same
JP2007302185A (en) Power output device, its control method, and vehicle
JP2009274671A (en) Hybrid vehicle and its control method
JP5217991B2 (en) Hybrid vehicle and control method thereof
JP5109861B2 (en) Vehicle and control method thereof
JP2010188935A (en) Hybrid vehicle and control method
JP2005320911A (en) Power output device, automobile having the power output device, and method of controlling the power output device
JP4196960B2 (en) Power output apparatus, automobile equipped with the same, and control method therefor
JP2008239077A (en) Vehicle and control method thereof
JP2008189267A (en) Hybrid vehicle and its control method
JP5494398B2 (en) Hybrid car
JP2009046076A (en) Automobile and control method therefor
JP2009274628A (en) Hybrid vehicle and its control method
JP2009279965A (en) Hybrid vehicle and method of controlling the same
JP2011084202A (en) Power output device, hybrid vehicle equipped with the same, and control method for the power output device
JP2010202137A (en) Hybrid vehicle and control method thereof
JP4910970B2 (en) Vehicle and control method for internal combustion engine mounted on vehicle
JP4862687B2 (en) Internal combustion engine device, power output device, and control method thereof
JP4311414B2 (en) Vehicle and control method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R151 Written notification of patent or utility model registration

Ref document number: 4222427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees