JP4222053B2 - Polytetrafluoroethylene composition, granulated product and molded product - Google Patents

Polytetrafluoroethylene composition, granulated product and molded product Download PDF

Info

Publication number
JP4222053B2
JP4222053B2 JP2003043399A JP2003043399A JP4222053B2 JP 4222053 B2 JP4222053 B2 JP 4222053B2 JP 2003043399 A JP2003043399 A JP 2003043399A JP 2003043399 A JP2003043399 A JP 2003043399A JP 4222053 B2 JP4222053 B2 JP 4222053B2
Authority
JP
Japan
Prior art keywords
ptfe
graphite powder
powder
polytetrafluoroethylene
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043399A
Other languages
Japanese (ja)
Other versions
JP2004250605A (en
Inventor
真澄 野村
潤 星川
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003043399A priority Critical patent/JP4222053B2/en
Publication of JP2004250605A publication Critical patent/JP2004250605A/en
Application granted granted Critical
Publication of JP4222053B2 publication Critical patent/JP4222053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、軸受けやガスケット等に利用されるグラファイト粉末含有ポリテトラフルオロエチレン(以下、PTFEという。)成形物、その成形用原料として使用されるPTFE粉末とグラファイト粉末の混合物であるPTFE組成物、およびPTFE組成物を造粒した造粒粉末であるPTFE造粒物に関する。
【0002】
【従来の技術】
懸濁重合で得られるPTFE粒子は、数十〜数百μmの大きさに粉砕された後、圧縮成形用のモールディングパウダーとして市販されており、このパウダーは、そのまま、または用途に要求される物性に応じて種々の充填剤を配合したPTFE組成物を圧縮成形し、その後370℃程度で焼成し、PTFE成形物として種々の用途に供されている。
充填剤含有PTFE成形物の成形用原料として、PTFE粉末と充填剤とを混合しただけのPTFE組成物は調製が容易であり、比較的大きな成形物を作製する場合には使用可能であるが、粉末の流動性が悪いために取扱いにくい欠点がある。このため、小型の成形物を作製する場合や、粉末をホッパーから自動供給するような製造工程では、PTFE組成物を造粒して粉末流動性を改善させたPTFE造粒物が多用される(例えば、非特許文献1参照)。
【0003】
一方、PTFE成形物の耐磨耗性や圧縮特性の向上が必要な用途では、充填剤を混合した充填剤入りPTFE組成物が使用され、特に軸受けやガスケット等の用途には充填剤として炭素系充填剤が用いられる。
炭素系充填剤として、炭素繊維の粉砕物やフェノール樹脂等の樹脂粉末を高温で炭化した粉末は非常に高価であるため幅広くは用いられず、一般的にはグラファイト粉末が好ましく使用される。
例えば、グラファイト(黒鉛)入りPTFE組成物を用いたPTFE成形物は比較的高い伸びおよび強度を有することが提案されている(特許文献1参照)。しかし、このPTFE成形物は伸びおよび強度が充分とはいえず、またPTFE組成物は嵩密度や粉末流動性が小さく取り扱いにくいという問題もあった。
【0004】
また、炭素質粉末(コークス粉末)を配合したPTFE造粒物が提案されている(特許文献2参照)。しかし、この場合、微細なPTFE粉末を使用する必要があるため、格別の工程によりPTFEの粉砕や分級を行なう必要があるという問題もあった。
さらに、従来、グラファイト粉末は多く配合する方が、PTFE成形物の耐磨耗性、圧縮特性および硬度を向上させることが知られているが、グラファイト粉末を多く配合した場合はPTFE成形物の強度や伸度が低下する問題があった。特に、PTFE造粒物を使用してPTFE成形物を得ようとする場合、グラファイト粉末を多く配合するとPTFE成形物の機械的強度や伸度が著しく低下する問題があった。
【0005】
【特許文献1】
特公平8−30135号公報
【特許文献2】
特開2002−234945公報
【非特許文献1】
里川孝臣編「ふっ素樹脂ハンドブック」日刊工業新聞社発行、発行日1990年11月30日初版、30頁及び94〜96頁
【0006】
【発明が解決しようとする課題】
本発明は、高い伸度と強度を有するグラファイト含有PTFE成形物、その成形用原料として使用できるPTFE組成物およびPTFE造粒物の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討した結果、グラファイト粉末の安息角を45°以下にすることにより、またはグラファイト粉末の嵩密度を0.2〜1.0にすることにより、上記課題を達成できることを見出し、本発明を完成するに至った。
【0008】
本発明は、ポリテトラフルオロエチレン粉末およびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン組成物において、グラファイト粉末の安息角が45°以下であり、グラファイト粉末の平均粒径が5〜40μmであることを特徴とするポリテトラフルオロエチレン組成物を提供する。
また本発明は、ポリテトラフルオロエチレン粉末およびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン組成物において、グラファイト粉末の嵩密度が0.2〜1.0であり、グラファイト粉末の平均粒径が5〜40μmであることを特徴とするポリテトラフルオロエチレン組成物を提供する。
【0009】
また本発明は、ポリテトラフルオロエチレン粉末およびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン造粒物において、グラファイト粉末の安息角が45°以下であり、グラファイト粉末の平均粒径が5〜40μmであり、ポリテトラフルオロエチレン造粒物の平均粒径が200〜1000μmであることを特徴とするポリテトラフルオロエチレン造粒物を提供する。
また本発明は、ポリテトラフルオロエチレン粉末およびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン造粒物において、グラファイト粉末の嵩密度が0.2〜1.0であり、グラファイト粉末の平均粒径が5〜40μmであり、ポリテトラフルオロエチレン造粒物の平均粒径が200〜1000μmであることを特徴とするポリテトラフルオロエチレン造粒物を提供する。
【0010】
また本発明は、ポリテトラフルオロエチレンおよびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン成形物において、グラファイト粉末の安息角が45°以下であり、グラファイト粉末の平均粒径が5〜40μmであるポリテトラフルオロエチレン成形物を提供する。
また本発明は、ポリテトラフルオロエチレンおよびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン成形物において、グラファイト粉末の嵩密度が0.2〜1.0であり、グラファイト粉末の平均粒径が5〜40μmであるポリテトラフルオロエチレン成形物を提供する。
【0011】
【発明の実施の形態】
本発明におけるPTFEとしては、テトラフルオロエチレン(以下、TFEという。)の単独重合体でもよく、溶融流動性を付与するに到らない範囲で、特に0.5モル%以下の割合でTFEと共重合できる共単量体に基づく重合単位を含有するPTFEであってもよい。
【0012】
該共単量体の具体例としては、ヘキサフルオロプロピレン、クロロトリフロオロエチレン、トリフルオロエチレン等のフルオロオレフィン類(ただし、TFEを除く。)、ペルフルオロ(アルキルビニルエーテル)、ペルフルオロ(アルコキシアルキルビニルエーテル)、(ペルフルオロアルキル)メチルトリフルオロビニルエーテル等のフルオロビニルエーテル類、(ペルフルオロアルキル)エチレン、エチレン、プロピレン等のオレフィン類等が挙げられる。共単量体としては、ヘキサフルオロプロピレン、ペルフルオロ(n−プロピルビニルエーテル)、(ペルフルオロ−n−ブチル)エチレンが好ましい。
【0013】
本発明に使用するPTFE粉末は、懸濁重合で得たPTFE粒子を粉砕して得られた平均粒径5〜65μmのPTFE粉末が好ましく、平均粒径10〜50μmのPTFE粉末がより好ましく、平均粒径15〜40μmのPTFE粉末がさらに好ましい。
本発明では、グラファイト粉末として、天然グラファイトまたは人造グラファイトを公知の手段で粉砕したもの、その粉砕後に分級したもの、またはその粉砕後に粒状化したものを1種単独または2種以上を混合して使用できる。なお、本発明におけるグラファイト粉末は、黒鉛粉末またはコークス粉末と称されるものも含む。
【0014】
本発明に使用するグラファイト粉末は、安息角が45°以下のものである。好ましくは44°以下のものであり、より好ましくは43°以下のものである。安息角が45°以下であると、流動性が高く、グラファイト粉末の粒子形状が比較的丸く滑らかであるため、PTFE成形物中でマトリックスであるPTFEの連続性を妨げず、成形物の強度や伸度が高くなる。一方、安息角が45°を超えると、流動性が低く、グラファイト粉末の粒子形状が角張っていたり、異方性が大きかったりするために、マトリックスの連続性を妨げ、PTFE成形物の強度や伸度が低下する。
安息角の下限は、25°以上が好ましく、30°以上がより好ましく、33°以上がさらに好ましい。
なお、本発明でいう安息角とは、ホソカワミクロン社製パウダーテスターを用いて測定した数値を用い、直径80mmの円板上にグラファイト粉末を落下させ、平衡角に達した状態で、円板面からの角度を読み取り測定する。
【0015】
また、本発明で使用するグラファイト粉末は、嵩密度が0.2〜1.0のものである。さらに好ましい嵩密度は0.3〜0.9であり、特に好ましくは0.4〜0.9の範囲のものである。嵩密度が上記範囲であると、PTFE粉末との混合性が良く、PTFE成形物の硬度も高くなる。
本発明で使用するグラファイト粉末は、平均粒径が5〜40μmのものであり、好ましくは7〜35μmであり、特に好ましくは10〜25μmのものである。グラファイト粉末の平均粒径が上記範囲より大きいと、厚み1mm以下の薄型の成形物や直径1.5mm以下といった細物の成形物に成形または切削加工した場合に、著しく強度や伸度が低下するため好ましくない。また、グラファイト粉末の平均粒径が上記範囲よりも小さいと、強度や伸度が低下するため好ましくない。
【0016】
本発明で使用するグラファイト粉末は、45μm超の粒子の割合が5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が特に好ましい。45μm超のグラファイト粒子の割合が多いと、成形物の組織が荒くなり外観を損ねる傾向がある。
また、本発明でさらに好ましく使用できるグラファイト粉末は、25μm超の粒子の割合が20質量%以下であり、好ましくは15質量%以下であり、より好ましくは10質量%以下である。25μm超の粒子の割合が多いと、薄型成形物や細物成形物に加工した場合に、強度や伸度の低下が大きい。
【0017】
また、本発明で使用するグラファイト粉末は、5μm以下の粒子の割合が5質量%以下が好ましく、より好ましくは3質量%以下であり、特に好ましくは1質量%以下である。5μm以下の粒子の割合が多い場合には成形物の強度および伸度が低下するが、特にPTFE造粒物に用いた場合に、造粒プロセス中でグラファイト粒子がPTFE造粒物表面に偏析しやすく、PTFE成形物中でPTFE造粒物の粒界が残り、強度や伸度が低下し好ましくない。
【0018】
本発明において、混合工程または造粒工程でのグラファイト粉末の粒径変動は非常に小さいため、PTFE組成物中、PTFE造粒物中またはPTFE成形物中のグラファイト粉末の粒径は、使用するグラファイト粉末の単独の粒度とみなすことができる。実際の測定方法としては、あらかじめ標準粒子を用いてトレーサビリティを確認したレーザー回折・散乱法による粒度分布計を用いて測定し、累積頻度図(ふるい下)を作成して、平均粒径や、各粒径範囲での頻度の割合(質量%)を求めることができる。
本発明においては、グラファイト粉末の含有量は、PTFEとグラファイト粉末の両成分の合計量に対して5〜50質量%であり、好ましくは10〜40質量%であり、さらに好ましくは15〜35質量%であり、特に好ましくは20〜30質量%である。グラファイト粉末の含有量が多すぎると成形物の強度や伸度が低下し、少なすぎると成形物の圧縮強度や耐摩耗性や硬度が低下し好ましくない。
【0019】
本発明では、グラファイト粉末の他に、ガラス粉末、ガラス繊維粉砕粉、アルミナ粉末、シリカ粉末、タルク粉末、カーボン繊維粉砕粉、青銅粉末、銅粉末、ポリイミド粉末、2硫化モリブデン粉末、ポリフェニレンスルフィド粉末等の充填剤を含有してもよい。
本発明のPTFE組成物は、PTFE粉末とグラファイト粉末とをヘンシェルミキサー等の公知の混合機で混合することにより得ることができる。
また本発明のPTFE造粒物は、PTFE組成物を用いて、水を使用しない乾式造粒法、または水を使用する湿式造粒法により得ることができる。
【0020】
乾式造粒法としては、PTFE組成物にバインダーとして有機溶剤を添加し、転動型、撹拌型、流動層型等の造粒機で造粒した後、乾燥する方法が用いられる。
湿式造粒法としては、PTFE組成物にバインダーとして水に溶解しにくい有機溶剤を混合し、水中で撹拌して造粒した後、乾燥する方法である。グラファイト粉末は、シランカップリング剤、シリコーンオイル、ふっ素系オイル、ふっ素樹脂等の有機化合物を用いて撥水処理したのち使用してもよい。
【0021】
本発明のPTFE造粒物の平均粒径は200〜1000μmであり、300〜900μmが好ましく、400〜800μmがさらに好ましい。PTFE造粒物の平均粒径が大きすぎると成形物の表面平滑性が低下し物性のばらつきも大きくなるが、平均粒径が小さすぎる場合にはPTFE造粒物の流動性が低下する。
また、本発明のPTFE造粒物は、嵩密度が0.7〜1.0のものが好ましい。
本発明のPTFE組成物やPTFE造粒物は、ふっ素樹脂ハンドブック(里川孝臣編、日刊工業新聞社発行、発行日1990年11月30日初版)の第99〜116頁に記載されるように、圧縮成形法により10〜100MPaで加圧成形したのち、350〜400℃で焼成することにより、PTFE成形物とすることができる。また、PTFE成形物をさらに切削加工し、軸受け、ガスケット、O−リング、ポンプインペラ、ボールバルブシート、オイルシール等、ピストンリング、ショックアブソーバ等、バックアップリング等のPTFE成形物にすることもできる。
本発明のPTFE成形物は、硬度が高く、圧縮強度や引張強度、さらには伸びや耐摩耗性などの物性が優れる。
【0022】
【実施例】
以下に、実施例(例1〜4)及び比較例(例5〜8)を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。なお、各特性の測定方法は、以下に記載の方法に従った。
[グラファイト粉末の平均粒径(単位:μm)および粒度分布]
島津製作所製レーザー回折式粒度分布測定装置SALD−3000により測定した。得られた累積頻度図(篩い下)より、50質量%累積の粒径を平均粒径とし、5μm以下のグラファイト粉末の累積頻度(質量%)を5μm以下のグラファイト粉末の割合とし、25μm超のグラファイト粉末の累積頻度(質量%)を25μm超のグラファイト粉末の割合とし、45μm超のグラファイト粉末の累積頻度(質量%)を45μm超のグラファイト粉末の割合とした。
【0023】
[グラファイト粉末の粉末流動性(単位:mm)]
ホソカワミクロン社製パウダーテスターを使用し、安息角を測定した。安息角が小さいほど粉末流動性に優れることを示す。
[嵩密度(単位:g/mL)]
JIS K6891に準じて測定した。内容積100mLのステンレス鋼製のはかり瓶に、上部に設置された漏斗より試料粉末または試料造粒物を落として、はかり瓶から盛り上がった試料を平板で擦り落とした後、はかり瓶内に残った試料の重さをはかり瓶の内容積で除した値を嵩密度とした。
[PTFE組成物およびPTFE造粒物の粉末流動性(単位:mm)]
ホッパー形状をした容器に試料100gを投入し、容器の底部を一定の速度で開いて試料が約50g落下した時の開口部(スリット)の距離を粉末流動性とした。距離が短いほど粉末流動性に優れることを示す。
【0024】
[PTFE造粒物の平均粒径(単位:μm)]
上から順に10、20、35、40、60メッシュの篩いを重ね、10メッシュ篩い上にPTFE造粒物100gを乗せて振動させ、各篩い上に残るPTFE造粒物の質量を求めた。この質量に基づき対数確率紙で50質量%粒径を求め、PTFE造粒物の平均粒径とした。
[PTFE成形物の強度(単位:MPa)及び伸度(単位:%)]
JIS K6891に準じて測定した。PTFE組成物の場合は圧力40MPaで、PTFE造粒物の場合は圧力60MPaで、直径50mm高さ約50mmの円柱状に圧縮成形し、370℃で4時間焼成した後、降温速度70℃/時で冷却し、厚み1mmにスライスし、JIS3号ダンベル型で打ち抜き試験片とし、引張試験を行ない、破断時の強度及び伸度を測定した。
[PTFE成形物の硬度(単位:デュロメーターD)]
JIS−K7215に準拠し測定した。
【0025】
(例1)
グラファイト粉末(品番「WF−015」、中越黒鉛工業社製)と、PTFE粉末(旭硝子フロロポリマーズ社製フルオンG163(平均粒径25μm))を、表2[例1]に示す配合でブレンドし、ヘンシェルミキサー(三井金属鉱山社製)を用いて撹拌翼周速度40m/秒で60秒間混合し、PTFE組成物を得た。
このグラファイト粉末Aの粉体物性および粒度分布を表1および図1に示す。また、PTFE成形物の強度、伸度及び硬度などの性能を表2に示した。
【0026】
(例2)
例1で作製したPTFE組成物に、バインダーとしてn−デカンを470ml添加し、さらにヘンシェルミキサーで撹拌翼周速度10m/秒、混合時間10秒の条件で混合した。ついで、この混合物を10メッシュのふるいを通過させ、粗造粒物Aを得た。パン整粒機で10分間造粒した後、300℃で3時間乾燥し、PTFE造粒物を得た。PTFE造粒物の粉末流動性や、PTFE成形物の強度、伸度、及び硬度などの性能を表2に示した。
(例3)
グラファイト粉末Aを35質量%配合して、例2と同様の方法でPTFE造粒物を得た。PTFE造粒物の粉末流動性や、PTFE成形物の強度、伸度、及び硬度などの性能を表2に示した。
【0027】
(例4)
例2で得た粗造粒物A(500g)を、2リッターの水中で600rpmで1分間攪拌後、300rpmで10分間攪拌後水を除去し、300℃で3時間乾燥し、PTFE造粒物を得た。PTFE造粒物の粉末流動性や、PTFE成形物の強度、伸度、及び硬度などの性能を表2に示した。
(例5〜6(比較例))
表1に粉体物性を示すグラファイト粉末B、Cを使用する以外は例2と同様にして、PTFE造粒物を得た。その特性を表2に示す。これらはグラファイト粉末が本発明の範囲外であるため、PTFE成形物の強度及び伸度が劣っていた。
【0028】
(例7(比較例))
目開き45ミクロンおよび目開き25ミクロンの篩いを重ねた上にグラファイト粉末Cを乗せて20分間振動させ、目開き25ミクロンの篩い上に残ったグラファイト粉末Dを得た。グラファイト粉末Dを用い、例2と同様にしてPTFE造粒物を得た。表1に示すように、グラファイト粉末Dの安息角は本発明の範囲外であり、PTFE成形物の強度および伸度は劣っていた。
(例8(比較例))
グラファイト粉末Dを使用し、例1と同様にPTFE粉末と混合し、PTFE組成物を得た。しかし、グラファイト粉末Dの安息角は本発明の範囲外であるため、強度及び伸度が例1よりも劣っていた。
【0029】
【表1】

Figure 0004222053
【0030】
【表2】
Figure 0004222053
【0031】
【発明の効果】
本発明によれば、高強度および高伸度のグラファイト粉末入りPTFE成形物を得ることができる。また、本発明のPTFE造粒物は、流動性に優れている。
【図面の簡単な説明】
【図1】 本発明の実施例および比較例に使用したグラファイト粉末の粒径分布の累積頻度を示したものである。
【符号の説明】[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graphite powder-containing polytetrafluoroethylene (hereinafter referred to as PTFE) molding used for bearings, gaskets, and the like, and a PTFE composition that is a mixture of PTFE powder and graphite powder used as a molding raw material. And a PTFE granulated product which is a granulated powder obtained by granulating the PTFE composition.
[0002]
[Prior art]
The PTFE particles obtained by suspension polymerization are commercially available as molding powders for compression molding after being pulverized to a size of several tens to several hundreds of μm. According to the above, PTFE compositions containing various fillers are compression-molded and then fired at about 370 ° C. and used for various applications as PTFE molded products.
As a raw material for molding a filler-containing PTFE molded product, a PTFE composition obtained by simply mixing PTFE powder and a filler is easy to prepare, and can be used to produce a relatively large molded product. There is a drawback that it is difficult to handle due to poor flowability of the powder. For this reason, in the case of producing a small molded product or in a manufacturing process in which powder is automatically supplied from a hopper, a PTFE granulated product in which the powder fluidity is improved by granulating the PTFE composition is often used ( For example, refer nonpatent literature 1).
[0003]
On the other hand, a PTFE composition containing a filler mixed with a filler is used in applications where the wear resistance and compression characteristics of the PTFE molded product need to be improved, and carbon-based fillers are used particularly for applications such as bearings and gaskets. A filler is used.
As a carbon-based filler, a powder obtained by carbonizing a pulverized carbon fiber or a resin powder such as a phenol resin at a high temperature is not widely used because it is very expensive, and generally a graphite powder is preferably used.
For example, it has been proposed that a PTFE molded article using a PTFE composition containing graphite (graphite) has relatively high elongation and strength (see Patent Document 1). However, this PTFE molded product cannot be said to have sufficient elongation and strength, and the PTFE composition has a problem that it has a low bulk density and powder flowability and is difficult to handle.
[0004]
Moreover, the PTFE granulated material which mix | blended carbonaceous powder (coke powder) is proposed (refer patent document 2). However, in this case, since it is necessary to use fine PTFE powder, there is a problem that it is necessary to pulverize and classify PTFE by a special process.
Furthermore, conventionally, it is known that blending a large amount of graphite powder improves the wear resistance, compression characteristics and hardness of the PTFE molded product. However, when a large amount of graphite powder is blended, the strength of the PTFE molded product is known. There was a problem that the elongation decreased. In particular, when a PTFE granulated product is used to obtain a PTFE molded product, when a large amount of graphite powder is blended, there is a problem that the mechanical strength and elongation of the PTFE molded product are remarkably lowered.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 8-30135 [Patent Document 2]
JP 2002-234945 A [Non-Patent Document 1]
Published by Takaomi Satokawa “Fluorine Resin Handbook” published by Nikkan Kogyo Shimbun, November 30, 1990, first edition, pages 30 and 94-96.
[Problems to be solved by the invention]
An object of the present invention is to provide a graphite-containing PTFE molding having high elongation and strength, a PTFE composition that can be used as a molding raw material, and a PTFE granulated product.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have made the angle of repose of the graphite powder 45 ° or less, or by making the bulk density of the graphite powder 0.2 to 1.0. The present inventors have found that the above problems can be achieved and have completed the present invention.
[0008]
The present invention relates to a polytetrafluoroethylene composition containing a polytetrafluoroethylene powder and a graphite powder, wherein the content of the graphite powder is 5 to 50% by mass of the total amount of the two components. Is 45 ° or less, and the average particle size of the graphite powder is 5 to 40 μm. A polytetrafluoroethylene composition is provided.
Further, the present invention provides a polytetrafluoroethylene composition containing a polytetrafluoroethylene powder and a graphite powder, wherein the graphite powder content is 5 to 50% by mass of the total amount of the two components. A polytetrafluoroethylene composition having a density of 0.2 to 1.0 and an average particle diameter of graphite powder of 5 to 40 μm is provided.
[0009]
The present invention also provides a polytetrafluoroethylene granulated product comprising a polytetrafluoroethylene powder and a graphite powder, wherein the content of the graphite powder is 5 to 50% by mass of the total amount of the two components. Polytetrafluoroethylene granulation characterized by having an angle of repose of 45 ° or less, an average particle size of graphite powder of 5 to 40 μm, and an average particle size of polytetrafluoroethylene granulation of 200 to 1000 μm Offer things.
The present invention also provides a polytetrafluoroethylene granulated product comprising a polytetrafluoroethylene powder and a graphite powder, wherein the content of the graphite powder is 5 to 50% by mass of the total amount of the two components. Polytetrafluoroethylene having a bulk density of 0.2 to 1.0, an average particle size of graphite powder of 5 to 40 μm, and an average particle size of polytetrafluoroethylene granulated product of 200 to 1000 μm A fluoroethylene granulate is provided.
[0010]
The present invention also provides a polytetrafluoroethylene molded product comprising polytetrafluoroethylene and graphite powder, wherein the graphite powder content is 5 to 50% by mass of the total amount of the two components. Is a polytetrafluoroethylene molded product having an average particle diameter of 5 to 40 μm.
The present invention also relates to a polytetrafluoroethylene molded product containing polytetrafluoroethylene and graphite powder, wherein the graphite powder content is 5 to 50% by mass of the total amount of the two components. Is 0.2 to 1.0, and the average particle size of the graphite powder is 5 to 40 μm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The PTFE in the present invention may be a homopolymer of tetrafluoroethylene (hereinafter referred to as TFE), and is in a range not giving melt fluidity, particularly in a ratio of 0.5 mol% or less. It may be PTFE containing polymerized units based on a comonomer that can be polymerized.
[0012]
Specific examples of the comonomer include fluoroolefins such as hexafluoropropylene, chlorotrifluoroethylene, trifluoroethylene (excluding TFE), perfluoro (alkyl vinyl ether), perfluoro (alkoxyalkyl vinyl ether). , Fluorovinyl ethers such as (perfluoroalkyl) methyl trifluorovinyl ether, and olefins such as (perfluoroalkyl) ethylene, ethylene and propylene. As the comonomer, hexafluoropropylene, perfluoro (n-propyl vinyl ether), and (perfluoro-n-butyl) ethylene are preferable.
[0013]
The PTFE powder used in the present invention is preferably a PTFE powder having an average particle size of 5 to 65 μm obtained by pulverizing PTFE particles obtained by suspension polymerization, more preferably a PTFE powder having an average particle size of 10 to 50 μm. More preferred is PTFE powder having a particle size of 15 to 40 μm.
In the present invention, as graphite powder, natural graphite or artificial graphite pulverized by known means, classified after pulverization, or granulated after pulverization is used alone or in combination of two or more. it can. In addition, the graphite powder in this invention contains what is called graphite powder or coke powder.
[0014]
The graphite powder used in the present invention has an angle of repose of 45 ° or less. The angle is preferably 44 ° or less, more preferably 43 ° or less. When the angle of repose is 45 ° or less, the fluidity is high and the particle shape of the graphite powder is relatively round and smooth, so that the continuity of PTFE as a matrix in the PTFE molded product is not hindered, and the strength of the molded product Elongation increases. On the other hand, if the angle of repose exceeds 45 °, the fluidity is low, the particle shape of the graphite powder is angular, or the anisotropy is large, which prevents the continuity of the matrix, and the strength and elongation of the PTFE molded product. The degree decreases.
The lower limit of the angle of repose is preferably 25 ° or more, more preferably 30 ° or more, and further preferably 33 ° or more.
In addition, the angle of repose in the present invention is a numerical value measured using a powder tester manufactured by Hosokawa Micron Co., Ltd., and graphite powder is dropped on a disk having a diameter of 80 mm to reach an equilibrium angle. Read and measure the angle.
[0015]
The graphite powder used in the present invention has a bulk density of 0.2 to 1.0. A more preferable bulk density is 0.3 to 0.9, and a particularly preferable range is 0.4 to 0.9. When the bulk density is within the above range, the mixing property with the PTFE powder is good, and the hardness of the PTFE molded product is also increased.
The graphite powder used in the present invention has an average particle diameter of 5 to 40 μm, preferably 7 to 35 μm, and particularly preferably 10 to 25 μm. If the average particle size of the graphite powder is larger than the above range, the strength and elongation are significantly reduced when molded or cut into a thin molded product having a thickness of 1 mm or less or a molded product having a diameter of 1.5 mm or less. Therefore, it is not preferable. Moreover, since the intensity | strength and elongation will fall when the average particle diameter of a graphite powder is smaller than the said range, it is unpreferable.
[0016]
In the graphite powder used in the present invention, the proportion of particles exceeding 45 μm is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less. When the proportion of graphite particles exceeding 45 μm is large, the structure of the molded product tends to be rough and the appearance tends to be impaired.
In the graphite powder that can be used more preferably in the present invention, the proportion of particles exceeding 25 μm is 20% by mass or less, preferably 15% by mass or less, and more preferably 10% by mass or less. When the proportion of particles exceeding 25 μm is large, the strength and elongation are greatly reduced when processed into a thin molded product or a fine molded product.
[0017]
In the graphite powder used in the present invention, the proportion of particles of 5 μm or less is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less. When the proportion of particles of 5 μm or less is large, the strength and elongation of the molded product are lowered. However, particularly when used for PTFE granulated products, the graphite particles segregate on the PTFE granulated surface during the granulation process. This is not preferable because the grain boundary of the PTFE granulated product remains in the PTFE molded product, and the strength and elongation decrease.
[0018]
In the present invention, since the particle size variation of the graphite powder in the mixing step or the granulating step is very small, the particle size of the graphite powder in the PTFE composition, in the PTFE granulated product, or in the PTFE molded product is the graphite used. It can be regarded as a single particle size of the powder. As an actual measurement method, measure using a particle size distribution meter by laser diffraction / scattering method that has been confirmed to be traceable using standard particles in advance, create a cumulative frequency diagram (under a sieve), and calculate the average particle size, The frequency ratio (mass%) in the particle size range can be determined.
In the present invention, the content of the graphite powder is 5 to 50% by mass, preferably 10 to 40% by mass, and more preferably 15 to 35% by mass with respect to the total amount of both components of PTFE and graphite powder. %, Particularly preferably 20 to 30% by mass. If the content of graphite powder is too large, the strength and elongation of the molded product will decrease, and if it is too small, the compression strength, wear resistance and hardness of the molded product will decrease, which is not preferable.
[0019]
In the present invention, in addition to graphite powder, glass powder, glass fiber pulverized powder, alumina powder, silica powder, talc powder, carbon fiber pulverized powder, bronze powder, copper powder, polyimide powder, molybdenum disulfide powder, polyphenylene sulfide powder, etc. The filler may be contained.
The PTFE composition of the present invention can be obtained by mixing PTFE powder and graphite powder with a known mixer such as a Henschel mixer.
In addition, the PTFE granulated product of the present invention can be obtained by using a PTFE composition by a dry granulation method that does not use water or a wet granulation method that uses water.
[0020]
As the dry granulation method, there is used a method in which an organic solvent is added as a binder to the PTFE composition, granulated by a rolling type, a stirring type, a fluidized bed type or the like and then dried.
The wet granulation method is a method in which an PTFE composition is mixed with an organic solvent that is difficult to dissolve in water as a binder, stirred in water, granulated, and then dried. The graphite powder may be used after water-repellent treatment using an organic compound such as a silane coupling agent, silicone oil, fluorine-based oil, or fluorine resin.
[0021]
The average particle diameter of the PTFE granulated product of the present invention is 200 to 1000 μm, preferably 300 to 900 μm, and more preferably 400 to 800 μm. If the average particle size of the PTFE granulated product is too large, the surface smoothness of the molded product is lowered and the variation in physical properties is increased, but if the average particle size is too small, the fluidity of the PTFE granulated product is lowered.
The PTFE granulated product of the present invention preferably has a bulk density of 0.7 to 1.0.
The PTFE composition and the PTFE granulated product of the present invention are described in pages 99 to 116 of a fluorine resin handbook (Takaomi Satokawa, published by Nikkan Kogyo Shimbun, published on November 30, 1990, first edition), After being pressure-molded at 10 to 100 MPa by a compression molding method, it is fired at 350 to 400 ° C. to obtain a PTFE molded product. Further, the PTFE molded product can be further cut into PTFE molded products such as bearings, gaskets, O-rings, pump impellers, ball valve seats, oil seals, piston rings, shock absorbers, backup rings, and the like.
The PTFE molded product of the present invention has high hardness and excellent physical properties such as compressive strength and tensile strength, as well as elongation and wear resistance.
[0022]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples (Examples 1 to 4) and Comparative Examples (Examples 5 to 8), but the present invention is not limited thereto. In addition, the measuring method of each characteristic followed the method as described below.
[Average particle size (unit: μm) and particle size distribution of graphite powder]
It was measured with a Shimadzu laser diffraction particle size distribution analyzer SALD-3000. From the cumulative frequency diagram obtained (under the sieve), the average particle size is 50% by mass particle size, the cumulative frequency (% by mass) of the graphite powder of 5 μm or less is the proportion of the graphite powder of 5 μm or less, and the particle size is over 25 μm. The cumulative frequency (mass%) of the graphite powder was the ratio of the graphite powder exceeding 25 μm, and the cumulative frequency (mass%) of the graphite powder exceeding 45 μm was the ratio of the graphite powder exceeding 45 μm.
[0023]
[Powder flowability of graphite powder (unit: mm)]
The angle of repose was measured using a powder tester manufactured by Hosokawa Micron. A smaller angle of repose indicates better powder flowability.
[Bulk density (unit: g / mL)]
It measured according to JIS K6891. The sample powder or granulated material was dropped from a funnel installed at the top into a stainless steel balance bottle with an internal volume of 100 mL. The value obtained by dividing the weight of the sample by the internal volume of the weighing bottle was taken as the bulk density.
[Powder fluidity of PTFE composition and PTFE granulated product (unit: mm)]
100 g of the sample was put into a hopper-shaped container, the bottom of the container was opened at a constant speed, and the distance of the opening (slit) when the sample dropped about 50 g was defined as powder flowability. It shows that it is excellent in powder fluidity | liquidity, so that distance is short.
[0024]
[Average particle diameter of PTFE granulated product (unit: μm)]
10, 20, 35, 40, and 60 mesh sieves were stacked in order from the top, 100 g of PTFE granulated product was placed on the 10 mesh sieve and vibrated, and the mass of the PTFE granulated product remaining on each sieve was determined. Based on this mass, a 50% by mass particle size was obtained with logarithmic probability paper and used as the average particle size of the PTFE granulated product.
[Strength (unit: MPa) and elongation (unit:%) of PTFE molded product]
It measured according to JIS K6891. In the case of a PTFE composition, the pressure is 40 MPa, and in the case of a PTFE granulated product, it is compression-molded into a columnar shape having a diameter of 50 mm and a height of about 50 mm, fired at 370 ° C. for 4 hours, and then a temperature drop rate of 70 ° C./hour. Then, it was sliced to a thickness of 1 mm, punched out with a JIS No. 3 dumbbell mold, subjected to a tensile test, and the strength and elongation at break were measured.
[Hardness of PTFE molded product (unit: durometer D)]
It measured based on JIS-K7215.
[0025]
(Example 1)
Graphite powder (product number "WF-015", manufactured by Chuetsu Graphite Industries Co., Ltd.) and PTFE powder (Asahi Glass Fluoropolymers Co., Ltd., Fullon G163 (average particle size 25 µm)) were blended in the formulation shown in Table 2 [Example 1]. Using a Henschel mixer (manufactured by Mitsui Kinzoku Mining Co., Ltd.), mixing was performed at a stirring blade peripheral speed of 40 m / sec for 60 seconds to obtain a PTFE composition.
The powder physical properties and particle size distribution of this graphite powder A are shown in Table 1 and FIG. Table 2 shows the performance, such as strength, elongation and hardness, of the PTFE molded product.
[0026]
(Example 2)
To the PTFE composition prepared in Example 1, 470 ml of n-decane was added as a binder, and further mixed with a Henschel mixer under the conditions of a stirring blade peripheral speed of 10 m / second and a mixing time of 10 seconds. Subsequently, this mixture was passed through a 10-mesh sieve to obtain a coarse granulated product A. After granulating with a bread granulator for 10 minutes, it was dried at 300 ° C. for 3 hours to obtain a PTFE granulated product. Table 2 shows the powder fluidity of the PTFE granulated product and the performance such as strength, elongation, and hardness of the PTFE molded product.
(Example 3)
Graphite powder A was blended in an amount of 35% by mass, and a PTFE granulated product was obtained in the same manner as in Example 2. Table 2 shows the powder fluidity of the PTFE granulated product and the performance such as strength, elongation, and hardness of the PTFE molded product.
[0027]
(Example 4)
The coarse granulated product A (500 g) obtained in Example 2 was stirred in 2 liters of water at 600 rpm for 1 minute, then stirred at 300 rpm for 10 minutes, and then water was removed, followed by drying at 300 ° C. for 3 hours, and PTFE granulated product. Got. Table 2 shows the powder fluidity of the PTFE granulated product and the performance such as strength, elongation, and hardness of the PTFE molded product.
(Examples 5 to 6 (comparative examples))
A PTFE granulated product was obtained in the same manner as in Example 2 except that graphite powders B and C exhibiting powder physical properties were used in Table 1. The characteristics are shown in Table 2. Since the graphite powder was outside the scope of the present invention, the strength and elongation of the PTFE molded product were inferior.
[0028]
(Example 7 (comparative example))
Graphite powder C was placed on top of a sieve having an opening of 45 microns and an opening of 25 microns, and was vibrated for 20 minutes to obtain graphite powder D remaining on the sieve having an opening of 25 microns. Using the graphite powder D, a PTFE granulated product was obtained in the same manner as in Example 2. As shown in Table 1, the angle of repose of the graphite powder D was outside the range of the present invention, and the strength and elongation of the PTFE molded product were inferior.
(Example 8 (comparative example))
Graphite powder D was used and mixed with PTFE powder in the same manner as in Example 1 to obtain a PTFE composition. However, since the angle of repose of the graphite powder D is outside the range of the present invention, the strength and elongation were inferior to those of Example 1.
[0029]
[Table 1]
Figure 0004222053
[0030]
[Table 2]
Figure 0004222053
[0031]
【The invention's effect】
According to the present invention, a PTFE molded article containing graphite powder with high strength and high elongation can be obtained. Moreover, the PTFE granulated product of the present invention is excellent in fluidity.
[Brief description of the drawings]
FIG. 1 shows the cumulative frequency of the particle size distribution of graphite powder used in Examples and Comparative Examples of the present invention.
[Explanation of symbols]

Claims (3)

ポリテトラフルオロエチレン粉末およびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン組成物において、グラファイト粉末の安息角が45°以下であり、グラファイト粉末の平均粒径が5〜40μmであることを特徴とするポリテトラフルオロエチレン組成物。  In a polytetrafluoroethylene composition containing a polytetrafluoroethylene powder and a graphite powder, wherein the content of the graphite powder is 5 to 50% by mass of the total amount of the two components, the repose angle of the graphite powder is 45 ° or less. A polytetrafluoroethylene composition, wherein the graphite powder has an average particle size of 5 to 40 μm. ポリテトラフルオロエチレン粉末およびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン造粒物において、グラファイト粉末の安息角が45°以下であり、グラファイト粉末の平均粒径が5〜40μmであり、ポリテトラフルオロエチレン造粒物の平均粒径が200〜1000μmであることを特徴とするポリテトラフルオロエチレン造粒物。  In a polytetrafluoroethylene granulated product containing a polytetrafluoroethylene powder and a graphite powder, and the content of the graphite powder is 5 to 50% by mass of the total amount of the two components, the repose angle of the graphite powder is 45 °. A polytetrafluoroethylene granulated product, characterized in that the average particle size of graphite powder is 5 to 40 μm and the average particle size of the polytetrafluoroethylene granulated product is 200 to 1000 μm. ポリテトラフルオロエチレンおよびグラファイト粉末を含有し、該グラファイト粉末の含有量が前記両成分の合計量の5〜50質量%であるポリテトラフルオロエチレン成形物において、グラファイト粉末の安息角が45°以下であり、グラファイト粉末の平均粒径が5〜40μmであるポリテトラフルオロエチレン成形物。  In a polytetrafluoroethylene molded article containing polytetrafluoroethylene and graphite powder, wherein the graphite powder content is 5 to 50% by mass of the total amount of both components, the repose angle of the graphite powder is 45 ° or less. A molded product of polytetrafluoroethylene having an average particle diameter of graphite powder of 5 to 40 μm.
JP2003043399A 2003-02-20 2003-02-20 Polytetrafluoroethylene composition, granulated product and molded product Expired - Fee Related JP4222053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043399A JP4222053B2 (en) 2003-02-20 2003-02-20 Polytetrafluoroethylene composition, granulated product and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043399A JP4222053B2 (en) 2003-02-20 2003-02-20 Polytetrafluoroethylene composition, granulated product and molded product

Publications (2)

Publication Number Publication Date
JP2004250605A JP2004250605A (en) 2004-09-09
JP4222053B2 true JP4222053B2 (en) 2009-02-12

Family

ID=33026384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043399A Expired - Fee Related JP4222053B2 (en) 2003-02-20 2003-02-20 Polytetrafluoroethylene composition, granulated product and molded product

Country Status (1)

Country Link
JP (1) JP4222053B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830135B2 (en) * 1987-10-16 1996-03-27 エヌオーケー株式会社 Polytetrafluoroethylene resin composition
JP3347823B2 (en) * 1993-06-25 2002-11-20 旭硝子株式会社 Polytetrafluoroethylene granules
JPH09286915A (en) * 1995-12-28 1997-11-04 Ntn Corp Vane motor blade
JP3319329B2 (en) * 1997-03-17 2002-08-26 ダイキン工業株式会社 Filler-containing polytetrafluoroethylene granular powder and method for producing the same
JP2001106793A (en) * 1999-10-04 2001-04-17 Ntn Corp Method for granulating filler-containing polytetrafluoroethylene powder
JP3892631B2 (en) * 1999-10-21 2007-03-14 ダイキン工業株式会社 Molding resin powder and method for producing the same
JP2002146679A (en) * 2000-11-07 2002-05-22 Toray Ind Inc Carbon fiber bundle, resin composition, forming material and formed product using the same
JP2002155147A (en) * 2000-11-20 2002-05-28 Du Pont Mitsui Fluorochem Co Ltd Granulated fluororesin powder
JP4698022B2 (en) * 2000-12-27 2011-06-08 三井・デュポンフロロケミカル株式会社 Method for producing filled polytetrafluoroethylene molding powder

Also Published As

Publication number Publication date
JP2004250605A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US11041061B2 (en) Polytetrafluoroethylene composition
EP1857492B1 (en) Process for producing filler-containing polytetrafluoroethylene granule
JP2008525622A (en) Microsphere-filled polytetrafluoroethylene composition
JP2012001733A (en) Resin composition, method of producing same, and foam-insulated electric wire
JP5034150B2 (en) Polytetrafluoroethylene granulated product and molded product thereof
JP4222053B2 (en) Polytetrafluoroethylene composition, granulated product and molded product
CN103703065A (en) Low-wear fluoropolymer composites
JP3347823B2 (en) Polytetrafluoroethylene granules
JP2001114965A (en) Resin powder for molding and its production
JP4619777B2 (en) Preparation method of agglomerated pellets of polytetrafluoroethylene and molded product thereof.
CN101111541B (en) Method for producing finely pulverized fluororubber
JP3937981B2 (en) Method for producing high-powder fluidity polytetrafluoroethylene granulated product
JP4698022B2 (en) Method for producing filled polytetrafluoroethylene molding powder
CN112739749A (en) Method for producing composite resin particle, and composite resin particle
JP5315934B2 (en) Polytetrafluoroethylene composition and molded article thereof
JP2008024837A (en) Method for producing granulated powder of polytetrafluoroethylene
JP6859328B2 (en) Method for manufacturing polymer materials
KR20140105559A (en) Process for manufacturing fluoroelastomer compositions containing fluoro-plastic fibrils, the composition so produced and cured articles prepared from said composition
CN115678145B (en) High-fluidity powder material, and preparation method and application thereof
JP2003306551A (en) Ptfe granular gel powder, ptfe granular semigel powder, ptfe powder, method for producing ptfe granular gel powder, and molded article
JPH07278314A (en) Production of polytetrafluoroethylene granulated powder
JP2952958B2 (en) Manufacturing method of polytetrafluoroethylene granulated powder containing filler
JP2023108326A (en) Polytetrafluoroethylene granulated powder and method for producing the same
JPS62246953A (en) Polytetrafluoroethylene resin composition
JP5691160B2 (en) Method for producing polytetrafluoroethylene granulated powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R151 Written notification of patent or utility model registration

Ref document number: 4222053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees